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A 20 image sequence can be a great source of motions for animating a 3D 

model. However, depth information cannot simply be extracted from a two-dimension 

image. Thus, there is a need for a method to obtain this third dimension data. 

Several methods have been presented over the years . But most of them 

employed a complex mathematical concept which makes it unavoidably slow. Moreover, 

there is an inherent problem of reflective ambiguity which must be addressed. 

In this study, we present a technique to perform a 3D coordinate estimation of 

20 hand motion from an image sequence. In our method, the orthographic projection 

model is used to determine the Z coordination. Additionally, information from the 

previous frames and interdependence of a hand model are used to handle occlusion. 

We also propose a set of constraints on the finger joints in order to deal with reflective 

ambiguity. 

In our experiment, XY coordinates of a set of feature points are extracted from a 

Maya animated Hand Clinching motion. The missing data and depth information are 

then calculated. Finally the resulting Z coordinates are evaluated by comparing with the 

actual Z values from the Maya animation . The result shows that our method can estimate 

the Z coordinated quite well and can correctly solve the reflective ambiguity in most 

common cases. 
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Chapter 1 
 

Introduction 

1.1 Background and Statement of Problems 
 Computer animation is the science and art of using a computer to create moving 
images. The idea is to make a character move in a way intended by the artists and 
convey their creativity to the audience.  There are several ways to generate motions for 
an articulated character. Some of the more common are Kinematics, Dynamic control 
[1], Keyframing, Motion editing [2] [3] [4] [5] [6], and Motion capture. Recently more 
attention has been paid to an alternative to the traditional methods. It is the typical 2D 
video that is recorded by a typical camera or even a web cam. 
 There are certain advantages to this motion source. First, the source model does 
not need to be attached with sensors. Second, the cost is typically lower than the 
traditional motion capture. Third, there are enormous stocks of live action footage 
recorded as 2D videos. Some of them are of historic values and cannot be reproduced. 
An example is a number of classic sport moments. This can be readily used as a motion 
source. 
 Using 2D image sequence as a source of motions has a few challenges of its own 
that need to be addressed. First, the missing data (e.g. those caused by occlusion) 
need to be somehow recovered. Specific to hand motions, we may consider using 
interdependence in addition to constraints, motion library, sample space, etc. Second, 
the 2D nature of it necessitates the lack of depth information. Thus some variants of 3D 
reconstruction techniques are used to recover the missing Z coordinate. We will address 
these issues in our work. 
 After a motion is acquired through one of the means mentioned above and stored 
in a motion representation, a typical motion retarget proceeds. As part of the process, 
an acquired raw motion is typically processed in some ways to create a more 
appropriate motion for each target character. The output of this step is the adapted 
motion data used to drive the target motion. For the case of an articulated figure, the 
output is usually joint angle data for all the joints. 
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 The animation of human articulate body has long been received numerous 
attentions. The works in this area vary in terms of the body parts on which they focus. As 
for the hand, it has been a focus of many researches in computer animation because 
not only it is one of the most animated parts of human body but also one of the most 
complex body parts. In addition it is essential for human communication and expression. 
Our work will focus on estimating the 3D coordinate of the hand motion from 2D 
monocular video sequence.   

1.2 Objectives  
 The objective of this project is to perform a 3D coordinate estimaation by using the 
motions from 2D image sequence which is an alternative to the traditional motion 
capture. This work will focus on motions of the human hand. The expected end result is 
the technique that is capable of estimating 3D hand motions from 2D video sequence. 
The resulting 3D hand motions can then be used as motion retarget source. The motion 
input will be 2D frame sequence of hand gestures. The output will be the 3D coordinate 
estimation of the deformed hand. 

1.3 Project Scope 
1. This work considers the hand gestures only. 
2. The hand in a scene is expected to be at a certain distance from the camera. 
3. The length of each segment on the hand is assumed to be known. 
4. The hand in a scene is expected to be facing the camera. 
5. The palm of the hand is expected to stay still. 
6. The experimental data are extracted from Maya animation of a hand gesture. 
7. The result is evaluated by comparing our output to the data from the Maya 

animation whose X, Y coordinate data are used as the input. 

1.4 Research Procedures 
1. Acquire a 3D hand model. This may be obtained from a free repository on the 

web.  
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2. Prepare the input sequence of hand gestures. This is obtained from a Maya 
animation. 

3. Study and write a software module to calculate the Z coordinates. 
4. Test the system with our hand gesture motion. 
5. Analyze and evaluate the result. 

1.5 Expected Benefits 
 We expect that our experiment on applying a variety of techniques to build a 
working system for estimation of 3D coordinate of hand motion from 2D video 
input will afford us to find out how well these techniques are working in practice 
and hopefully to discover some new insights based on the experience of building 
such systems that will be beneficial to others attempting similar tasks in the future. 

 

 



    

 

Chapter 2 
 

Related Theories and Literature Review 
2.1 Hand Model/Anatomy 
 Hand anatomy has long been studied and well understood in the field of anatomy 
and biomechanics [7]. Hand is one of the most complex body parts. Most animation 
research focuses on its two main functionalities which are grasping and fine motor skills. 
Many aspects have been studied such as its constraints, limitations, DOFs, bones, 
tendons, and muscles.  
 Several hand models have been proposed over the years. Each has its own 
strengths and weaknesses. Whichever one we should use depends on the task at hand. 
A parametric hand model has been designed for the semiautomatic grasping approach 
in [8]. In [9] a simple volume-based animatable hand model constructed from geometric 
primitives has been employed for tracking. Reference [10] builds a statistical hand 
shape model from simplex meshes fitted to MRI data for their tracking system. For 
model-based finger motion capturing, reference [11] employs a learning approach for 
the hand configuration space to generate natural movement. Reference [12] presents an 
anthropomorphic finger model with a tendon transmission system based on pulleys and 
a position controller. The controller is modeled by a neural network and transforms 
tendon pull into joint motion. A model of the hand and arms based on manifold 
mappings has been proposed by [13]. They also consider inter-joint dependencies. 
Reference [14] uses Dirichlet free-form deformations (DFFDs) to simulate the tissue and 
muscle layer between skin and bones. Muscles are not considered directly, but the use 
of DFFDs allows the authors to model wrinkles at joints and bulging of segments 
dependent on the angle of rotation of the respective proximal joint. In [15] the joint 
movements of a hand model composed of rigid bodies are constrained by 
biomechanical laws. The model was designed for use in animating American Sign 
Language. An approach for skinning a hand skeleton using Eigen displacements has 
been proposed in [16]. The resulting hand model can be animated in real-time using 
graphics hardware.  
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 Our hand model is a relatively simple kinematic chain consisting of joints and 
segments. Each joint has a number of DOFs and limitations.  
 
