A9z g NRRA A A AaR INaa9H e

Tae lMUULANA 89NN 8 LUFNRINATNNIA I A1

ﬂumwﬂmwmm
9 W’i@ﬂﬂ“ﬂﬁ BIEIANHAEH

ANINATNINYIFNARTAANNALAAS NIANTIIAINIINARNNILADT
ADIAAINIINANERT AnNaenIniuwAnaae
fn1sAnen 2552

A1ENTVRITIAINTULNMINENRE

3D COORDINATE ESTIMATION FOR HAND MOTION IMAGE
USING SCALED ORTHOGRAPHIC PROJECTION MODEL

AUYANYNITNYNS

Th sis Submitted in Part|al Fulfillment of the Requirements

ARTETS R T Y

q Faculty of Engineering
Chulalongkorn University
Academic Year 2009

Copyright of Chulalongkorn University

Thesis Title 3D Coordinate Estimation for Hand Motion Image Using Scaled
Orthographic Projection Model
By

Mr. KositiN@pyichai
Lo i

Field of Study

Thesis Advisor wAssistar U Kanongchaiyos, Ph.D.

Accepige longkorn University in Partial

Fulfilment of the Reg

................ ¥ 4= W o powm . Des I' of ulty of Engineering

(Assistant Professor Al hasit

AT

7

guEdEminens
RN TUUMINYAE

- o] - J |
Tﬂaﬂ uﬂ'l‘i’ﬂ: m:rﬂs:mmmu.'ummuumqnmwLnnﬂu'lm'lmuﬂnul'i’uuu
JIABINTALUUIFIRINANNIATIEY. (3D COORDINATE ESTIMATION FOR

HAND MOTION IMAGE , USI CALED ORTHOGRAPHIC PROJECTION

MODEL) & #itfinwa NUWUS VAN B 0y AUBITEEA, 83 M.
X ’&
WARBINANAT 4 ayalunsuatiniunaa i

ﬁmwlummmmmimsn

--J
UANAINAINA

1
el

Tuilaqiiy 8Nl -< wanldaulngjazldgmenia

= ch 4 nl | lJ
ARAANARTNT LTS N mmmn‘umwnau I.ﬂ?ﬂl.l.ll!J

o 1 . i 1
axviaunquna N0 OENVHANRNT T ATELIN NOARBINNTU

- - o : ' -) - L
AINUIUNUE AL AN }Jﬂﬁ’]ﬂn']WLHﬂﬂ'lﬂ“'J‘lﬂﬂlJﬂ

K|
= o 8 | e e --J
N PR IL Rl N 2 UM FATUIIMN AR N AYRINANATN

A

tlymanisgnumih nasaunlddeyaanisune
y - - T : ' = -
wiuazANINLLeINUIRIAIEAG a Hananil deymiAdnAquIATaULL

axvieundufignuilaanisn 17

e
= o

lun'la 1938 Fan 79 rmﬁmﬂuiﬁqmﬁwm

— .

Tusunsad 1 Y S @ ’[NaSAFL ANt 13
FoyoRAnanaiany

[

[eannnimanesiudeyaate
SRLNTU NANTTAUATIZTUUAR IWITIWINAENNT J'I

Méanunen 1 a1u970A UWIUIMIAN

nMﬂmmmulﬁmuﬁ“mmmuﬁﬂmmunamnrmmuﬁ"munnuiﬁ‘ Tuvane

“*ﬂ*ﬂﬁﬁl’l“flﬂﬂ‘ﬁwmﬂ‘i
Q‘mﬂﬂﬂ‘im UAIINYA Y

e, dranssueeaRamed muuﬁwﬁn ‘)\"f %"U“?%
AN, . wmmanmﬁummm) ; Y« el

ﬂmsﬁnzﬂ2552

4971409721 : MAJOR COMPUTER SCIENCE
KEYWORDS: 3D COORDINATE ESTIMATION / HAND MOTION

KOSIT NOPVICHAI: 3D CO®RDINATE ESTIMATION FOR HAND MOTION

A 2D imagessequcLee can e a greal S _- otions for animating a 3D

model. However_ & ted from a two-dimension

hird dimension data.

Several meli#odsfhava Bee résented ove years. But most of them

image. Thus, therg
employed a cogple avoidably slow. Moreover,
there is an inhereni ust be addressed.

In this Study #We present. @ iechniguegto per s‘\'l a 3D coordinate estimation of
2D hand motion fr@Mm agfimage H;' e ?; | methed, the orthographic projection
model is used to deté J"#"""ﬁ . "Additionally, information from the
previous frames and interdependence o - nd model are used to handle occlusion.
5.in ogger to deal with reflective

X

tUre points are extracted from a

We also propgse &
ambiguity. .=

[
Maya animated Hand Clinching motion. The missing data_&nd depth information are

then calculated. Fﬁ%he resulting Z cooﬁ'jlates are evaluated by comparing with the

ﬁv glw(a m ﬂ« “ Mﬁ thod can estimate
qordlnat uite well and can correctly solve the reflective amblguﬂy in most

ommon cases
q H'Jea QAIJU‘;EMEM wu:ll nz'l mﬁ “'\—’
Faeid of Study ...Computer Science . Advisor's Signature... ;g f .

Vi

Acknowledgements

| owe a depth of gratitude to Dr. Pizzanu Kanongchaiyos for his help,

advice and understandings. | would like to thank all the teachers that | have a privilege

AULININTNEINS
AN TUNMNINGINY

Contents

Page
JaN o1y (r=Te S A aT=1) TSSO TOPPR iV
ADSract (ENGIISN) .. %
Acknowledgementsccccueveeees g | A Vi
Contents ...oeveeviiiieieiie .) . / ... Vii
List of Tables............. ., i/_‘ ix
List of Figures _—— _ .7 e I vttt nrene e snnae X
Chapter V ”,
1 Introduction
1.1 Backgroundg@nd Siategent of Problem ...t it 1
1.2 Objectives... gl - 4B 8 e R . B . 2
1.3 Project ScDe.. .. B W . [{< PR . R W% W% .. 7% 2
1.4 Research Prog@eduyes ... shi.iidl ... W0 0% ... 2
1.5 Expected Benefjif... . s o et WL R 3
2 Related Theories a d‘L :
2.1 Hand Model/Anatomy i ‘{* coodgdel W 4
2.2 Depth Reconstruction. _,"" o TR 5
2.3 Interdependen e, 6
3 Proposed .mrf
3.1 3D Coordiri i ESHMALION ¢..oveeooessecssessssssees e o T 7
3.2 INpuUt ACQUISITION ... A 7
...................................... 8
gm. Sdzg.f.mw;m [l T2 b
3.5 3 ePth RECONSIIUCTION ..ottt 9
o BRI m URANHAEY
4 Experiment and Result
4.1 The EXPEIIMENT ... e 16
4.1.1 Z Coordinate Calculation Program..........ccccoiiiiiiiiiieiai e 18
4.1.1.1 The Order of Feature Point Calculationcccccooiiiiiiiiiiii 19

viii

Chapter Page
4.1.1.2 The Dependency of Feature POINS.........ooviiiiiiiiiiiieee e 19
4.1.1.3 Filling in MiSSING Data ...cccooieiiieeeeee e 19
4.1.1.4 Z Coordinate Calculation it & b b 20
4.1.2 Other Programs..... 114 Pl ..., 21
4.2 Result and ANalySiSems: s v B et 21
4.2.1 Z Coordinate — - e 21
4.2.2 Missing Data Haae o0l b ol e i, ..o 25

5 Conclusions and
5.1 Conclusiogaii.... . #F L . 3. SRR T ... 34
5.2 Suggestions ... & B . ST VRN R . N 34

References...... I =P8 SRR SR B . 36

Appendices
Appendix A: Publicgion i . e i B B 41
Appendix B: Z Order Computation Program 48
Appendix C: Coordination f BT - 72
Appendix D: Coordinati -..,{, ; ... 74
Appendix '. Coc . , " - 78
Appendix Fy Ofigi I + N 79

Biography : ol [83

ﬂ‘UEJ’JVIWITWEﬂﬂ‘S
ammmmumawmaﬂ

List of Tables ix

Table Page
3.1 An example of missing data handling using the interfinger dependency........... 14

4.1 The table shows the mimimum, maximum, average and standard deviation of the

4.2
4.3

AULININTNEINS
AN TUNMNINGINY

List of Figures X

3.1 The DOFs of each of the joint in our hand model. The black node has 2 DOFs. The

white N0de has T DOF ... 8
3.2 The feature point locations of our hand Model.........cccccoeiiiiiiiiiiiie e 8
3.3 The reflective ambiguity of Z c 1y oo 12
3.4 The tip of the finger poin .‘ \‘ e/palpa . inner angle of the PIP joint is less

than 90 degrees _— __d 13
4.1 Our Maya hand - e et 16
4.2 Examples of inputfrom Maye j., \ . l ' ' . ' e 17

4.3 Examples of XYZ goordinaies f |aye TAAC (o) 17

4.4 The featuresBoints @NC INGIE DS, . u. oottt et oo 18
4.5 Examplesof; utiford £ at] Hgra ettt 21
46 Thegraphs owgltt ffgredce b tween ua ‘ \ predicted X values using
the five different megthods....... 0000 W, 26
47 The zoomed-in figure/of spiké 1..6,9.and 11.... k. 27
48 The zoomed-in figuse of spike 3 which feature Point 4......ooovvcvvee., 28
J s
4.9 The zoomed-in figures ofspike 4, 110 which belong to feature point 7, 8,
e o -
11, 12 and 16 respe g i/ A 2 e 30
4.10 The zoomed-in figure of spike 2 which belongs to feature Point 3.................... 31
h—

‘f"d

ﬂUEI’J'VIEWl?WEﬂﬂ‘i
awwmﬂmum'mmaﬂ

Chapter 1

Introduction

Computer animation is 1 e < ce a / Ising a computer to create moving
images. The idea is to.mak @ intended by the artists and
convey their creativity TSTE S dence. Tt @s to generate motions for
an articulated character 5 ne nmon- 2 e Kinematics, Dynamic control

_efitind 12)18] [RN, VI o apture. Recently more

attention has beepipaid 18 an‘altern ; o th e jitional methods. It is the typical 2D

There are he source model does
not need to be at typically lower than the
traditional motion cap ks of live action footage
recorded as 2D videos. S es and cannot be reproduced.
An example is a number of clz : ' n be readily used as a motion
source.

Using 2 ' mag : ‘J ¢hallenges of its own
that need to .*,’7 _ <& caused by occlusion)

need to be somehow reco motions, we may consider using

interdependence in addition to constraints, motion library, sample space, etc. Second,
the 2D naturge of it ¢ tates.the lack of de ‘ rmation., Thus some variants of 3D
recons io ﬂue re u eﬂ r S ‘Zq@o dinate: We will address

these issMs in our work. ‘

QR TRA AE TAR

an acquired raw motion is typically processed in some ways to create a more
appropriate motion for each target character. The output of this step is the adapted
motion data used to drive the target motion. For the case of an articulated figure, the

output is usually joint angle data for all the joints.

The animation of human articulate body has long been received numerous
attentions. The works in this area vary in terms of the body parts on which they focus. As

for the hand, it has been a focus of many researches in computer animation because

human body but also one of the most
n communication and expression.

f the hand motion from 2D

a 3D s ~.§o 1ate estimaation by using the

=

motions from 2D im 0 yencet | 18 an alternz to the traditional motion
capture. This wor isil ‘ ot| u. of ’\ 1 hand. The expected end result is
the technique that isi€apable est| H r‘_ ' motions from 2D video sequence.

The resulting 3D hand t| @ sedias i \ retarget source. The motion
input will be 2D frame sequence estures. The utput will be the 3D coordinate

estimation of the deformed hand..-.= .. = .

1.3 Project Scope
1. This work

- -
2. The 1}" \j’ the camera.

of each seg assume be known.

3. Thelen

4. The hand |n a scene is expected to be facing the camera.

! SKaN 1118 I 1T Y2 S

e result is evaluated byeomparlng our ougt to the data from Waya

9 W”I NI AN TING QL

4 Research Procedures
1. Acquire a 3D hand model. This may be obtained from a free repository on the

web.

2. Prepare the input sequence of hand gestures. This is obtained from a Maya
animation.
3. Study and write a software module to calculate the Z coordinates.

4. Test the system with our ' notion.

5. Analyze and evalua

1.5 Expected Benefits
We expee : of technigues to build a
working syster '\‘% . motion from 2D video
input will affr S >' d f vell thes iolie S are working in practice
and hopef y to ..r - A 'he experience of building

such syster o nilar tasks in the future.

AULININTNEINS
AR TUNN NN Y

Chapter 2

Related Theories and Literature Review
2.1 Hand Model/Anatomy

Hand anatomy has long been ¢ Il understood in the field of anatomy
ex body parts. Most animation
research focuses on its fw § sping and fine motor skills.

Many aspects hav : its [imitations, DOFs, bones,

Several hand | d over the years. Each has its own

shape model from si < their tracking system. For

b ,.a..u,.f‘

o
anthropomorphic flnger rﬁo'a’eﬂf o‘u fransmission s based on pulleys and

Reference [14] usespw&let free-form deforr@ons (DFFDs) to simulate the tissue and

muscleﬁew ?ﬁﬂﬂ ﬁﬁ wﬁqﬂﬁ tly, but the use
of DFF I les a ulging of segments
dependent on the angle of rotatlo‘of the respectiv@sproximal joint. In [15] the joint
R} 0 TELERI 1 Wkl -
|omechanlcal laws. The model was designed for use in animating American Sign
Language. An approach for skinning a hand skeleton using Eigen displacements has

been proposed in [16]. The resulting hand model can be animated in real-time using

graphics hardware.

Our hand model is a relatively simple kinematic chain consisting of joints and

segments. Each joint has a number of DOFs and limitations.

: 50f extracting the depth information from
‘ is A rmined problem. To solve it,

we need to pose some constrai ¢ !IOhS and find a solution under

2.2 Depth Reconstruction

Depth reoonstructlon of

that framework.
Study on 3 rformed for some time.

