

การประมาณตําแหนงสามมิติจากภาพเคล่ือนไหวของมือ
โดยใชแบบจําลองการฉายแนวต้ังฉากตามมาตราสวน

นาย โฆสิต นพวิชัย

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวทิยาศาสตรคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2552

ลิขสิทธิ์ของจุฬาลงกรณมหาวทิยาลัย

3D COORDINATE ESTIMATION FOR HAND MOTION IMAGE
USING SCALED ORTHOGRAPHIC PROJECTION MODEL

Mr.Kosit Nopvichai

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2009

Copyright of Chulalongkorn University

Thesis Title 3D Coordinate Estimation for Hand Motion Image Using Scaled

Orthographic Projection Model

By Mr. Kosit Nopvichai

Field of Study Computer Science ,

Thesis Advisor Assistant Professor Pizzanu Kanongchaiyos, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

.............. ~: ... ~ ~ Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.lng.)

THESIS COMMITIEE

~~
.............................. Chairman

(Assistant Professor Athasit Surarerks, Ph . D.)

.... 1'fiC. ... fj~ Thesis Advisor

(Assistant Professor Pizzanu Kanongchaiyos, Ph.D.)

~hI~A '"::./. \.u .. External Examiner

(Chakrit Watcharopas, Ph.D.)

iv

" ~1~'fl,m11'U1tJLL'IJ'J~~'U1n(;rUJ~1j;l11~'J'IJ . (3D COORDINATE ESTIMATION FOR

HAND MOTION IMAGE USING SCALED ORTHOGRAPHIC PROJECTION

I

--~ --~j;l~~1~~1n~1~~'fl~~j;l

1 'lJu~r.pj'IJ ""~1tJ'r)fin111~ ~ n L~'IJ'fl~'IJ~1 LLj;] L~'fl~~1 n'r)fi L""~1~~'J'lJ1"" qj~ :;H'~ j;l1~1~
I " I

roHllj;lPl1~ j;lfVliu-n'fl'IJ~~ij~~ 't ""n1n11~1'IJ~1-n1 'IJ'fln~1 nuu '11",,1 LntJ'JnUm1~ f'1~~ Lf'11'flLLUU

1.1" '" 0 _ J,I" 11 -J~ t.,.,:~ '" J'
~:;~'fl'IJn~un~:;j;l'fl~ 'm'IJ1~1~~11ru11Jl'JtJ L ~'fl1"" ~~~ ~1Jl~ f'1'J1~ tl n j;l'fl~~1n"ll'IJ

~ ~

" I •

'r)~tJ1'n~'lJfi'UUUUL~'IJ'fl L ~ f'111f'1 n111.h:;~1 ru~1 LL ""t.i~ ~ 1~ij ~~1 n~1~ Lf'1~'fl'IJ 1 ""'J"ll'fl~~'fl
" I

LlJltJ 't frjfi LLUU~1 ~'fl~ n 11'U1tJ LL 'IJ'J ~~'U1 n j;l1~~ 1 j;l11 ~'J'IJ't 'lJn11~1'IJ'J ru",,1 rh~ n "'''ll'fl~ij~Vl ~1~

U'1l",,1 n11~ nu IJlU~",,1'fln11"ll1 "'''''1tJ''ll'fl~;J'fl~ ~ 1~ ~ n LLmlJltJ n11~~11ru1 't -n;J'fl~~~1 n L~1~ n'fl'IJ
I I I ~ ~

""tJ1LL~:;f'1'J1~ LntJ'J L i1'fl~n'IJ"ll'fl~n11Lf'1~'fl'IJ1 ""'J"ll'fl~;J'flll'J 'IJ'fln~1nU U'1l""1m1~ f'1~~ Lf'11'flLLUU

I "

~df'fl'IJniuri tl n LLmlJltJ n11fl1""'lJIJl;J'fl~1 n IJlVl;J'flll'J
~

't 'lJn 11~ 1Jl~'fl~ L111-n;J'fl~ ~~'fl~ij ~~1 n~1tJ1 LL'flllL~.r'IJ"ll'fl~ n 11fl1 ~'fl Ltl'IJ;J'fl~~ L .jf1"ll'fl~
~ ~

'i'. I ..J"I !:'"I 0 "..J ,, __ .J 0... ::, 0

~u1LLm~~~"lI ~'lJn11f'11'IJ'Jru""1"ll'fl~~~"ll11Jl""1tJLL~:;"ll'fl~~~j;l~~1~j;l1~~1IJlU ~1n'IJ'IJ L11'IJ1

.jf'fl~~ij~~~1~~~1'IJ'Jrul~~1'r)Lf'111:;",,1(;mn11LmtJuLVltJu~~~1~~1nn11~"'~'fl~nu.jf'fl~~~~~
~ ~

~1~~1 n~1tJ1 LL'flllL~.r'IJ ~~ n11'r) Lf'111:;~LL~ 1Jl~'t "" L~'IJ~1'r)fin11~ L111-n~1~11tl ~1'IJ'Jru""1 ~1~
n 1Jl"ll'fl~ij ~~ ~ 1~ 1~ mJ 'lJU 1 LL~:;~ 1~11tl LLnU '11",,1 f'1'J1~ f'1~~ Lf'11'fl LLUU~ :;"''fl'IJniul~~'t 'IJ""~1tJ

v

4971409721 : MAJOR COMPUTER SCIENCE

KEYWORDS: 3D COORDINATE ESTIMATION / HAND MOTION

KOSIT NOPVICHAI : 3D COORDINATE ESTIMATION FOR HAND MOTION

IMAGE USING SCALED ORTHOGRAPHIC PROJECTION MODEL. THESIS

ADVISOR: ASST. PROF PIZZANU KANONGCHAIYOS, Ph.D., 83 pp.

A 20 image sequence can be a great source of motions for animating a 3D

model. However, depth information cannot simply be extracted from a two-dimension

image. Thus, there is a need for a method to obtain this third dimension data.

Several methods have been presented over the years . But most of them

employed a complex mathematical concept which makes it unavoidably slow. Moreover,

there is an inherent problem of reflective ambiguity which must be addressed.

In this study, we present a technique to perform a 3D coordinate estimation of

20 hand motion from an image sequence. In our method, the orthographic projection

model is used to determine the Z coordination. Additionally, information from the

previous frames and interdependence of a hand model are used to handle occlusion.

We also propose a set of constraints on the finger joints in order to deal with reflective

ambiguity.

In our experiment, XY coordinates of a set of feature points are extracted from a

Maya animated Hand Clinching motion. The missing data and depth information are

then calculated. Finally the resulting Z coordinates are evaluated by comparing with the

actual Z values from the Maya animation . The result shows that our method can estimate

the Z coordinated quite well and can correctly solve the reflective ambiguity in most

common cases.

Department : Computer Engineering Student's Signature ... ~.~* .. ~.1.';'PN
Field of Study: ... C.o.rT1put~rS.cie.n"e Advisor's Signature ... y ~
Academic Year : ?QQ.~

vi

Acknowledgements
I owe a depth of gratitude to Dr. Pizzanu Kanongchaiyos for his help,

advice and understandings. I would like to thank all the teachers that I have a privilege
to be their student. I also sincerely appreciate the help of the staff members at the
Computer Engineering Department for their assistance in many occasions.

Lastly, I would like to thank my family for their tireless love and support
and my friends for their great suggestions and supports.

Contents

 Page

Abstract (Thai) .. iv
Abstract (English) ... v
Acknowledgements .. vi
Contents ... vii
List of Tables ... ix
List of Figures ... x
Chapter
1 Introduction

1.1 Background and Statement of Problem ... 1
1.2 Objectives .. 2
1.3 Project Scope ... 2
1.4 Research Procedures .. 2
1.5 Expected Benefits .. 3

2 Related Theories and Literature Review
2.1 Hand Model/Anatomy .. 4
2.2 Depth Reconstruction .. 5
2.3 Interdependence ... 6

3 Proposed Method
3.1 3D Coordinate Estimation .. 7
3.2 Input Acquisition .. 7
3.3 Our Hand Model .. 8
3.4 Feature Points Identification (XY Coordinates) ... 8
3.5 3D Depth Reconstruction ... 9
3.6 Reflective Ambiguity .. 11
3.7 Occlusion and Missing Data Handling... 13

4 Experiment and Result
4.1 The Experiment .. 16
4.1.1 Z Coordinate Calculation Program .. 18
4.1.1.1 The Order of Feature Point Calculation .. 19

Chapter Page

viii

4.1.1.2 The Dependency of Feature Points .. 19
4.1.1.3 Filling in Missing Data .. 19
4.1.1.4 Z Coordinate Calculation ... 20
4.1.2 Other Programs ... 21
4.2 Result and Analysis .. 21
4.2.1 Z Coordinate Calculation .. 21
4.2.2 Missing Data Handling .. 25

5 Conclusions and Suggestions
5.1 Conclusions ... 34
5.2 Suggestions ... 34

References.. 36
Appendices
 Appendix A: Publication .. 41
 Appendix B: Z Order Computation Program ... 48
 Appendix C: Coordination Export Program ... 72
 Appendix D: Coordination Import Program ... 74
 Appendix E: Coordination Data Sort Program ... 78
 Appendix F: Original and Computed Data Diff Program ... 79
Biography ... 83

 List of Tables ix

Table Page

3.1 An example of missing data handling using the interfinger dependency. 14
4.1 The table shows the mimimum, maximum, average and standard deviation of the

difference between the actual and calculated Z value of each feature point. 22
4.2 The feature points and their missing frames for the Clinching Motion. 25
4.3 The X values of feature point 8 for frames 34-41. .. 29

 List of Figures

x

3.1 The DOFs of each of the joint in our hand model. The black node has 2 DOFs. The
white node has 1 DOF. .. 8

3.2 The feature point locations of our hand model. ... 8
3.3 The reflective ambiguity of Z coordinate. .. 12
3.4 The tip of the finger points toward the palm if the inner angle of the PIP joint is less

than 90 degrees. ... 13
4.1 Our Maya hand model... ... 16
4.2 Examples of input from Maya animation.. ... 17
4.3 Examples of XYZ coordinates from Maya animation. .. 17
4.4 The feature points and their IDs.. .. 18
4.5 Examples of output from Z coordinate calculation program 21
4.6 The graph shows the difference between the actual and predicted X values using

the five different methods .. 26
4.7 The zoomed-in figure of spike 1, 6, 9 and 11 .. 27
4.8 The zoomed-in figure of spike 3 which belongs to feature point 4 28
4.9 The zoomed-in figures of spike 4, 5, 7, 8 and 10 which belong to feature point 7, 8,

11, 12 and 16 respectively .. 30
4.10 The zoomed-in figure of spike 2 which belongs to feature point 3 31

Chapter 1

Introduction

1.1 Background and Statement of Problems
 Computer animation is the science and art of using a computer to create moving
images. The idea is to make a character move in a way intended by the artists and
convey their creativity to the audience. There are several ways to generate motions for
an articulated character. Some of the more common are Kinematics, Dynamic control
[1], Keyframing, Motion editing [2] [3] [4] [5] [6], and Motion capture. Recently more
attention has been paid to an alternative to the traditional methods. It is the typical 2D
video that is recorded by a typical camera or even a web cam.
 There are certain advantages to this motion source. First, the source model does
not need to be attached with sensors. Second, the cost is typically lower than the
traditional motion capture. Third, there are enormous stocks of live action footage
recorded as 2D videos. Some of them are of historic values and cannot be reproduced.
An example is a number of classic sport moments. This can be readily used as a motion
source.
 Using 2D image sequence as a source of motions has a few challenges of its own
that need to be addressed. First, the missing data (e.g. those caused by occlusion)
need to be somehow recovered. Specific to hand motions, we may consider using
interdependence in addition to constraints, motion library, sample space, etc. Second,
the 2D nature of it necessitates the lack of depth information. Thus some variants of 3D
reconstruction techniques are used to recover the missing Z coordinate. We will address
these issues in our work.
 After a motion is acquired through one of the means mentioned above and stored
in a motion representation, a typical motion retarget proceeds. As part of the process,
an acquired raw motion is typically processed in some ways to create a more
appropriate motion for each target character. The output of this step is the adapted
motion data used to drive the target motion. For the case of an articulated figure, the
output is usually joint angle data for all the joints.

2

 The animation of human articulate body has long been received numerous
attentions. The works in this area vary in terms of the body parts on which they focus. As
for the hand, it has been a focus of many researches in computer animation because
not only it is one of the most animated parts of human body but also one of the most
complex body parts. In addition it is essential for human communication and expression.
Our work will focus on estimating the 3D coordinate of the hand motion from 2D
monocular video sequence.

1.2 Objectives
 The objective of this project is to perform a 3D coordinate estimaation by using the
motions from 2D image sequence which is an alternative to the traditional motion
capture. This work will focus on motions of the human hand. The expected end result is
the technique that is capable of estimating 3D hand motions from 2D video sequence.
The resulting 3D hand motions can then be used as motion retarget source. The motion
input will be 2D frame sequence of hand gestures. The output will be the 3D coordinate
estimation of the deformed hand.

1.3 Project Scope
1. This work considers the hand gestures only.
2. The hand in a scene is expected to be at a certain distance from the camera.
3. The length of each segment on the hand is assumed to be known.
4. The hand in a scene is expected to be facing the camera.
5. The palm of the hand is expected to stay still.
6. The experimental data are extracted from Maya animation of a hand gesture.
7. The result is evaluated by comparing our output to the data from the Maya

animation whose X, Y coordinate data are used as the input.

1.4 Research Procedures
1. Acquire a 3D hand model. This may be obtained from a free repository on the

web.

3

2. Prepare the input sequence of hand gestures. This is obtained from a Maya
animation.

3. Study and write a software module to calculate the Z coordinates.
4. Test the system with our hand gesture motion.
5. Analyze and evaluate the result.

1.5 Expected Benefits
 We expect that our experiment on applying a variety of techniques to build a
working system for estimation of 3D coordinate of hand motion from 2D video
input will afford us to find out how well these techniques are working in practice
and hopefully to discover some new insights based on the experience of building
such systems that will be beneficial to others attempting similar tasks in the future.

Chapter 2

Related Theories and Literature Review
2.1 Hand Model/Anatomy
 Hand anatomy has long been studied and well understood in the field of anatomy
and biomechanics [7]. Hand is one of the most complex body parts. Most animation
research focuses on its two main functionalities which are grasping and fine motor skills.
Many aspects have been studied such as its constraints, limitations, DOFs, bones,
tendons, and muscles.
 Several hand models have been proposed over the years. Each has its own
strengths and weaknesses. Whichever one we should use depends on the task at hand.
A parametric hand model has been designed for the semiautomatic grasping approach
in [8]. In [9] a simple volume-based animatable hand model constructed from geometric
primitives has been employed for tracking. Reference [10] builds a statistical hand
shape model from simplex meshes fitted to MRI data for their tracking system. For
model-based finger motion capturing, reference [11] employs a learning approach for
the hand configuration space to generate natural movement. Reference [12] presents an
anthropomorphic finger model with a tendon transmission system based on pulleys and
a position controller. The controller is modeled by a neural network and transforms
tendon pull into joint motion. A model of the hand and arms based on manifold
mappings has been proposed by [13]. They also consider inter-joint dependencies.
Reference [14] uses Dirichlet free-form deformations (DFFDs) to simulate the tissue and
muscle layer between skin and bones. Muscles are not considered directly, but the use
of DFFDs allows the authors to model wrinkles at joints and bulging of segments
dependent on the angle of rotation of the respective proximal joint. In [15] the joint
movements of a hand model composed of rigid bodies are constrained by
biomechanical laws. The model was designed for use in animating American Sign
Language. An approach for skinning a hand skeleton using Eigen displacements has
been proposed in [16]. The resulting hand model can be animated in real-time using
graphics hardware.

5

 Our hand model is a relatively simple kinematic chain consisting of joints and
segments. Each joint has a number of DOFs and limitations.