2.2 Depth Reconstruction 
 Depth reconstruction refers to the process of extracting the depth information from 
2D data. Its challenge lies in the fact that it is an under-determined problem. To solve it, 
we need to pose some constraints or use some assumptions and find a solution under 
that framework. 
 Study on 3D Depth recovery from 2D input has been performed for some time. 
There have been several techniques proposed. Reference [17] proposes an algorithm to 
compute the three dimensional structure of a scene from a pair of stereo images.  
Reference [18] constructs a 3D object query from 2D drawings. Their algorithm can 
handle objects with both planar and curved faces.  Reference [19] estimates 3D depth 
from a single still image. It proposes the use of monocular cues (e.g., texture variations 
and gradients, defocus, color/haze, etc.) in addition to the stereo cues (e.g.). Their 
approach is based on modeling depths and the relationships between them at multiple 
spatial scales using hierarchical, multiscale Markov Random Field. The model is trained 
with a set of training images and their corresponding ground-truth depth maps. The 
method works for unstructured images of indoor and out door containing forests, 
sidewalks, buildings, people, etc. 
 More recently, as the 2D monocular video sequence is recognized as a fertile 
source of motions, several researchers focus on perfecting techniques that use them as 
input. Reference [20] and [21] reconstruct a human-like figure motion from 2D video 
stream. It assumes an existence of a library of motions similar to the target motion video 
stream and assumes the length of each segment is known. A library of motions that are 
similar to the target motions is used to provide a reference frame that will be warped 
based on the target frame to get the final pose. Their method is capable of 
reconstruction a highly dynamic motion for a full body of 40 DOFs. A technique based 
on Motion Trend Analysis has been proposed in [22] [23]. The method uses the 
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information solved in the previous frame to solve for the next frame except the first 
frame. Hence, a user help is required to identify the correct 3D poses for the first few 
frames. Reference [24] exploits the domain specific knowledge about the target motions 
to find certain joint location and to limit possible poses. References [25] [26] [27] [24] 
use the orthographic projection method to determine the Z coordination.  
 To derive the Z coordinate from a single image, they assume the point 
corresponding and segment lengths are known and the certain distance between object 
and the camera are maintained. The problem of standard reflective ambiguity is also 
mentioned and resolved mostly with constraints.  Reference [27] improves upon [25] by 
allowing some perspective cases to work properly. 
 We adopt the method similar to the one described in [25] which uses the scaled 
orthographic projection model. Please refer to the Concepts & Methods section for 
details of the technique. 
 
2.3 Interdependence 
 Interdependence refers to the influence of a finger joint on others. Each finger joint 
is not fully independent but to some degree depend on the movement of some other 
joints on the hand. This can be viewed as dependence constraints between the DIP and 
PIP joints of each finger and between fingers. This concept has been studied and used 
in several works. Reference [28] observes that naturally a DIP joint cannot be moved 
without moving the PIP joint of the same finger. In another word there is a dependency 
between them. Reference [28] approximates the relationship between the two joint angle 
to be DIP = 2/3 PIP. They use this dependency to reduce the number of DOF by making 
DIP fully depend on PIP. Reference [13] uses interdependence in their work. Reference 
[29] expands the idea by assigning the degree of dependency between each joint 
across fingers.  
 



    

 

Chapter 3 
 

Proposed Method 
3.1 3D Coordinate Estimation 
 3D coordinate estimation refers to the process of calculating the depth information 
from a 2D input source. In our case, the input motion is a 2D image sequence of a hand. 
We perform the following steps as parts of the 3D coordinate estimation process: 
1. Identify the feature points (XY coordinates) of a hand in a video frame 
2. Fill in the missing data 
3. Decide on the reflective ambiguity 
4. Calculate Z coordinates of the feature points 
 
3.2 Input Acquisition 
 Our system needs three inputs from the user 
1. Reference hand model (on image plane). This reference hand model can be one of 

the input frames. It should show the full stretched hand on the image plane. This will 
be used to establish the segment lengths. A segment refers to a segment of a finger. 
For example each finger has three segments. 

2. The length of each segment. We need the length of each segment for 3D depth 
reconstruction. The user may not need to explicitly specify the length of all the 
segments. Theoretically, we need only one segment length and we can calculate the 
rest using the information from the reference hand model image. 

3. 2D monocular video sequence of hand gestures. In our experiment, Maya animation 
of a hand gesture is used.  
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Figure 3.1 The DOFs of each of the joint in our hand model. The black node has 2 DOFs. The white node has 1 
DOF. 

 
3.3 Our Hand Model 
 The specification of our 3D hand model is as follows: 
1. There are 14 joints and 19 degrees of freedom in each hand 
2. Each finger except thumb has three joints and sum up to 19 DOFs in a hand (figure 

3.1) 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 The feature point locations of our hand model. 