There have bee oposes an algorithm to

l.pd.JurJ

approach is based on model ng depths and ationships between them at multiple

spatial scales using hierar: hical, 3 andom Field. The model is trained

with a set of tra th depth maps. The

‘-'
method works. for ‘\5‘ containing forests,
sidewalks, buildings, people, € ' m

More recently, as the 2D monocular video sequence is recognized as a fertile
. O |

source ORS #S6eVv r reh u tech at use them as

input. Refere EJ a ;?]r stru tﬁ\u\ -like fig rﬂti from 2D video

stream. It'assumes an existence of ?Ilbrary of motlons similar to the targetwtlon video

BRSO T M AN SR

based on the target frame to get the final pose. Their method is capable of
reconstruction a highly dynamic motion for a full body of 40 DOFs. A technique based

on Motion Trend Analysis has been proposed in [22] [23]. The method uses the

information solved in the previous frame to solve for the next frame except the first
frame. Hence, a user help is required to identify the correct 3D poses for the first few

frames. Reference [24] exploits the domain specific knowledge about the target motions

to find certain joint location and te | nit poses. References [25] [26] [27] [24]
use the orthographic projec 10 ‘, ﬁe coordination.
To derive the Zweoordinate image, they assume the point

corresponding and se . ' | 'n distance between object
and the camera are mai ained. i £ lem o -f-,ﬂective ambiguity is also
mentioned and resolye . : Wy '> improves upon [25] by
allowing some pe \

We adopt the 'vo.{ which uses the scaled
orthographic proj epts & Methods section for

details of the techni

.ai*r;"?f" p

T A
Interdependence refers ’-‘“- --:.-%-. ger joint on others. Each finger joint

2.3 Interdependence

i
is not fully mdependent but ?”{1""' .. <

e e

d.on the movement of some other
joints on the A':_:f " between the DIP and

as. #- studied and used

PIP joints of % :
in several works. Reference ura ‘y' joint cannot be moved
without moving the PIP joint of the same finger. In another word there is a dependency
betwee ﬁz 5 two joint angle
to be DH! u ﬁhe moﬁw tcﬂuﬁ ﬁuﬁrﬁe DOF by making
DIP fuIIy pend on PIP. Referenoe&ﬂ 3] uses mterde&rlwdenoe in their wor eference

PRIRIMIURTINY TR Y~

Chapter 3

Proposed Method
3.1 3D Coordinate Estimation

3D coordinate estimation i h S t process of calculating the depth information
from a 2D input source. In oL ‘ ase, the & 2D image sequence of a hand.

We perform the foIIovv_in arts of the %ﬁestimation process:

erence hand model can be one of
20 \ 3 oh the image plane. This will
be used to establish the segmentie: egment refers to a segment of a finger.
For example each » '
2. The lengthiof each segmen _We _need_the length_of each ‘segment for 3D depth

reconstruction.

segments. Thgetically, we need only one seg
rest using the mfc*matlon from the referen&lhand model image.

REIEMINE T
AN TUUNINGIAE

he length of all the
T

ent lengt J;,: d we can calculate the

DOF.

The specific

2. Each finger e s three joints an " DOFs in a hand (figure

QWI @‘Tﬂi@ﬂmﬁ ‘Jﬂmﬁﬂ ”

feature points (figure 3.2). The feature points in our case include the locations of joints
and the tip of each finger and two more locations on the palm. A location is specified as

the XY coordinates of the following locations:

Location
5 Tip of {Thumb, Index, Middle, Ring, Little}
4 Distal interphalangeal joint (DIP) of {Index, Middle, Ring, Little}

&%, Middle, Ring, Little}
X Middle, Ring, Little}
——

all of these feature point locations

1 Wrist

In some im
because of occl ; % , ' : " N have employed a technique
to approximate their .' chniques C j M ‘-\ in details later. Also, one
s exact location is irrelevant
its rest pose which is

approximately somew Sre | : i > (in case of a joint) [30].

3.5 3D Depth Reconstr

information we get for each feature

Since our input is a ';9?{4" 2@“

pointis 2D. T u ate. To do this, we adopt

of model. A projection of

the method in ;y',_

x

inee— Y, .m)n the x-y plane can be
' trix (equation 4). ;

represented as a

quﬂaa§WH1ﬂi
ARAINT

a point (x, y, 2)

BIAINYIAY

In scaled orthographic projection, we simply add a scale factor to the equation
(equation 2). This results in a simple scaling of the object coordinates. The scaled-
orthographic model amounts to parallel projection, with a scaling added to mimic the

effect that the image of an object shrinks with the distance [31].

10

=3 (2)

—

The formula is expressed in.egu atlo

= (X, -
(“1 _7“2
az
az
(@)
LRI T,
(2 :};'—T;:E'_:_s-'—;;—;“ (8)
(&)

From equation 5 we assume ‘1 arbitrary depthifor Z, and compute forZ, . In this
AR AR NS Wb
e able to solve forZ,. In our case we assume that the distance between the camera
and the hand is much greater than the depth of Z coordinate. (Note that this assumption

is needed for the scaled orthographic projection model to work.) With this assumption,

the scale factor is almost constant for all the joints on the hand. So we can use the same

11

scale value for all the feature points. Now to compute for the scale factor S, we use
equation 6 to find the overall minimum value of S. Note that equation 6 comes from the

fact that the equation 5 has a real solution. We will use the minimum overall value of S in

our computation since the absolute \ 2lues o X ;Y and Zis not necessary. All we need
is the relative depth between each fec , Wt Once we obtains, we can use
omputed Z, as the Z, of the

next segment. We then i (] feature oints are computed. One

issue that we still have | reflective’ambiguity. This rom the fact that the Z, or

_ 7/ L% —
Z,in equation 5 can befthe smallerone ~~\~\\"§‘®-\ D format|on we have. In our

case, joint angle’ limity physiolog constraints . sed to pick the correct
configuration. N \
From this vtep o, X rdli | pomts. These values are

‘ \o r hand model.

an be ambigious. This is because
the Z coordinate value of two rﬁ” ‘ e calculated from the same X and

Y values. The .‘

i
e
-

D space which have the

same X and Y al"_

ﬂUEI’JVlEWIﬁWEI’]ﬂ‘i
’QW’W&NﬂiﬂJ UNIINYIA

12

We use the follg nstfaj to an IQU|ty in most cases. Our
constraints are based on fror ed f ure pomts on the same finger.
In the following explana ' 1! joint, the PIP joint, the DIP joint and

the tip of the finger as the feat D respectively. In our system, we

assume that D ' i -stays upright. From this

.. Aints on the value of

assumption and
the Z coordinate feature p

-Z ooordlnate of the feature point B is always greater than that of A

ﬁﬁ:ﬁﬁm TGS, o e

an or equal to 90 degre?

ROAYEIRETE N

coordinate. That is they are pointing away from the palm.
For the tip of the finger, our method considers the location of the MP, PIP and DIP

joints simultaneously. In particular, we measure the inner angle at the PIP joint. If it is

13

less than 90 degree, the tip of the finger should be pointing toward the palm. That is its

calculated Z coordinate is subtracted from its parent (DIP)'s Z coordinate to form its

world Z coordinate. The idea is depicted in the figure 3.4.

-
o

7/

Figure 3.4 The tip of the finger pg er% tha.p inne ng of e PIP joint is less than 90 degrees.

The inner ar

,, "o el P JOHHS"C Iated Sing th aw of the cosines as we
‘ u 7 J--‘.l'r

already know the YZ coordi te of d DI fe ure points.

Occasionally, it is posm E‘hé J0int input data cannot be obtained.

== =t -

This can be cg}d by several reasons. F|r i finger is occluded by

into a fist, the feature

points at the tip o ‘ dex, re amccluded when the palm

is facing toward the camera. Second, an input image is not clear. There may be some

AN aas

feature pgv'wts are available in the first frame. If this |s not the case in the real world, we

RN TS TINY TR Y

To fill in the msising data, we experimented with five different methods. The first
method to deal with missing data is to use the data from the previous frame. This

method is very simple and does not need any information from other feature points.

14

The second method is to apply the amount of change occurring between the
previous two frames to the missing frame. For example, if the X coordinate value of

feature point A is missing in frame 3 and the X values of this feature point in frame 1 and

2 are 5 and 8 respectively, the ‘pred /f n frame 3 willbe 8 + 3 = 11.

Frame AX & [d?2 Method 3

0 3 3

iF

1 5

s ’71[\\\
: I///Al\\:i\ 7

: III BAMNKRS |-

Table 3.4'An e pI of ssmg data I dllﬁ sk '*. r dependency
% (=) Y

The third method is sin ar to#ﬁ sae d method with the addition of interfinger
dependency. This deg C% a

B

directional change of the

10 dese
' aIu

rection of value (for example from

missing values. That is wi mo a-i- -‘r 1ange from a depended-on or
parent feature point. If ere s o=_

t, the same directional change is

increasing to decreasing) o the

_ Lt gl |
applied to the predic miple. In this example, a

2

feature point ‘ﬁ:‘_g’ nds 'of Alis missing in frame 3.
After we evaluat e trend - valuﬂend is changing from

increasing (i.e. 3 to 5 from frame 0 to frame 1) to decreasing (i.e. 5 to 4 from frame 1 to
frame ﬁ\ g frame 3. As a
result, ﬁ) ﬂeﬂv wym ﬂﬁﬁﬁﬁ?son, method 2
without aﬂnterﬂnger dependency \A@uld predict the value tobe7+2= 9

hypothesis that the intrafinger relationship is stronger than the interfinger relationship.

Thus, intrafinger dependency should provide more accurate predicted value.

15

The fifth method is similar to the fourth method. However, in addition to the

directional cue from the parent feature point, we also use its value change rate as well.

e
-
h“
1
rp

AULININTNEINS
AR TUNN NN Y

Chapter 4

Experiment and Result

igur o

s a' - i)
4.1 The Experiment ¢ ' copor

In our experlment we f’”' _: model (figure 4.1) to have the joint

as specified n the 1‘;' ation of the Hand

: -
Clinching Jgi ‘45 re a few reasons for

choosing Maya ﬁﬂatl , ent. st, we can get a very

accurate XY coordinate to use. This will eliminate the input errors from our experiment.

Second a d| o t di s from the Maya
animati n. ul f ﬁ m sult. Our Hand

Cllnchlng%mmatlon contains the totél of 100 frames. Some examples of the frames are

ARTHIN TN URIINYIA

17

Figure 42 Examples of‘input from Maya animation.

To extract the XY coordinates of-the-feature points from this animation, we wrote a
Maya plugin using Maya API. This program goes through each frame, extracts the X, Y,
and Z coordinate of eagh feature point and writes them to an output file. The plug in
code is listed in Appendix C. An exaniple of the extracted coordinates is shown in figure

4.3.

j0-8--2.69/5°-0 206784318220
J01-471145-0.252324 313728
|02 -4 72405 0 2671588 5 N0155
j03-473798 -0. 341292 3.0445
j0 4 -4.75056 -0.384681 2.99695
05 -4 76268 -0.427315 204545
106-477434 -0.469174 259914
10 7-4.78554 -0.910241 2.649

18 -4 79620 -0 550497 2 70507
10 94 80657 <0 389926274557

i0 10 -4.8164 0 628808 299581
011 -4.82576 -0.666229 2.54071
012 -4 83469 -0.703071 2 538579
043 464316 -0. /880182 2318
j0 14 -4 85117 -0.774055 2.4 /658
10 75 485673 -0.808167 2 42093

Figure 4.3 Examples of XYZ coordinates from Maya animation.

Please note that in addition to the X and Y coordinates, we have also extracted the

Z coordinate. However, only the X and Y coordinate are used as the input to our Z

18

coordination calculation software. The extracted Z coordinate will be used later to verify
our result.
After we have obtained the file containing data as shown in figure 4.3, we pass it

fiware. This software will calculate the Z

coordinate of each feature poir ,,‘ i 1€ Thesprogram code is listed in Appendix
B. The detalls of the program are o &tion.

as the input to our Z coordinate ¢ alc

Figure 4.4 The f

4112 Coordinaﬂalculatio rogram
This is the proq’raﬁhto calculate the Z @rdinate values based on the proposed
teohnicﬂ. upgaﬂu%]aﬂw%rﬁ(Wd%Je{I] ﬂweﬁmes, the actual
segment.@ngths. The program also fills in the missing X and Y data with the value we
guess using the values from the reﬁ/.ious frame, the Values of associated feature points
ok PR LT X L TIaE-X T
me Z coordinates of 21 feature pbints of the hand. The order of calculation is important.
The output is the list of calculated Z coordinates of feature points in all frames. The

program is listed in Appendix B.

19

4.1.1.1 The Order of Feature Point Calculation
The order of the Z coordinate calculation is defined. In our design, we assume that

the palm is facing toward the camera and it does not move. So the Z coordinates of the

positions are relateddo ec ' er. S0, Whe ‘ he missing feature point

data (e.g. occlusion), we sinfdrims - pres feature point. So we need

prey

AUl
4.1.1.2 The Dependency ¢ Fea ..'... L
A feature point’s '---n Hc - sed on another feature point. This is

segment of a finger. In our design,

the joint that together with t ﬂngt

the parent joi t S | N e joint above it in the

joint tree. For e “-f ‘I“A 18 are dependent

on the feature po

920 : dent on the feature point 1. The

feature point 1 is dependent on the feature point 2 and so on.

T : oint ether with the
feature nﬁ mgm egjs gment length in the Z

coordma&lcalculatlon Second, the calculated Z coordlnate is relative to this feature

PR TN TN ™

4.1.1.3 Filling in Missing Data

When the program starts, it reads frame data from the input file, then for each

frame, it determines whether the XY coordinate of any feature point is missing. If that is

20

the case, it tries to guess the missing value using the algorithms described earlier in
section 3.7. After this step, a frame has complete XY coordinate data of all feature

points. And we are ready to compute the Z coordinate of each feature point.

4.1.1.4 Z Coordinate Calculation ‘ /
For the first featuie. p int-(i.e. the foI the feature point 20), the Z
coordinate is assigned fo NS | wed to know the exact Z

coordinates of these f at we are tryin compute is the relative Z

For the re ait ve G i ‘thei Z coordinate values as a relative
value from the feat ipts pendson. The.Z ¢ ate is calculated form the

following formul
vertex1.w = verte W2(abs(ven‘ex1.v—vertexZ.v)))

One issue we \ - D0 qh pow?2(abs(vertex1.u-vertex2.u)) -
pow2(abs(vertex1.v-vertex2.v))) | i negat is ca ur if there is an inaccuracy

in such data we have sgment length or some of the XY

coordinate values. To solve

> this term to become positive by
e e R .

adjusting the value o

Once ‘r lue u""‘] to the depended-on

feature point’'s Z rd| a V itr@
the finger feature points (i.e. the feature point 3, 7, 11, 15 in fi

featureﬁnt we Chgc'ilﬂr the reflective a wts as detailed in section 3.6 and the

bt ol oo b e porme

accordlnal We perform this calculahon for every mput frame and write the result to the

CLMDN A TNy Y

e exception of the tip of

re 4.4). For the fingertip

additio

21

j00-46975-0206784 50577
j01-471145-0.252324 501302
j02-472495 -0.297166 495747
103 -4 ? 86,-0.341202 492108
‘5056 -0 284681 457 382

NEQ
305
2o 482576
*’://.; 147759
Ot 77201

LS = ?? : —D_ T A 755

@94 77454 -0 468474 4 75592
-ﬁ"; 3' { BE o

'...-1 \\¥H
o 7), S N
Lffo ERATA

¥ 1\\

4.1.2 Other Programs™

Besides the Z coordi) _': e , We have written a number of
other programs. First » Ve M3 _) Usin lay: 2| to extract the X, Y, and Z
coordinates of each feature ele 1": rame 7 the program is the list of X, Y,
and Z coordinates of each featu The code is listed in Appendix C.
Second, we wrote: progran to com nce between the actual and

calculated Z Goffdinaiecanc=sort=them=in=propei=ordor=rhe grams are listed in
Appendix E and - o
Third, we vﬂe a Maya plugin to import our calculatem coordinate values and

use them along the tﬁ‘@inal XandY coor@tes to create the output animation. The

~fH ?fl’@%%l'ﬂiﬂ%l']ﬂ‘i
qmﬁ;ﬁmm UNIINYIA

In our experiment, we choose to use a motion of a clinching hand (see figure 4.2).
We believe that this motion provides a wide range of motions of each finger and hence

is a good candidate for being used in our experiment.