2.2 Depth Reconstruction
 Depth reconstruction refers to the process of extracting the depth information from
2D data. Its challenge lies in the fact that it is an under-determined problem. To solve it,
we need to pose some constraints or use some assumptions and find a solution under
that framework.
 Study on 3D Depth recovery from 2D input has been performed for some time.
There have been several techniques proposed. Reference [17] proposes an algorithm to
compute the three dimensional structure of a scene from a pair of stereo images.
Reference [18] constructs a 3D object query from 2D drawings. Their algorithm can
handle objects with both planar and curved faces. Reference [19] estimates 3D depth
from a single still image. It proposes the use of monocular cues (e.g., texture variations
and gradients, defocus, color/haze, etc.) in addition to the stereo cues (e.g.). Their
approach is based on modeling depths and the relationships between them at multiple
spatial scales using hierarchical, multiscale Markov Random Field. The model is trained
with a set of training images and their corresponding ground-truth depth maps. The
method works for unstructured images of indoor and out door containing forests,
sidewalks, buildings, people, etc.
 More recently, as the 2D monocular video sequence is recognized as a fertile
source of motions, several researchers focus on perfecting techniques that use them as
input. Reference [20] and [21] reconstruct a human-like figure motion from 2D video
stream. It assumes an existence of a library of motions similar to the target motion video
stream and assumes the length of each segment is known. A library of motions that are
similar to the target motions is used to provide a reference frame that will be warped
based on the target frame to get the final pose. Their method is capable of
reconstruction a highly dynamic motion for a full body of 40 DOFs. A technique based
on Motion Trend Analysis has been proposed in [22] [23]. The method uses the

6

information solved in the previous frame to solve for the next frame except the first
frame. Hence, a user help is required to identify the correct 3D poses for the first few
frames. Reference [24] exploits the domain specific knowledge about the target motions
to find certain joint location and to limit possible poses. References [25] [26] [27] [24]
use the orthographic projection method to determine the Z coordination.
 To derive the Z coordinate from a single image, they assume the point
corresponding and segment lengths are known and the certain distance between object
and the camera are maintained. The problem of standard reflective ambiguity is also
mentioned and resolved mostly with constraints. Reference [27] improves upon [25] by
allowing some perspective cases to work properly.
 We adopt the method similar to the one described in [25] which uses the scaled
orthographic projection model. Please refer to the Concepts & Methods section for
details of the technique.

2.3 Interdependence
 Interdependence refers to the influence of a finger joint on others. Each finger joint
is not fully independent but to some degree depend on the movement of some other
joints on the hand. This can be viewed as dependence constraints between the DIP and
PIP joints of each finger and between fingers. This concept has been studied and used
in several works. Reference [28] observes that naturally a DIP joint cannot be moved
without moving the PIP joint of the same finger. In another word there is a dependency
between them. Reference [28] approximates the relationship between the two joint angle
to be DIP = 2/3 PIP. They use this dependency to reduce the number of DOF by making
DIP fully depend on PIP. Reference [13] uses interdependence in their work. Reference
[29] expands the idea by assigning the degree of dependency between each joint
across fingers.

Chapter 3

Proposed Method
3.1 3D Coordinate Estimation
 3D coordinate estimation refers to the process of calculating the depth information
from a 2D input source. In our case, the input motion is a 2D image sequence of a hand.
We perform the following steps as parts of the 3D coordinate estimation process:
1. Identify the feature points (XY coordinates) of a hand in a video frame
2. Fill in the missing data
3. Decide on the reflective ambiguity
4. Calculate Z coordinates of the feature points

3.2 Input Acquisition
 Our system needs three inputs from the user
1. Reference hand model (on image plane). This reference hand model can be one of

the input frames. It should show the full stretched hand on the image plane. This will
be used to establish the segment lengths. A segment refers to a segment of a finger.
For example each finger has three segments.

2. The length of each segment. We need the length of each segment for 3D depth
reconstruction. The user may not need to explicitly specify the length of all the
segments. Theoretically, we need only one segment length and we can calculate the
rest using the information from the reference hand model image.

3. 2D monocular video sequence of hand gestures. In our experiment, Maya animation
of a hand gesture is used.

8

Figure 3.1 The DOFs of each of the joint in our hand model. The black node has 2 DOFs. The white node has 1
DOF.

3.3 Our Hand Model
 The specification of our 3D hand model is as follows:
1. There are 14 joints and 19 degrees of freedom in each hand
2. Each finger except thumb has three joints and sum up to 19 DOFs in a hand (figure

3.1)

Figure 3.2 The feature point locations of our hand model.

3.4 Feature Points Identification (XY Coordinates)
 For each input image sequence of a hand gesture, we identify the locations of all
feature points (figure 3.2). The feature points in our case include the locations of joints
and the tip of each finger and two more locations on the palm. A location is specified as
the XY coordinates of the following locations:

9

Location
5 Tip of {Thumb, Index, Middle, Ring, Little}
4 Distal interphalangeal joint (DIP) of {Index, Middle, Ring, Little}
1 Interphalangeal joint (IP) of Thumb
4 Proximal interphalangeal joint (PIP) of {Index, Middle, Ring, Little}
5 Metacarpophalangeal joint (MCP) of {Thumb, Index, Middle, Ring, Little}
1 Folding on the palm
1 Wrist

 In some images, it may be impossible to identify all of these feature point locations
because of occlusion or blurred image. In such cases, we have employed a technique
to approximate their locations. These techniques are discussed in details later. Also, one
assumption is that if a feature point is occluded, probably its exact location is irrelevant
in that context and it should be able to be estimated by its rest pose which is
approximately somewhere in the middle of its range (in case of a joint) [30].

3.5 3D Depth Reconstruction
 Since our input is a sequence of 2D image, the information we get for each feature
point is 2D. Thus, we need a way to compute for the Z coordinate. To do this, we adopt
the method in [25] which uses the scaled orthographic projection model. A projection of
a point (x, y, z) in three-dimensional space to the point (x, y, 0) on the x-y plane can be
represented as a matrix (equation 4).

 In scaled orthographic projection, we simply add a scale factor to the equation
(equation 2). This results in a simple scaling of the object coordinates. The scaled-
orthographic model amounts to parallel projection, with a scaling added to mimic the
effect that the image of an object shrinks with the distance [31].

10

The formula is expressed in equation 5.

 From equation 5 we assume an arbitrary depth for 1Z and compute for 2Z . In this
case, we also know 1u , 2u , 1v , 2v , and l . If we also know s , the scale factor, then we will
be able to solve for 2Z . In our case we assume that the distance between the camera
and the hand is much greater than the depth of Z coordinate. (Note that this assumption
is needed for the scaled orthographic projection model to work.) With this assumption,
the scale factor is almost constant for all the joints on the hand. So we can use the same

11

scale value for all the feature points. Now to compute for the scale factor s , we use
equation 6 to find the overall minimum value of s . Note that equation 6 comes from the
fact that the equation 5 has a real solution. We will use the minimum overall value of s in
our computation since the absolute values of X , Y and Z is not necessary. All we need
is the relative depth between each feature point. Once we obtain s , we can use
equation 4 to find the value of X and Y . We then use the computed 2Z as the 1Z of the
next segment. We then repeat this process until all feature points are computed. One
issue that we still have is the reflective ambiguity. This stems from the fact that the 1Z or

2Z in equation 5 can be the smaller one based on the 2D information we have. In our
case, joint angle limit, physiological constraints are used to pick the correct
configuration.
 From this step, we get XYZ coordinates of feature points. These values are
imported into the Maya scene to animate the result motion on our hand model.

3.6 Reflective Ambiguity
 As stated earlier, the computed Z coordinate can be ambigious. This is because
the Z coordinate value of two points along Z axis can be calculated from the same X and
Y values. The figure 3.3 shows an example of two points in 3-D space which have the
same X and Y values but different Z values.

12

x, y, z1 x, y, z2

Z axis

Figure 3.3 The reflective ambiguity of Z coordinate

 We use the following constraints to resolve the ambiguity in most cases. Our
constraints are based on the information from related feature points on the same finger.
 In the following explanation, let us call the MP joint, the PIP joint, the DIP joint and
the tip of the finger as the feature point A, B, C, and D respectively. In our system, we
assume that the palm is facing the camera and the palm stays upright. From this
assumption and our observations, we enforce the following constraints on the value of
the Z coordinate of a feature point.

- Z coordinate of the feature point B is always greater than that of A
- Z coordinate of the feature point C is always greater than that of B
- Z coordinate of the feature point D is less than that of C when the ABC angle is
less than or equal to 90 degree

 Based on these constraints, the relative Z coordinate of the PIP and DIP feature
point (B and C) are always the addition of its parent (MP and PIP respectively)’s Z
coordinate. That is they are pointing away from the palm.
 For the tip of the finger, our method considers the location of the MP, PIP and DIP
joints simultaneously. In particular, we measure the inner angle at the PIP joint. If it is

13

less than 90 degree, the tip of the finger should be pointing toward the palm. That is its
calculated Z coordinate is subtracted from its parent (DIP)’s Z coordinate to form its
world Z coordinate. The idea is depicted in the figure 3.4.

Figure 3.4 The tip of the finger points toward the palm if the inner angle of the PIP joint is less than 90 degrees.

 The inner angle of the PIP joint is calculated using the law of the cosines as we
already know the YZ coordinate of the MP, PIP, and DIP feature points.

3.7 Occlusion and Missing Data Handling
 Occasionally, it is possible that some feature point input data cannot be obtained.
This can be caused by several reasons. First, a feature point on a finger is occluded by
other part of the hand. For example when a hand is clinching into a fist, the feature
points at the tip of index, middle, ring and pinky fingers are all occluded when the palm
is facing toward the camera. Second, an input image is not clear. There may be some
part of the image that is unclear and cannot be detected.
 In our experiment, we assume that the first frame is perfect. This means all the
feature points are available in the first frame. If this is not the case in the real world, we
need the help of the user to specify the missing feature point data to make sure that all
the feature points of the first frame are available.
 To fill in the msising data, we experimented with five different methods. The first
method to deal with missing data is to use the data from the previous frame. This
method is very simple and does not need any information from other feature points.

14

 The second method is to apply the amount of change occurring between the
previous two frames to the missing frame. For example, if the X coordinate value of
feature point A is missing in frame 3 and the X values of this feature point in frame 1 and
2 are 5 and 8 respectively, the predicted X value in frame 3 will be 8 + 3 = 11.

Frame A.X B.X Method 2 Method 3
0 3 3 3 3
1 5 5 5 5
2 7 4 7 7
3 ? 3 9 5

Table 3.1 An example of missing data handling using the interfinger dependency

 The third method is similar to the second method with the addition of interfinger
dependency. This dependency will enable us to detect a directional change of the
missing values. That is we monitor the trend of value change from a depended-on or
parent feature point. If there is a change in the direction of value (for example from
increasing to decreasing) of the parent feature point, the same directional change is
applied to the predicted value. The table 3.1 shows an example. In this example, a
feature point A depends on a feature point B. And the X value of A is missing in frame 3.
After we evaluate the trend of B.X, we see that the value trend is changing from
increasing (i.e. 3 to 5 from frame 0 to frame 1) to decreasing (i.e. 5 to 4 from frame 1 to
frame 2). Thus we decide that the value of A.X should be decreasing in frame 3. As a
result, we predict the value of A.X at frame 3 to be 7 – 2 = 5. As a comparison, method 2
without an interfinger dependency would predict the value to be 7 + 2 = 9.
 The fourth method is similar to the third method. However, instead of using
interfinger dependency, an intrafinger dependency is used. This method has a
hypothesis that the intrafinger relationship is stronger than the interfinger relationship.
Thus, intrafinger dependency should provide more accurate predicted value.

15

 The fifth method is similar to the fourth method. However, in addition to the
directional cue from the parent feature point, we also use its value change rate as well.

Chapter 4

Experiment and Result

Figure 4.1 Our Maya hand model.

4.1 The Experiment
 In our experiment, we first create a Maya hand model (figure 4.1) to have the joint
as specified in the section 3.3. Then, we have created an animation of the Hand
Clinching motion to be used as the input in our experiment. There are a few reasons for
choosing Maya animation as the input in our experiment. First, we can get a very
accurate XY coordinate to use. This will eliminate the input errors from our experiment.
Second, in addition to X and Y coordinates, we also get the Z coordinates from the Maya
animation. This is very useful for us as they can be used to validate our result. Our Hand
Clinching animation contains the total of 100 frames. Some examples of the frames are
shown in figure 4.2.

17

Figure 4.2 Examples of input from Maya animation.

 To extract the XY coordinates of the feature points from this animation, we wrote a
Maya plugin using Maya API. This program goes through each frame, extracts the X, Y,
and Z coordinate of each feature point and writes them to an output file. The plug in
code is listed in Appendix C. An example of the extracted coordinates is shown in figure
4.3.

Figure 4.3 Examples of XYZ coordinates from Maya animation.
 Please note that in addition to the X and Y coordinates, we have also extracted the
Z coordinate. However, only the X and Y coordinate are used as the input to our Z

18

coordination calculation software. The extracted Z coordinate will be used later to verify
our result.
 After we have obtained the file containing data as shown in figure 4.3, we pass it
as the input to our Z coordinate calculation software. This software will calculate the Z
coordinate of each feature point in each frame. The program code is listed in Appendix
B. The details of the program are discussed in the next section.

Figure 4.4 The feature points and their IDs.

4.1.1 Z Coordinate Calculation Program
 This is the program to calculate the Z coordinate values based on the proposed
techniques. The program inputs are the X and Y coordinates in all the frames, the actual
segment lengths. The program also fills in the missing X and Y data with the value we
guess using the values from the previous frame, the values of associated feature points
in the current frame and the interdependence data. In each frame we have to calculate
the Z coordinates of 21 feature points of the hand. The order of calculation is important.
The output is the list of calculated Z coordinates of feature points in all frames. The
program is listed in Appendix B.

19

4.1.1.1 The Order of Feature Point Calculation
 The order of the Z coordinate calculation is defined. In our design, we assume that
the palm is facing toward the camera and it does not move. So the Z coordinates of the
feature point 19 and 20 are assigned to be 0. Next, each finger’s feature points are
calculated in order starting from the thumb, to the pinky finger.
 For each finger, the calculation order starts from the base to the tip of the finger.
For example, the feature point 2 is calculated before the feature point 1. And the feature
point 1 is calculated before feature point 0.
 The reason for the exact order of calculation is because we need the Z coordinate
of the previous feature point to calculate the world coordinate of a feature point as their
positions are related to each other. Also, when we try to fill in the missing feature point
data (e.g. occlusion), we need the information of the previous feature point. So we need
to make sure that this information is already available.

4.1.1.2 The Dependency of Feature Points
 A feature point’s Z coordinate is computed based on another feature point. This is
the joint that together with the feature point forms a segment of a finger. In our design,
the parent joint is used. Thus, a feature point is dependent on the joint above it in the
joint tree. For example, from figure 4.4 the feature point 2, 6, 10, 14, 18 are dependent
on the feature point 20. The feature point 0 is dependent on the feature point 1. The
feature point 1 is dependent on the feature point 2 and so on.
 The dependent feature point is used for two reasons. First, together with the
feature point it forms a segment of a finger. We need this segment length in the Z
coordinate calculation. Second, the calculated Z coordinate is relative to this feature
point. So to obtain the world coordinate we add or substract the calculated Z coordinate
value to the Z cooridinate value of this parent feature point.

4.1.1.3 Filling in Missing Data
 When the program starts, it reads frame data from the input file, then for each
frame, it determines whether the XY coordinate of any feature point is missing. If that is

20

the case, it tries to guess the missing value using the algorithms described earlier in
section 3.7. After this step, a frame has complete XY coordinate data of all feature
points. And we are ready to compute the Z coordinate of each feature point.

4.1.1.4 Z Coordinate Calculation
 For the first feature point (i.e. the folding palm or the feature point 20), the Z
coordinate is assigned to 0. This is fine since we do not need to know the exact Z
coordinates of these feature points. What we are trying to compute is the relative Z
coordinate of these feature points.
 For the rest of feature points, we compute their Z coordinate values as a relative
value from the feature points they depends on. The Z coordinate is calculated form the
following formula,
 vertex1.w = vertex2.w +/- sqrt(pow2(l) - pow2(abs(vertex1.u-vertex2.u)) - pow2(abs(vertex1.v-vertex2.v)));
 One issue we have found is that The term (pow2(l) - pow2(abs(vertex1.u-vertex2.u)) -

pow2(abs(vertex1.v-vertex2.v))) is sometimes negative. This can occur if there is an inaccuracy
in such data we have obtained as a specified segment length or some of the XY
coordinate values. To solve this problem, we force this term to become positive by
adjusting the value of the segment length (l) little by little.
 Once the relative Z coordinate value is calculated, we add it to the depended-on
feature point’s Z coordinate to obtain its world coordinate with the exception of the tip of
the finger feature points (i.e. the feature point 3, 7, 11, 15 in figure 4.4). For the fingertip
feature point, we check for the reflective ambiguity as detailed in section 3.6 and the
addition or subtraction to the depened-on feature point’s Z coordinate will be performed
accordingly. We perform this calculation for every input frame and write the result to the
output file. An example of the output is depicted in figure 4.5.