 
3.4 Feature Points Identification (XY Coordinates) 
 For each input image sequence of a hand gesture, we identify the locations of all 
feature points (figure 3.2). The feature points in our case include the locations of joints 
and the tip of each finger and two more locations on the palm. A location is specified as 
the XY coordinates of the following locations: 
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#  Location 
5  Tip of {Thumb, Index, Middle, Ring, Little} 
4  Distal interphalangeal joint (DIP) of {Index, Middle, Ring, Little} 
1  Interphalangeal joint (IP) of Thumb 
4  Proximal interphalangeal joint (PIP) of {Index, Middle, Ring, Little} 
5  Metacarpophalangeal joint (MCP) of {Thumb, Index, Middle, Ring, Little} 
1 Folding on the palm  
1  Wrist 

 In some images, it may be impossible to identify all of these feature point locations 
because of occlusion or blurred image. In such cases, we have employed a technique 
to approximate their locations. These techniques are discussed in details later. Also, one 
assumption is that if a feature point is occluded, probably its exact location is irrelevant 
in that context and it should be able to be estimated by its rest pose which is 
approximately somewhere in the middle of its range (in case of a joint) [30]. 
 
3.5 3D Depth Reconstruction 
 Since our input is a sequence of 2D image, the information we get for each feature 
point is 2D. Thus, we need a way to compute for the Z coordinate. To do this, we adopt 
the method in [25] which uses the scaled orthographic projection model. A projection of 
a point (x, y, z) in three-dimensional space to the point (x, y, 0) on the x-y plane can be 
represented as a matrix (equation 4). 
 
 
 
 

       
 In scaled orthographic projection, we simply add a scale factor to the equation 
(equation 2). This results in a simple scaling of the object coordinates. The scaled-
orthographic model amounts to parallel projection, with a scaling added to mimic the 
effect that the image of an object shrinks with the distance [31]. 
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The formula is expressed in equation 5.  

 
 

 
 

  
 From equation 5 we assume an arbitrary depth for 1Z and compute for 2Z . In this 
case, we also know 1u , 2u , 1v , 2v , and l . If we also know s , the scale factor, then we will 
be able to solve for 2Z . In our case we assume that the distance between the camera 
and the hand is much greater than the depth of Z coordinate. (Note that this assumption 
is needed for the scaled orthographic projection model to work.) With this assumption, 
the scale factor is almost constant for all the joints on the hand. So we can use the same 
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scale value for all the feature points. Now to compute for the scale factor s , we use 
equation 6 to find the overall minimum value of s . Note that equation 6 comes from the 
fact that the equation 5 has a real solution. We will use the minimum overall value of s  in 
our computation since the absolute values of X , Y and Z is not necessary. All we need 
is the relative depth between each feature point. Once we obtain s , we can use 
equation 4 to find the value of X and Y . We then use the computed 2Z  as the 1Z of the 
next segment. We then repeat this process until all feature points are computed. One 
issue that we still have is the reflective ambiguity. This stems from the fact that the 1Z or 

2Z in equation 5 can be the smaller one based on the 2D information we have.  In our 
case, joint angle limit, physiological constraints are used to pick the correct 
configuration.  
 From this step, we get XYZ coordinates of feature points. These values are 
imported into the Maya scene to animate the result motion on our hand model.  
 
3.6 Reflective Ambiguity 
 As stated earlier, the computed Z coordinate can be ambigious. This is because 
the Z coordinate value of two points along Z axis can be calculated from the same X and 
Y values.  The figure 3.3 shows an example of two points in 3-D space which have the 
same X and Y values but different Z values.   
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x, y, z1 x, y, z2

Z axis

Figure 3.3 The reflective ambiguity of Z coordinate 
 

 We use the following constraints to resolve the ambiguity in most cases. Our 
constraints are based on the information from related feature points on the same finger. 
 In the following explanation, let us call the MP joint, the PIP joint, the DIP joint and 
the tip of the finger as the feature point A, B, C, and D respectively. In our system, we 
assume that the palm is facing the camera and the palm stays upright. From this 
assumption and our observations, we enforce the following constraints on the value of 
the Z coordinate of a feature point. 

- Z coordinate of the feature point B is always greater than that of A 
- Z coordinate of the feature point C is always greater than that of B 
- Z coordinate of the feature point D is less than that of C when the ABC angle is 
less than or equal to 90 degree  

 Based on these constraints, the relative Z coordinate of the PIP and DIP feature 
point (B and C) are always the addition of its parent (MP and PIP respectively)’s Z 
coordinate. That is they are pointing away from the palm. 
 For the tip of the finger, our method considers the location of the MP, PIP and DIP 
joints simultaneously. In particular, we measure the inner angle at the PIP joint. If it is 
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less than 90 degree, the tip of the finger should be pointing toward the palm. That is its 
calculated Z coordinate is subtracted from its parent (DIP)’s Z coordinate to form its 
world Z coordinate. The idea is depicted in the figure 3.4. 
 

 

 
Figure 3.4 The tip of the finger points toward the palm if the inner angle of the PIP joint is less than 90 degrees. 

 The inner angle of the PIP joint is calculated using the law of the cosines as we 
already know the YZ coordinate of the MP, PIP, and DIP feature points.  
 
3.7 Occlusion and Missing Data Handling 
 Occasionally, it is possible that some feature point input data cannot be obtained. 
This can be caused by several reasons. First, a feature point on a finger is occluded by 
other part of the hand. For example when a hand is clinching into a fist, the feature 
points at the tip of index, middle, ring and pinky fingers are all occluded when the palm 
is facing toward the camera.  Second, an input image is not clear. There may be some 
part of the image that is unclear and cannot be detected.  
 In our experiment, we assume that the first frame is perfect. This means all the 
feature points are available in the first frame. If this is not the case in the real world, we 
need the help of the user to specify the missing feature point data to make sure that all 
the feature points of the first frame are available. 
 To fill in the msising data, we experimented with five different methods. The first 
method to deal with missing data is to use the data from the previous frame. This 
method is very simple and does not need any information from other feature points. 
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 The second method is to apply the amount of change occurring between the 
previous two frames to the missing frame. For example, if the X coordinate value of 
feature point A is missing in frame 3 and the X values of this feature point in frame 1 and 
2 are 5 and 8 respectively, the predicted X value in frame 3 will be 8 + 3 = 11. 
 