22

As stated earlier, we can validate the result of our computation and see how well it

performs by comparing the calculated results of Z coordinates with the corresponding

actual values we obtain from the Maya animation. The table 4.1 shows the result of Z

coordinate calculation both with a

shown in the form of the differe ¢

values. The table lists tf’%
| —
feature point over 1 W

d.

the $axim

—

flective ambiguity check. The result is

‘ /a d the calculated Z coordinate

average difference for each

ke

Feature o Refl A ck '..9,'-."_ Reflective Ambiguity Check

Point Min X < td " ax Average Std Dev
0 1 6 0225%| 1104 06126 0.0500225 0.187208
1 0 00004 00003 | 0.000004 0| 0.00001 0.0000031 | 0.0000046
2 0.00000 0.009001 000001 |+ 0000 0001 0.000001 0
3 0.00001 91 0. 74.%?:.«: 14469 0 ‘oi".., 0.3105 0.00582 | 0.0359771
4 0 0.03 _0003;423;35' 1o 018 0.03278 | 0.00034293 | 0.00326018
5 0| 0000127 000007 | 0.000127 0.00001 | 0.0000181
6 0.0000033 | 0.000003 0.0000088 |~ " 45 .0 | 0.0000033"f 0.0000033 0.0000033 0
7 0 3.92 !;W%; : 0 0.33847 0.0105844 | 0.0501362
8 0 0.28688 | #40.005%290" | - 0.083 0 0.28688 0.0051299 | 0.0334249

s

9 0| 0.000039 Aﬂw ‘:_9, 0| 0000039 | 0.00000482 | 0.0000064
10 0.000007 | 0.000007 | = 000007 |4 0.0000007 0.0000007 0
11 o.oE . 3.2563 0.551863 i @6}9 0.0825675 | 0.0288816
12 o.o7k _ 133588 0.081987 | 0.0284531
13 0.07745 1240.116305 | 0.07 116305 0.0782574 | 0.00543573
14 0.077459 | 10.077459 0.077459 j_folﬂmsg 0.077459 0
15 0 2.08428 0.240371 0.526386 0| 031035 | 000828877 | 0.0407495
16 0 ﬁzﬁ, 0.00174183 | 0.0132188 0| 0124255 | 0.00174183 | 0.0132183
17 ' 0 0.0000 0 ‘1- 1A 4 f&io [y 0.0000127 | 0.00000642
18 _lb.ode 000006 0.000006 0 000006 | 10.000006 | 0.000006 0
19 “0.881104 | 0.881104 0.881104 0| 0881104 | 0881104 0.881104 0
20 0 S o 0
a The t deviation. of the diffefenice between the

ctual and calcul

The result shows that the minimum difference between the actual and calculated Z

values is the same for both options for most feature points. This is because the frame

23

that produces the minimum difference does not exhibit the reflective ambiguity. So both
options yield the same Z value.

One exception is for feature point 11. With the reflective amibiguity check turned

on, the minimum difference between 1 d calculated Z coordinates occurs at
frame 72 where the check detects the ¢ quiity orrectly decides that the feature
7 ' inward. With the reflective

ambiguity check turned aesmini [rred at frame 14. However, in

general, both optionsk ‘simila m ‘ ence between the actual and

Another interesting point i y
gap than the PIP @ure bof Iarger@ximum gap than the

MP feature points. Th.§ is because there is generally more motion change at the feature

" EUHANENININL.

caloulate values occur in the Ias‘g‘rame A few exoallons are forfeatureﬁlnt 3,7

AN
e fra ﬁj his is because the reflective ambiguity ? fi ﬂdeteﬁeﬂlgwty

as the measured angle just falls off the threshold of 90 degree. So the calculated Z
coordinate is pointing in the wrong direction and produces a big gap. For feature point 7

(the tip of the middle finger), the biggest difference occurs at frame 69 where the

24

ambiguity is wrongly detected and the algorithm decides that the tip should point inward
instead of outward. For feature point 15 (the tip of the ring finger), the maximum

difference occurs at frame 80, when the reflective ambiguity check option fails to detect

The difference in perform)€ nith ptions is evident in the average
gap between the calculated.and ac di produce. The uncheck option

produces a much bigger)OoN ¢ ers where reflective

keeps the gap between Cﬁ'"*' :'"" ac al Z coordinate values close throughout.

From the resuItA we 0 ,, A of the segment length provided by

‘one of the experiments, the result

es. After an investigation we found that

shows notlcably maccurate-va.ﬂieygﬁé'b 0

they were caused alues of segment length as werecreated our hand
;-

model but failed 10 update the cor 1S "L‘- on, the segment

lengths were rem@ured' and the uch better. m

In addition to th'g sensitivity to the segment length inaccuracy, the accuracy of the

f;ZZZElﬂﬁm ﬂ”ﬂﬂﬁ?‘lﬂ“’lﬂfi Zf

the XY Coordlnate input is critical to gle aoouracy of ognethod

qnj speea. ilﬂCe a e compuulon involves onIy sim ulas suc agoras

theorem and law of cosines, the implementation is quite simple and the computation

time is very fast in comparison to some other more sophisticated methods that involve

25

nonlinear functions. We concede that there may be a tradeoff between the accuracy and
the speed. This however is not measured in our experiment. So we cannot say for sure.

Another advantage is the applicability to 2D input. This may be crucial for several

4.2.2 Missing Data

In this study, we hay 8 ethods for predicting the
y ! ‘ ‘ » ""-..L p g
missing XY coordinates a8 desCriby ction 3.7. In the experiment, we have
intentionally exclug d theX | ‘ 6.0 feature po in certain frames. The
decision for which feaure goigts {0 be clu 3 fra e Is based on the animation of

the clinching ha d moli w\. data of each feature

point.

Feature Point " Missing Framesi & 4" /- 1 | Missing Frames
0 7 98-99
1 24-37
2 37-47
3 ‘ ".52-99
; -

5

6

7

8

9

10

QW’]Nﬂ‘iﬁU UNIANYAY

26

0.45
04
035
0.3 —— Method 1
>
2025 —=— Method 2
@ Method 3
E 02
o —x— Method 4
015 % Method 5
01
0.05
1 101 201 30 601 7047801 9 01140115 01180119012001
Figure 4.6 The graph show di - bety e ac "-.._‘_-. X values using the five different
methods.
The chart in figure 4.6 shows the-result of applyi e five methods of estimating
the missing data in olir expedment. The Y& axis of the graph in figure 4.6 shows the
difference between predi€ted X and actual) of a \ e point. The X axis lists all

the frames of each feature 100 is the frame 1-100 of

feature point 0, the frame ..-,, 0 of feature point 1 and so on.

From the graph, there arerseve ese are the points where there are
LTI TN |
noticable differences bet e vordinate values.

)
AULININTNEINS
AR TUNN NN Y

27

0.35 -

[
(&5

0.25 -

differ by
fa]
ro

Spike 1,6, 9, 11: ,
Spike 1 belongs f¢ ﬁ’w"’ Helongs to feature point 9. Spike 9
belongs to feature point 13. feature point 17. Although there is
some differen'n m 156 st amie" graphic pattern. For
these spikes, g — |E 5 is because there is
no directional -_; , 'r'F,‘ € missing frames.
Method 1 and 5 also yield the same performance. This issbecause method 1 uses
the X value of the pr‘nﬂ frame as the predictéd values. So the predicted values stay

o BV g o

the rate qchange of the parent feature point to predict the value of the child feature

b RpEGIT syl e

ethods produce the same predicted values.
Method 2, 3, and 4 perform better than method 5 because the rates of value

change of feature point 1 and of its parent feature point (2) are different in our

experiment. In particular, the feature point 2's X values stay the same for the entire clip

28

while the X values of feature point 1 linearly increases. As a result, method 5 which uses
the change rate of the parent feature point to predict the value of the child feature point

produces the flat predicted X values (as the rate of change of feature point 2 is 0). That

d X values getting wider for each
missing frame. This is the e for sp ‘ , 1 d 11. Notably, they are all PIP
feature points whose parent eature poi A\ in our experiment all MPs do not

move.

AU SN0 7

Figure 4.8 The zoomed-in fi ure of spike 3 which belongs to feature point 4.

q ’ﬁ’«l @@QQW URIANHIRLL

r this feature point as the predicted and actual values are getting further apart for each
of the consecutive missing frames. This is because the actual X values are linearly

increasing in the period of missing frames while the predicted values stay constant.

29

Method 5 performs the second worst because the rate of change of the parent
feature point is slower than that of the child feature point. So the predicted values which

are calculated from the rate of change of the parent feature point does not keep up with

with every missing frame. However, the
predicted values are still closer to the ual v than those yielded by method 1.
Method 4 produces the *—-.." pred te ; cthod 2 in this spike because

method 4 does not dteo an ectional Chan,

o,

Frame | I/ll. ll\" \“\

34

35

36

37

38

39

40

41

Method 3 doesn’t perfo , | DECAUSE etects a false directional change. This
incorrect detection is ca : e point 8 which is the parent
feature point of feature point 4 also has missing frames at thi s period (frame 31-37). And

e 1;"'"
the predicted Q": the.actual pace and that

results in a misle@vg directional ¢ 0 = point where maotual value follows the

last predicted valueéframe 37 and 38 in table 4.3). At the point of false directional

EZ?ZZEI ANV W,

and the value of the feature poin8 goes back toEcorreot direction wln Hence

ARIRMIUANNIINYTIRE

30

Spike 4, 5, 7, 8 and 10 belong to feature pomt 7,8, 11,12 and 16 respectively. For

Y Fah 1520 1wl 110w el

Despite t t, their predicted values are more accurate than those obtalned‘jm method

IRAASNINAUANEIAL..

change of the depended-on feature point is eventhough not consistent with that of the

feature point but still is proven to be better than using the just previous frame value as

done by method 1.

31

A figlire o / o g o feature point 3.

i”',_

se, method 2 and 3 yield the same

performance. Actually metho na change which occurs at frame 66

re r'ul' "
of the dependn - oint (7). Hower e Xwalue of feature point 3
and its depen v feattre=pol -;"a{o So the detection
i o
doesn't change the d e-it already moves in that

‘;J

direction. As a result, the predicted values keép going in the g direction and cannot

produce a better res‘tm method 2.

T

This is b use of the directional Change of the X value. So method 1 which uses the

qzmamfﬁfilmﬁ ﬂmﬁ&f:::

pp03|te direction of the actual values. As stated earlier, method 3 fails to work correctly
because the X values of the parent and child feature point head in the opposite

directions.

32

Method 4 yields similar result to method 2 and 3 albeit a bit better. This is because

method 4 which employs intra-finger dependency can detect the directional change at

frame 82 from the depended-on feature point (4) and turns to the right direction.

predicted valuesauhich are derive

point grow fasterB sIoWer' and ¢

frame.

Fmﬁl Tnemdwenng o

values are aotually growing in the d@erent directions. ﬂso we assume ﬁn’ same or

YR A AR I TR

qelat|onsh|p n that assumption is not s, choosing the

ale a wjﬁ' gap for each missing

right dependency is important to the success of these methods.
In our study, we see that the methods that apply the amount of coordinate change

from the previous frame (method 2, 3, 4) work well especially if the number of missing

33

frames is small. This is because there seems to be a locality of value change. In other
words, the rate of coordinate value change of neighbouring frames is very similar.

In the case that there is a directional change of coordinate values during the

right dependency between fee

AF

AUEAINENTNEINS
RN TUAMINAY

Chapter 5

Conclusions and Suggestions

5.1 Conclusions

We have shown a me tc ‘. ma |nate from the 2D hand motion.
In this method, we emplc f - rlve the missing Z
coordinates and in so i : ‘ ates. [he main techniques that we
use are the the ortho > projc ,) ?u wl "'\ sed to determine the Z
coordination. The ocal sic N & t /] issi g 3 oord; te data are tackled with
the interdependenc Dre ‘ S fran 2 \\ pose of a hand.

om M ya E \ \ dded advantage of

o: ox ‘ i 1 \

are able to obtain the

both the reflective
ambiguity option on and off. The resuit shows v r me ad with the reflective
ambiguity option produces Saccurate-re 'e tip feature points where the
ambiguity check is employec '

In summary, we have seen from curieySu t on 3 thing the variety of
techniques to t a) 2D video input and see
how well these te@ique are working in practice. | m

We hope that s&ame new insights based on the experience of our experiment will
be benﬂ e hope that our
system Mﬂs ZIY] ﬂeﬁjm Er::‘llﬂ)ﬁveo Some of the
potential apphcatlons are sign language interpreter, game industry, etc.

b T I BN TR EREE

The method that we have experimented with still has certain limitations. First, it
requires that the hand input has to be in a direct angle with the camera and the hand
must be at least at a certain distance from the camera. Second, the differences in the

input and output hand sizes are not considered in our experiment. The proper scaling of

35

the data to fit the output hand model will render the system more practical to several
applications.

In our experiment, the input we use is obtained from the Maya animation for the

correctness purpose. It will be inte e input that comes from an actual

video sequence. This WiIIr' g technique for example.
Our reflective ambig 1 feature points. This is
because we believe that thatiswhe s g ill occur in most cases. However,
to obtain more accurrt st /Y phisti _,. e .-a a., que may be studied and
applied to some o er fe ' £ NS :
Also, somesditicitiofial 40 Staints mayim /e he correctness of the result. An
| ‘ l ~ constraints may help
wever the constraints can

also introduce a comp the system and may slo \a the system. So a further

The result of on st :-F atH ¢ ‘ depe enoy between feature points
helps improve the correctness A nis e ‘atic;n. However, we feel that further
study on finding the right -..‘:,o_-,r_: 3 2N . mprove the result even more.

- - to other more

sophisticated }%} a aI tradeoffs between

our method whi@ are simple

supposedly more ac%yrate The study may Iead to a combination of our techniques with

~EUEITENINLING. ...

how the method performs over a Wl@Er range of mo“ﬁ and how it can bwproved to

ARIRINTUNNIINYTIRE

a more s@visticated method and

References

[1] P. Faloutsos, F. Pighin, and A. Shapiro, Hybrid control for interactive character

\ /nferenoe on Computer Graphics and
Sk

NS

[2] A. Witkin and Z. Popevie, Motion warping, of the 22nd annual

animation, Proceedlngs o
Applications (PG'03). BF
conference oh e phics and interactive te niques, pp. 105-108.
1995, : i

ated figure motion, IEEE

[3] D. J. Wiley and J.

Computer ic 1 ARY '\ ations Novemb " december 1997, vol. 17, no. 6,
[4] Y. Li, M. Gleicher, with drawings, Proceedings
of the 2003 ACM SIGBRAPH/EUrOG? symposium on Computer animation

(SCA'03), 200

[5] P. Faloutsos, A. Majka 2 f ordan natic splicing for hand and body
animations, Proceedin D06 £ GGRAPH/Eurographics symposium

R o TR

on Computer animation: Pp+309 __..-5_3‘15_

[6] E.Hsu, M. de'Silva, and J. Popovic, Guided time warping ft aotion editing,

Procee V. (: \‘J posium on

Computerlﬂimation op. m

[7] 1. Albrecht, J. Haber, and H. Seidel, Constructlon and animation of anatomically

[9] P. Horain and H. Ouhaddi, Conception et ajustement d'un modle 3D articul de la

main. In Actes des 6emes journées du Groupe de Travail Réalité Virtuelle,

volume 12/13, pp 83 -90. 1998.