21

Figure 4.5 Examples of output from Z coordinate calculation program.

4.1.2 Other Programs
 Besides the Z coordination calculation program, we have written a number of
other programs. First, we wrote a Maya plugin using Maya API to extract the X, Y, and Z
coordinates of each feature point in a frame. The output of the program is the list of X, Y,
and Z coordinates of each feature point in a frame. The code is listed in Appendix C.
 Second, we wrote a program to compute the difference between the actual and
calculated Z corrdinated and sort them in proper order. The programs are listed in
Appendix E and F.
 Third, we wrote a Maya plugin to import our calculated Z coordinate values and
use them along the the original X and Y coordinates to create the output animation. The
program is listed in Appendix D.

4.2 Result and Analysis
4.2.1 Z Coordinate Calculation
 In our experiment, we choose to use a motion of a clinching hand (see figure 4.2).
We believe that this motion provides a wide range of motions of each finger and hence
is a good candidate for being used in our experiment.

22

 As stated earlier, we can validate the result of our computation and see how well it
performs by comparing the calculated results of Z coordinates with the corresponding
actual values we obtain from the Maya animation. The table 4.1 shows the result of Z
coordinate calculation both with and without the reflective ambiguity check. The result is
shown in the form of the difference between the actual and the calculated Z coordinate
values. The table lists the minimum, the maximum, and the average difference for each
feature point over 100 frames.

Table 4.1 The table shows the mimimum, maximum, average and standard deviation of the difference between the
actual and calculated Z value of each feature point.

 The result shows that the minimum difference between the actual and calculated Z
values is the same for both options for most feature points. This is because the frame

Feature
Point

No Reflective Ambiguity Check Reflective Ambiguity Check
Min Max Average Std Dev Min Max Average Std Dev

0 0 1.06126 0.0500225 0.187208 0 1.06126 0.0500225 0.187208
1 0 0.00001 0.000003 0.0000046 0 0.00001 0.0000031 0.0000046

2 0.000001 0.000001 0.000001 0 0.000001 0.000001 0.000001 0
3 0.00001 2.79918 0.377438 0.774469 0.00001 0.3105 0.00582 0.0359771
4 0 0.03278 0.00034293 0.00326018 0 0.03278 0.00034293 0.00326018

5 0 0.000127 0.00001 0.0000181 0 0.000127 0.00001 0.0000181
6 0.0000033 0.0000033 0.0000033 0 0.0000033 0.0000033 0.0000033 0

7 0 3.92996 0.581189 1.09838 0 0.33847 0.0105844 0.0501362
8 0 0.28688 0.0051299 0.0334249 0 0.28688 0.0051299 0.0334249

9 0 0.000039 0.00000482 0.0000064 0 0.000039 0.00000482 0.0000064
10 0.000007 0.000007 0.000007 0 0.0000007 0.0000007 0.0000007 0
11 0.07749 3.2563 0.551863 0.882854 0.07671 0.335839 0.0825675 0.0288816

12 0.07737 0.33588 0.081987 0.0284531 0.07737 0.33588 0.081987 0.0284531
13 0.07745 0.116305 0.0782574 0.00543573 0.07745 0.116305 0.0782574 0.00543573

14 0.077459 0.077459 0.077459 0 0.077459 0.077459 0.077459 0
15 0 2.08428 0.240371 0.526386 0 0.31035 0.00828877 0.0407495

16 0 0.124255 0.00174183 0.0132183 0 0.124255 0.00174183 0.0132183
17 0.000004 0.00004 0.0000127 0.00000642 0.000004 0.00004 0.0000127 0.00000642
18 0.000006 0.000006 0.000006 0 0.000006 0.000006 0.000006 0

19 0.881104 0.881104 0.881104 0 0.881104 0.881104 0.881104 0
20 0 0 0 0 0 0 0 0

23

that produces the minimum difference does not exhibit the reflective ambiguity. So both
options yield the same Z value.
 One exception is for feature point 11. With the reflective amibiguity check turned
on, the minimum difference between the actual and calculated Z coordinates occurs at
frame 72 where the check detects the ambiguity and correctly decides that the feature
point (which is the tip of the ring finger) should be pointing inward. With the reflective
ambiguity check turned off, the minimum difference occurred at frame 14. However, in
general, both options produce very similar minimum difference between the actual and
calculated Z values.
 From the maximum difference columns, it is evident that there is a difference in
term of performance between the two options at all tip feature points where the
Reflective ambiguity check is at work. The difference is caused by the fact that the
reflective ambiguity check can detect the ambiguity and makes the right decision so the
gap between the calculated and actual Z coordinates is small while the non ambiguity
check option does not recognize the ambiguity and produces the Z coordinate in the
wrong direction which results in a bigger gap. For all other feature points than the tip
ones, both options produce the same result as our reflective ambiguity check works for
the tip feature points only.
 Another interesting point is that the DIP feature points produce a larger maximum
gap than the PIP feature points which in turn produce a larger maximum gap than the
MP feature points. This is because there is generally more motion change at the feature
points nearer to the tip of the finger in our experiment.
 From the experiment, most maximum differences between the actual and
calculated Z values occur in the last frame. A few exceptions are for feature point 3, 7
and 15. For feature point 3 (the tip of index finger), the maximum difference occurs at
the frame 77. This is because the reflective ambiguity check fails to detect the ambiguity
as the measured angle just falls off the threshold of 90 degree. So the calculated Z
coordinate is pointing in the wrong direction and produces a big gap. For feature point 7
(the tip of the middle finger), the biggest difference occurs at frame 69 where the

24

ambiguity is wrongly detected and the algorithm decides that the tip should point inward
instead of outward. For feature point 15 (the tip of the ring finger), the maximum
difference occurs at frame 80, when the reflective ambiguity check option fails to detect
the ambiguity and produces the biggest gap.
 The difference in performance between the two options is evident in the average
gap between the calculated and actual Z coordinates they produce. The uncheck option
produces a much bigger gap on average for all the tip fingers where reflective
ambiguity check is working.
 The standard deviation also shows that the check option consistently calculates a
closer Z values than the uncheck option. The wrong direction of Z values produced by
the uncheck option in the frames that ambiguity occurrs accounts for the big standard
deviation values. Again the big difference of the standard deviation occurs at the tip
feature points. This indicates that the check option can correctly solve the ambiguity and
keeps the gap between the calculated and actual Z coordinate values close throughout.
 From the result, we observe that the accuracy of the segment length provided by
the user has a significant impact on the outcome. In one of the experiments, the result
shows noticably inaccurate values of Z coordinates. After an investigation we found that
they were caused by the wrong values of segment length as we recreated our hand
model but failed to update the corresponding segment lengths. Later on, the segment
lengths were remeasured, and the result looked much better.
 In addition to the sensitivity to the segment length inaccuracy, the accuracy of the
XY coordinate input is also very important. In practice, this can potentially pose a
serious issue to our technique. From our experience, a very accurate way of obtaining
the XY coordinate input is critical to the accuracy of our method.
 From the experiment, we learn that our method has the advantages of simplicity
and speed. Since all the computation involves only simple formulas such as Pythagoras
theorem and law of cosines, the implementation is quite simple and the computation
time is very fast in comparison to some other more sophisticated methods that involve

25

nonlinear functions. We concede that there may be a tradeoff between the accuracy and
the speed. This however is not measured in our experiment. So we cannot say for sure.
 Another advantage is the applicability to 2D input. This may be crucial for several
applications. For example, we might want to reproduce a historical footage or some
classic 2D cartoon in 3D. Our method is intended to work with this kind of media.

4.2.2 Missing Data Handling
 In this study, we have experimented with five different methods for predicting the
missing XY coordinates as described in section 3.7. In the experiment, we have
intentionally excluded the XY coordinates of some feature points in certain frames. The
decision for which feature points to be excluded in a frame is based on the animation of
the clinching hand motion. The table 4.2 shows the list of missing data of each feature
point.

Feature Point Missing Frames Feature Point Missing Frames
0 - 11 98-99
1 37-47 12 24-37

2 - 13 37-47
3 64-99 14 52-99

4 37-47 15 -
5 - 16 33-37

6 86-99 17 37-47
7 92-99 18 50-99
8 31-37 19 -

9 37-47 20 -
10 52-99

Table 4.2 The feature points and their missing frames for the Clinching Motion.

26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 101 201 301 401 501 601 701 801 901 10011101120113011401150116011701180119012001

frame/ feature point

d
if

fe
r

b
y

Method 1

Method 2

Method 3

Method 4

Method 5

Figure 4.6 The graph shows the difference between the actual and predicted X values using the five different
methods.

 The chart in figure 4.6 shows the result of applying the five methods of estimating
the missing data in our experiment. The Y axis of the graph in figure 4.6 shows the
difference between predicted X and actual X values of a feature point. The X axis lists all
the frames of each feature point. For example, the frame 1-100 is the frame 1-100 of
feature point 0, the frame 101-200 is the frame 1-100 of feature point 1 and so on.
 From the graph, there are several spikes. These are the points where there are
noticable differences between the actual and predicted coordinate values.

27

Figure 4.7 The zoomed-in figure of spike 1, 6, 9 and 11.

Spike 1, 6, 9, 11:
 Spike 1 belongs to feature point 1. Spike 6 belongs to feature point 9. Spike 9
belongs to feature point 13. Spike 11 belongs to feature point 17. Although there is
some difference in magnitude, all these spikes exhibit the same graphic pattern. For
these spikes, method 2, 3, and 4 yield the same performance. This is because there is
no directional change in X coordinate values for the duration of the missing frames.
 Method 1 and 5 also yield the same performance. This is because method 1 uses
the X value of the previous frame as the predicted values. So the predicted values stay
the same for the whole period of the missing frames. And eventhough method 5 uses
the rate of change of the parent feature point to predict the value of the child feature
point. In this particular case, the rate of change of the parent feature point happens to
be 0, so the predicted value also stays the same for all the missing frames. Hence both
methods produce the same predicted values.
 Method 2, 3, and 4 perform better than method 5 because the rates of value
change of feature point 1 and of its parent feature point (2) are different in our
experiment. In particular, the feature point 2's X values stay the same for the entire clip

28

while the X values of feature point 1 linearly increases. As a result, method 5 which uses
the change rate of the parent feature point to predict the value of the child feature point
produces the flat predicted X values (as the rate of change of feature point 2 is 0). That
results in a gap between the actual and predicted X values getting wider for each
missing frame. This is the same case for spike 1, 6, 9 and 11. Notably, they are all PIP
feature points whose parent feature points are MP. And in our experiment all MPs do not
move.

Figure 4.8 The zoomed-in figure of spike 3 which belongs to feature point 4.

Spike 3:
 Spike 3 belongs to feature point 4. From the result, method 1 performs the poorest
for this feature point as the predicted and actual values are getting further apart for each
of the consecutive missing frames. This is because the actual X values are linearly
increasing in the period of missing frames while the predicted values stay constant.

29

 Method 5 performs the second worst because the rate of change of the parent
feature point is slower than that of the child feature point. So the predicted values which
are calculated from the rate of change of the parent feature point does not keep up with
the actual pace and thus a gap is getting wider with every missing frame. However, the
predicted values are still closer to the actual values than those yielded by method 1.
 Method 4 produces the same predicted values as method 2 in this spike because
method 4 does not detect any directional change.

Frame X Value
34 -0.247736
35 -0.24445
36 -0.241164

37 -0.237878
38 -0.241959

39 -0.24039
40 -0.23897

41 -0.237688

Table 4.3 The X values of feature point 8 for frames 34-41.
 Method 3 doesn’t perform well because it detects a false directional change. This
incorrect detection is caused by the fact that the feature point 8 which is the parent
feature point of feature point 4 also has missing frames at this period (frame 31-37). And
the predicted values for feature point 8 are a bit ahead of the actual pace and that
results in a misleading directional change at the point where an actual value follows the
last predicted value (frame 37 and 38 in table 4.3). At the point of false directional
change, the predicted value is moving in the opposite direction of the actual value,
hence the spike goes up. However, at frame 39, another directional change is detected,
and the X value of the feature point 8 goes back to the correct direction again. Hence
the spike comes down.

30

Figure 4.9 The zoomed-in figures of spike 4, 5, 7, 8 and 10 which belong to feature point 7, 8, 11, 12 and 16
respectively.

Spike 4, 5, 7, 8, 10:
 Spike 4, 5, 7, 8 and 10 belong to feature point 7, 8, 11, 12 and 16 respectively. For
these spikes, method 2, 3 and 4 yield the same performance as no directional change is
detected neither with intrafinger (method 4) nor interfinger (method 3) dependency.
Despite that, their predicted values are more accurate than those obtained from method
1 and 5.
 Method 5 performs poorly but still beats method 1. This is because the rate
change of the depended-on feature point is eventhough not consistent with that of the
feature point but still is proven to be better than using the just previous frame value as
done by method 1.

31

Figure 4.10 The zoomed-in figure of spike 2 which belongs to feature point 3.

Spike 2:
 Spike 2 belongs to feature point 3. In this case, method 2 and 3 yield the same
performance. Actually method 3 detects a directional change which occurs at frame 66
of the depended-on feature point (7). However, in this clip, the X value of feature point 3
and its depended-on feature point 7 head in the opposite direction. So the detection
doesn't change the direction of the predicted value since it already moves in that
direction. As a result, the predicted values keep going in the wrong direction and cannot
produce a better result than method 2.
 Method 1 surprisingly performs better than method 2 and 3 for this feature point.
This is because of the directional change of the X value. So method 1 which uses the
previous frame values and produces flat predicted values yields a smaller gap than
method 2 and 3 which produce linearly increasing predicted values that move in the
opposite direction of the actual values. As stated earlier, method 3 fails to work correctly
because the X values of the parent and child feature point head in the opposite
directions.

32

 Method 4 yields similar result to method 2 and 3 albeit a bit better. This is because
method 4 which employs intra-finger dependency can detect the directional change at
frame 82 from the depended-on feature point (4) and turns to the right direction.
However, the predicted values still keeps falling further behind the actual values as the
predicted rate could not keep up with the faster actual rate.
 Similar to method 4, method 5 can also detect the directional chnage and
changes the direction accordingly. However, the difference between the predicted value
and the actual value still grows larger for each missing frame because the rate of the
predicted value is faster than the actual rate.
 From these result, we see that method 1 and 5 perform poorer than the other three
methods. The method 1 performs poorly because it blindly uses the value from the
previous frame as the values of the missing frames. So if there are several contiguous
missing frames, the predicted values of the missing frame will be further away from the
actual value as the predicted values continue to stay the same while the actual values of
the missing frames are likely to move in one direction away from the previous frames.
 In our experiment, the method 5 does not perform as expected because for the
clip used in our experiment, the rates of change of a feature point and its dependent
feature point do not coincide. So when there are several contiguous missing frames, the
predicted values which are derived from the rate of change of the depended-on feature
point grow faster or slower and consequentially create a wider gap for each missing
frame.
 For method 3, 4, and 5, we assume both parent and child feature points are
directionally compatible. So it doesn't work well in the case where their coordinate
values are actually growing in the different directions. Also, we assume the same or
similar rate change between the parent and child feature points in the dependency
relationship. So the method fails when that assumption is not true. Thus, choosing the
right dependency is important to the success of these methods.
 In our study, we see that the methods that apply the amount of coordinate change
from the previous frame (method 2, 3, 4) work well especially if the number of missing

33

frames is small. This is because there seems to be a locality of value change. In other
words, the rate of coordinate value change of neighbouring frames is very similar.
 In the case that there is a directional change of coordinate values during the
period of missing frames, method 3 and 4 proves to be useful. However, this feature is
not very important if the number of consecutive missing frames is small. Also, this
strategy very much depends on the depended-on feature point. So again choosing the
right dependency between feature points is crucial.