Frame A.X B.X Method 2 Method 3
0 3 3 3 3 
1 5 5 5 5 
2 7 4 7 7 
3 ? 3 9 5 

Table 3.1 An example of missing data handling using the interfinger dependency 

 
 The third method is similar to the second method with the addition of interfinger 
dependency. This dependency will enable us to detect a directional change of the 
missing values. That is we monitor the trend of value change from a depended-on or 
parent feature point. If there is a change in the direction of value (for example from 
increasing to decreasing) of the parent feature point, the same directional change is 
applied to the predicted value. The table 3.1 shows an example. In this example, a 
feature point A depends on a feature point B. And the X value of A is missing in frame 3. 
After we evaluate the trend of B.X, we see that the value trend is changing from 
increasing (i.e. 3 to 5 from frame 0 to frame 1) to decreasing (i.e. 5 to 4 from frame 1 to 
frame 2). Thus we decide that the value of A.X should be decreasing in frame 3. As a 
result, we predict the value of A.X at frame 3 to be 7 – 2 = 5. As a comparison, method 2 
without an interfinger dependency would predict the value to be 7 + 2 = 9. 
 The fourth method is similar to the third method. However, instead of using 
interfinger dependency, an intrafinger dependency is used. This method has a 
hypothesis that the intrafinger relationship is stronger than the interfinger relationship. 
Thus, intrafinger dependency should provide more accurate predicted value. 
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 The fifth method is similar to the fourth method. However, in addition to the 
directional cue from the parent feature point, we also use its value change rate as well. 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    

 

Chapter 4 
 

Experiment and Result 
 

 
Figure 4.1 Our Maya hand model. 

 
4.1 The Experiment 
 In our experiment, we first create a Maya hand model (figure 4.1) to have the joint 
as specified in the section 3.3. Then, we have created an animation of the Hand 
Clinching motion to be used as the input in our experiment. There are a few reasons for 
choosing Maya animation as the input in our experiment. First, we can get a very 
accurate XY coordinate to use. This will eliminate the input errors from our experiment. 
Second, in addition to X and Y coordinates, we also get the Z coordinates from the Maya 
animation. This is very useful for us as they can be used to validate our result.  Our Hand 
Clinching animation contains the total of 100 frames. Some examples of the frames are 
shown in figure 4.2. 
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Figure 4.2 Examples of input from Maya animation. 

 To extract the XY coordinates of the feature points from this animation, we wrote a 
Maya plugin using Maya API. This program goes through each frame, extracts the X, Y, 
and Z coordinate of each feature point and writes them to an output file. The plug in 
code is listed in Appendix C. An example of the extracted coordinates is shown in figure 
4.3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Examples of XYZ coordinates from Maya animation. 
 Please note that in addition to the X and Y coordinates, we have also extracted the 
Z coordinate. However, only the X and Y coordinate are used as the input to our Z 
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coordination calculation software. The extracted Z coordinate will be used later to verify 
our result.  
 After we have obtained the file containing data as shown in figure 4.3, we pass it 
as the input to our Z coordinate calculation software. This software will calculate the Z 
coordinate of each feature point in each frame. The program code is listed in Appendix 
B. The details of the program are discussed in the next section. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 The feature points and their IDs. 
 

4.1.1 Z Coordinate Calculation Program 
 This is the program to calculate the Z coordinate values based on the proposed 
techniques. The program inputs are the X and Y coordinates in all the frames, the actual 
segment lengths. The program also fills in the missing X and Y data with the value we 
guess using the values from the previous frame, the values of associated feature points 
in the current frame and the interdependence data. In each frame we have to calculate 
the Z coordinates of 21 feature points of the hand. The order of calculation is important. 
The output is the list of calculated Z coordinates of feature points in all frames. The 
program is listed in Appendix B. 
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4.1.1.1 The Order of Feature Point Calculation 
 The order of the Z coordinate calculation is defined. In our design, we assume that 
the palm is facing toward the camera and it does not move. So the Z coordinates of the 
feature point 19 and 20 are assigned to be 0. Next, each finger’s feature points are 
calculated in order starting from the thumb, to the pinky finger. 
 For each finger, the calculation order starts from the base to the tip of the finger. 
For example, the feature point 2 is calculated before the feature point 1. And the feature 
point 1 is calculated before feature point 0. 
 The reason for the exact order of calculation is because we need the Z coordinate 
of the previous feature point to calculate the world coordinate of a feature point as their 
positions are related to each other. Also, when we try to fill in the missing feature point 
data (e.g. occlusion), we need the information of the previous feature point. So we need 
to make sure that this information is already available. 
 
4.1.1.2 The Dependency of Feature Points 
 A feature point’s Z coordinate is computed based on another feature point. This is 
the joint that together with the feature point forms a segment of a finger. In our design, 
the parent joint is used. Thus, a feature point is dependent on the joint above it in the 
joint tree. For example, from figure 4.4 the feature point 2, 6, 10, 14, 18 are dependent 
on the feature point 20. The feature point 0 is dependent on the feature point 1.  The 
feature point 1 is dependent on the feature point 2 and so on.  
 The dependent feature point is used for two reasons. First, together with the 
feature point it forms a segment of a finger. We need this segment length in the Z 
coordinate calculation. Second, the calculated Z coordinate is relative to this feature 
point. So to obtain the world coordinate we add or substract the calculated Z coordinate 
value to the Z cooridinate value of this parent feature point.  
 
4.1.1.3 Filling in Missing Data  
 When the program starts, it reads frame data from the input file, then for each 
frame, it determines whether the XY coordinate of any feature point is missing. If that is 



    

 

20

the case, it tries to guess the missing value using the algorithms described earlier in 
section 3.7. After this step, a frame has complete XY coordinate data of all feature 
points. And we are ready to compute the Z coordinate of each feature point. 
 