37

[10] T. Heap and D. Hogg, 3D deformable hand models, In Proc, Gesture Workshop

'96, pp. 131-139. 1996.
[11] T. Huang, J. Lin, and Y. Wu, Modeling the Constraints of Human Hand Motion. In

Proc. Workshop on Human.etion, ppf 121-126. 2000.

[12] J. I. Mulero, J. Feliu B ot op & 'j.v‘o 6nado 0, Parametric Neurocontroller for

Positioning of a 1 --1-.m c Fi er Bastd.on Opponent-Driven Tendon

Transmission SystemenProc. IWANN ‘07:pp.47-54..2001.

[13] T. Kunii and J. Le‘ - - d Ana Lﬂ ‘:re, IEEE Computer
Graphics and Ag Bl
[14] L. Moccozetand fofolol Imann, Di orm Deformations and

their Applicati ; lon._Ir \\\\\\5 Animation '97, pp. 93-

102. 1997.

[15] J. McDonald, ¢ ordh K lkob it o, R. Carter, P. Chomwong, J.
Christopher, ; * , e, G \ aster, L. Roychoudhuri, E.

Sedgewick, N. Tor ved articulated model of the

human hand, The Visual-Comp
;.0.!'"5 < -.r*,:, 1

[I.F g

D. 1568-166.2001.

[16] P.G. Kry, D. L. Jame eal Time Large Deformation

Chara kKinning in Hardware, In Proc. ACM SIGGRAPH-Symposium on
e o R

[17] C. Sabharwal, ‘ecov g 3D imac - ro coondintwo 2D

mage, Proceedlngs of the 1993 ACM/SIGAPP symposmm on Applied
o/

AEIWET’I bi}3\ [

oraoh based relevance feec@ack Proceedln%c:f the 14th annual W

Image Source, International Journal of Computer Vision, 76, Issue 1, pp. 53 - 69.

ine drawing and

2008

[20] M. J. Park, M. G. Choi and S. Y. Shin, Human motion reconstruction from inter-

38

frame feature correspondences of a single video stream using a motion library.

Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp. 113- 120 2002.

Y. Shin, Video-guided motion

’;ﬁ)ct'ons on Graphics (TOG), 25,
-J

[22] L. Zhang and L. Li, nan A ‘ atio ‘fro N 2D-Correspo denoe Based on Motion

Trend Predictions© 2006, 546-553. 2006.

[23] L. Zhang and jum an Translation in Motion

Sequenceby gedings of hiinte ‘\ onal conference on Computer
graphics ang" te ive in Australia 2 o‘*-.‘ theast Asia 2007, pp.
79 - 86, 2007 4 ; |

[24] V. Mamania, A ..- apture from Monocular

Videos, ICVGIR2004

[25] C. J. Taylor, Reconsttuction-¢ ' late >ts from point correspondences in a
on and Image Understanding: CVIU,

vol. 80, number 3 op:

[26] W. Lao a 1. Han, 3D Modeling fol uri otion from Monocular
Video, G NEYMBOSIR "" X. 2006.
[27] F. Remondlnmnd A. R s uctio ofHuEn Skeleton from Single

Images or Monocular Video Sequences 25th Pattern Recognition Symposium

ﬁ“ﬁﬁ“‘?} NI~

[28] H. R| pkema and M. Girard, @outerAmma’uon&Knowledqe Based@man

Ello;ralan j 3|nga ;anlgrlx Ammatmq t!e um Ianll-tand Proceedings of the

2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp.

110-119. 2003.

[30] R. Parent, Computer Animation Algorithms and Techniques, Morgan Kaufmann

39

Publishers, ISBN: 1-5656860-579-7, 2002.

[31] F. Remondino and A. Roditakis, 3D Reconstruction of Human Skeleton from Single

Images or Monocular Video Seguences, 25th Pattern Recognition Symposium

(DAGM 03), Lecture Not ience, Springer 2003, pp. 100-107.

2003.

¥

-
L]

AULININTNEINS
AR TUNN NN Y

dF

AULININTNEINS
AR TUNN NN Y

41

Appendix A

Publication

The followings is the paper in: e _' e f “3D Hand Motion Retargeting From Video
Image Sequence”. It has beel , '” / he 2" International Conference on

Computer and Automat] February 26 — 28, 2010,

Singapore.

ﬂﬂﬂ’mﬂﬂiwmﬂ‘i
ammmmumawmaﬂ

42

3D Hand Motion Retargeting From Video Image Sequence

Kosit Nopvichai

Pizzanu Kanongchaiyos

Department of Computer Engineering
Chulalongkorn University
Bangkok, Thailand
kositn@gmail.com pizzanu@cp.eng.chula.ac.th

Abstract— This paper presents a progress on
building a system to perform_motion retarget of

2D hand motion from video image sequence to a |
3D hand model. In our method, the orthographic

projection method is used to.determine the Z
coordination. Additionally, information.from the
previous frames, interdependencesof .a hand
model and approximaterest pose of a hand are
used to deal with occlusion.

Keywords- motion.retarget,.hand motion

l. INTRODUCTION

Computer animation is the science ‘and
art of using a computer t0 create moving
images. The idea is to make a character.move
in a way intended by the artists and convey:
their creativity to the audience.

There are several ways to generate

motions for an articulated character.Some of
the more common are Kinematics, “Dynamic
control [4], Keyframing, Motion -editing* [28]
[27] [15] [5] [8], and Motion capture. Recently
more attention has been paid to an alternative
to the traditional-methods. It is the typical 2D
video that is recorded by a typical camera or
even a web cam.
There are certain advantages to this motion
source. First, the souree model does not need
to be attached with sensors. Second, the cost is
typically lower than the traditional motion
capture. Fhirdstheresare enormoussstocks of
live action footage ‘recorded as 2D ‘videos.
Some of them are'of historic Values and cannot
be reprodiced. An example is a number of
classic sport moments. This can be readily
used as.a motion_ source.

Using 2D, video as a source of motions
has @ few challenges of its own that needto be
addressed. First, the missing data (e.g. those
caused by occlusion) need to be somehow
recovered. Specific to hand motions, we may
consider using interdependence in addition to
constraints, motion library, sample space, etc.
Second, the 2D nature of it necessitates the
lack of depth information. Thus some variants
of 3D reconstruction techniques are used to

recover.the missing Z coordinate. We will
address these issues in our work.

After a motion is acquired through one
of the means mentioned above and stored in a
motion representation, a typical motion
retarget proceeds. As part of the process, an
acquired raw motion is typically processed in
some ways to create a more appropriate
motion for each target character. The output of
this step Is the adapted motion data used to
drive the target motion. For the case of an
articulated figure, the output is usually joint
angle data for all the joints.
; The animation of human articulate body
has long been received numerous attentions.
The works in this area vary in terms of the

#

~ body parts on which they focus. As for the

f hand, it has been a focus of many researches in

' computer animation because not only it is one
- of the most animated parts of human body but

~alse one of the most complex body parts. In

—addition it is essential for human
~ . communication and expression. Our work will

focus on retargeting.the hand motion from 2D
monocular video /sequence to a 3D hand
model, -

In summary, the aim of this work is to
perform motion retarget by using the motions
from the 2D monocular video sequence which
is an alternative. to the traditional motion
capture. This work will focus on motions of
the human hand. The expected end product is a
softwaressystem, that«is capable of retargeting
hand motions from 2D video sequence to a 3D
hand’ model. The mation.input will be 2D
video sequence of hand gestures from a
monocular video camera. The .output will be
the animation of the deformed hand.

II. RELATED WORK

A. Hand Model

Hand anatomy has long been studied
and well understood in the field of anatomy
and biomechanics [1]. Hand is one of the most
complex body parts. Most animation research
focuses on its two main functionalities which
are grasping and fine motor skills. Many

aspects have been studied such as its
constraints, limitations, DOFs, bones, tendons,
and muscles. Several hand models have been
proposed over the years. Examples are [13],
[71, [6], 191, [19], [11], [18], [17] [10], etc.
Each has its own strengths and weaknesses.
Whichever one we should use depends on the
task at hand. More closely related to our work
are [19] and [11]. In particular, they also
consider inter-joint dependencies.

Our hand model will"be a relatively |
simple kinematic chain consisting of joints and

segments. Each joint has.asnumber of DOFs
and limitations. Also, _iaterdependence
between finger joints_will besised. -More
details are further explained#in the Methods
section.

B. Depth Reconstruction

Depth reconstrugtion srefers ‘to the

process of extracting the depth®information
from 2D data. Its challenge lies jin the fact that
it is an under-determined problem. To solveit,
we need to pose somegconstraints Or use some
assumptions and find a selution undet that
framework.
Study on 3D Depth recovery from 2D" input
has been performed for some time. There-have
been several techniques proposed.;Reference
[24] proposes an algorithm to compute-the
three dimensional structure of a scene from a
pair of stereo images. Reference {2}-constructs
a 3D object queryfrom 2D drawings. Their
algorithm can handle objects with both planar
and curved faces.. Reference [25] estimates 3D
depth from a singlesstill image. It proposes the
use of monocular cues (e.g., texture variations
and gradients, defocus, color/haze, etc.) in
addition to the stereo Cues.

More recently, Reference [21] and [22]
reconstruct @ human-like figure motion from
2D videg stream. They assume an existence of
a library of motions similar to the/ target
motion video stream and assume the length of
each segment is known. A library of motions
that are similar to the target motions is used to
pravide a‘reference frame thatawill be“warped
based'on the target frame to get the final pose.
A technique based on"Motion Trend-Analysis
has been proposed in [29] and [30]. The
method uses the information solved in the
previous frame to solve for the next frame
except the first frame. Reference [16] exploits
the domain specific knowledge about the target
motions to find certain joint locations and to
limit possible poses. Reference [26], [14], [23],

i

43

and [16] use the orthographic projection
method to determine the Z coordination.

To derive the Z coordinate from a
single image, they assume the point
corresponding and segment lengths are known
and the certain distance between object and the
camera are maintained. The problem of
standard reflective ambiguity is also
mentioned and resolved mostly with
gonstraints. Reference [23] improves upon
[26] by-allowing some perspective cases to
work properly.

Our method is similar to the one
described in [26] which uses the scaled
orthographic projection model. However, our
system intends te work with a video sequence
instead of a single image. Moreover, occlusion
is also considered in our work.

C. Interdependence

Interdependence refers to the influence of a
finger joint on others. Each finger joint is not
“fully independent but to some degree depend
on the movement of some other joints on the
hand. This can be viewed as dependence

constraints between the joints of each finger

and between fingers. This concept has been

4 : :
'+ sstudied and used in several works. Reference

- [31],0bserves that naturally a DIP joint cannot
" be moved without moving the PIP joint of the
- same finger. In another word there is a

. dependency between them. The reference [31]

approximates. the relationship between the two
joint angle to be DIP = 2/3 PIP. They use this
dependency to reduce-the number of DOF by
making DIP fully depend on PIP. Reference
[12] uses interdependence in their work.
Reference [3] expands the idea by assigning the
degree of dependency between each joint
across fingers.

I1l. _METHODS

A. Input Acquisition

Our retarget system will need two
inputs from the user

e "“The_length of each segment. We need
the “length-of each ‘segment for 3D
depth reconstruction.

e The feature points (XY coordinates) of
a hand in a video frame from a 2D
monocular video sequence of hand
gestures. In our experiment, a 3D hand
model will be created and animated
using Maya software. Then we write a
MEL script to extract the XYZ
coordinates of each feature point in
each frame. The XY part will be used

44

as the input to our experimental
system. A benefit to this method is that
we will also have the Z coordinate to
verify our result.

B. Our Hand Model

Our retarget system retargets mput l [.
motion to a 3D hand model. The specmc r
of our 3D target hand model (E\g 1) |s a ‘
follows:

e There are 16 jomts%ggees of
freedom (DOF) in each ha WI‘IStJ
e The wrist has two DOFs - —
Each finger
joints and sum up tosd6 D
hand

Flgur shows the feature point locations of our hand
model.

1 Interphalangeal joints (IP) of
Thumb
4 Proximal interphalangeal joints
(PIP) of Index, Middle, Ring, and
Little fingers
5 etacarpophalangeal joints
(MCP) of Thumb, Index, Middle,
ing and L.ittle fingers
1 fold of the palm
‘ wrist
ome images, it may be impossible to
| of these feature point locations
- T occlusion. In such cases, we will
Figure 1. showstheDOFsofeachofthe'}dint‘mfour - need some technique to approximate their
hand model. The black node has 2 DOFs. The White node jocations. These techniques are
has 1 DOF. g Sl A rdependence, previous frame data and
= i i - - . .
- i onstraints. Also, ope assumption is that if a
C. Feature Poin;slientification (XY feature 90&' occluded, probably its exact
Coordinates)r - in that context and it
timated by its rest pose

r ately somewhere in the
of its ranﬁ (in case of a joint) [20].

For each ‘Indﬁ image sequence of a
hand gesture, we asstime that the locations of
all feature points (F|g 2) are available t
(unless they are occltded). A feature point in D. 3D Depth Reconstruction

our case mcludes the Ioc ion ofajomt in each Slnce our mput is a sequence of 2D
finger and | the wrist Ioca e location WI||

b t ‘ et for each feature

fe” specifi . 0 5 W e nee§a way to compute

ollowing lo a| o t ord| a this, we adopt the
ip um Index dle

~ method in [26] WhICh uses the scaled

Rlng and Little flngers

orthogr hic pro;ectlon model projection
istal in_tl sional space
le p t e pI can be

rep 2ser a m tri

o
Il

o O

o +— O

o O o

In scaled orthographic projection, we
simply add a scale factor, s, (2). This results in
a simple scaling of the object coordinates. The
scaled-orthographic model amounts to parallel
projection, with a scaling added to mimic the
effect that the image of an object shrinks with
the distance [23].

X

u 1 00
(VJ23010Y @

L

The formula“is expressed in (4). The

followings show the derivation of /(4). |
denotes the segment lengthsbetween point 1

and 2. X ,Y ,Z are the actual coordinates:

U, V are the scaledsX and Y jrespectively:
S is the scale factor.

2= X, _X2)2 +(Y, _Y2)2 o, _22)2
(ul —U2) :s(Xl _Xz)

(Vl _Vz) :S(Yl _Yz)

(Z,-2,) = \/(I2 —((u, _U2)2 +(v; ‘Vz)z)/ s

uUu=s-X
Vv=s-Y

@2 < Au-wr e Ys

“)

> \/[(ul _u2)2 +(V1 _V2)2]
|

©)

45

able to solve forZZ. In our case we assume
that the distance between the camera and the
hand is much greater than the depth of Z
coordinate. (Note that this assumption is
needed for the scaled orthographic projection
model to work.) With this assumption, the
scale factor is almost constant for all the joints
on the hand. So we can use the same scale
value for all the feature points. Now to
compute.for the scale factor,S , we use (5) to
find-the-overall minimum value of S. Note
that (5) comes from the fact that (4) has a real
solution. We will use the minimum overall

value of S in our computation since the
absolute values of X, Yand Zare not
necessary. All we need is the relative depth
between each feature point. Once we obtain S

we can use (3) to find the value of Xand Y .