Chapter 5

Conclusions and Suggestions

5.1 Conclusions
 We have shown a method to estimate the 3D coordinate from the 2D hand motion.
In this method, we employed a number of techniques to derive the missing Z
coordinates and in some cases the X and Y coordinates. The main techniques that we
use are the the orthographic projection method which is used to determine the Z
coordination. The occlusion and the missing X and Y coordinate data are tackled with
the interdependence, previous frame data, and natural rest pose of a hand.
 The experiment uses the input from Maya animation. An added advantage of
using Maya animation as an input in our experiment is that we are able to obtain the
actual Z coordinate to verify our result.
 In our study, the Z coordinate values are computed with both the reflective
ambiguity option on and off. The result shows that our method with the reflective
ambiguity option produces more accurate result at the tip feature points where the
ambiguity check is employed.
 In summary, we have seen from our experiment on applying the variety of
techniques to build a system for estimating 3D coordinate from 2D video input and see
how well these techniques are working in practice.
 We hope that some new insights based on the experience of our experiment will
be beneficial to others attempting similar tasks in the future. Moreover, we hope that our
system can be used to generate interesting hand animation from 2D video. Some of the
potential applications are sign language interpreter, game industry, etc.

5.2 Suggestions
 The method that we have experimented with still has certain limitations. First, it
requires that the hand input has to be in a direct angle with the camera and the hand
must be at least at a certain distance from the camera. Second, the differences in the
input and output hand sizes are not considered in our experiment. The proper scaling of

35

the data to fit the output hand model will render the system more practical to several
applications.
 In our experiment, the input we use is obtained from the Maya animation for the
correctness purpose. It will be interesting to see the input that comes from an actual
video sequence. This will require a visual based tracking technique for example.
 Our reflective ambiguity check considers only the tip feature points. This is
because we believe that that is where the ambiguity will occur in most cases. However,
to obtain more accurate result, a more sophisticated technique may be studied and
applied to some other feature points.
 Also, some additional constraints may improve the correctness of the result. An
example is the angle-limit constraint. Moreover, some other constraints may help
improve the correctness of the missing data calculation. However, the constraints can
also introduce a complexity to the system and may slow down the system. So a further
study is needed for this issue.
 The result of our study shows that the interdependency between feature points
helps improve the correctness of missing data estimation. However, we feel that further
study on finding the right interdependency can help improve the result even more.
 Another interesting to see is the comparison of our method to other more
sophisticated methods. It would be beneficial to measure the actual tradeoffs between
our method which are simple and fast with a more sophisticated method and
supposedly more accurate. The study may lead to a combination of our techniques with
others to create a more efficient system.
 Lastly, more animations may be experimented to hopefully yield more insights on
how the method performs over a wider range of motions and how it can be improved to
work more accurately with them.

References

[1] P. Faloutsos, F. Pighin, and A. Shapiro, Hybrid control for interactive character

animation, Proceedings of 11th Pacific Conference on Computer Graphics and
Applications (PG'03), pp. 455. 2003.

[2] A. Witkin and Z. Popovic, Motion warping, Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pp. 105-108.
1995.

[3] D. J. Wiley and J. K. Hahn, Interpolation synthesis of articulated figure motion, IEEE
Computer Graphics and Applications November-December 1997, vol. 17, no. 6,
pp. 39-45. 1997.

[4] Y. Li, M. Gleicher, Y. Xu, and H. Shum, Stylizing motion with drawings, Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation
(SCA '03), 2003.

[5] P. Faloutsos, A. Majkowska and V. B. Zordan, Automatic splicing for hand and body
animations, Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pp. 309 – 316. 2006.

[6] E. Hsu, M. da Silva, and J. Popovic, Guided time warping for motion editing,
Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pp. 45-52. 2007.

[7] I. Albrecht, J. Haber, and H. Seidel, Construction and animation of anatomically
based human hand models, Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp. 98-109. 2003

[8] R. Lemperriére, N. Magnenat-Thalmann and D. Thalmann, Joint-dependent local
deformations for hand animation and object grasping. In Proc. Graphics
Interface '88, pp. 26-33. 1998.

[9] P. Horain and H. Ouhaddi, Conception et ajustement d'un modle 3D articul de la
main. In Actes des 6èmes journées du Groupe de Travail Réalité Virtuelle,
volume 12/13, pp 83 -90. 1998.

37

[10] T. Heap and D. Hogg, 3D deformable hand models, In Proc, Gesture Workshop
'96, pp. 131-139. 1996.

[11] T. Huang, J. Lin, and Y. Wu, Modeling the Constraints of Human Hand Motion. In
Proc. Workshop on Human Motion, pp. 121-126. 2000.

[12] J. I. Mulero, J. Feliú Batlle and J. López Coronado, Parametric Neurocontroller for
Positioning of an Antropomorc Finger Based on an Opponent-Driven Tendon
Transmission System, In Proc. IWANN '01, pp. 47-54. 2001.

[13] T. Kunii and J. Lee, Model-based Analysis of Hand Posture, IEEE Computer
Graphics and Applications, 15(5), pp. 77-86. 1995.

[14] L. Moccozet and N. Magnenat-Thalmann, Dirichlet Free-Form Deformations and
their Application to Hand Simulation. In Proc. Computer Animation '97, pp. 93-
102. 1997.

[15] J. McDonald, J. Toro, K. Alkoby, A. Berthiaume, R. Carter, P. Chomwong, J.
Christopher, M. Davidson, J. Furst, B. Konie, G. Lancaster, L. Roychoudhuri, E.
Sedgewick, N. Tomuro, and R. Wolfe, An improved articulated model of the
human hand, The Visual Computer, 17(3), pp. 158-166. 2001.

[16] P.G. Kry, D. L. James and D. K. Pai, EigenSkin: Real Time Large Deformation
Character Skinning in Hardware, In Proc. ACM SIGGRAPH Symposium on
Computer Animation (SCA '02), pp. 153-159. 2002.

[17] C. Sabharwal, Recovering 3D image parameters from corresponding two 2D
image, Proceedings of the 1993 ACM/SIGAPP symposium on Applied
computing: states of the art and practice, pp. 402-409. 1993.

[18] A. Cao, J. Liu, J. Snyder and X. Tang, 3D object retrieval using 2D line drawing and
graph based relevance feedback, Proceedings of the 14th annual ACM
international conference on Multimedia, Volume 24, Issue 3, pp. 105-108. 2005

[19] A. Saxena, S. H. Chung and A. Y. Ng, 3-D Depth Reconstruction from a Single Still
Image Source, International Journal of Computer Vision, 76, Issue 1, pp. 53 - 69.
2008

[20] M. J. Park, M. G. Choi and S. Y. Shin, Human motion reconstruction from inter-

38

frame feature correspondences of a single video stream using a motion library.
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pp. 113-120. 2002.

[21] M. J. Park, M. G. Choi, Y. Shinagawa and S. Y. Shin, Video-guided motion
synthesis using example motions, ACM Transactions on Graphics (TOG), 25,
Issue 4, pp. 1327- 1359. 2006.

[22] L. Zhang and L. Li, Human Animation from 2D Correspondence Based on Motion
Trend Prediction, Computer Graphics International 2006, 546-553. 2006.

[23] L. Zhang and L. Ling, Monocular Reconstruction of Human Translation in Motion
Sequence by MTA, Proceedings of the 5th international conference on Computer
graphics and interactive techniques in Australia and Southeast Asia 2007, pp.
79 – 86, 2007.

[24] V. Mamania, A. Shaji and S. Chandran, Markerless Motion Capture from Monocular
Videos, ICVGIP 2004, 126-132. 2004.

[25] C. J. Taylor, Reconstruction of articulated objects from point correspondences in a
single uncalibrated image, In Computer Vision and Image Understanding: CVIU,
vol. 80, number 3, pp. 349-363. 2000.

[26] W. Lao and J. Han, 3D Modeling for Capturing Human Motion from Monocular
Video, Proc. Symposium on Information Theory in the Benelux. 2006.

[27] F. Remondino and A. Roditakis, 3D Reconstruction of Human Skeleton from Single
Images or Monocular Video Sequences, 25th Pattern Recognition Symposium
(DAGM 03), Lecture Notes in Computer Science, Springer 2003, pp. 100-107.
2003.

[28] H. Rijpkema and M. Girard, Computer Animation of Knowledge-Based Human
Grasping, Proceedings of SIGGRAPH Conference, pp. 339-348. 1991.

[29] G. ElKoura and K. Singh, Handrix: Animating the Human Hand, Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp.
110-119. 2003.

[30] R. Parent, Computer Animation Algorithms and Techniques, Morgan Kaufmann

39

Publishers, ISBN: 1-55860-579-7, 2002.
[31] F. Remondino and A. Roditakis, 3D Reconstruction of Human Skeleton from Single

Images or Monocular Video Sequences, 25th Pattern Recognition Symposium
(DAGM 03), Lecture Notes in Computer Science, Springer 2003, pp. 100-107.
2003.

Appendices

41

Appendix A
Publication

 The followings is the paper in the title of “3D Hand Motion Retargeting From Video
Image Sequence”. It has been presented at 2010 The 2nd International Conference on
Computer and Automation Engineering (ICCAE 2010), February 26 – 28, 2010,
Singapore.

42

3D Hand Motion Retargeting From Video Image Sequence
Kosit Nopvichai Pizzanu Kanongchaiyos

Department of Computer Engineering
Chulalongkorn University

Bangkok, Thailand
kositn@gmail.com pizzanu@cp.eng.chula.ac.th

Abstract— This paper presents a progress on
building a system to perform motion retarget of
2D hand motion from video image sequence to a
3D hand model. In our method, the orthographic
projection method is used to determine the Z
coordination. Additionally, information from the
previous frames, interdependence of a hand
model and approximate rest pose of a hand are
used to deal with occlusion.

Keywords- motion retarget, hand motion

I. INTRODUCTION

 Computer animation is the science and
art of using a computer to create moving
images. The idea is to make a character move
in a way intended by the artists and convey
their creativity to the audience.
 There are several ways to generate
motions for an articulated character. Some of
the more common are Kinematics, Dynamic
control [4], Keyframing, Motion editing [28]
[27] [15] [5] [8], and Motion capture. Recently
more attention has been paid to an alternative
to the traditional methods. It is the typical 2D
video that is recorded by a typical camera or
even a web cam.
There are certain advantages to this motion
source. First, the source model does not need
to be attached with sensors. Second, the cost is
typically lower than the traditional motion
capture. Third, there are enormous stocks of
live action footage recorded as 2D videos.
Some of them are of historic values and cannot
be reproduced. An example is a number of
classic sport moments. This can be readily
used as a motion source.
 Using 2D video as a source of motions
has a few challenges of its own that need to be
addressed. First, the missing data (e.g. those
caused by occlusion) need to be somehow
recovered. Specific to hand motions, we may
consider using interdependence in addition to
constraints, motion library, sample space, etc.
Second, the 2D nature of it necessitates the
lack of depth information. Thus some variants
of 3D reconstruction techniques are used to

recover the missing Z coordinate. We will
address these issues in our work.
 After a motion is acquired through one
of the means mentioned above and stored in a
motion representation, a typical motion
retarget proceeds. As part of the process, an
acquired raw motion is typically processed in
some ways to create a more appropriate
motion for each target character. The output of
this step is the adapted motion data used to
drive the target motion. For the case of an
articulated figure, the output is usually joint
angle data for all the joints.
 The animation of human articulate body
has long been received numerous attentions.
The works in this area vary in terms of the
body parts on which they focus. As for the
hand, it has been a focus of many researches in
computer animation because not only it is one
of the most animated parts of human body but
also one of the most complex body parts. In
addition it is essential for human
communication and expression. Our work will
focus on retargeting the hand motion from 2D
monocular video sequence to a 3D hand
model.
 In summary, the aim of this work is to
perform motion retarget by using the motions
from the 2D monocular video sequence which
is an alternative to the traditional motion
capture. This work will focus on motions of
the human hand. The expected end product is a
software system that is capable of retargeting
hand motions from 2D video sequence to a 3D
hand model. The motion input will be 2D
video sequence of hand gestures from a
monocular video camera. The output will be
the animation of the deformed hand.

II. RELATED WORK

A. Hand Model

 Hand anatomy has long been studied
and well understood in the field of anatomy
and biomechanics [1]. Hand is one of the most
complex body parts. Most animation research
focuses on its two main functionalities which
are grasping and fine motor skills. Many

43

aspects have been studied such as its
constraints, limitations, DOFs, bones, tendons,
and muscles. Several hand models have been
proposed over the years. Examples are [13],
[7], [6], [9], [19], [11], [18], [17] [10], etc.
Each has its own strengths and weaknesses.
Whichever one we should use depends on the
task at hand. More closely related to our work
are [19] and [11]. In particular, they also
consider inter -joint dependencies.

 Our hand model will be a relatively
simple kinematic chain consisting of joints and
segments. Each joint has a number of DOFs
and limitations. Also, interdependence
between finger joints will be used. More
details are further explained in the Methods
section.

B. Depth Reconstruction

 Depth reconstruction refers to the
process of extracting the depth information
from 2D data. Its challenge lies in the fact that
it is an under-determined problem. To solve it,
we need to pose some constraints or use some
assumptions and find a solution under that
framework.
Study on 3D Depth recovery from 2D input
has been performed for some time. There have
been several techniques proposed. Reference
[24] proposes an algorithm to compute the
three dimensional structure of a scene from a
pair of stereo images. Reference [2] constructs
a 3D object query from 2D drawings. Their
algorithm can handle objects with both planar
and curved faces. Reference [25] estimates 3D
depth from a single still image. It proposes the
use of monocular cues (e.g., texture variations
and gradients, defocus, color/haze, etc.) in
addition to the stereo cues.
 More recently, Reference [21] and [22]
reconstruct a human-like figure motion from
2D video stream. They assume an existence of
a library of motions similar to the target
motion video stream and assume the length of
each segment is known. A library of motions
that are similar to the target motions is used to
provide a reference frame that will be warped
based on the target frame to get the final pose.
A technique based on Motion Trend Analysis
has been proposed in [29] and [30]. The
method uses the information solved in the
previous frame to solve for the next frame
except the first frame. Reference [16] exploits
the domain specific knowledge about the target
motions to find certain joint locations and to
limit possible poses. Reference [26], [14], [23],

and [16] use the orthographic projection
method to determine the Z coordination.
 To derive the Z coordinate from a
single image, they assume the point
corresponding and segment lengths are known
and the certain distance between object and the
camera are maintained. The problem of
standard reflective ambiguity is also
mentioned and resolved mostly with
constraints. Reference [23] improves upon
[26] by allowing some perspective cases to
work properly.
 Our method is similar to the one
described in [26] which uses the scaled
orthographic projection model. However, our
system intends to work with a video sequence
instead of a single image. Moreover, occlusion
is also considered in our work.
C. Interdependence

Interdependence refers to the influence of a
finger joint on others. Each finger joint is not
fully independent but to some degree depend
on the movement of some other joints on the
hand. This can be viewed as dependence
constraints between the joints of each finger
and between fingers. This concept has been
studied and used in several works. Reference
[31] observes that naturally a DIP joint cannot
be moved without moving the PIP joint of the
same finger. In another word there is a
dependency between them. The reference [31]
approximates the relationship between the two
joint angle to be DIP = 2/3 PIP. They use this
dependency to reduce the number of DOF by
making DIP fully depend on PIP. Reference
[12] uses interdependence in their work.
Reference [3] expands the idea by assigning the
degree of dependency between each joint
across fingers.

III. METHODS

A. Input Acquisition

 Our retarget system will need two
inputs from the user

 The length of each segment. We need
the length of each segment for 3D
depth reconstruction.

 The feature points (XY coordinates) of
a hand in a video frame from a 2D
monocular video sequence of hand
gestures. In our experiment, a 3D hand
model will be created and animated
using Maya software. Then we write a
MEL script to extract the XYZ
coordinates of each feature point in
each frame. The XY part will be used

44

 
 

  
 
  

1 0 0

0 1 0

0 0 0

P

as the input to our experimental
system. A benefit to this method is that
we will also have the Z coordinate to
verify our result.

B. Our Hand Model

 Our retarget system retargets input hand
motion to a 3D hand model. The specification
of our 3D target hand model (Fig. 1) is as
follows:

 There are 16 joints and 22 degrees of
freedom (DOF) in each hand and wrist

 The wrist has two DOFs
 Each finger except thumb has three

joints and sum up to 16 DOFs in a
hand

Figure 1. shows the DOFs of each of the joint in our

hand model. The black node has 2 DOFs. The white node
has 1 DOF.

C. Feature Points Identification (XY
Coordinates)

 For each input image sequence of a
hand gesture, we assume that the locations of
all feature points (Fig. 2) are available to us
(unless they are occluded). A feature point in
our case includes the location of a joint in each
finger and the wrist location. The location will
be specified as the XY coordinates of the
following locations:

 5 tips of Thumb, Index, Middle,
Ring and Little fingers

 4 Distal interphalangeal joints
(DIP) of Index, Middle, Ring and
Little fingers

Figure 2. shows the feature point locations of our hand

model.