4.1.1.4 Z Coordinate Calculation 
 For the first feature point (i.e. the folding palm or the feature point 20), the Z 
coordinate is assigned to 0. This is fine since we do not need to know the exact Z 
coordinates of these feature points. What we are trying to compute is the relative Z 
coordinate of these feature points. 
 For the rest of feature points, we compute their Z coordinate values as a relative 
value from the feature points they depends on.  The Z coordinate is calculated form the 
following formula,  
 vertex1.w = vertex2.w +/- sqrt( pow2(l) - pow2(abs(vertex1.u-vertex2.u)) - pow2(abs(vertex1.v-vertex2.v)) ); 
 One issue we have found is that The term (pow2(l) - pow2(abs(vertex1.u-vertex2.u)) - 

pow2(abs(vertex1.v-vertex2.v)) ) is sometimes negative. This can occur if there is an inaccuracy 
in such data we have obtained as a specified segment length or some of the XY 
coordinate values. To solve this problem, we force this term to become positive by 
adjusting the value of the segment length (l) little by little.  
 Once the relative Z coordinate value is calculated, we add it to the depended-on 
feature point’s Z coordinate to obtain its world coordinate with the exception of the tip of 
the finger feature points (i.e. the feature point 3, 7, 11, 15 in figure 4.4). For the fingertip 
feature point, we check for the reflective ambiguity as detailed in section 3.6 and the 
addition or subtraction to the depened-on feature point’s Z coordinate will be performed 
accordingly. We perform this calculation for every input frame and write the result to the 
output file. An example of the output is depicted in figure 4.5.  
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Figure 4.5 Examples of output from Z coordinate calculation program. 

4.1.2 Other Programs 
 Besides the Z coordination calculation program, we have written a number of 
other programs. First, we wrote a Maya plugin using Maya API to extract the X, Y, and Z 
coordinates of each feature point in a frame. The output of the program is the list of X, Y, 
and Z coordinates of each feature point in a frame. The code is listed in Appendix C. 
 Second, we wrote a program to compute the difference between the actual and 
calculated Z corrdinated and sort them in proper order. The programs are listed in 
Appendix E and F. 
 Third, we wrote a Maya plugin to import our calculated Z coordinate values and 
use them along the the original X and Y coordinates to create the output animation. The 
program is listed in Appendix D. 
 

4.2 Result and Analysis 
4.2.1 Z Coordinate Calculation 
 In our experiment, we choose to use a motion of a clinching hand (see figure 4.2). 
We believe that this motion provides a wide range of motions of each finger and hence 
is a good candidate for being used in our experiment.  
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 As stated earlier, we can validate the result of our computation and see how well it 
performs by comparing the calculated results of Z coordinates with the corresponding 
actual values we obtain from the Maya animation. The table 4.1 shows the result of Z 
coordinate calculation both with and without the reflective ambiguity check. The result is 
shown in the form of the difference between the actual and the calculated Z coordinate 
values. The table lists the minimum, the maximum, and the average difference for each 
feature point over 100 frames. 
 

Table 4.1 The table shows the mimimum, maximum, average and standard deviation of the difference between the 
actual and calculated Z value of each feature point. 

 
 The result shows that the minimum difference between the actual and calculated Z 
values is the same for both options for most feature points. This is because the frame 

Feature 
Point 

No Reflective Ambiguity Check Reflective Ambiguity Check 
Min Max Average Std Dev Min Max Average Std Dev 

0 0 1.06126 0.0500225 0.187208 0 1.06126 0.0500225 0.187208 
1 0 0.00001 0.000003 0.0000046 0 0.00001 0.0000031 0.0000046 

2 0.000001 0.000001 0.000001 0 0.000001 0.000001 0.000001 0 
3 0.00001 2.79918 0.377438 0.774469 0.00001 0.3105 0.00582 0.0359771 
4 0 0.03278 0.00034293 0.00326018 0 0.03278 0.00034293 0.00326018 

5 0 0.000127 0.00001 0.0000181 0 0.000127 0.00001 0.0000181 
6 0.0000033 0.0000033 0.0000033 0 0.0000033 0.0000033 0.0000033 0 

7 0 3.92996 0.581189 1.09838 0 0.33847 0.0105844 0.0501362 
8 0 0.28688 0.0051299 0.0334249 0 0.28688 0.0051299 0.0334249 

9 0 0.000039 0.00000482 0.0000064 0 0.000039 0.00000482 0.0000064 
10 0.000007 0.000007 0.000007 0 0.0000007 0.0000007 0.0000007 0 
11 0.07749 3.2563 0.551863 0.882854 0.07671 0.335839 0.0825675 0.0288816 

12 0.07737 0.33588 0.081987 0.0284531 0.07737 0.33588 0.081987 0.0284531 
13 0.07745 0.116305 0.0782574 0.00543573 0.07745 0.116305 0.0782574 0.00543573 

14 0.077459 0.077459 0.077459 0 0.077459 0.077459 0.077459 0 
15 0 2.08428 0.240371 0.526386 0 0.31035 0.00828877 0.0407495 

16 0 0.124255 0.00174183 0.0132183 0 0.124255 0.00174183 0.0132183 
17 0.000004 0.00004 0.0000127 0.00000642 0.000004 0.00004 0.0000127 0.00000642 
18 0.000006 0.000006 0.000006 0 0.000006 0.000006 0.000006 0 