\We then use the computed Z, as the Z, of the

“next segment. We then repeat this process until

all feature points are computed. One issue that
We still have is the reflective ambiguity. This

' stems from the fact that the Zlor Z2in (4)
can be the smaller one based on the 2D
~information we have. In our case, joint angle
~ limit; physiological constraints are used to pick

~ the more likely configuration.

~From this step, we can obtain XYZ coordinates
~ of feature points. These values are used to
compute the joint fangle data for each joint.
However,—in-the case where the source and
target model have different scale, we need to
scale this coordinates data to the correct value
before they can be used to compute the joint
angle.

E. Interdependence

From (4) we assume an arbitrary depth

(e.g. 0) for Z, and compute forZZ. In this

case, we also knowul,u Vi V2 ,and | . 1f we

also know S, the scale factor, then we will be

The purpose _of using the
interdependence . in* this™work is two fold.
Firstly, by taking the ipterdependence into
account, the finger movement is more realistic.
Secondly, the interdependence in conjunction
with the-coordinate and joint angle‘data help us
fill jin" the “missing data "in#Case |of a joint
occlusion. We implement /it as'a dependency
list of joints. The entry of thislist will contain
a joint ID and the list of its dependent joints
together with the amount of dependency. For
example,

Index PIP: Index DIP (50), Middle
PIP (25), Ring PIP (15)

This entry says that if the Index Pip is

moving X points, the Index DIP should be
moving 1/2x points, the Middle PIP should be
moving 1/4x points if no other force is exerted
upon them.
The exact number and amount of dependence
between each joint are studied from other
research works such as [31], [12], [3], and our
own observation. We plan to assign a default
set of joint interdependence. But a user can
optionally fine tune these values:

F. Constraint Identification

In addition to"the jointwangle and

physiological constraints, anether gonsiraint is
needed to make suresthe end effectors are at
the right position. For example; in @ pose
where the tip of thumib and the tip of index
finger are touching, this¢ fact' should, be
enforced at the target handas well.
To determine “coincident” constraint, we .use
the XYZ coordinate of the feature points and a
threshold. If the distance between any feature
points is less than the threshold, we will
consider them touching. The exact value of the
threshold will be determined later.

G. Joint Angle Data Calculation &
Retargeting

The inverse kinematics i~ used to
calculate the joint angle data given the-XYZ
coordinates of a desired pose obtained ‘from
the 2D input data.and 3D depth reconstruction.

Since a handimodel is fairly complex,
the incremental ‘approach-oi-inverse-Jacobian
is used instead of thefanalytic approach.

From this step, we will get the joint angle data
for all the joints ready to be retargeted to our
3D hand model.

IV. RESULT EVALUATIONS

Theresult of the retarget willbe
evaluated by comparing the result of our
calculation with'the data retrieved from Maya
software.

V. CONCLUSION

We have, described a technique to
retarget a 2D wvideo sequence to a 3D" hand
model. The working horse in our techniques is
the orthographic projection method which is
used to determine the Z coordination. The
occlusion is also tackled with the
interdependence, previous frame data, and
natural rest pose of a hand.

We expect that our experiment on
applying a variety of techniques to build a

46

working system for hand motion retarget from
2D video input will afford us to find out how
well these techniques are working in practice
and hopefully to discover some new insights
based on the experience of building such
systems that will be beneficial to others
attempting similar tasks in the future.
Mareover, we hope that our system can be used
0 generate interesting hand animation from 2D
videg..Some of the potential applications are
sign.language interpreter, movie and game
industry, etc.

REFERENCES

[1] |. Albrecht, J. Haber, and H. Seidel,
“Construction and animation of anatomically
based human hand models,” Proceedings of the
2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2003, pp.
98-109 ISBN ~ ISSN5288-1727 :,-58113-1
5-659.

[2] A. Cao, J. Liu, J. Snyder, and X. Tang, “3D
object retrieval using 2D line drawing and
graph based relevance feedback,” Proceedings
of the 14th annual ACM international
conference on Multimedia, vol. 24, issue 3,
2005, pp. 105-108.

; [3] G.ElKoura and K. Singh, “Handrix: animating

the human hand,” Proceedings of the 2003

" ACM SIGGRAPH/Eurographics symposium

.« on Computer animation, 2003, pp. 110-119,
~ISBN ~ ISSN5288-1727 :,5-659-58113-1 .
“[4] " P. Faloutsos, F. Pighin, and A. Shapiro,
~ “Hybrid control for interactive character
~ .animation,” Proceedings of 11th Pacific
Conference on Computer Graphics and

" Applications (PG'03), 2003, pp. 455.

[5] P. Faloutsos, A./Majkowska and V. B. Zordan,
“Automatic—splicing for hand and body
animations,” Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on
Computer animation, 2006, pp. 309 — 316.

[6] T. Heap and D. Hogg, “3D deformable hand
models,” In Prog, Gesture Workshop '96, 1996,
pp. 131-139.

[71 P. Horain and H. Ouhaddi, “Conception et
ajustement d'un modle 3D articul de la main,”
In Actes des, 6émes journées du Groupe de
Travail Reéalité Virtuelle,vol. 12/13, 1998, pp.
83 -90.

[8] E. Hsu, M. da Silva, and J. Popovic, “Guided
time warping for motion editing,” Proceedings
of sthe 2007 ACM SIGGRAPH/Eurographics
Symposium.on Computer animation, 2007, pp.
45-52.

[9] 'T. Huang, J: Lin, and Y. Wu; “Modeling the
constraints of htiman hand ‘motion,™ In Proc.
Workshop on Human Motion, 2000, pp. 121-
126.

[10] P. G. Kry, D. L. James, and D. K. Pai,
“EigenSkin: real time large deformation
character skinning in hardware,” In Proc. ACM
SIGGRAPH Symposium on Computer
Animation (SCA '02), 2002, pp. 153-159.

[11] T. Kunii, Y. Tsuchida, H. Matsuda , M.
Shirahama, and S. Miura, “A model of the

hands and arms based on manifold mappings,”
In Proc. Computer Graphics International (CGI
'93), 1993, pp. 381-398.

[12] T. Kunii and J. Lee, “Model-based analysis of
hand posture,” IEEE Computer Graphics and
Applications, 15(5), 1995, pp. 77-86.

[13] R. Lemperriére, N. Magnenat-Thalmann, and
D. Thalmann, “Joint-dependent local
deformations for hand animation and object
grasping,” In Proc. Graphics Interface ‘88,
1988, pp. 26-33.

[14]W. Lao and J. Han, “3D modeling for
capturing human motien. from maonocular
video,”
Theory in the Benelux, 2006.

[15] Y. Li, M. Gleicher, YoXu; and _H: Shum,
“Stylizing motion with drawings;” Preceedings
of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation(SCA '03),
2003.

[16] V. Mamania, A. Shaji, and® S./Chandran, i

(2004) “Markerless motion capture; from
monocular videos,” ICV.GIP 2004, pp.- 126-
132. .

[17]1 J. McDonald, J. #Toro, 4 K. fAlkoby, A.
Berthiaume, R. /Carter, /P. Chomwong, J.
Christopher, M. Davidson, J. Furst, B.“Konie,
G. Lancaster., L. Roychoudhuri, E. Sedgewick,
N. Tomuro and Rs Wolfe, “An improved
articulated model of the shuman hand,” The
Visual Computer, 17(3), 2001, pp. 158-166.

[18] L. Moccozet and N. Magnenat-Thalmann,
“Dirichlet free-form deformations and their
application to hand simulation,” “n ~Proc.
Computer Animation '97, 1997, pp: 93-102.

[19] J. I. Mulero, J. Felit Batlle, and" J. £opez
Coronado, “Parametric neurocontroffer-for
positioning of an antropomorc finger based on
an opponent-driven tendon= _transmission
system,” In Prec. IWANN ‘01, 2001, pp. 47-
54. |

[20] R. Parent, Computer-Ani
and Techniques, Morgan Kaufmann
Publishers, ISBN# 1-55860-579-7, 2002.

[21] M. J. Park, M. G. Choi, and S. Y. Shin,
“Human motion reconstruction from inter-
frame feature coeriespondences of a single
video stream using a motion library,”
Proceedings of the 2002 ACM
SIGGRAPH/Eurographics = “symposium on
Computer animation, 2002, pp. 113-120.

[22] M. J: Park, M..G. Chai, Y. _Shinagawa; and S.
Y. Shin, [“Video-guided.'motion: synthesis
using example motions,” ACM Transactions
on Graphics (TOG), vol. 25, issue 4, 2006; pp.
1327- 1359.

[231F. Remondino and «"A; sRoditakis, | “3D
reconstruction, of thuman skeleton from single
images or ‘monocular video sequences;” 25th
Pattern Recognition Symposium (DAGM 03),
Lecture Notes in Computer Science, Springer
2003, pp. 100-107.

[24] C. Sabharwal, “Recovering 3D image
parameters from corresponding two 2D
image,” Proceedings of the 1993
ACM/SIGAPP symposium on Applied
computing :states of the art and practice, 1993,
pp. 402-409 ISBN4-567-89791-0 :.

Proc. Symposium on Information &

J-
¥

47

[25] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D
depth reconstruction from a single still image
source,” International Journal of Computer
Vision, 76, issue 1, 2008, pp. 53-69.

[26] C. J. Taylor “Reconstruction of articulated
objects from point correspondences in a single
uncalibrated image,” In Computer Vision and
Image Understanding: CVIU, vol. 80, number
3, 2000, pp. 349-363.

[241 D.. J. Wiley and J. K. Hahn, (1997)
“Interpolation synthesis of articulated figure
metion,” |EEE Computer Graphics and
Applications November-December 1997, vol.
17, no. 6, pp. 39-45.

[28] A. Witkin and Z. Popovic, “Motion warping,”
Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques,
1995, pp. 105-108.

[29] L. Zhang and L. Li, “Human animation from
2D correspondence based on motion trend
prediction,” Computer Graphics International
2006, pp. 546-553.

[30] L. Zhang and L. Ling, “Monocular
reconstruction of human translation in motion
sequence by MTA,” Proceedings of the 5th
international conference on Computer graphics
and interactive techniques in Australia and
Southeast Asia 2007, pp. 79-86.

[31] H. Rijpkema and M. Girard, “Computer Animation
of Knowledge-Based Human Grasping,” Proceedings
¢+ of SIGGRAPH Conference, July 1991, pp. 339-34

Appendix B

Z Order Computation Program

48

This program computes the Z coordinate of all feature points on a hand in a frame. It

is written in C++ using Visual Studio 2008. The input is the list of X, Y coordinates of the

#include <iostream>
#include <limits>
#include <cmath>
#include <map>
#include <vector>
#include <fstream>
#include <string>

using namespace std;

class MyException

{
string m_msg;
int m_num;

public:
MyException(const st

m_msg = msg;

m_num = num;

} -

void print() | o —

{ . 1""
cerr << m_msg <

} | sl

static const |nt E?C OUT_OF_RANGE = ;

public:
double x, y, z; //actual X, vy, z

TN S NN S

A (SN Y

pubJ‘c:

Vertex() :x(numeric_limits<double>::min()),
y(numeric_limits<double>::min()),
z(0), u(numeric_limits<double>::min()),
v(numeric_limits<double>::min()),
w(numeric_limits<double>::min()),
1d(-7777), m_uvSetFlag(false) {}

49

Vertex(int iid):x(numeric_limits<double>::min()),
y(numeric_limits<double>::min()),
z(0),
u(numeric_limits<double>::min()),
v(numeric_limits<double>::min()),
w(numeric_limits<double>::min()),
id(iid),
m_uvSetFlag(false) {}
Vertex(int iid, double uu, double
wv) :x(numeric_limits<double>::min
y(numeric_limits<doub
Z(O) s -
u(uu),
v(w),
id(iid),

void print()

cerr << "id ="
<< u
<< "
<< "X
<< My
<< "

}
void setUV(doubl

{

u = uu;
V = VV; .
m_uvSetFlag = true;
}

/**

* This will only wor
* when U and V.are
bool iSUVSGt() v‘ <t r‘

:.—etum e] @
““Se*ﬂmf'mwswmn‘s
544@%"’1@*& ﬂ’”}m %an e a ?)

* De ne our hand model

- how many feature points in the hand
* - segment length of each segment
*/

ed properly

/***
*
*

50

| | | |

3] 6] 9] 12|

| | | |

4] 71 10] 13]

| | | |

ol 51 s8] 11] 14|

-16 palm fol

N P

= O

N

- The reference point FI¥St poin Jute Z order is 20
- 2,20 " :
- 6,20
- 10,20
- 14,20
- 18,20 -
- 6, 10, 14, 18<bend forward only y (no sideward or b ackward)
- 2 bends in | rd 20 only — i

ok ok R o ok ok X ok X o X b X bk b X b X o 3 ok 3k % ok X b X o X o X ok X F X %

*

/

class HandModel
{
private:

static map<int, il*‘aﬂ. associateVertices;

ot By ST PR YRTT

static m int, int> m_ |nterde IntraFlngerNelghbors

i WA mmuwn NYIAE

nst static int PALM_FOLD_ INDEX
const static int PIVOT POINT =
const static int WRIST_INDEX = 19,

static void init(Q)

{
m_associateVertices[0] =
m_associateVertices[1] =

3.755123;

3.755729;
2.81398;

1.719374;

m_associateVertices[2] = PALM_FOLD_INDEX;
m_associateVertices[3] = 4;
m_associateVertices[4] = 5;
m_associateVertices[5] = 6;
m_associateVertices[6] = PALM_FOLD_INDEX;
m_associateVertices[7] = 8;
m_associateVertices[8] = 9;
m_associateVertices[9] = 10;
m_associateVertices[10] = PALM FOLD INDEX;
m_associateVertices[11l] = 12;
m_associateVertices[12] = 133
m_associateVertices[13] = 14;
m_associateVertices|[14] = PALM_FOLD_ INDEX;
m_assocliateVertices[l5] = 16;
m_associateVerkices[16] = 17;
m_assoclateVertices[l7] = 18;
m_associateVertices|18] i PALM_FOLD. INDEX;

m_associateVeuptices[19]
m_associateVertices[20]

n u

I
I o4

//////////////////////////l/////////////////

m_segmentLengths|pair<int,:
m_segmentlLengthsfpaigsint,
m_segmentlLengths[pair<int,

m_segmentlLengths[pair<int,
m_segmentLengthsfpair<int,
m_segmentlLengthS{patr<int,
m_segmentLengthsfpatr<int,

m segmentLengthé[bair<int
m_segmentlLengths[pair<int,

“nt>(0,
lnta(l
|nt>(2
¥/
lnf5(3,
int>(4,
int>(5,
iﬁi>(6

D1 =
2)]
1]

41
S)]
6)]

3]

|nf>(7 _8)]
int>(8, 9)]

2.391958;
2.092683;
2.092683;

1.70821;
1.83695;
2.430827;
2.430827;

2 /109315;
2.017658;

m segmenttEngthsfparr<rnt“=1nt5t9*‘16)]‘*‘2 29072;

m segmentLengths[pa|r<|nt

m_segmentLengths[pair<int,
m_segmentLengths[pair<int,
m_segmentLengths[pair<int,
m_segmentLengths[pair<int,

m_segmentLengths[pair<int,
m_segmentLengths[parr<int,
m_segmentLengths[pair<int,
m_segmentLengths[pair<int,
m_SegmentlLengths[pair<int,
m_segmentlLengths[pair<int,
m_segmentLengths[pair<int,

m_segmentLengths[pair<int,

m_segmentLengths[pair<int,

int>(10, 9)] =
12)]
13)]
1]
13)]

16)]
17)]
18)]
17)1

2)]

int>(11,
int>(12,
int>(13,
int>(14,

int>(15,
int>(16,
int>(17,
int>(18;

int>(19,

2.29072;

1.719452;
2.559455;
1.914169;
1.914169;

1.422462;
11363195;
1.198547;
1.198547;3

£ 36551573
int>(PALII_FOLD INDEX, 19)]
int>(2, PALM_FOLD_INDEX)]
int>(6, PALM_FOLD_INDEX)]

int>(10, PALM_FOLD_INDEX)]

51

a.
1 //mean 1ts own z coordinate

m_segmentLengths[pair<int, int>(14, PALM_FOLD_INDEX)]
2.078661;

m_segmentLengths[pair<int, int>(18, PALM_FOLD_INDEX)]
2.968683;

/117777777777 7//7/7/777/

m_ZCoordinateComputeOrder[0]
should be Ffirst ones?