 1 Interphalangeal joints (IP) of
Thumb

 4 Proximal interphalangeal joints
(PIP) of Index, Middle, Ring, and
Little fingers

 5 Metacarpophalangeal joints
(MCP) of Thumb, Index, Middle,
Ring and Little fingers

 1 fold of the palm
 1 wrist

 In some images, it may be impossible to
identify all of these feature point locations
because of occlusion. In such cases, we will
need some technique to approximate their
locations. These techniques are
interdependence, previous frame data and
constraints. Also, one assumption is that if a
feature point is occluded, probably its exact
location is irrelevant in that context and it
should be able to be estimated by its rest pose
which is approximately somewhere in the
middle of its range (in case of a joint) [20].
D. 3D Depth Reconstruction

 Since our input is a sequence of 2D
images, the information we get for each feature
point is 2D. Thus, we need a way to compute
for the Z coordinate. To do this, we adopt the
method in [26] which uses the scaled
orthographic projection model. A projection
of a point (x, y, z) in three-dimensional space
to the point (x, y, 0) on the x-y plane can be
represented as a matrix (1).

(1)

45

 In scaled orthographic projection, we
simply add a scale factor, s, (2). This results in
a simple scaling of the object coordinates. The
scaled-orthographic model amounts to parallel
projection, with a scaling added to mimic the
effect that the image of an object shrinks with
the distance [23].

1 0 0

0 1 0

X
u

s Yv
Z

 
   

             
 

 (2)

 The formula is expressed in (4). The

followings show the derivation of (4). l
denotes the segment length between point 1

and 2. X ,Y ,Z are the actual coordinates.
u , v are the scaled X and Y respectively.
s is the scale factor.

     

  

  

     

2 2 2 2
1 2 1 2 1 2

1 2 1 2

1 2 1 2

2 2 2 2
1 2 1 2 1 2

() () ()

() ()

() ()

() ((() ())/

l X X Y Y Z Z

u u s X X

v v s Y Y

Z Z l u u v v s

 

 

u s X

v s Y
 (3)

2 2 2 2 2

1 2 1 2 1 2() [() ()]/Z Z l u u v v s     
(4)

  


2 2
1 2 1 2[() ()]u u v v

s
l

(5)

 From (4) we assume an arbitrary depth

(e.g. 0) for 1Z
and compute for 2Z

. In this

case, we also know 1u
, 2u

, 1v
, 2v

, and l . If we
also know s , the scale factor, then we will be

able to solve for 2Z
. In our case we assume

that the distance between the camera and the
hand is much greater than the depth of Z
coordinate. (Note that this assumption is
needed for the scaled orthographic projection
model to work.) With this assumption, the
scale factor is almost constant for all the joints
on the hand. So we can use the same scale
value for all the feature points. Now to
compute for the scale factor, s , we use (5) to
find the overall minimum value of s . Note
that (5) comes from the fact that (4) has a real
solution. We will use the minimum overall
value of s in our computation since the

absolute values of X , Y and Z are not
necessary. All we need is the relative depth
between each feature point. Once we obtain s ,

we can use (3) to find the value of X and Y .

We then use the computed 2Z
 as the 1Z

 of the
next segment. We then repeat this process until
all feature points are computed. One issue that
we still have is the reflective ambiguity. This

stems from the fact that the 1Z
or 2Z

in (4)
can be the smaller one based on the 2D
information we have. In our case, joint angle
limit, physiological constraints are used to pick
the more likely configuration.
From this step, we can obtain XYZ coordinates
of feature points. These values are used to
compute the joint angle data for each joint.
However, in the case where the source and
target model have different scale, we need to
scale this coordinates data to the correct value
before they can be used to compute the joint
angle.

E. Interdependence

 The purpose of using the
interdependence in this work is two fold.
Firstly, by taking the interdependence into
account, the finger movement is more realistic.
Secondly, the interdependence in conjunction
with the coordinate and joint angle data help us
fill in the missing data in case of a joint
occlusion. We implement it as a dependency
list of joints. The entry of this list will contain
a joint ID and the list of its dependent joints
together with the amount of dependency. For
example,

Index PIP: Index DIP (50), Middle
PIP (25), Ring PIP (15)

46

 This entry says that if the Index Pip is
moving x points, the Index DIP should be
moving 1/2x points, the Middle PIP should be
moving 1/4x points if no other force is exerted
upon them.
The exact number and amount of dependence
between each joint are studied from other
research works such as [31], [12], [3], and our
own observation. We plan to assign a default
set of joint interdependence. But a user can
optionally fine tune these values.

F. Constraint Identification

 In addition to the joint angle and
physiological constraints, another constraint is
needed to make sure the end effectors are at
the right position. For example, in a pose
where the tip of thumb and the tip of index
finger are touching, this fact should be
enforced at the target hand as well.
To determine “coincident” constraint, we use
the XYZ coordinate of the feature points and a
threshold. If the distance between any feature
points is less than the threshold, we will
consider them touching. The exact value of the
threshold will be determined later.

G. Joint Angle Data Calculation &
Retargeting

 The inverse kinematics is used to
calculate the joint angle data given the XYZ
coordinates of a desired pose obtained from
the 2D input data and 3D depth reconstruction.
 Since a hand model is fairly complex,
the incremental approach of inverse Jacobian
is used instead of the analytic approach.
From this step, we will get the joint angle data
for all the joints ready to be retargeted to our
3D hand model.

IV. RESULT EVALUATIONS

 The result of the retarget will be
evaluated by comparing the result of our
calculation with the data retrieved from Maya
software.

V. CONCLUSION

 We have described a technique to
retarget a 2D video sequence to a 3D hand
model. The working horse in our techniques is
the orthographic projection method which is
used to determine the Z coordination. The
occlusion is also tackled with the
interdependence, previous frame data, and
natural rest pose of a hand.
 We expect that our experiment on
applying a variety of techniques to build a

working system for hand motion retarget from
2D video input will afford us to find out how
well these techniques are working in practice
and hopefully to discover some new insights
based on the experience of building such
systems that will be beneficial to others
attempting similar tasks in the future.
Moreover, we hope that our system can be used
to generate interesting hand animation from 2D
video. Some of the potential applications are
sign language interpreter, movie and game
industry, etc.

REFERENCES
[1] I. Albrecht, J. Haber, and H. Seidel,

“Construction and animation of anatomically
based human hand models,” Proceedings of the
2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2003, pp.
98-109 ISBN ~ ISSN :1727-5288 , 1-58113 -

659-5 .
[2] A. Cao, J. Liu, J. Snyder, and X. Tang, “3D

object retrieval using 2D line drawing and
graph based relevance feedback,” Proceedings
of the 14th annual ACM international
conference on Multimedia, vol. 24, issue 3,
2005, pp. 105-108.

[3] G. ElKoura and K. Singh, “Handrix: animating
the human hand,” Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium
on Computer animation, 2003, pp. 110-119,
ISBN ~ ISSN :1727-5288 , 1-58113-659-5 .

[4] P. Faloutsos, F. Pighin, and A. Shapiro,
“Hybrid control for interactive character
animation,” Proceedings of 11th Pacific
Conference on Computer Graphics and
Applications (PG'03), 2003, pp. 455.

[5] P. Faloutsos, A. Majkowska and V. B. Zordan,
“Automatic splicing for hand and body
animations,” Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on
Computer animation, 2006, pp. 309 – 316.

[6] T. Heap and D. Hogg, “3D deformable hand
models,” In Proc, Gesture Workshop '96, 1996,
pp. 131-139.

[7] P. Horain and H. Ouhaddi, “Conception et
ajustement d'un modle 3D articul de la main,”
In Actes des 6èmes journées du Groupe de
Travail Réalité Virtuelle, vol. 12/13, 1998, pp.
83 -90.

[8] E. Hsu, M. da Silva, and J. Popovic, “Guided
time warping for motion editing,” Proceedings
of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2007, pp.
45-52.

[9] T. Huang, J. Lin, and Y. Wu, “Modeling the
constraints of human hand motion,” In Proc.
Workshop on Human Motion, 2000, pp. 121-
126.

[10] P. G. Kry, D. L. James, and D. K. Pai,
“EigenSkin: real time large deformation
character skinning in hardware,” In Proc. ACM
SIGGRAPH Symposium on Computer
Animation (SCA '02), 2002, pp. 153-159.

[11] T. Kunii, Y. Tsuchida, H. Matsuda , M.
Shirahama, and S. Miura, “A model of the

47

hands and arms based on manifold mappings,”
In Proc. Computer Graphics International (CGI
'93), 1993, pp. 381-398.

[12] T. Kunii and J. Lee, “Model-based analysis of
hand posture,” IEEE Computer Graphics and
Applications, 15(5), 1995, pp. 77-86.

[13] R. Lemperriére, N. Magnenat-Thalmann, and
D. Thalmann, “Joint-dependent local
deformations for hand animation and object
grasping,” In Proc. Graphics Interface '88,
1988, pp. 26-33.

[14] W. Lao and J. Han, “3D modeling for
capturing human motion from monocular
video,” Proc. Symposium on Information
Theory in the Benelux, 2006.

[15] Y. Li, M. Gleicher, Y. Xu, and H. Shum,
“Stylizing motion with drawings,” Proceedings
of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation (SCA '03),
2003.

[16] V. Mamania, A. Shaji, and S. Chandran,
(2004) “Markerless motion capture from
monocular videos,” ICVGIP 2004, pp. 126-
132.

[17] J. McDonald, J. Toro, K. Alkoby, A.
Berthiaume, R. Carter, P. Chomwong, J.
Christopher, M. Davidson, J. Furst, B. Konie,
G. Lancaster., L. Roychoudhuri, E. Sedgewick,
N. Tomuro and R. Wolfe, “An improved
articulated model of the human hand,” The
Visual Computer, 17(3), 2001, pp. 158-166.

[18] L. Moccozet and N. Magnenat-Thalmann,
“Dirichlet free-form deformations and their
application to hand simulation,” In Proc.
Computer Animation '97, 1997, pp. 93-102.

[19] J. I. Mulero, J. Feliú Batlle, and J. López
Coronado, “Parametric neurocontroller for
positioning of an antropomorc finger based on
an opponent-driven tendon transmission
system,” In Proc. IWANN '01, 2001, pp. 47-
54.

[20] R. Parent, Computer Animation Algorithms
and Techniques, Morgan Kaufmann
Publishers, ISBN: 1-55860-579-7, 2002.

[21] M. J. Park, M. G. Choi, and S. Y. Shin,
“Human motion reconstruction from inter-
frame feature correspondences of a single
video stream using a motion library,”
Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on
Computer animation, 2002, pp. 113-120.

[22] M. J. Park, M. G. Choi, Y. Shinagawa, and S.
Y. Shin, “Video-guided motion synthesis
using example motions,” ACM Transactions
on Graphics (TOG), vol. 25, issue 4, 2006, pp.
1327- 1359.

[23] F. Remondino and A. Roditakis, “3D
reconstruction of human skeleton from single
images or monocular video sequences,” 25th
Pattern Recognition Symposium (DAGM 03),
Lecture Notes in Computer Science, Springer
2003, pp. 100-107.

[24] C. Sabharwal, “Recovering 3D image
parameters from corresponding two 2D
image,” Proceedings of the 1993
ACM/SIGAPP symposium on Applied
computing :states of the art and practice, 1993,
pp. 402-409 ISBN :0-89791-567-4 .

[25] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D
depth reconstruction from a single still image
source,” International Journal of Computer
Vision, 76, issue 1, 2008, pp. 53-69.

[26] C. J. Taylor “Reconstruction of articulated
objects from point correspondences in a single
uncalibrated image,” In Computer Vision and
Image Understanding: CVIU, vol. 80, number
3, 2000, pp. 349-363.

[27] D. J. Wiley and J. K. Hahn, (1997)
“Interpolation synthesis of articulated figure
motion,” IEEE Computer Graphics and
Applications November-December 1997, vol.
17, no. 6, pp. 39-45.

[28] A. Witkin and Z. Popovic, “Motion warping,”
Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques,
1995, pp. 105-108.

[29] L. Zhang and L. Li, “Human animation from
2D correspondence based on motion trend
prediction,” Computer Graphics International
2006, pp. 546-553.

[30] L. Zhang and L. Ling, “Monocular
reconstruction of human translation in motion
sequence by MTA,” Proceedings of the 5th
international conference on Computer graphics
and interactive techniques in Australia and
Southeast Asia 2007, pp. 79-86.

[31] H. Rijpkema and M. Girard, “Computer Animation
of Knowledge-Based Human Grasping,” Proceedings
of SIGGRAPH Conference, July 1991, pp. 339-34

48

Appendix B
Z Order Computation Program

 This program computes the Z coordinate of all feature points on a hand in a frame. It
is written in C++ using Visual Studio 2008. The input is the list of X, Y coordinates of the
feature points on a hand for 100 frames. The program computes the corresponding Z
coordinates of feature points on a hand of each frame. The output is written to a file.

#include <iostream>
#include <limits>
#include <cmath>
#include <map>
#include <vector>
#include <fstream>
#include <string>

using namespace std;

class MyException
{
 string m_msg;
 int m_num;

public:
 MyException(const string& msg, int num)
 {
 m_msg = msg;
 m_num = num;
 }

 void print()
 {
 cerr << m_msg << " (" << m_num << ")" << endl;
 }

 static const int EXC_OUT_OF_RANGE = 1;
};
//
class Vertex
{
public:
 double x, y, z; //actual x, y, z
 double u, v, w; // observed (scaled) x and y
 int id;
 bool m_uvSetFlag;

 public:
 Vertex():x(numeric_limits<double>::min()),
 y(numeric_limits<double>::min()),
 z(0), u(numeric_limits<double>::min()),
 v(numeric_limits<double>::min()),
 w(numeric_limits<double>::min()),
 id(-7777), m_uvSetFlag(false) {}

49

 Vertex(int iid):x(numeric_limits<double>::min()),
 y(numeric_limits<double>::min()),
 z(0),
 u(numeric_limits<double>::min()),
 v(numeric_limits<double>::min()),
 w(numeric_limits<double>::min()),
 id(iid),
 m_uvSetFlag(false) {}
 Vertex(int iid, double uu, double
vv):x(numeric_limits<double>::min()),
 y(numeric_limits<double>::min()),
 z(0),
 u(uu),
 v(vv),
 id(iid),
 m_uvSetFlag(false) {}

 void print()
 {
 cerr << "id = " << id << " u = "
 << u << " v = " << v
 << " w = " << w
 << " x = " << x
 << " y = " << y
 << " z = " << z << endl;
 }

 void setUV(double uu, double vv)
 {
 u = uu;
 v = vv;
 m_uvSetFlag = true;
 }

 /**
 * This will only work if setUVSetFlag is called properly
 * when U and V are set.
 */
 bool isUVSet() const
 {
 return m_uvSetFlag;
 }

 void setUVSetFlag(bool v)
 {
 m_uvSetFlag = v;
 }

};

//
/**
 * Define our hand model
 * - how many feature points in the hand
 * - segment length of each segment
 */

/***
 *
 *

50

 *
 * | | | |
 * 3| 6| 9| 12|
 * | | | |
 * 4| 7| 10| 13|
 * | | | |
 * 0| 5| 8| 11| 14|
 * |
 * 1| -16 palm fold
 * |
 * 2|
 * -15 wrist
 *
 *
 *
 *
 * | | | |
 * 3| 7| 11| 15|
 * | | | |
 * 4| 8| 12| 16|
 * | | | |
 * 5| 9| 13| 17|
 * | | | |
 * 6| 10| 14| 18|
 * 0|
 * |
 * 1| -20 palm fold
 * |
 * 2|
 * -19 wrist
 *
 * - The reference point (the first point to compute Z order is 20
 * - 2,20
 * - 6,20
 * - 10,20
 * - 14,20
 * - 18,20
 * - 6, 10, 14, 18 bend forward only (no sideward or backward)
 * - 2 bends in toward 20 only
 */

class HandModel
{
private:
 static map<int, int> m_associateVertices;
 static map<pair<int, int>, double > m_segmentLengths;
 static map<int, int> m_ZCoordinateComputeOrder;
 static map<int, int> m_interdepNeighbors;
 static map<int, int> m_interdepIntraFingerNeighbors;

public:
 const static int NUM_FEATURE_POINTS = 21;
 const static int PALM_FOLD_INDEX = 20;
 const static int PIVOT_POINT = 20;
 const static int WRIST_INDEX = 19;

 static void init()
 {
 m_associateVertices[0] = 1;
 m_associateVertices[1] = 2;