19 0.881104 0.881104 0.881104 0 0.881104 0.881104 0.881104 0 
20 0 0 0 0 0 0 0 0 
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that produces the minimum difference does not exhibit the reflective ambiguity. So both 
options yield the same Z value. 
 One exception is for feature point 11. With the reflective amibiguity check turned 
on, the minimum difference between the actual and calculated Z coordinates occurs at 
frame 72 where the check detects the ambiguity and correctly decides that the feature 
point (which is the tip of the ring finger) should be pointing inward. With the reflective 
ambiguity check turned off, the minimum difference occurred at frame 14. However, in 
general, both options produce very similar minimum difference between the actual and 
calculated Z values. 
 From the maximum difference columns, it is evident that there is a difference in 
term of performance between the two options at all tip feature points where the 
Reflective ambiguity check is at work. The difference is caused by the fact that the 
reflective ambiguity check can detect the ambiguity and makes the right decision so the 
gap between the calculated and actual Z coordinates is small while the non ambiguity 
check option does not recognize the ambiguity and produces the Z coordinate in the 
wrong direction which results in a bigger gap. For all other feature points than the tip 
ones, both options produce the same result as our reflective ambiguity check works for 
the tip feature points only. 
 Another interesting point is that the DIP feature points produce a larger maximum 
gap than the PIP feature points which in turn produce a larger maximum gap than the 
MP feature points. This is because there is generally more motion change at the feature 
points nearer to the tip of the finger in our experiment. 
 From the experiment, most maximum differences between the actual and 
calculated Z values occur in the last frame. A few exceptions are for feature point 3, 7 
and 15. For feature point 3 (the tip of index finger), the maximum difference occurs at 
the frame 77. This is because the reflective ambiguity check fails to detect the ambiguity 
as the measured angle just falls off the threshold of 90 degree. So the calculated Z 
coordinate is pointing in the wrong direction and produces a big gap. For feature point 7 
(the tip of the middle finger), the biggest difference occurs at frame 69 where the 
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ambiguity is wrongly detected and the algorithm decides that the tip should point inward 
instead of outward. For feature point 15 (the tip of the ring finger), the maximum 
difference occurs at frame 80, when the reflective ambiguity check option fails to detect 
the ambiguity and produces the biggest gap. 
 The difference in performance between the two options is evident in the average 
gap between the calculated and actual Z coordinates they produce. The uncheck option 
produces a much bigger gap on average for all the tip fingers where reflective 
ambiguity check is working. 
 The standard deviation also shows that the check option consistently calculates a 
closer Z values than the uncheck option. The wrong direction of Z values produced by 
the uncheck option in the frames that ambiguity occurrs accounts for the big standard 
deviation values. Again the big difference of the standard deviation occurs at the tip 
feature points. This indicates that the check option can correctly solve the ambiguity and 
keeps the gap between the calculated and actual Z coordinate values close throughout. 
 From the result, we observe that the accuracy of the segment length provided by 
the user has a significant impact on the outcome. In one of the experiments, the result 
shows noticably inaccurate values of Z coordinates. After an investigation we found that 
they were caused by the wrong values of segment length as we recreated our hand 
model but failed to update the corresponding segment lengths. Later on, the segment 
lengths were remeasured, and the result looked much better. 
 In addition to the sensitivity to the segment length inaccuracy, the accuracy of the 
XY coordinate input is also very important. In practice, this can potentially pose a 
serious issue to our technique. From our experience, a very accurate way of obtaining 
the XY coordinate input is critical to the accuracy of our method. 
 From the experiment, we learn that our method has the advantages of simplicity 
and speed. Since all the computation involves only simple formulas such as Pythagoras 
theorem and law of cosines, the implementation is quite simple and the computation 
time is very fast in comparison to some other more sophisticated methods that involve 
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nonlinear functions. We concede that there may be a tradeoff between the accuracy and 
the speed. This however is not measured in our experiment. So we cannot say for sure. 
 Another advantage is the applicability to 2D input. This may be crucial for several 
applications. For example, we might want to reproduce a historical footage or some 
classic 2D cartoon in 3D. Our method is intended to work with this kind of media. 
 
4.2.2 Missing Data Handling 
 In this study, we have experimented with five different methods for predicting the 
missing XY coordinates as described in section 3.7. In the experiment, we have 
intentionally excluded the XY coordinates of some feature points in certain frames. The 
decision for which feature points to be excluded in a frame is based on the animation of 
the clinching hand motion. The table 4.2 shows the list of missing data of each feature 
point. 
 
Feature Point Missing Frames Feature Point Missing Frames 
0 - 11 98-99 
1 37-47 12 24-37 

2 - 13 37-47 
3 64-99 14 52-99 

4 37-47 15 - 
5 - 16 33-37 

6 86-99 17 37-47 
7 92-99 18 50-99 
8 31-37 19 - 

9 37-47 20 - 
10 52-99   

Table 4.2 The feature points and their missing frames for the Clinching Motion. 
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Figure 4.6 The graph shows the difference between the actual and predicted X values using the five different 
methods. 
 

 The chart in figure 4.6 shows the result of applying the five methods of estimating 
the missing data in our experiment. The Y axis of the graph in figure 4.6 shows the 
difference between predicted X and actual X values of a feature point. The X axis lists all 
the frames of each feature point. For example, the frame 1-100 is the frame 1-100 of  
feature point 0, the frame 101-200 is the frame 1-100 of feature point 1 and so on. 
 From the graph, there are several spikes. These are the points where there are 
noticable differences between the actual and predicted coordinate values. 
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Figure 4.7 The zoomed-in figure of spike 1, 6, 9 and 11. 

 
Spike 1, 6, 9, 11: 
 Spike 1 belongs to feature point 1. Spike 6 belongs to feature point 9. Spike 9 
belongs to feature point 13. Spike 11 belongs to feature point 17.  Although there is 
some difference in magnitude, all these spikes exhibit the same graphic pattern. For 
these spikes, method 2, 3, and 4 yield the same performance. This is because there is 
no directional change in X coordinate values for the duration of the missing frames.  
 Method 1 and 5 also yield the same performance. This is because method 1 uses 
the X value of the previous frame as the predicted values. So the predicted values stay 
the same for the whole period of the missing frames. And eventhough method 5 uses 
the rate of change of the parent feature point to predict the value of the child feature 
point. In this particular case, the rate of change of the parent feature point happens to 
be 0, so the predicted value also stays the same for all the missing frames. Hence both 
methods produce the same predicted values. 
 Method 2, 3, and 4 perform better than method 5 because the rates of value 
change of feature point 1 and of its parent feature point (2) are different in our 
experiment. In particular, the feature point 2's X values stay the same for the entire clip 
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while the X values of feature point 1 linearly increases. As a result, method 5 which uses 
the change rate of the parent feature point to predict the value of the child feature point 
produces the flat predicted X values (as the rate of change of feature point 2 is 0). That 
results in a gap between the actual and predicted X values getting wider for each 
missing frame. This is the same case for spike 1, 6, 9 and 11. Notably, they are all PIP 
feature points whose parent feature points are MP. And in our experiment all MPs do not 
move. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.8 The zoomed-in figure of spike 3 which belongs to feature point 4. 