PALM_FOLD_INDEX; //or

m_ZCoordinateComputeOrder[1] = 2;
m_ZCoordinateComputeOrder[2] = 1;
m_ZCoordinateComputeOrder[3] = 0O;
m_ZCoordinateComputeOrder[4]+=.6;
m_ZCoordinateComputeOrder[5]}=.53
m_ZCoordinateComputeOrder[6] = 4;
m_ZCoordinateComputeOrder[7] = 3;
m_ZCoordinate@omputeOrder[8] = 10;
m_ZCoordanateComputeOrder[9] = 9;
m_ZCoordinateComputeOrder[10] = 8;
m ZCoordlnateComputeOrdeﬂ[ll] = 7;
m_ZCoordinateGomputeQrder[12] = 14;
m_ZCoordinateComputeOrder[13] = 13;
m_ZCoordinateCaomputeOrder[14] = 12;
m_ZCoordinateComputeOrder[: 5} =11;
m ZCoordlnateComputeOrder[lﬁ] = 18:
m ZCoordlnateComputeOrder[l?] = 17;
m ZCoordlnateComputeOrder[lS] =16}
m ZCoord|nateC0mputeOrder[1%Jif 15;

m ZCoordlnateComputeOrder[PALM ﬁDLD INDEX] = 19; //or

should be first ones? —
///////////////A///7////////jf/LI!////////////////
m_interdepNeighbors[0] = i
m_interdepNeighbors[1] =

m |nterdEpNETgthrsz]—-—2‘—77—1‘“11mean—1ts own z

coordinate is 0 .4 ¥

m_interdepNeighbors[3] =7;
m_interdepNeighbors[4] = 8; -
m_interdepNeighbors[5] = 9;
m_interdepNeighbors[6] = 10;
m_interdepNeighbors[7] = 11;
m_interdepNeighbors[8] = 12;
m_interdepNeighbors[9] = 13;
m_interdepNeighbors[10] = 14;
m_interdepNeighbors[11] = 15;
m_EnterdepNeighbors[12] = 16;
m_interdepNeighbors[13] = 17;
m_interdepNeighbors[14] = 18;
m_interdepNeighbors[15] = 11;
m_interdepNeighbors[16] = 12;
m_interdepNeighbors[17] = 13;
m_interdepNeighbors[18] = 14;

}

{

m_interdepNeighbors[19]
m_interdepNeighbors[20]

19;

Va0 000800000000000000000000000000044

m_interdeplIntraFingerNeighbors[0] = 1;
m_interdeplntraFingerNeighbors[1] = 2;
m_interdeplIntraFingerNeighbors[2] = 2;
m_interdeplIntraFingerNeighborsf3] = 4;
m_interdeplintraFingerNeighborsj4l =.5;
m_interdeplntraFingerNeighborsis] = 6;
m_interdepIntraFingerNeighborsf6] = 6;
m_interdepintraFingerNeighborsf7] = 8;
m_interdepntraFingerNeighbors[8] = 9;
m_interdepIntraFingerNeighbors[9] = 10;

m_interdepIntraFingerNei%Pbors[lO] =.10;

m_interdeplptraFingerNeighbors[11] = 12;
m_interdepintyaF ingerNeighbors[12] = 13;
m_interdeplntraFingerNeighbors[13] = 14;
m |nterdeplntraFlngerNelghﬁors[14] L, Wik
m |nterdeplntraFlngerNelghbors[15] 2 16
m_interdeplntraFingerNeighbors[16] = 17;
m |nterdepIntraFungerNeughbars[l?] = P
m |nterdeplntraF|ngerNelghbors[18] = 18;
#

m_|nterdeplntraFlngerNelghbor§I19] = 19;

= 20;

m_interdep IntraFingerhe ighborsf20]

I..
|
.

cerr << "findSegmentLength for (' << vi.id <<, "
<< v2.id << ") is " << m_segmentlengths[pair<int,

int>(vl.id,v2.id)]

}
/

S

{

}

S

{

<< endl;
return m_segmentiengths[pair<int,.int>(vl.id,v2.id)];

**

* Returns the vertex associated with vertex v.

* By association, we mean the vertex that tegether with v
* defines a=segmentslength

*/

tatic int TindAssaociateVertex(Vertex v)

cerr << "findAssociateVertex for " << v.id

<< " Is " << m_associateVertices[v.id] << endl;
return m_associateVertices[v.id];

tatic int FindNeighborld(Vertex v)

53

20; //mean its own z coordinate

it
static double fendSegmentiength(ConSt Vertex& vz const Vertexs& v2)

54

cerr << "findNeighborld for " << v.id
<< " Is " << m_interdepNeighbors[v.id] << endl;
return m_interdepNeighbors[v.id];

}
static int findIntraFingerNeighborild(Vertex v)
{
cerr << "findIntraFingerNeighborld for " << v.id
<< " @s " << m_interdeplntraFingerNeighbors[v.id] << endl;
return m_interdeplntraFingerNeighbors[v.id];
}
/**
* Returns the feature point to calculate'at the order i th
*/
)y
static int findZCoordinateComputeOrder(int 1)
{
cerr << "findZCoordinateComputeOrder for "
<< 1 << s 'g<</mi ZCoordinateComputeOrder[i] << endl;
return m_ZCoordinateComputeOrqer[i];
} |

¥

map<int, int> HandMedel::m associateVertices;
map<pair<int, int>, double > HandModel::m segmentLengths;
map<int, int> HandMode ki :m ZCoordinateComputeOrder;
map<int, int> HandModel::m interdepNeighbors;

map<int, int> HandModeI::m_interdeplntraFingerNeighbors;

=

//977///
/* the data for each frame */ i YA
class Frame { ,_K,‘

public: o=

Frame():m scale(numerlc Ilmlts<double> max())
m_restedPalmScale(numeric_limits<double>: max())
m_id(-1) &

Frame(int id)zm scale(numeric_limits<double>::max()).,-
m_restedPaimScale(numeric_limits<double>::max()),

m_id(id) {3

private:
Vertex m_featurePoints[HandModel : :NUMLEEATURE_POINTS];
double m_scale;
double m restedPalmScale;
int m_id;

private:
//helper
double pow2(dauble d) { return pow (d, 2); }

public:

int getld() { return m_id; }
void setld(int id) { m_id = id; }
void print()

cerr << "feature points: " << endl;

55

for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i)

{
m_featurePoints[i].print();
}
cerr << "'scale: " << m_scale << endl;

}
Vertex& getFpRef(int index)

{

cerr << "entering Frame:: ‘
if (index < 0 || index >= He NUM_FEATURE_POINTS)

{

cerr << "error

}
void setfp(int ind
{ ; ¥ e N, '
cerr << "enter Frame ".,‘ p << "(" << this->getld() <<
II)II b = N 1 b
<< 1INd
<< V.V < N .
if (index < 0] RE_POINTS)
{ ‘ :
cerr <
return
featurePoints[
}
/x> =TI
* Find only once per fr-L{;gfrijjk s s
* We reuse the same. r points in the
frame

*

* OUTPUT: m_scalg

*/ .
double findMinimu@Egale()
{

cerr << "enterlq? Frame: flndMlnlmumScale\n"'

YEANETINy TR

|nd the minimum overall scale over aII reference pount

pairs

QRTQT] prpEtywes 1BE

Vertex vertex2 =
featureP0|nts[HandModel -findAssociateVertex(vertexl)];

const double 1 = HandModel::FfindSegmentLength(vertexl,

vertex2);
cerr << "Frame::findMinimumScale(): the current segment

length is " << I << endl;

56

double s = sgrt(pow2(abs(vertexl.u-vertex2.u)) +
pow2(abs(vertexl.v-vertex2.v))) /7 1;

cerr << "Frame: :findMinimumScale(): the current scale is
" << s << endl;

//keep minimum over all
if (s < m_scale)

{
}

m_scale = s;

}

cerr << "exiting Frame::FindMinimumSeale(): the minimum scale is
<< m_scale << endl;
return m_scale;

/**
* Compute z coordinates of all Feature points (of this frame)
- ,
* output: x, y, zsof all feature points
* outf: the output file ¥
*/
void computeZCoordinates(ofstream& outf) //output: Z coordinates

{ v
for (int i = 0; i/< HandWModel: -“NUM_FEATURE POINTS; ++i)

//doComputeZCoordinateli);
int j = HandModel i findZCoordinateComputeOrder(i);
doComputeZCoordinate(j, outf); ¥

}
} o o b
double getScaleBasedOnRestedPalm()
{ return 1;

//input

//segment length of palm

//observed x,y of the two end points of palm

if(n_restedPalmScales '= numeric_limits<double>: :max())
return m restedPalmScale;

// equation"8

Vertex vertexl = m_featurePoints[HandModel : :PALM_FOLD_INDEX];

Vertex vertex2 = m_featurePaints[HandModel=:WRIST_INDEX];

const .double lp=_HandMedel: sFindSegmentlengthvertexl svertex2) ;

cerr << "Franme::getScaleBasedOnRestedPalm(): the current sSegment
length is " <</ li<k< endl;

double s = 1 / sqrt(pow2(abs(vertexl.u-vertex2.u)) +
pow2(abs(vertexl.v-vertex2.v)));

cerr << "Frame::getScaleBasedOnRestedPalm(): the scale is " << s
<< endl;
return m_restedPalmScale = s;
}

double findScaledSegmentlength(const Vertex& vl, const Vertex& v2,

double scale)

double segmentLength = HandModel: :findSegmentLength(vl, v2);
cerr << "findScaledSegmentlength() segmentlLength: " <<

57

segmentlLength << ", scale:" << scale << "= " << segmentLength/scale <<
endl;
return segmentLength/scale;
}
/**
* find the Z coordinate for the feature point i
*
* input: u, v of feature point i1 __
* output: x, y and z of feature point i
*/
void doComputeZCoordinate(int i, ofstream& outf)
{

cerr << "entering krames:doComputeZCoordinate\n™;
|

Vertex& vertexd
Vertex& vertex2 ¥
m_FeaturePoints[HandModel : zFindAssociateVertex(vertexl)];

mgFeaturePoints[i];

// special case for the First! feature point
if(vertexl.id == HandModel: :RIVOT POINT)

{
const double s = getScaleBasedOnRestedPalm();
vertexl.w = 03 i
vertexl.w =/=0.219004; // <--= 111l hard code with the
actual value — =
vertexl.x = vertexliu. /. s; ae st A
vertexl.y = vertexl.v / s; ’
vertexl.z = 0; // <-==hard code to 0
vertexl.z = -0.219004; o
L1117 1774LLTT 1177777777777 7 7771171111111/ fLf//////77/
//
// FORMAT:
// jO 327=4.92007 -1.23411 1.3899
//
outf << "j""<Kwvertexl.id << "W%// node name e.g. "jo"
<< this->getld(Q) (=< I ™ // frameld
<< vertexl.x << "7
<<fvertexlly << 't
<< vertexl.z
<< endl;
return;
}

//find the scaled segment length
double 1 = findScaledSegmentlength(vertexl, vertex2,
getScaleBasedOnRestedPalm());

// check FTirst if its gonna be a negative value (which cannot
sgrted)

be

58

while ((pow2(l) - pow2(abs(vertexl.u-vertex2.u)) -
pow2(abs(vertexl.v-vertex2.v))) < 0)

cerr << "WARNING: length is adjusted (+0.001) before (" << 1
<< ") after (" << 140.001 << ")" << endl;

// adjust the length segment length until the value is
positive

}

vertexl.w = sqgrt(pow2(l) - pow2(abs(vertexl.u-vertex2.u)) -
pow2(abs(vertexl.v-vertex2.v))) + vertex2:iw;

1 += 0.001;

// Tip
if (vertexl.id == 0 || vertexl.id ==3"]] vertexl.id == 7 ||
vertexl.id == 11 || vertexl.id == 15)

// what we do here is using the angle ABC to determine
whether D"s z should beslesssthan C's z

// if the ABC s </90 degree then D should be point toward
the palm ;

Vertex& vertexB = .
m_TfeaturePoints[HandModed: : TindAssociateVertex(vertex2)];

Vertex& vegtexA = "
m_featurePoints[HandModel : : findAssociateVertex(vertexB)];
// A \ B
double ag =sangle(vertexA, vertexB, vertex2); //get angle at

if (0 < ag && ag <= 90)

{
vertexl.w = vertex2-w - (sgrt(pow2(l) -
pow2(abs(vertexl.u-vertex2.u)) - pow2(abs(Vé?t¢x1-v—vertex2_v))));

else —

{
}

cerr << "YY¥¥ point away from the palm" << endl;

}

const double.s = getScaleBasedOnRestedPalm();
// equation 6

vertexl.x = vertexl.u /7 s;
vertexl.y = vertexl.v / s;
vertexl.z = vertexl.w / s;

L1117 TLTLL (LT LTTS LLTL LS L LI SELT LSS LS LT (LT

//

// FORMAT:

// jO 32 -4.92007 -1.23411 1.3899

//

outfr <<, " i <<pvertexds idw<<s 'iy'') £/ pnode hamemesgs '1jOH

<< 'this->getld() <</ " // frameld
<< vertexl.x << "
<< vertexl.y << " "
<< vertexl.z
<< endl;
111777777777 7777777777777777/77/7/77//77//77//77/7/77/77777

}

double angle(const Vertex& vertexA, const Vertex& vertexB, const
Vertex& vertexC)

59

// law of cosines
//

// b2 = a2 + c2 - 2ac cos X
//

// C

// /\

// / \

// b / \ a
// /
// /

/77 / ‘ | /

// 2ac cos X = a2

// X = arcco

// : G A

double a = sqrt \ 6 7 :g;_"vA ow2(vertexC.y -
vertexB.y)); '

double b =
- vertexA.y));

double c
- vertexB.y));

\\ pow2(vertexC.y

\\\kﬂ + pow2(vertexA.y

return result; ‘M
¥ ':-:_J:'
////////////////////////////// ;1$f" 1/
class DataTracker - .