51

 m_associateVertices[2] = PALM_FOLD_INDEX;

 m_associateVertices[3] = 4;
 m_associateVertices[4] = 5;
 m_associateVertices[5] = 6;
 m_associateVertices[6] = PALM_FOLD_INDEX;

 m_associateVertices[7] = 8;
 m_associateVertices[8] = 9;
 m_associateVertices[9] = 10;
 m_associateVertices[10] = PALM_FOLD_INDEX;

 m_associateVertices[11] = 12;
 m_associateVertices[12] = 13;
 m_associateVertices[13] = 14;
 m_associateVertices[14] = PALM_FOLD_INDEX;

 m_associateVertices[15] = 16;
 m_associateVertices[16] = 17;
 m_associateVertices[17] = 18;
 m_associateVertices[18] = PALM_FOLD_INDEX;

 m_associateVertices[19] = 2;
 m_associateVertices[20] = -1; //mean its own z coordinate
is 0

 //
 m_segmentLengths[pair<int, int>(0, 1)] = 2.391958;
 m_segmentLengths[pair<int, int>(1, 2)] = 2.092683;
 m_segmentLengths[pair<int, int>(2, 1)] = 2.092683;

 m_segmentLengths[pair<int, int>(3, 4)] = 1.70821;
 m_segmentLengths[pair<int, int>(4, 5)] = 1.83695;
 m_segmentLengths[pair<int, int>(5, 6)] = 2.430827;
 m_segmentLengths[pair<int, int>(6, 5)] = 2.430827;

 m_segmentLengths[pair<int, int>(7, 8)] = 2.109315;
 m_segmentLengths[pair<int, int>(8, 9)] = 2.017658;
 m_segmentLengths[pair<int, int>(9, 10)] = 2.29072;
 m_segmentLengths[pair<int, int>(10, 9)] = 2.29072;

 m_segmentLengths[pair<int, int>(11, 12)] = 1.719452;
 m_segmentLengths[pair<int, int>(12, 13)] = 2.559455;
 m_segmentLengths[pair<int, int>(13, 14)] = 1.914169;
 m_segmentLengths[pair<int, int>(14, 13)] = 1.914169;

 m_segmentLengths[pair<int, int>(15, 16)] = 1.422462;
 m_segmentLengths[pair<int, int>(16, 17)] = 1.363195;
 m_segmentLengths[pair<int, int>(17, 18)] = 1.198547;
 m_segmentLengths[pair<int, int>(18, 17)] = 1.198547;

 m_segmentLengths[pair<int, int>(19, 2)] = 3.655157;
 m_segmentLengths[pair<int, int>(PALM_FOLD_INDEX, 19)] =
3.755123;

 m_segmentLengths[pair<int, int>(2, PALM_FOLD_INDEX)] =
3.755729;
 m_segmentLengths[pair<int, int>(6, PALM_FOLD_INDEX)] =
2.81398;
 m_segmentLengths[pair<int, int>(10, PALM_FOLD_INDEX)] =
1.719374;

52

 m_segmentLengths[pair<int, int>(14, PALM_FOLD_INDEX)] =
2.078661;
 m_segmentLengths[pair<int, int>(18, PALM_FOLD_INDEX)] =
2.968683;
 ///////////////////////
 m_ZCoordinateComputeOrder[0] = PALM_FOLD_INDEX; //or
should be first ones?

 m_ZCoordinateComputeOrder[1] = 2;
 m_ZCoordinateComputeOrder[2] = 1;
 m_ZCoordinateComputeOrder[3] = 0;

 m_ZCoordinateComputeOrder[4] = 6;
 m_ZCoordinateComputeOrder[5] = 5;
 m_ZCoordinateComputeOrder[6] = 4;
 m_ZCoordinateComputeOrder[7] = 3;

 m_ZCoordinateComputeOrder[8] = 10;
 m_ZCoordinateComputeOrder[9] = 9;
 m_ZCoordinateComputeOrder[10] = 8;
 m_ZCoordinateComputeOrder[11] = 7;

 m_ZCoordinateComputeOrder[12] = 14;
 m_ZCoordinateComputeOrder[13] = 13;
 m_ZCoordinateComputeOrder[14] = 12;
 m_ZCoordinateComputeOrder[15] = 11;

 m_ZCoordinateComputeOrder[16] = 18;
 m_ZCoordinateComputeOrder[17] = 17;
 m_ZCoordinateComputeOrder[18] = 16;
 m_ZCoordinateComputeOrder[19] = 15;

 m_ZCoordinateComputeOrder[PALM_FOLD_INDEX] = 19; //or
should be first ones?

 //
 m_interdepNeighbors[0] = 0;
 m_interdepNeighbors[1] = 1;
 m_interdepNeighbors[2] = 2; //-1; //mean its own z
coordinate is 0

 m_interdepNeighbors[3] = 7;
 m_interdepNeighbors[4] = 8;
 m_interdepNeighbors[5] = 9;
 m_interdepNeighbors[6] = 10;

 m_interdepNeighbors[7] = 11;
 m_interdepNeighbors[8] = 12;
 m_interdepNeighbors[9] = 13;
 m_interdepNeighbors[10] = 14;

 m_interdepNeighbors[11] = 15;
 m_interdepNeighbors[12] = 16;
 m_interdepNeighbors[13] = 17;
 m_interdepNeighbors[14] = 18;

 m_interdepNeighbors[15] = 11;
 m_interdepNeighbors[16] = 12;
 m_interdepNeighbors[17] = 13;
 m_interdepNeighbors[18] = 14;

53

 m_interdepNeighbors[19] = 19;
 m_interdepNeighbors[20] = 20; //mean its own z coordinate
is 0

 //
 m_interdepIntraFingerNeighbors[0] = 1;
 m_interdepIntraFingerNeighbors[1] = 2;
 m_interdepIntraFingerNeighbors[2] = 2;

 m_interdepIntraFingerNeighbors[3] = 4;
 m_interdepIntraFingerNeighbors[4] = 5;
 m_interdepIntraFingerNeighbors[5] = 6;
 m_interdepIntraFingerNeighbors[6] = 6;

 m_interdepIntraFingerNeighbors[7] = 8;
 m_interdepIntraFingerNeighbors[8] = 9;
 m_interdepIntraFingerNeighbors[9] = 10;
 m_interdepIntraFingerNeighbors[10] = 10;

 m_interdepIntraFingerNeighbors[11] = 12;
 m_interdepIntraFingerNeighbors[12] = 13;
 m_interdepIntraFingerNeighbors[13] = 14;
 m_interdepIntraFingerNeighbors[14] = 14;

 m_interdepIntraFingerNeighbors[15] = 16;
 m_interdepIntraFingerNeighbors[16] = 17;
 m_interdepIntraFingerNeighbors[17] = 18;
 m_interdepIntraFingerNeighbors[18] = 18;

 m_interdepIntraFingerNeighbors[19] = 19;
 m_interdepIntraFingerNeighbors[20] = 20;

 }

 static double findSegmentLength(const Vertex& v1, const Vertex& v2)
 {
 cerr << "findSegmentLength for (" << v1.id << ", "
 << v2.id << ") is " << m_segmentLengths[pair<int,
int>(v1.id,v2.id)]
 << endl;
 return m_segmentLengths[pair<int, int>(v1.id,v2.id)];
 }

 /**
 * Returns the vertex associated with vertex v.
 * By association, we mean the vertex that together with v
 * defines a segment length
 */
 static int findAssociateVertex(Vertex v)
 {
 cerr << "findAssociateVertex for " << v.id
 << " is " << m_associateVertices[v.id] << endl;
 return m_associateVertices[v.id];
 }

 static int findNeighborId(Vertex v)
 {

54

 cerr << "findNeighborId for " << v.id
 << " is " << m_interdepNeighbors[v.id] << endl;
 return m_interdepNeighbors[v.id];
 }

 static int findIntraFingerNeighborId(Vertex v)
 {
 cerr << "findIntraFingerNeighborId for " << v.id
 << " is " << m_interdepIntraFingerNeighbors[v.id] << endl;
 return m_interdepIntraFingerNeighbors[v.id];
 }

 /**
 * Returns the feature point to calculate at the order i th
 */
 static int findZCoordinateComputeOrder(int i)
 {
 cerr << "findZCoordinateComputeOrder for "
 << i << " is " << m_ZCoordinateComputeOrder[i] << endl;
 return m_ZCoordinateComputeOrder[i];
 }

};

map<int, int> HandModel::m_associateVertices;
map<pair<int, int>, double > HandModel::m_segmentLengths;
map<int, int> HandModel::m_ZCoordinateComputeOrder;
map<int, int> HandModel::m_interdepNeighbors;
map<int, int> HandModel::m_interdepIntraFingerNeighbors;

//
/* the data for each frame */
class Frame {

public:
 Frame():m_scale(numeric_limits<double>::max()),
 m_restedPalmScale(numeric_limits<double>::max()),
 m_id(-1) {}
 Frame(int id):m_scale(numeric_limits<double>::max()),
 m_restedPalmScale(numeric_limits<double>::max()),
 m_id(id) {}

private:
 Vertex m_featurePoints[HandModel::NUM_FEATURE_POINTS];
 double m_scale;
 double m_restedPalmScale;
 int m_id;

private:
 //helper
 double pow2(double d) { return pow (d, 2); }

public:
 int getId() { return m_id; }
 void setId(int id) { m_id = id; }

 void print()
 {
 cerr << "feature points: " << endl;

55

 for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i)
 {
 m_featurePoints[i].print();
 }
 cerr << "scale: " << m_scale << endl;

 }
 Vertex& getFpRef(int index)
 {
 cerr << "entering Frame::getFpRef\n";
 if (index < 0 || index >= HandModel::NUM_FEATURE_POINTS)
 {
 cerr << "error: out of range\n";
 throw MyException("out of range",
MyException::EXC_OUT_OF_RANGE);
 }

 return m_featurePoints[index];
 }

 void setfp(int index, const Vertex& v)
 {
 cerr << "entering Frame::setfp " << "(" << this->getId() <<
")"
 << index << " " << v.u << ", "
 << v.v << "fp id is " << v.id << "\n";
 if (index < 0 || index >= HandModel::NUM_FEATURE_POINTS)
 {
 cerr << "error: out of range\n";
 return;
 }
 m_featurePoints[index] = v;
 }

 /**
 * Find only once per frame.
 * We reuse the same scale factor for all reference points in the
frame
 *
 * OUTPUT: m_scale is set if not already
 */
 double findMinimumScale()
 {
 cerr << "entering Frame::findMinimumScale\n";

 if (m_scale == numeric_limits<double>::max()) //first time check
 {
 // equation 8
 // Find the minimum overall scale over all reference point
pairs
 for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i)
 {
 Vertex vertex1 = m_featurePoints[i];
 Vertex vertex2 =
m_featurePoints[HandModel::findAssociateVertex(vertex1)];

 const double l = HandModel::findSegmentLength(vertex1,
vertex2);
 cerr << "Frame::findMinimumScale(): the current segment
length is " << l << endl;

56

 double s = sqrt(pow2(abs(vertex1.u-vertex2.u)) +
pow2(abs(vertex1.v-vertex2.v))) / l;

 cerr << "Frame::findMinimumScale(): the current scale is
" << s << endl;

 //keep minimum over all
 if (s < m_scale)
 {
 m_scale = s;
 }
 }
 }

 cerr << "exiting Frame::findMinimumScale(): the minimum scale is
" << m_scale << endl;
 return m_scale;
 }

 /**
 * Compute z coordinates of all feature points (of this frame)
 *
 * output: x, y, z of all feature points
 * outf: the output file
 */
 void computeZCoordinates(ofstream& outf) //output: Z coordinates
 {
 for (int i = 0; i < HandModel::NUM_FEATURE_POINTS; ++i)
 {
 //doComputeZCoordinate(i);
 int j = HandModel::findZCoordinateComputeOrder(i);
 doComputeZCoordinate(j, outf);
 }
 }

 double getScaleBasedOnRestedPalm()
 {
 return 1;

 //input
 //segment length of palm
 //observed x,y of the two end points of palm
 if(m_restedPalmScale != numeric_limits<double>::max())
 return m_restedPalmScale;

 // equation 8
 Vertex vertex1 = m_featurePoints[HandModel::PALM_FOLD_INDEX];
 Vertex vertex2 = m_featurePoints[HandModel::WRIST_INDEX];
 const double l = HandModel::findSegmentLength(vertex1, vertex2);
 cerr << "Frame::getScaleBasedOnRestedPalm(): the current segment
length is " << l << endl;

 double s = l / sqrt(pow2(abs(vertex1.u-vertex2.u)) +
pow2(abs(vertex1.v-vertex2.v)));

 cerr << "Frame::getScaleBasedOnRestedPalm(): the scale is " << s
<< endl;
 return m_restedPalmScale = s;
 }

57

 double findScaledSegmentlength(const Vertex& v1, const Vertex& v2,
double scale)
 {
 double segmentLength = HandModel::findSegmentLength(v1, v2);
 cerr << "findScaledSegmentlength() segmentLength: " <<
segmentLength << ", scale:" << scale << "= " << segmentLength/scale <<
endl;
 return segmentLength/scale;
 }

 /**
 * find the Z coordinate for the feature point i
 *
 * input: u, v of feature point i
 * output: x, y and z of feature point i
 */
 void doComputeZCoordinate(int i, ofstream& outf)
 {
 cerr << "entering Frame::doComputeZCoordinate\n";

 Vertex& vertex1 = m_featurePoints[i];
 Vertex& vertex2 =
m_featurePoints[HandModel::findAssociateVertex(vertex1)];

 // special case for the first feature point
 if(vertex1.id == HandModel::PIVOT_POINT)
 {
 const double s = getScaleBasedOnRestedPalm();
 vertex1.w = 0;
 vertex1.w = -0.219004; // <--- !!!! hard code with the
actual value
 vertex1.x = vertex1.u / s;
 vertex1.y = vertex1.v / s;
 vertex1.z = 0; // <--- hard code to 0
 vertex1.z = -0.219004;

 //
 //
 // FORMAT:
 // j0 32 -4.92007 -1.23411 1.3899
 //
 outf << "j" << vertex1.id << " " // node name e.g. "j0"
 << this->getId() << " " // frameId
 << vertex1.x << " "
 << vertex1.y << " "
 << vertex1.z
 << endl;

 return;
 }

 //find the scaled segment length
 double l = findScaledSegmentlength(vertex1, vertex2,
getScaleBasedOnRestedPalm());

 // check first if its gonna be a negative value (which cannot be
sqrt'ed)

58

 while ((pow2(l) - pow2(abs(vertex1.u-vertex2.u)) -
pow2(abs(vertex1.v-vertex2.v))) < 0)
 {
 cerr << "WARNING: length is adjusted (+0.001) before (" << l
<< ") after (" << l+0.001 << ")" << endl;
 // adjust the length segment length until the value is
positive
 l += 0.001;
 }

 vertex1.w = sqrt(pow2(l) - pow2(abs(vertex1.u-vertex2.u)) -
pow2(abs(vertex1.v-vertex2.v))) + vertex2.w;

 // Tip
 if (vertex1.id == 0 || vertex1.id == 3 || vertex1.id == 7 ||
vertex1.id == 11 || vertex1.id == 15)
 {
 // what we do here is using the angle ABC to determine
whether D's z should be less than C's z
 // if the ABC is < 90 degree then D should be point toward
the palm
 Vertex& vertexB =
m_featurePoints[HandModel::findAssociateVertex(vertex2)];
 Vertex& vertexA =
m_featurePoints[HandModel::findAssociateVertex(vertexB)];
 // A B C
 double ag = angle(vertexA, vertexB, vertex2); //get angle at
B
 if (0 < ag && ag <= 90)
 {
 vertex1.w = vertex2.w - (sqrt(pow2(l) -
pow2(abs(vertex1.u-vertex2.u)) - pow2(abs(vertex1.v-vertex2.v))));
 }
 else
 {
 cerr << "YYYY point away from the palm" << endl;
 }
 }

 const double s = getScaleBasedOnRestedPalm();
 // equation 6
 vertex1.x = vertex1.u / s;
 vertex1.y = vertex1.v / s;
 vertex1.z = vertex1.w / s;