Spike 3:  
 Spike 3 belongs to feature point 4. From the result, method 1 performs the poorest 
for this feature point as the predicted and actual values are getting further apart for each 
of the consecutive missing frames. This is because the actual X values are linearly 
increasing in the period of missing frames while the predicted values stay constant. 
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 Method 5 performs the second worst because the rate of change of the parent 
feature point is slower than that of the child feature point. So the predicted values which 
are calculated from the rate of change of the parent feature point does not keep up with 
the actual pace and thus a gap is getting wider with every missing frame. However, the 
predicted values are still closer to the actual values than those yielded by method 1.  
 Method 4 produces the same predicted values as method 2 in this spike because 
method 4 does not detect any directional change.  
 
Frame X  Value 
34 -0.247736 
35 -0.24445 
36 -0.241164 

37 -0.237878 
38 -0.241959 

39 -0.24039 
40 -0.23897 

41 -0.237688 

Table 4.3 The X values of feature point 8 for frames 34-41. 
 Method 3 doesn’t perform well because it detects a false directional change. This 
incorrect detection is caused by the fact that the feature point 8 which is the parent 
feature point of feature point 4 also has missing frames at this period (frame 31-37). And 
the predicted values for feature point 8 are a bit ahead of the actual pace and that 
results in a misleading directional change at the point where an actual value follows the 
last predicted value (frame 37 and 38 in table 4.3). At the point of false directional 
change, the predicted value is moving in the opposite direction of the actual value, 
hence the spike goes up. However, at frame 39, another directional change is detected, 
and the X value of the feature point 8 goes back to the correct direction again. Hence 
the spike comes down. 
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Figure 4.9 The zoomed-in figures of spike 4, 5, 7, 8 and 10 which belong to feature point 7, 8, 11, 12 and 16 
respectively. 
 

Spike 4, 5, 7, 8, 10: 
 Spike 4, 5, 7, 8 and 10 belong to feature point 7, 8, 11, 12 and 16 respectively. For 
these spikes, method 2, 3 and 4 yield the same performance as no directional change is 
detected neither with intrafinger (method 4) nor interfinger (method 3) dependency. 
Despite that, their predicted values are more accurate than those obtained from method 
1 and 5.  
 Method 5 performs poorly but still beats method 1. This is because the rate 
change of the depended-on feature point is eventhough not consistent with that of the 
feature point but still is proven to be better than using the just previous frame value as 
done by method 1.    
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Figure 4.10 The zoomed-in figure of spike 2 which belongs to feature point 3. 

Spike 2: 
 Spike 2 belongs to feature point 3. In this case, method 2 and 3 yield the same 
performance. Actually method 3 detects a directional change which occurs at frame 66 
of the depended-on feature point (7). However, in this clip, the X value of feature point 3 
and its depended-on feature point 7 head in the opposite direction. So the detection 
doesn't change the direction of the predicted value since it already moves in that 
direction. As a result, the predicted values keep going in the wrong direction and cannot 
produce a better result than method 2.  
 Method 1 surprisingly performs better than method 2 and 3 for this feature point. 
This is because of the directional change of the X value. So method 1 which uses the 
previous frame values and produces flat predicted values yields a smaller gap than 
method 2 and 3 which produce linearly increasing predicted values that move in the 
opposite direction of the actual values. As stated earlier, method 3 fails to work correctly 
because the X values of the parent and child feature point head in the opposite 
directions. 
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 Method 4 yields similar result to method 2 and 3 albeit a bit better. This is because 
method 4 which employs intra-finger dependency can detect the directional change at 
frame 82 from the depended-on feature point (4) and turns to the right direction. 
However, the predicted values still keeps falling further behind the actual values as the 
predicted rate could not keep up with the faster actual rate.  
 Similar to method 4, method 5 can also detect the directional chnage and 
changes the direction accordingly. However, the difference between the predicted value 
and the actual value still grows larger for each missing frame because the rate of the 
predicted value is faster than the actual rate. 
 From these result, we see that method 1 and 5 perform poorer than the other three 
methods. The method 1 performs poorly because it blindly uses the value from the 
previous frame as the values of the missing frames. So if there are several contiguous 
missing frames, the predicted values of the missing frame will be further away from the 
actual value as the predicted values continue to stay the same while the actual values of 
the missing frames are likely to move in one direction away from the previous frames. 
 In our experiment, the method 5 does not perform as expected because for the 
clip used in our experiment, the rates of change of a feature point and its dependent 
feature point do not coincide. So when there are several contiguous missing frames, the 
predicted values which are derived from the rate of change of the depended-on feature 
point grow faster or slower and consequentially create a wider gap for each missing 
frame. 
 For method 3, 4, and 5, we assume both parent and child feature points are 
directionally compatible. So it doesn't work well in the case where their coordinate 
values are actually growing in the different directions. Also, we assume the same or 
similar rate change between the parent and child feature points in the dependency 
relationship. So the method fails when that assumption is not true. Thus, choosing the 
right dependency is important to the success of these methods. 
 In our study, we see that the methods that apply the amount of coordinate change 
from the previous frame (method 2, 3, 4) work well especially if the number of missing 
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frames is small. This is because there seems to be a locality of value change. In other 
words, the rate of coordinate value change of neighbouring frames is very similar.  
 In the case that there is a directional change of coordinate values during the 
period of missing frames, method 3 and 4 proves to be useful. However, this feature is 
not very important if the number of consecutive missing frames is small. Also, this 
strategy very much depends on the depended-on feature point. So again choosing the 
right dependency between feature points is crucial. 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 