{

private:
vector<Frame

‘—77" Vv |
— -
int m_cur_fra F _ \‘

int m_total fraﬁ . m '
public: ! .

DataTracker():m c%f_frame(O) m_total frames(O) {>

AR BT 3 e

< "entering DataTracker |n|t\n"'

9 WESRD I U INYIA Y

if (lis.is_open())
{

}

cerr << "cannot open input file\n";
return -1;

}
Frame f[100];

60

m_total frames = 100;
cerr << "total frames is " << m_total frames << endl;

// set frame id :(
for (int i=0; i< m_total_frames; ++i)
{
//print frame for debugging
f[i].setld(i);

while(lis.eof())

//double u[andMc
v[HandModel : :NUM_FEATUR

}

for (int 1=6

//pri frame for debugging
m framesif] printQ);

} ﬂummmwmm

Frameé& getCurrentFrame() //2leeature p0|nt‘§£om data tracqugf

VRN INYR Y

cerr << "ERROR: entering DataTracker::getCurrentFrame\n';
return m_frames[0];

}

return m_frames[m_cur_frame++];

}

int getTotalFrames()
{

61

return m_total frames;

}
vector<Frame>& getFrames()
{
return m_frames;
}

¥

1177777777777 7//7/7/7//77/7//77/7777.
class TwoDResolver

{

private:

static TwoDResolve r* M -J

public: 1llll-.--—-f ,,.‘-.-...lli.h
static TwoDResolver™ i nce(TN N

{

cerr << "e
iT (m_instang

{

}

FILL_
FILL_IN_
FILL_IN_MIS
FILL_IN_MISSI

2 " DATA = 3,
NTERDEP_FRAME_DATA = 4,

FILL_IN_MISSING_DATA PREVIOUS .aaa;\' RDEF RAFINGER_FRAME DATA = 5,
FILL_IN_MISSING_DATA_PREVIO;bf:;’:f;
= 6 ™

¥

v‘ i
.. y
echniques

vond flIIInM|SS|ndSth(Frame* f, Datafracker& dt, enum

memiﬁt ﬁﬂlﬂ EJ Yli e ’] i)

=0; i< HandMOdel NUM_FEATURE_ POINTS ++1)

QW'TN‘W’?N?J‘WTMEHGH

// CLUTCH
// if it gets here it means this feature point uv is

“INGER_VALUE_FRAME_DATA

/**
* Interdepend

*

* Use differe

missing

// which means there feature point ismissing so
DataTracker didn"t read it from the input file

// So we have to add it

// since the call f->getFpRef(i) above automatically add
it (with default value)

62

// we need to correct its id.
f->getFpRef(i).id = i;

//missing data, synthesize one
switch (method)
{
case FILL_IN_MISSING DATA NOTHING:
break;

DATA_PREVIOUS_FRAME_DATA:

case FILL_IN_MIS 1
re\ f->getFpRef(i).id <<

cerr <<7=,
endl;
ne(f->getFpRef (i), -
>getld(), dt); .

FF_FRAME_DATA:
->getFpRef(i).id
<< endl; ;
->getFpRef (1),
f->getld(), dt);

ca
FILL_IN_MISSING_DAT

‘J"I:"
4..'1

.ﬂ

case i e
FILL_IN_MISSING_DATA_PREVIOUS ‘DiE! RD! RAF INGER_FRAME_DATA:
cerr < |
<< f->getFpRef(i).id << endbq,a‘:#f

filllnVertex ;'"7:,,- nterd Fing ame (F->getFpRef (i),
f->getld(), dt);

FILL IN_MISSING_DATA P%FVIOUS DIFF_INTERDEP_ INTRAFINGER VALUE FRAME_DATA

o ﬂ%&?ﬂ&iﬁmWUﬁﬂT’“

filllnVe xUsePreV|ousD|ffInterdeplntraFlngerVaIueFrame(f—
>getFpRef (i), f->getld(), dt);

ammﬂm 1N1INYAY

void FilllnVertexUsePreviousFrame(Vertex& v, int frameld,
DataTracker& dt)

// get the previous frame
if (frameld == 0)
{

63

//first frame missing :(
throw 9999; //give up

}
Frame& f = dt.getFrames(Q[frameld-1];
double prevFramel = f._getFpRef(v.id).u;

double prevFrameV = f.getFpRef(v.id).v

v.setUV(prevFrameU, prevFrameV);

}

void FfilllnVertexUsePreviousDiffFrame(\/ertex& v, int frameld,
DataTrackeré& dt)
{
// get the previous frame
if (frameld == 0 || frameld == 1)

//First_frame missing :(
throw 9999; //Z0ive up

}

//previous frame ’

Frame& pf =#dt.getFrames()[frameld-1];
double prevFrameU = pfF.getFpReft(v.id) .u;
double prevFrameV,= pf.getFpRef(v.id).v

//previous®s prpevious frame ¢

Frame& ppf = dt. getFrames()[frameld -2];

double prevprevFramel = pp¥.getFpRef(v.id).u;
double prevprevErameV. = .ppf.getFpRef(v_id) . v

: f
double currentU = prevEramel + (ﬁiévFrameU - prevprevFramel);

double currentV = prevkrameV + (prevErameV - prevprevFrameV);
v.setUV(currentU, currentV); —

}

void fiIIInVertexUsePreviousDifflnterdebFfame(Vertex& v, int
frameld, DataTrackeré& dt)

// get thedprevious frame
if (frameld=== 0 || frameld == 1 || frameld ==-2) // bec we
need at least three to determine if direction reverses

{
}

//previous Frame

Frame& pT ="dt.getFrames()[frameld-1];
double prevFrameU = pf.getFpRef(v.id).u;
double prevFrameV = pf.getFpRef(v.id).v

throw 9999; //give up

//previous®s previous, frame

Frame& 'ppf = dt.getFrames()[frameld-2];
double prevprevFrameU = ppf.getFpRef(v.id).u;
double prevprevFrameV = ppf.getFpRef(v.id).v

//check i1f neighbor®s direction is reversed now

//if so , we should move in the reverse direction

Frame& pppf = dt.getFrames()[frameld-3];

double neighborPrevPrevPrevFramel =
pppf.getFpRef(HandModel : : FindNeighborld(v.id)).u;

64

double neighborPrevPrevPrevFrameV =
pppf.getFpRef(HandModel : : FindNeighborld(v.id)).v;
double neighborPrevPrevFrameU =
ppf.getFpRef(HandModel : - FindNeighborld(v.id)).u;
double neighborPrevPrevFrameV =
ppf.getFpRef(HandModel : : FindNeighborld(v.id)).v;
double neighborPrevFrameU =
pf.getFpRef(HandModel : : FindNeighborld(v.id)).u;
double neighborPrevFrameV =
pf.getFpRef(HandModel : : FindNeighborld(v.id)).v;

double currentU;
double currentV;

//U J

// 4 >3 <50r 3.5 >4 == reverse

// 1T trend is bueking down and we®re going up, reverse it
it (

(neighborRPrevPrevPreviFramel < neighborPrevPrevFrameU
&& neighborPrevPrevFrameU. & neighborPrevFramel) &&
(prevprevFramel < prvarameU)

) .
{ ? 4
cerg << j'reverseu\n';
//freverse U direction
currefitU & prevFrameU\ - (prevFrameU -
prevprevFramel) ; y

}
// if trend is buéking up éﬁﬁ we"re going down, reverse it
else if (2 ¥

(neighborPrevPrevPrevaﬁMéU > neighborPrevPrevFrameU
&& neighborPrevPrevFrameU < neighborPreviramel) &&
(prevprevFramel > prevErameU)

) T3
cerr << "reverseU\n"';
~//reverse U direction
currentU = prevFrameU - (prevFrameU -
prevprevFramel) ;
by
// otherwise don"t reverse it
else
{
cerr <<u'not reverseU\n';
currentl = prevFramel &+ (prevFrameUl -
prevprevFrameU) ;

}

/N
1T°C (neighborPrevRPrevPrevkrameV > neighborPrevPrevirameV
&& neighborPrevPrevFrameV i< neighborPrevErameV) &&
(prevprevFrameV < prevFrameV)

cerr << "reverseV\n";

//reverse U direction

currentV = prevFrameV - (prevFrameV -
prevprevFrameV);

}

65

else if (
(neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV
&& neighborPrevPrevFrameV > neighborPrevFrameV) &&
(prevprevFrameV > prevFrameV)

cerr << "reverseV\n"';

//reverse U direction

currentV = prevFrameV, - (prevFrameV -
prevprevFrameV) ;

}

else

{

cerr << 'not reversevV\n'*;
currentV = prevFrameV + (prevFrameV -
prevprevFrameV) ;

}

v.setUV(curreatU, currentV);

}

void f|IIInVertexUsePrevnoulefflnterdeplntraFlngerFrame(Vertex& v,
int frameld, DataTracker& dt)

{

l

// get the previous; frame - d
it (frameld ==,0 |J frameld =="1 || frameld == 2) // bec we
need at least three to . determine if.direction reverses

{
}

//previous frame
Frame& pf = dt.getFrames()[frameld- 1];
double prevFrameU = pf.getFpRef(v.id).u;
double prevFrameV pf getFpRef(v |d)

e

throw 9999; //give .up

o
) -hlld -

//previous’s preV|ous frame

Frame& ppf = dt.getFrames()[frameld-2];
double prevprevFEramet ppf.getFpRef(v.id).u
double prevprevFrameV = ppf.getFpRef(v.id).v

//check if neighbor®s direction is reversed now
//if so , we should move in the reverse direction
Frame& pppf = _dt.getFrames()[frameld-3];
double neighborPirevPrevPrevFramel .=
pppf.getFpRef(HandModel : s FindlntraFingerNeighborld(v.id)).u;
double neighborPrevPrevPrevErameVl =
pppf.getFpReT(HandModel : : FindIntraFingerNerghborld(v.id)).v;
double neighborPrevPrevFramel =
ppf.getFpRef(HandModel : - FindIntraFingerNeighborld(v.id)) .u;
double .neighborRrevRPreviFrameV;=
ppf.getFpRef(HandModel : tFindIntraFingerNeighborlid(v.id)).v;
double "neighborPreviFramel =
pf.getFpRef(HandModel : : FindIntraFingerNeighborld(v.id)).u;
double neighborPrevFrameV =
pf.getFpRef(HandModel : : FindIntraFingerNeighborld(v.id)).v;

double currentU;
double currentV;

//U

66

if (
(neighborPrevPrevPrevFramel > neighborPrevPrevFramel &&
neighborPrevPrevFrameU < neighborPrevFramel) &&
(prevprevFrameU > prevFramel)

cerr << "reverseU\n";
//reverse U direction

currentU = prevFrameU - (prevFrameU - prevprevFrameU);

} A%
else if (.
revPr : r& orPrevPrevFrameU &&
neighborPrevPrevFrameU > n)
ame

)
{
cerr << "reversev\
//reverse U direc
currentVv. evprevFrameV);
tise it (o =1
else 1 —
(ne V. \" vFrameV &&
neighborPrevPrevFra -

S o
(prev@vFrame m
)
cerr << “reverseV\n";

BTN

else

VAT A AR

}

void
FfilllnVertexUsePreviousDiffInterdeplntraFingerValueFrame(Vertex& v, int
frameld, DataTrackeré& dt)

{

// get the previous frame
it (frameld == 0 || frameld == 1 || frameld == 2) // bec we
need at least three to determine if direction reverses

throw 9999; //give up
}

//previous frame

Frame& pf = dt.getFrames()[frameld-1];
double prevFrameU = pf.getFpRef(v.id).u;
double prevFrameV = pf.getFpRef(v.id).v;

//previous”s previous frame

Frame& ppf = dt._getFrames()[frameld-27;
double prevprevFrameU = ppf.getFpRef(v_id) _u;
double prevprevFrameV = ppf.getFpRef(v.i1d).v

//check if neighboer®s.direction is reversed now
//if so , we_should#émove in the reverse direction
Frame& pppf = dtagetFrames()[frameld-3];
double neighberPrevPrevPrevEramel =
pppf.getFpRef(HandModel : : findintraFingerNeighborid(v.-id)) . u;
double ne|ghborPrevPrevPrevFrameV
pppf.getFpRef(HandModel : find intraFingerNeighbor Id(v.id)).v;
double neighborPrevPrevFramel =
ppf.getFpRef(HandModel : -FindIntraFingerNeighbor ld(v.id)).u;
double neighborPrevPrevFrameV =
ppf.getFpRef(HandModed:: findlntraFingerNedghborld(v.id)).v;
double neighborPrevFramel;= g
pf.getFpRef(HandModel : flndIntraFlngerNelghborld(v id)).u;
double neighborPrevFrameV =
pf.getFpRef(HandModel : f|ndIntraFlngerNelgﬁborld(V id)).v;

//prevFrameU and preVprevFrameU QI;Jntra neighbor

double neighbour_prevkramel =
pf.getFpRef(HandModel: flndlntraFlngerNelghborJd(v id)).u;

double neighbour prevFrameV = ‘
pT.getFpRef(HandModel : : FindIntraFingerNeighborlid(v.1d)).v;-

//Frame&-ppf = dt.getFrames()[frameld-2];

double neighbour prevprevFramel =
ppf.getFpRef(HandModell: : FindintraFingerNerghborid(v.id)).u;

double neighbour_ prevprevFrameV = -
ppf.getFpRef(HandModel : : findIntraFingerNeighborld(v.id)).v;

double currentU;

double currentV;

////V
iT (. (neighborPrevPrevPrevFramel > neighborPrevPrevFramel &&
neighborPrevPrevFrameU < neighborPrevFramel) &&
(prevprevkramel > prevFramel)

//reverse U direction

//apply rate of change instead

double chnageby = abs(neighbour_prevFrameU -
neighbour_prevprevFramel);

double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameU;

double amounttochange = (prevFrameU *
percenttochange)/100.0;

68

// apply the amount with the correct sign
if(neighbour_prevFrameU - neighbour_prevprevFramel < 0)
currentU = prevFrameU - (-1.0* abs(amounttochange));
else
currentU = prevFrameU - (abs(amounttochange));

}
else if (
(neighborPrevPrevPrevFrameU <;neighborPrevPrevFramel &&
neighborPrevPrevFrameU > neighborPrevFramel) &&
(prevprevFrameU < prevFramel)