 //
 //
 // FORMAT:
 // j0 32 -4.92007 -1.23411 1.3899
 //
 outf << "j" << vertex1.id << " " // node name e.g. "j0"
 << this->getId() << " " // frameId
 << vertex1.x << " "
 << vertex1.y << " "
 << vertex1.z
 << endl;
 //
 }

 double angle(const Vertex& vertexA, const Vertex& vertexB, const
Vertex& vertexC)

59

 {
 // law of cosines
 //
 // b2 = a2 + c2 - 2ac cos x
 //
 // C
 // /\
 // / \
 // b / \ a
 // / \
 // / \
 // / (x \
 // A -----------------B
 // c
 //
 // 2ac cos x = a2 + c2 - b2
 // x = arccos ((a2 + c2 - b2)/2ac)
 //
 double a = sqrt(pow2(vertexC.z - vertexB.z) + pow2(vertexC.y -
vertexB.y));
 double b = sqrt(pow2(vertexC.z - vertexA.z) + pow2(vertexC.y
- vertexA.y));
 double c = sqrt(pow2(vertexA.z - vertexB.z) + pow2(vertexA.y
- vertexB.y));

 double x = acos((pow2(a) + pow2(c) - pow2(b))/(2*a*c));
 const double PI = 3.14159265;

 double result = x * 180.0 / PI;

 return result;
 }
};

//
class DataTracker
{
private:
 vector<Frame> m_frames;
 int m_cur_frame;
 int m_total_frames;

public:
 DataTracker():m_cur_frame(0),m_total_frames(0) {}

 int init() //Currently read data from an input file
 //The input file provides a list of 2D feature points of ALL frames
 {
 cerr << "entering DataTracker::init\n";

 //open file
 ifstream is;
 is.open("c:\\data.txt");

 if (!is.is_open())
 {
 cerr << "cannot open input file\n";
 return -1;
 }

 Frame f[100];

60

 m_total_frames = 100;
 cerr << "total frames is " << m_total_frames << endl;

 // set frame id :(
 for (int i=0; i< m_total_frames; ++i)
 {
 //print frame for debugging
 f[i].setId(i);
 }

 while(!is.eof())
 {
 //double u[HandModel::NUM_FEATURE_POINTS],
v[HandModel::NUM_FEATURE_POINTS];

 string jointName;
 int frameNumber;
 double u;
 double v;
 double w;

 is >> jointName >> frameNumber >> u >> v >> w;

 int j;
 char c;
 // parse for j from jointName e.g. "x12" => 12
 sscanf(jointName.c_str(), "%c%d", &c, &j);

 cout << jointName << " => " << c << ", " << j << endl;

 //set it
 f[frameNumber].setfp(j, Vertex (j, u, v));
 f[frameNumber].getFpRef(j).setUVSetFlag(true);
 }

 for (int i=0; i< 100; ++i)
 {
 m_frames.push_back(f[i]);
 }

 for (int i=0; i< m_total_frames; ++i)
 {
 //print frame for debugging
 m_frames[i].print();
 }

 return 0;
 }

 Frame& getCurrentFrame() //2D feature point from data tracking
 {
 if (m_cur_frame >= m_total_frames)
 {
 cerr << "ERROR: entering DataTracker::getCurrentFrame\n";
 return m_frames[0];
 }
 return m_frames[m_cur_frame++];
 }

 int getTotalFrames()
 {

61

 return m_total_frames;
 }

 vector<Frame>& getFrames()
 {
 return m_frames;
 }

};

//
class TwoDResolver
{
private:
 static TwoDResolver* m_instance;

public:
 static TwoDResolver* instance()
 {
 cerr << "entering TwoDResolver::instance\n";
 if (m_instance == 0)
 {
 m_instance = new TwoDResolver();
 }
 return m_instance;
 }

 enum FillInMissingDataMethod {
 FILL_IN_MISSING_DATA_NOTHING = 1,
 FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA = 2,
 FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA = 3,
 FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA = 4,

FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FRAME_DATA = 5,

FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VALUE_FRAME_DATA
= 6
 };

 /**
 * Interdependence
 *
 * Use different techniques
 */
 void fillInMissingData(Frame* f, DataTracker& dt, enum
FillInMissingDataMethod method)
 {
 //which feature points are missing
 for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i)
 {
 if(f->getFpRef(i).isUVSet())
 continue;

 // CLUTCH
 // if it gets here it means this feature point uv is
missing
 // which means there feature point ismissing so
DataTracker didn't read it from the input file
 // So we have to add it
 // since the call f->getFpRef(i) above automatically add
it (with default value)

62

 // we need to correct its id.
 f->getFpRef(i).id = i;

 //missing data, synthesize one
 switch (method)
 {
 case FILL_IN_MISSING_DATA_NOTHING:
 break;

 case FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA:
 cerr << "previous : " << f->getFpRef(i).id <<
endl;
 fillInVertexUsePreviousFrame(f->getFpRef(i), f-
>getId(), dt);
 break;

 case FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA:
 cerr << "previous diff : " << f->getFpRef(i).id
<< endl;
 fillInVertexUsePreviousDiffFrame(f->getFpRef(i),
f->getId(), dt);
 break;

 case
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA:
 cerr << "previous diff interdep : " << f-
>getFpRef(i).id << endl;
 fillInVertexUsePreviousDiffInterdepFrame(f-
>getFpRef(i), f->getId(), dt);
 break;

 case
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FRAME_DATA:
 cerr << "previous diff interdep intrafinger : "
<< f->getFpRef(i).id << endl;

 fillInVertexUsePreviousDiffInterdepIntraFingerFrame(f->getFpRef(i),
f->getId(), dt);
 break;

 case
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VALUE_FRAME_DATA
:
 cerr << "previous diff interdep intrafinger
value: " << f->getFpRef(i).id << endl;

 fillInVertexUsePreviousDiffInterdepIntraFingerValueFrame(f-
>getFpRef(i), f->getId(), dt);
 break;
 };
 }
 }

 void fillInVertexUsePreviousFrame(Vertex& v, int frameId,
DataTracker& dt)
 {
 // get the previous frame
 if (frameId == 0)
 {

63

 //first frame missing :(
 throw 9999; //give up
 }
 Frame& f = dt.getFrames()[frameId-1];
 double prevFrameU = f.getFpRef(v.id).u;
 double prevFrameV = f.getFpRef(v.id).v;

 v.setUV(prevFrameU, prevFrameV);
 }

 void fillInVertexUsePreviousDiffFrame(Vertex& v, int frameId,
DataTracker& dt)
 {
 // get the previous frame
 if (frameId == 0 || frameId == 1)
 {
 //first frame missing :(
 throw 9999; //give up
 }

 //previous frame
 Frame& pf = dt.getFrames()[frameId-1];
 double prevFrameU = pf.getFpRef(v.id).u;
 double prevFrameV = pf.getFpRef(v.id).v;

 //previous's previous frame
 Frame& ppf = dt.getFrames()[frameId-2];
 double prevprevFrameU = ppf.getFpRef(v.id).u;
 double prevprevFrameV = ppf.getFpRef(v.id).v;

 double currentU = prevFrameU + (prevFrameU - prevprevFrameU);
 double currentV = prevFrameV + (prevFrameV - prevprevFrameV);
 v.setUV(currentU, currentV);
 }

 void fillInVertexUsePreviousDiffInterdepFrame(Vertex& v, int
frameId, DataTracker& dt)
 {
 // get the previous frame
 if (frameId == 0 || frameId == 1 || frameId == 2) // bec we
need at least three to determine if direction reverses
 {
 throw 9999; //give up
 }

 //previous frame
 Frame& pf = dt.getFrames()[frameId-1];
 double prevFrameU = pf.getFpRef(v.id).u;
 double prevFrameV = pf.getFpRef(v.id).v;

 //previous's previous frame
 Frame& ppf = dt.getFrames()[frameId-2];
 double prevprevFrameU = ppf.getFpRef(v.id).u;
 double prevprevFrameV = ppf.getFpRef(v.id).v;

 //check if neighbor's direction is reversed now
 //if so , we should move in the reverse direction
 Frame& pppf = dt.getFrames()[frameId-3];
 double neighborPrevPrevPrevFrameU =
pppf.getFpRef(HandModel::findNeighborId(v.id)).u;

64

 double neighborPrevPrevPrevFrameV =
pppf.getFpRef(HandModel::findNeighborId(v.id)).v;
 double neighborPrevPrevFrameU =
ppf.getFpRef(HandModel::findNeighborId(v.id)).u;
 double neighborPrevPrevFrameV =
ppf.getFpRef(HandModel::findNeighborId(v.id)).v;
 double neighborPrevFrameU =
pf.getFpRef(HandModel::findNeighborId(v.id)).u;
 double neighborPrevFrameV =
pf.getFpRef(HandModel::findNeighborId(v.id)).v;

 double currentU;
 double currentV;

 //U
 // 4 > 3 < 5 or 3 < 5 > 4 == reverse
 // if trend is bucking down and we're going up, reverse it
 if (
 (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU
&& neighborPrevPrevFrameU > neighborPrevFrameU) &&
 (prevprevFrameU < prevFrameU)
)
 {
 cerr << "reverseU\n";
 //reverse U direction
 currentU = prevFrameU - (prevFrameU -
prevprevFrameU);
 }

 // if trend is bucking up and we're going down, reverse it
 else if (
 (neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU
&& neighborPrevPrevFrameU < neighborPrevFrameU) &&
 (prevprevFrameU > prevFrameU)
)
 {
 cerr << "reverseU\n";
 //reverse U direction
 currentU = prevFrameU - (prevFrameU -
prevprevFrameU);
 }
 // otherwise don't reverse it
 else
 {
 cerr << "not reverseU\n";
 currentU = prevFrameU + (prevFrameU -
prevprevFrameU);
 }

 //V
 if ((neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV
&& neighborPrevPrevFrameV < neighborPrevFrameV) &&
 (prevprevFrameV < prevFrameV)
)
 {
 cerr << "reverseV\n";
 //reverse U direction
 currentV = prevFrameV - (prevFrameV -
prevprevFrameV);
 }

65

 else if (
 (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV
&& neighborPrevPrevFrameV > neighborPrevFrameV) &&
 (prevprevFrameV > prevFrameV)
)
 {
 cerr << "reverseV\n";
 //reverse U direction
 currentV = prevFrameV - (prevFrameV -
prevprevFrameV);
 }
 else
 {
 cerr << "not reverseV\n";
 currentV = prevFrameV + (prevFrameV -
prevprevFrameV);
 }

 v.setUV(currentU, currentV);
 }

 void fillInVertexUsePreviousDiffInterdepIntraFingerFrame(Vertex& v,
int frameId, DataTracker& dt)
 {
 // get the previous frame
 if (frameId == 0 || frameId == 1 || frameId == 2) // bec we
need at least three to determine if direction reverses
 {
 throw 9999; //give up
 }

 //previous frame
 Frame& pf = dt.getFrames()[frameId-1];
 double prevFrameU = pf.getFpRef(v.id).u;
 double prevFrameV = pf.getFpRef(v.id).v;

 //previous's previous frame
 Frame& ppf = dt.getFrames()[frameId-2];
 double prevprevFrameU = ppf.getFpRef(v.id).u;
 double prevprevFrameV = ppf.getFpRef(v.id).v;

 //check if neighbor's direction is reversed now
 //if so , we should move in the reverse direction
 Frame& pppf = dt.getFrames()[frameId-3];
 double neighborPrevPrevPrevFrameU =
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevPrevPrevFrameV =
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;
 double neighborPrevPrevFrameU =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevPrevFrameV =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;
 double neighborPrevFrameU =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevFrameV =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;

 double currentU;
 double currentV;

 //U

66

 if (
 (neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU &&
neighborPrevPrevFrameU < neighborPrevFrameU) &&
 (prevprevFrameU > prevFrameU)
)
 {
 cerr << "reverseU\n";
 //reverse U direction
 currentU = prevFrameU - (prevFrameU - prevprevFrameU);

 }
 else if (
 (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU &&
neighborPrevPrevFrameU > neighborPrevFrameU) &&
 (prevprevFrameU < prevFrameU)
)
 {
 cerr << "reverseU\n";
 //reverse U direction
 currentU = prevFrameU - (prevFrameU - prevprevFrameU);
 }
 else
 {
 cerr << "not reverseU\n";
 currentU = prevFrameU + (prevFrameU - prevprevFrameU);
 }

 //V
 if (
 (neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV &&
neighborPrevPrevFrameV < neighborPrevFrameV) &&
 (prevprevFrameV > prevFrameV)
)
 {
 cerr << "reverseV\n";
 //reverse U direction
 currentV = prevFrameV - (prevFrameV - prevprevFrameV);
 }
 else if (
 (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV &&
neighborPrevPrevFrameV > neighborPrevFrameV) &&
 (prevprevFrameV < prevFrameV)
)
 {
 cerr << "reverseV\n";
 //reverse U direction
 currentV = prevFrameV - (prevFrameV - prevprevFrameV);
 }
 else
 {
 cerr << "not reverseV\n";
 currentV = prevFrameV + (prevFrameV - prevprevFrameV);
 }

 v.setUV(currentU, currentV);
 }

 void
fillInVertexUsePreviousDiffInterdepIntraFingerValueFrame(Vertex& v, int
frameId, DataTracker& dt)
 {

67

 // get the previous frame
 if (frameId == 0 || frameId == 1 || frameId == 2) // bec we
need at least three to determine if direction reverses
 {
 throw 9999; //give up
 }

 //previous frame
 Frame& pf = dt.getFrames()[frameId-1];
 double prevFrameU = pf.getFpRef(v.id).u;
 double prevFrameV = pf.getFpRef(v.id).v;

 //previous's previous frame
 Frame& ppf = dt.getFrames()[frameId-2];
 double prevprevFrameU = ppf.getFpRef(v.id).u;
 double prevprevFrameV = ppf.getFpRef(v.id).v;

 //check if neighbor's direction is reversed now
 //if so , we should move in the reverse direction
 Frame& pppf = dt.getFrames()[frameId-3];
 double neighborPrevPrevPrevFrameU =
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevPrevPrevFrameV =
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;
 double neighborPrevPrevFrameU =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevPrevFrameV =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;
 double neighborPrevFrameU =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighborPrevFrameV =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;

 //prevFrameU and prevprevFrameU of intra neighbor
 double neighbour_prevFrameU =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighbour_prevFrameV =
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;

 //Frame& ppf = dt.getFrames()[frameId-2];
 double neighbour_prevprevFrameU =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u;
 double neighbour_prevprevFrameV =
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v;
 double currentU;
 double currentV;

 ////U
 if ((neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU &&
neighborPrevPrevFrameU < neighborPrevFrameU) &&
 (prevprevFrameU > prevFrameU)
)
 {
 //reverse U direction
 //apply rate of change instead
 double chnageby = abs(neighbour_prevFrameU -
neighbour_prevprevFrameU);
 double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameU;
 double amounttochange = (prevFrameU *
percenttochange)/100.0;

68

 // apply the amount with the correct sign
 if(neighbour_prevFrameU - neighbour_prevprevFrameU < 0)
 currentU = prevFrameU - (-1.0* abs(amounttochange));
 else
 currentU = prevFrameU - (abs(amounttochange));

 }
 else if (
 (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU &&
neighborPrevPrevFrameU > neighborPrevFrameU) &&
 (prevprevFrameU < prevFrameU)
)
 {
 //reverse U direction
 //apply rate of change instead
 double chnageby = abs(neighbour_prevFrameU -
neighbour_prevprevFrameU);
 double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameU;
 double amounttochange = (prevFrameU *
percenttochange)/100.0;

 // apply the amount with the correct sign
 if(neighbour_prevFrameU - neighbour_prevprevFrameU < 0)
 currentU = prevFrameU - (-1.0* abs(amounttochange));
 else
 currentU = prevFrameU - (abs(amounttochange));
 }
 else
 {
 cerr << "not reverseU\n";
 currentU = prevFrameU + (neighbour_prevFrameU -
neighbour_prevprevFrameU);
 }

 ////V
 if ((neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV &&
neighborPrevPrevFrameV < neighborPrevFrameV) &&
 (prevprevFrameV > prevFrameV)
)
 {
 //apply rate of change instead
 double chnageby = abs(neighbour_prevFrameV -
neighbour_prevprevFrameV);
 double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameV;
 double amounttochange = (prevFrameV *
percenttochange)/100.0;