)
{ J

//reverse U direction

//apply_rate of change instead

double chnageby ="abs(neighbour_prevFrameU -
neighbour_prevprevFramet);

double percenttechange =\(chnageby * 100.0) /
neighbour_prevprevFramel; '

doubleggamoupttochange = (prevFrameU *
percenttochange)/100.0; r, |
// apply the amount with the correct sign
if(neighbour prevFrameU - neighbour prevprevFrameU < 0)

curpentU = prevFrameU - (-1.0* abs(amounttochange));

else 4
currentlU = prevFrameU-5ﬁ(aps(amounttochange));
}I i\
else L
o
{
cerr << "not reverseU\n'; e sl A4

currentU = prevFramel + (nelghbbﬂr_prevFrameU -
neighbour_prevprevFramel); ? =

//7//N
if ((neighborPrevPrevPrevFrameV >-neighborPrevPrevFrameV &&
neighborPrevPrevFrameV < neighborPrevFrameV) &&
(prevprevFrameV > prevFrameV)
)

{ .
//apply rate of change instead

double chnageby = abs(neighbour_prevFrameV -
neighbour_prevprevkrameV);

double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameV;

double amounttochange = (prevFrameV *
percenttochange)/100.0;

//apply the amount with the correct signh
i1f(neighbour_prevFrameVl = neighbour_prevprevFrame\V'< 0)
currentV = prevFrameV - (-1.0* abs(amounttochange));
else
currentV = prevFrameV - (abs(amounttochange));
}
else if (
(neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV &&
neighborPrevPrevFrameV > neighborPrevFrameV) &&
(prevprevFrameV < prevFrameV)

69

)

//apply rate of change instead

double chnageby = abs(neighbour_prevFrameV -
neighbour_prevprevFrameV);

double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameV;

double amounttochange = (prevFrameV *
percenttochange)/100.0;

prevprevFrameV < 0)
bs(amounttochange));

///////////////////////////// ﬂ..-q
class Renderer { -
private:

static Renderer* m
public:

static Rende "ﬁ
{
cerr << "e ring Rendere
if (m_ins = 0)

m mstan‘eiﬁnew Renderer(); ./

} reﬁr'ﬂﬁ’%ﬂﬂﬂ‘iﬂﬁﬂ‘i

ﬁ'ﬁﬁ“ﬁ@ﬁ%ﬂm WRAINYIA

Renderer* Renderer::m_instance = 0;
L111177777777777777777/777777///7777/7///7/777/7/777

int main()
{
try {

70

HandModel::init();

DataTracker dt;
if (dt.init() '= 0) // may pass in some input file

return O;

}

// open an output File
// This will keep our computed z order
// plugin myTranslateTo will read thts file into maya

ofstream outf;
outf.open(c:\\computedbata. txt"):

iT (ToutfF.is_open())

{
cerr <<_zeannoit open output File\n";
throw 7777;

3} l

TwoDResolver® twoDResolver = TwoDResolver: :instance();
Renderer* péhdeper = Renderer:Tinstance();

#

for(int i=0; j< dt.getTotalFrames(); ++i)

{ !
***************************\n' » ; # "
// get current frame . J
Frame& T = dt.getCurrentFrame(); //2D feature point from
data tracking 3Jf9]

f.print();

// Missing data synthesis techniques: pick one
//output: all 2D feature points
//twobResolver->FillInMissingData(&f, dt,
FILL_IN_MISSING_DATA NOTHING);
//twoDResolver->FillInMissingData(&Ff, dt;
TwoDResolver: :FILL _IN MISSING_DATA PREVIOUS FRAME DATA);
//twoDResolver->fFillInMissingData(&f, dt,
TwoDResolver: :FILL_IN_MISSING_DATA_ PREVIOUS DIFF_FRAME_DATA);
//twoDResolver->FilllInMissingbData(&f, dt,
TwoDResolverZZFILL_IN:MISSING DATA PREVIQUS' DIFEF [INTERDEP.FRAME_DATA);
//twoDResolver->fillFInMissingData(&F, dt,
TwoDResolver: :FILLZIN=MISSING. DATA®PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FR
AME_DATA);
twoDResolver->fillInMissingData(&fsdt,
TwoDResolver #aF | Lsbs, INuMESS ING: DATA s PREVIIOUS, DEFFE~INTERDEPR, INFRARMGER VA
LUE_FRAME;DATA);

//once we get the scaled length of each segment

//compare this with the observed length of each segment

//we know if the segment is tilting (has depth)

//and we can compute the depth (Z dimension) from the

//scale factor we have, the obserb

f._computeZCoordinates(outf); //output: Z
coordinates

71

cerr << "FFFEE END FRAME ' << § << MR\

}

outf._close();

catch(MyException &e)

e.print(Q);

return O;

e
-

1 ‘
1

rp

AULININTNEINS
AR TUNN NN Y

72

Appendix C

Coordination Export Program

This program is to export X, Y, Z coordinates of feature points of each animation frame
to a text file. It is written as a Maya Plugin using Maya C++ API. To load the plugin to Maya,
first make sure the .mll library is in a plugin path recognized by Maya. Then, open the script

editor in Maya and type in the following command:

loadPlugin myCmd;

#include <math.h>

#include <maya/M10Streamsh>
#include <maya/MSimple-h>
#include <maya/MPoint._h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve:h>

#include <maya/MSimplech>
#include <maya/MGlobal.h>
#include <maya/MString.h>
#include <maya/MDagPath:h>
#include <maya/MFnDagNode.h>
#include <maya/MFnTransform.h>
#include <maya/MVector.h>
#include <maya/MSelectionList.h>
#include <maya/MI0Stream._h>

#include <fstream>
DeclareSimpleCommand(doHelix, “Autodesk - Example*™, “8.0"");

MStatus doMe(const MArgList&)

{
MDagPath node;
MObject component;
MSelectionkist List;
MFnDagNode nodeFn;
MFnTransform transformkn;

MGlobal : :getActiveSelectionList(list);

// open output file

//

std::ofstream outf;
outf.open(''c:\\data.txt™);

// loop through all selected nodes
//
for (unsigned int index = 0; index < list.length(); index++)

list.getDagPath(index, node, component);
nodeFn.setObject(node);

73

transformFn.setObject(node);
for (int i1 =0; i1 < 100; ++i)

MGlobal : :viewFrame(i);
MVector transformVector = transformFn.getTranslation(
MSpace: :Space: :kWorld);

outf << nodeFn.name().asChar() << "™ "
<< q o< ‘

<< transformV

3
}
// close output
7/

outf._close();

return MS::kSuccess

MStatus doHelix: :do

{
MStatus stat;
doMe(args);
return stat;
}

ﬂumwmwmm
Qﬂﬂﬁﬂﬂimﬂﬁ’l?ﬂﬂ’]ﬁﬂ

74

Appendix D

Coordination Import Program

This program is to import X, Y, and our computed Z coordinates of feature points of
each animation frame to Maya. It is written as a Maya Plugin using Maya C++ API. To load
the plugin to Maya, first make sure the .mll library is in a plugin path recognized by Maya.

Then, open the script editor in Maya and type in the following.edommand:

loadPlugin myTranslateTo;

#include <math.h>

#include <maya/MI10Stream.h>
#include <maya/MSimple._hz
#include <maya/MPointsh>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve _h>

#include <maya/MSimple_h>
#include <maya/MGlobalih>
#include <maya/MString.h>
#include <maya/MDagPath.h>
#include <maya/MFnDagNode.h>
#include <maya/MFnTransform.h>
#include <maya/MVector.h>
#include <maya/MSelectionList.h>
#include <maya/M10Stream.h>

#include <fstream>
#include <map>
#include <string>

// Use helper macro to register a command with Maya. It Creates and
// registers a command that does not support undo or redo. The

// created class derives off of MPxCommand.

//

DeclareSimpleCommand(mtts. ™", "8.0");

using std::string;
using std::map;

map<string, map<int, MVector> > g_#knputData;

MStatus ‘readComputedData()
{
// open input file
// this is the file that contains our computed z order
//
std::ifstream inf;
inf.open(*'c:\\computedData.txt"™);

if (Yinf.is_open(Q))
{

cerr << "cannot open input file\n";

{

MStatus doMe(const MArgList&) ...

75

return MS::kFailure;

}

// read all data for all frames
//

// FORMAT:

// JO 32 -4.92007 -1.23411 1.3899
string nodeName;
int frameld;
double u;

double v;

double w;

while (Yinf.eof())

cerr << " = (o[0F)2 from anput File: " <<

L

o e e

MDagPath £
MObject i;;;é}*{g'
MSelectionList LS
MFnDagNode .

MEnTransform |« transformen

MGlobal: :getAc

// read input f'me

// keep it in heap
|f (readComputedDi@ 1= MS::kSuccess)’

F’rH&H'ﬂﬂWﬁWﬂﬂﬂ‘i

// loop through all selected nodes

ﬁwqa'ﬂﬂ‘iﬁu B9 EAG4E

list_getDagPath(index, node, component);
nodeFn.setObject(node);

transformFn._.setObject(node);
// find the last frame

//
unsigned int max_frame = 0;

76

for(map<string, map<int, MVector> >::iterator mit =
g_inputData.begin(); mit != g_inputData.end(); ++mit)

//map<int, MVector>& rmap = g_inputDatal[i];

cout << "mit->second.size() > max_frame " << mit-
>second.size() << " " << max_frame << endl;
if (mit->second.size() > max_frame)

cout << "'set mi
>second.size() << endl;

ize() " << mit-

}

//\We
MSpace: :Space: :kWorld

// Set tr. _I. s feature point

//tatus st MVector &
newTrans, MSpace::Sp :

// Set tg data file

// ;

if (MS::

transformFn._setTranslati AputDz aln deFn. na (O .asCharQ]1[i1],
MSpace: :Space: :kWorld)) . ﬂf,‘ »

cerr << "ERRORIL! 1 131: SET TRANSLATE TO: ™

<< nodeFn. O
aéFn name

< i <<t -P"ﬁ.n-""'l-

<<.g_ |nputData[no
(N >

cerf <€%'SUCCESS: SET TRANSLATE TO:

ﬂ WEIRENINsIns.

<< g_ |nputData[nodan name() -asChar(QQ]1Li]

Q.J

aww aﬁﬂ‘ﬁ”ﬁiﬂ‘iﬁ"’ﬁﬂ i ey

endl ;

}

return MS::kSuccess;

77

MStatus mtt::dolt(const MArgList& args)
{

}

return doMe(args);

AULININTNEINS
AR TUNN NN Y

78

Appendix E

Coordination Data Sort Program

open($fh, "<c:\\computedData.txt") || die (“cannot open input file");
$i = 0;

while ($line=<$fh>)
{
$lines[$i] = $line;

$i++;

}

print sort numerically ~_¥

sub numerically {
@as = split (/ 7/, {
@bs = split (/

$as[0] cmp $bs[0]

1
$as[1] <=> $bs[1]
}

AUEAINENTNEINS
RN TUAMINAY

Appendix F
Original and Computed Data Diff Program

#include <iostream>
#include <string>
#include <fstream>
#include <map>

using namespace std;

class ArgumentParser

{

private:

ArgumentParser() /

public:
static void pars
static const s
static const stri
static bool
static bool

private:
static bool
static bool
static string fi
static string fi

¥

bool ArgumentParser - sortBy Joj" L “

string ArgumentParser::filel; —

string ArgumentParser::file2; f1ﬂ-———4;_ =
S BN L

=l

void ArgumentParse :p_
{ I
M |

|f(str|ng(
{
sortB ame false;

sortByJolPt = false;

for (int |—0
{

ﬁﬂﬂ@ﬁﬂ%ﬁ%ﬂ’]ﬂ‘ﬁ

Ise if (nextArg ==) //sort by joint
sortByJoint = t

79

ammmmwwwmaﬂ

filel = string(argv[++i]);
else if(string(argv[i]) = "-f2'")

Ffile2 = string(argv[++i]);

80

/**

* JO 0 -4.6975 -0.206784 5.0577
name frame X y z

- we open two input files
- for Ffilel, file2

- read line by line and put in
mapl[jointNumber][frameNumber] = {x.,y,z}
map2[jointNumber] [frameNumber

compare choices
- compare z value

sort choice
- by joint
- by frame

name -> "jJO" we"

o o ok % ok % ok X o X o X b X o X

*/
class Point3D

{

public:
Point3D(double
Point3D(): x(O

), z(z2) {}

double x;
double y;
double z;

¥
/**************

* Per file

* keep in map
*/

class DataSet

{
public:
// read data -

DataSet(const s

std: :map <int, map< - & getAllDa
"map size is ' << m_n p[2] size() << endl ; return m_map;
private:

e I N S NN

DataSet Datdqat(const string& |nputF|IeName)

PR RANING A

whil e(;lnf eof())
{

) { cerr <<

}

char j;

string jointName;
int jointNumber;
int frameNumber;
double x;

81

double y;
double z;

//j0 5 -4.76268 -0.427315 4.82576
inf >> jointName >> frameNumber >> x >> y >> z;
sscanf(JointName.c_str(), "%c%d", &j, &jointNumber);

m_map[jointNumber] [frameNumber] Point3D(X, vy, 2);

cerr << "input line = " dl;

/*************************

MAI

20int3D> >wt, map<int,

R T R Fxxk

void compareZ(map<int,
Point3D> >& map2)
{

// assume 2 maps
//

is frame

if (ArgumentParser::

{

for(int i
for(int j
{ -

// sort by j

else if (Argumentﬂgnlhr :getsortByFrafie(

ARBATHTE 03

0; 1 < mapl.size() is joint; j is frame

ammmmmmmaﬂ

<< mapl[i][j].y << ™ "
<< results[i][]] << endl;

}

/*********

* 2 argument

* a.out -s[j,f] -f1 <inputfilel> -2 <inputfile2>
*/
int main(int argc, char** argv)

{
try
{
ArgumentParser: :parse(argc, argv); //assume argument is
correct
DataSet dataSetl(ArgumentPa getFlIel())
DataSet dataSetZ(Argum- CParse getFile2());
// now we got all d
// let"s compare
// _— .
map<int, map<t 0 3D> >&imapl = dataSetl.getAllData();
map<int, map<r 0 f-*j> >:'map -“"*-:SqﬁA -getAllDataQ);
//compare Z
comparezZ(map
3} '
catch (...)
{
}
}

ﬂ‘iJEJ’J‘VIWITWEﬂﬂ‘S

Qﬁﬂﬁ\ﬂﬂ‘immﬂ’l’mﬁl’lﬁﬂ

83

Biography

Mr. Kosit Nopvichai received his Bachelor Degree in Computer Science from

Thammasat University. He is persuing a Master Degree in Computer Science at

Chulalongkorn University. Currently, he is working at a financial software company as a
1k

Senior Software Engineer.

AULININTNEINS
AR TUNN NN Y

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Background and Statement of Problems
	1.2 Objectives
	1.3 Project Scope
	1.4 Research Procedures
	1.5 Expected Benefits

	Chapter II Related Theories and Literature Review
	2.1 Hand Model/Anatomy
	2.2 Depth Reconstruction
	2.3 Interdependence

	Chapter III Proposed Method
	3.1 3D Coordinate Estimation
	3.2 Input Acquisition
	3.3 Our Hand Model
	3.4 Feature Points Identification (XY Coordinates)
	3.5 3D Depth Reconstruction
	3.6 Reflective Ambiguity
	3.7 Occlusion and Missing Data Handling

	Chapter IV Experiment and Result
	4.1 The Experiment
	4.2 Result and Analysis

	Chapter V Conclusions and Suggestions
	5.1 Conclusions
	5.2 Suggestions

	References
	Appendix
	Vita