 // apply the amount with the correct sign
 if(neighbour_prevFrameV - neighbour_prevprevFrameV < 0)
 currentV = prevFrameV - (-1.0* abs(amounttochange));
 else
 currentV = prevFrameV - (abs(amounttochange));
 }
 else if (
 (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV &&
neighborPrevPrevFrameV > neighborPrevFrameV) &&
 (prevprevFrameV < prevFrameV)

69

)
 {
 //apply rate of change instead
 double chnageby = abs(neighbour_prevFrameV -
neighbour_prevprevFrameV);
 double percenttochange = (chnageby * 100.0) /
neighbour_prevprevFrameV;
 double amounttochange = (prevFrameV *
percenttochange)/100.0;

 // apply the amount with the correct sign
 if(neighbour_prevFrameV - neighbour_prevprevFrameV < 0)
 currentV = prevFrameV - (-1.0* abs(amounttochange));
 else
 currentV = prevFrameV - (abs(amounttochange));
 }
 else
 {
 cerr << "not reverseV\n";
 currentV = prevFrameV + (neighbour_prevFrameV -
neighbour_prevprevFrameV);
 }
 v.setUV(currentU, currentV);
 }

 void addFrame(Frame& f)
 {
 cerr << "entering TwoDResolver::addFrame\n";
 }
};

TwoDResolver* TwoDResolver::m_instance = 0;

//
class Renderer {
private:
 static Renderer* m_instance;

public:
 static Renderer* instance()
 {
 cerr << "entering Renderer::instance\n";
 if (m_instance == 0)
 {
 m_instance = new Renderer();
 }
 return m_instance;
 }

 void addFrame(Frame& f)
 {
 cerr << "entering Renderer::addFrame\n";
 }
};

Renderer* Renderer::m_instance = 0;
//

int main()
{
 try {

70

 HandModel::init();

 DataTracker dt;
 if (dt.init() != 0) // may pass in some input file
 {
 return 0;
 }

 // open an output file
 // This will keep our computed z order
 // plugin myTranslateTo will read this file into maya
 //
 ofstream outf;
 outf.open("c:\\computedData.txt");

 if (!outf.is_open())
 {
 cerr << "cannot open output file\n";
 throw 7777;
 }

 TwoDResolver* twoDResolver = TwoDResolver::instance();
 Renderer* renderer = Renderer::instance();

 for(int i=0; i< dt.getTotalFrames(); ++i)
 {
 cerr << "****************** START FRAME " << i << "
***************************\n";
 // get current frame
 Frame& f = dt.getCurrentFrame(); //2D feature point from
data tracking

 f.print();

 // Missing data synthesis techniques: pick one
 //output: all 2D feature points
 //twoDResolver->fillInMissingData(&f, dt,
FILL_IN_MISSING_DATA_NOTHING);
 //twoDResolver->fillInMissingData(&f, dt,
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA);
 //twoDResolver->fillInMissingData(&f, dt,
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA);
 //twoDResolver->fillInMissingData(&f, dt,
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA);
 //twoDResolver->fillInMissingData(&f, dt,
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FR
AME_DATA);
 twoDResolver->fillInMissingData(&f, dt,
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VA
LUE_FRAME_DATA);

 //once we get the scaled length of each segment
 //compare this with the observed length of each segment
 //we know if the segment is tilting (has depth)
 //and we can compute the depth (Z dimension) from the
 //scale factor we have, the obserb
 f.computeZCoordinates(outf); //output: Z
coordinates

71

 cerr << "***** END FRAME " << i << "******\n";
 }

 outf.close();

 }
 catch(MyException &e)
 {
 e.print();
 }
 return 0;
}

72

Appendix C
 Coordination Export Program

 This program is to export X, Y, Z coordinates of feature points of each animation frame
to a text file. It is written as a Maya Plugin using Maya C++ API. To load the plugin to Maya,
first make sure the .mll library is in a plugin path recognized by Maya. Then, open the script
editor in Maya and type in the following command:

 loadPlugin myCmd;
.
#include <math.h>
#include <maya/MIOStream.h>
#include <maya/MSimple.h>
#include <maya/MPoint.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve.h>

#include <maya/MSimple.h>
#include <maya/MGlobal.h>
#include <maya/MString.h>
#include <maya/MDagPath.h>
#include <maya/MFnDagNode.h>
#include <maya/MFnTransform.h>
#include <maya/MVector.h>
#include <maya/MSelectionList.h>
#include <maya/MIOStream.h>

#include <fstream>

DeclareSimpleCommand(doHelix, "Autodesk - Example", "8.0");

MStatus doMe(const MArgList&)
{
 MDagPath node;
 MObject component;
 MSelectionList list;
 MFnDagNode nodeFn;
 MFnTransform transformFn;
 MGlobal::getActiveSelectionList(list);

 // open output file
 //
 std::ofstream outf;
 outf.open("c:\\data.txt");

 // loop through all selected nodes
 //
 for (unsigned int index = 0; index < list.length(); index++)
 {
 list.getDagPath(index, node, component);
 nodeFn.setObject(node);

73

 transformFn.setObject(node);

 for (int i =0; i < 100; ++i)
 {
 MGlobal::viewFrame(i);
 MVector transformVector = transformFn.getTranslation(
MSpace::Space::kWorld);

 outf << nodeFn.name().asChar() << " "
 << i << " "
 << transformVector.x << " "
 << transformVector.y << " "
 << transformVector.z << endl;
 }
 }

 // close output file
 //
 outf.close();

 return MS::kSuccess;
}

MStatus doHelix::doIt(const MArgList& args)
{
 MStatus stat;

 doMe(args);
 return stat;
}

74

Appendix D
 Coordination Import Program

 This program is to import X, Y, and our computed Z coordinates of feature points of
each animation frame to Maya. It is written as a Maya Plugin using Maya C++ API. To load
the plugin to Maya, first make sure the .mll library is in a plugin path recognized by Maya.
Then, open the script editor in Maya and type in the following command:

 loadPlugin myTranslateTo;

#include <math.h>
#include <maya/MIOStream.h>
#include <maya/MSimple.h>
#include <maya/MPoint.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve.h>

#include <maya/MSimple.h>
#include <maya/MGlobal.h>
#include <maya/MString.h>
#include <maya/MDagPath.h>
#include <maya/MFnDagNode.h>
#include <maya/MFnTransform.h>
#include <maya/MVector.h>
#include <maya/MSelectionList.h>
#include <maya/MIOStream.h>

#include <fstream>
#include <map>
#include <string>

// Use helper macro to register a command with Maya. It creates and
// registers a command that does not support undo or redo. The
// created class derives off of MPxCommand.
//
DeclareSimpleCommand(mtt, "", "8.0");

using std::string;
using std::map;

map<string, map<int, MVector> > g_inputData;

MStatus readComputedData()
{
 // open input file
 // this is the file that contains our computed z order
 //
 std::ifstream inf;
 inf.open("c:\\computedData.txt");

 if (!inf.is_open())
 {
 cerr << "cannot open input file\n";

75

 return MS::kFailure;
 }

 // read all data for all frames
 //
 // FORMAT:
 // j0 32 -4.92007 -1.23411 1.3899
 string nodeName;
 int frameId;
 double u;
 double v;
 double w;

 while (!inf.eof())
 {
 inf >> nodeName >> frameId >> u >> v >> w;

 //add it to heap
 g_inputData[nodeName][frameId] = MVector(u, v, w);
 cerr << "INPUT readComputedData(): from input file: " <<
nodeName << " , " << frameId << ", "
 << g_inputData[nodeName][frameId].x
 << g_inputData[nodeName][frameId].y
 << g_inputData[nodeName][frameId].z
 << endl;
 }

 inf.close();
 return MS::kSuccess;
}

MStatus doMe(const MArgList&)
{
 MDagPath node;
 MObject component;
 MSelectionList list;
 MFnDagNode nodeFn;
 MFnTransform transformFn;
 MGlobal::getActiveSelectionList(list);

 // read input file
 // keep it in heap
 if (readComputedData() != MS::kSuccess)
 {
 return MS::kFailure;
 }

 // loop through all selected nodes
 //
 for (unsigned int index = 0; index < list.length(); index++)
 {
 list.getDagPath(index, node, component);
 nodeFn.setObject(node);

 transformFn.setObject(node);

 // find the last frame
 //
 unsigned int max_frame = 0;

76

 for(map<string, map<int, MVector> >::iterator mit =
g_inputData.begin(); mit != g_inputData.end(); ++mit)
 {
 //map<int, MVector>& rmap = g_inputData[i];
 cout << "mit->second.size() > max_frame " << mit-
>second.size() << " " << max_frame << endl;
 if (mit->second.size() > max_frame)
 {
 cout << "set mit->second.size() " << mit-
>second.size() << endl;
 max_frame = mit->second.size();
 }
 }

 cout << "max_frame " << max_frame << endl;
 for (int i =0; i < max_frame; ++i)
 {
 MGlobal::viewFrame(i);
 //MVector transformVector = transformFn.getTranslation(
MSpace::Space::kWorld);

 // Set translate fo this frame for this feature point
 //tatus MPxTransform:: translateTo (const MVector &
newTrans, MSpace::Space space , const MDGContext &context)

 // Set to what we read from our computed data file
 //
 if (MS::kSuccess !=
transformFn.setTranslation(g_inputData[nodeFn.name().asChar()][i],
MSpace::Space::kWorld))
 {

 cerr << "ERROR!!!!!!!!!!!!!!: SET TRANSLATE TO: "
 << nodeFn.name().asChar() << " "
 << i << " "
 << g_inputData[nodeFn.name().asChar()][i]
 << g_inputData[nodeFn.name().asChar()][i].x << " "
 << g_inputData[nodeFn.name().asChar()][i].y << " "
 << g_inputData[nodeFn.name().asChar()][i].z << endl;

 }
 else
 {
 cerr << "SUCCESS: SET TRANSLATE TO: "
 << nodeFn.name().asChar() << " "
 << i << " "
 << g_inputData[nodeFn.name().asChar()][i]
 << g_inputData[nodeFn.name().asChar()][i].x << "
"
 << g_inputData[nodeFn.name().asChar()][i].y << "
"
 << g_inputData[nodeFn.name().asChar()][i].z <<
endl;
 }
 }

 }

 return MS::kSuccess;
}

77

MStatus mtt::doIt(const MArgList& args)
{
 return doMe(args);
}

78

Appendix E
 Coordination Data Sort Program

open($fh, "<c:\\computedData.txt") || die ("cannot open input file");
$i = 0;

while ($line=<$fh>)
{
$lines[$i] = $line;
$i++;
}

print sort numerically @lines;

sub numerically {
 @as = split (/ /, $a);
 @bs = split (/ /, $b);

$as[0] cmp $bs[0]
 ||
$as[1] <=> $bs[1]
}

79

Appendix F
 Original and Computed Data Diff Program

#include <iostream>
#include <string>
#include <fstream>
#include <map>

using namespace std;

class ArgumentParser
{
private:
 ArgumentParser();

public:
 static void parse(int argc, char** argv);
 static const string& getFile1() { return file1; }
 static const string& getFile2() { return file2; }
 static bool getsortByFrame() { return sortByFrame; }
 static bool getsortByJoint() { return sortByJoint; }

private:
 static bool sortByFrame;
 static bool sortByJoint;
 static string file1;
 static string file2;
};

bool ArgumentParser::sortByFrame = false;
bool ArgumentParser::sortByJoint = false;
string ArgumentParser::file1;
string ArgumentParser::file2;

void ArgumentParser::parse(int argc, char** argv)
{
 for (int i=0; i< argc; ++i)
 {
 if(string(argv[i]) == "-s")
 {
 sortByFrame = false;
 sortByJoint = false;

 string nextArg(argv[++i]);
 if (nextArg == "f") //sort by frame
 sortByFrame = true;
 else if (nextArg == "j") //sort by joint
 sortByJoint = true;
 }
 else if(string(argv[i]) == "-f1")
 {
 file1 = string(argv[++i]);
 }
 else if(string(argv[i]) == "-f2")
 {
 file2 = string(argv[++i]);
 }
 }
}

80

/**
 * j0 0 -4.6975 -0.206784 5.0577
 * name frame x y z
 *
 * - we open two input files
 * - for file1, file2
 * - read line by line and put in
 * map1[jointNumber][frameNumber] = {x,y,z}
 * map2[jointNumber][frameNumber] = {x,y,z}
 *
 * compare choices
 * - compare z value
 *
 * sort choice
 * - by joint
 * - by frame
 *
 * name -> "j0" we'll extract to 0
 *
 */
class Point3D
{
public:
 Point3D(double xx, double yy, double zz): x(xx), y(yy), z(zz) {}
 Point3D(): x(0), y(0), z(0) {}

 double x;
 double y;
 double z;
};

/**************
 * Per file
 * keep in map
 */
class DataSet
{
public:
 // read data into map
 DataSet(const string& inputFileName);
 std::map <int, std::map<int, Point3D> >& getAllData() { cerr <<
"map size is " << m_map[2].size() << endl ; return m_map; }

private:
 map<int, map<int, Point3D> > m_map;
};

DataSet::DataSet(const string& inputFileName)
{
 std::ifstream inf;
 inf.open(inputFileName.c_str());

 int i = 0;
 while(!inf.eof())
 {
 char j;
 string jointName;
 int jointNumber;
 int frameNumber;
 double x;

81

 double y;
 double z;

 //j0 5 -4.76268 -0.427315 4.82576
 inf >> jointName >> frameNumber >> x >> y >> z;
 sscanf(jointName.c_str(), "%c%d", &j, &jointNumber);

 m_map[jointNumber][frameNumber] = Point3D(x, y, z);

 cerr << "input line = " << ++i << endl;
 }
}

/********************************* MAIN PROCEDURE
*************************************/
void compareZ(map<int, map<int, Point3D> >& map1, map<int, map<int,
Point3D> >& map2)
{
 // assume 2 maps have the same number of entries
 //
 //j0 5 -4.76268 -0.427315 4.82576
 //map [joint] [frame]

 map < int, map <int, double> > results;

 for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame
 for(int j= 0; j < map1[i].size(); ++j)
 {
 results[i][j] = map1[i][j].z - map2[i][j].z;
 }

 if (ArgumentParser::getsortByJoint())
 {
 // sort by joint
 for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame
 for(int j= 0; j < map1[i].size(); ++j)
 {
 cout << "j" << i << " "
 << j << " "
 << map1[i][j].x << " "
 << map1[i][j].y << " "
 << results[i][j] << endl;
 }
 }
 else if (ArgumentParser::getsortByFrame())
 {
 // sort by frame
 for(int j= 0; j < map1[0].size(); ++j)
 for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame
 {
 cout << "j" << i << " "
 << j << " "
 << map1[i][j].x << " "
 << map1[i][j].y << " "
 << results[i][j] << endl;
 }
 }
}

/*********
 * 2 argument

82

 * a.out -s[j,f] -f1 <inputfile1> -f2 <inputfile2>
 */
int main(int argc, char** argv)
{
 try
 {
 ArgumentParser::parse(argc, argv); //assume argument is
correct
 DataSet dataSet1(ArgumentParser::getFile1());
 DataSet dataSet2(ArgumentParser::getFile2());

 // now we got all data in two maps
 // let's compare
 //
 map<int, map<int, Point3D> >& map1 = dataSet1.getAllData();
 map<int, map<int, Point3D> >& map2 = dataSet2.getAllData();

 //compare Z
 compareZ(map1, map2);
 }
 catch (...)
 {
 }
}

83

Biography

Mr. Kosit Nopvichai received his Bachelor Degree in Computer Science from
Thammasat University. He is persuing a Master Degree in Computer Science at
Chulalongkorn University. Currently, he is working at a financial software company as a
Senior Software Engineer.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Background and Statement of Problems
	1.2 Objectives
	1.3 Project Scope
	1.4 Research Procedures
	1.5 Expected Benefits

	Chapter II Related Theories and Literature Review
	2.1 Hand Model/Anatomy
	2.2 Depth Reconstruction
	2.3 Interdependence

	Chapter III Proposed Method
	3.1 3D Coordinate Estimation
	3.2 Input Acquisition
	3.3 Our Hand Model
	3.4 Feature Points Identification (XY Coordinates)
	3.5 3D Depth Reconstruction
	3.6 Reflective Ambiguity
	3.7 Occlusion and Missing Data Handling

	Chapter IV Experiment and Result
	4.1 The Experiment
	4.2 Result and Analysis

	Chapter V Conclusions and Suggestions
	5.1 Conclusions
	5.2 Suggestions

	References
	Appendix
	Vita