    

 

Chapter 5 
 

Conclusions and Suggestions 

5.1 Conclusions 
 We have shown a method to estimate the 3D coordinate from the 2D hand motion. 
In this method, we employed a number of techniques to derive the missing Z 
coordinates and in some cases the X and Y coordinates. The main techniques that we 
use are the the orthographic projection method which is used to determine the Z 
coordination. The occlusion and the missing X and Y coordinate data are tackled with 
the interdependence, previous frame data, and natural rest pose of a hand. 
 The experiment uses the input from Maya animation. An added advantage of 
using Maya animation as an input in our experiment is that we are able to obtain the 
actual Z coordinate to verify our result.  
 In our study, the Z coordinate values are computed with both the reflective 
ambiguity option on and off. The result shows that our method with the reflective 
ambiguity option produces more accurate result at the tip feature points where the 
ambiguity check is employed. 
 In summary, we have seen from our experiment on applying the variety of 
techniques to build a system for estimating 3D coordinate from 2D video input and see 
how well these techniques are working in practice. 
 We hope that some new insights based on the experience of our experiment will 
be beneficial to others attempting similar tasks in the future. Moreover, we hope that our 
system can be used to generate interesting hand animation from 2D video. Some of the 
potential applications are sign language interpreter, game industry, etc. 

5.2 Suggestions 
 The method that we have experimented with still has certain limitations. First, it 
requires that the hand input has to be in a direct angle with the camera and the hand 
must be at least at a certain distance from the camera.  Second, the differences in the 
input and output hand sizes are not considered in our experiment. The proper scaling of 
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the data to fit the output hand model will render the system more practical to several 
applications. 
 In our experiment, the input we use is obtained from the Maya animation for the 
correctness purpose. It will be interesting to see the input that comes from an actual 
video sequence. This will require a visual based tracking technique for example. 
 Our reflective ambiguity check considers only the tip feature points. This is 
because we believe that that is where the ambiguity will occur in most cases. However, 
to obtain more accurate result, a more sophisticated technique may be studied and 
applied to some other feature points. 
 Also, some additional constraints may improve the correctness of the result. An 
example is the angle-limit constraint. Moreover, some other constraints may help 
improve the correctness of the missing data calculation. However, the constraints can 
also introduce a complexity to the system and may slow down the system. So a further 
study is needed for this issue. 
 The result of our study shows that the interdependency between feature points 
helps improve the correctness of missing data estimation. However, we feel that further 
study on finding the right interdependency can help improve the result even more. 
 Another interesting to see is the comparison of our method to other more 
sophisticated methods. It would be beneficial to measure the actual tradeoffs between 
our method which are simple and fast with a more sophisticated method and 
supposedly more accurate. The study may lead to a combination of our techniques with 
others to create a more efficient system. 
 Lastly, more animations may be experimented to hopefully yield more insights on 
how the method performs over a wider range of motions and how it can be improved to 
work more accurately with them.  
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 The followings is the paper in the title of “3D Hand Motion Retargeting From Video 
Image Sequence”. It has been presented at 2010 The 2nd International Conference on 
Computer and Automation Engineering (ICCAE 2010), February 26 – 28, 2010, 
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Abstract— This paper presents a progress on 
building a system to perform motion retarget of 
2D hand motion from video image sequence to a 
3D hand model. In our method, the orthographic 
projection method is used to determine the Z 
coordination. Additionally, information from the 
previous frames, interdependence of a hand 
model and approximate rest pose of a hand are 
used to deal with occlusion. 

Keywords- motion retarget, hand motion 

 

I. INTRODUCTION 

 Computer animation is the science and 
art of using a computer to create moving 
images. The idea is to make a character move 
in a way intended by the artists and convey 
their creativity to the audience.  
 There are several ways to generate 
motions for an articulated character. Some of 
the more common are Kinematics, Dynamic 
control [4], Keyframing, Motion editing [28] 
[27] [15] [5] [8], and Motion capture. Recently 
more attention has been paid to an alternative 
to the traditional methods. It is the typical 2D 
video that is recorded by a typical camera or 
even a web cam.        
There are certain advantages to this motion 
source. First, the source model does not need 
to be attached with sensors. Second, the cost is 
typically lower than the traditional motion 
capture. Third, there are enormous stocks of 
live action footage recorded as 2D videos. 
Some of them are of historic values and cannot 
be reproduced. An example is a number of 
classic sport moments. This can be readily 
used as a motion source. 
 Using 2D video as a source of motions 
has a few challenges of its own that need to be 
addressed. First, the missing data (e.g. those 
caused by occlusion) need to be somehow 
recovered. Specific to hand motions, we may 
consider using interdependence in addition to 
constraints, motion library, sample space, etc. 
Second, the 2D nature of it necessitates the 
lack of depth information. Thus some variants 
of 3D reconstruction techniques are used to 

recover the missing Z coordinate. We will 
address these issues in our work. 
 After a motion is acquired through one 
of the means mentioned above and stored in a 
motion representation, a typical motion 
retarget proceeds. As part of the process, an 
acquired raw motion is typically processed in 
some ways to create a more appropriate 
motion for each target character. The output of 
this step is the adapted motion data used to 
drive the target motion. For the case of an 
articulated figure, the output is usually joint 
angle data for all the joints. 
 The animation of human articulate body 
has long been received numerous attentions. 
The works in this area vary in terms of the 
body parts on which they focus. As for the 
hand, it has been a focus of many researches in 
computer animation because not only it is one 
of the most animated parts of human body but 
also one of the most complex body parts. In 
addition it is essential for human 
communication and expression. Our work will 
focus on retargeting the hand motion from 2D 
monocular video sequence to a 3D hand 
model.   
 In summary, the aim of this work is to 
perform motion retarget by using the motions 
from the 2D monocular video sequence which 
is an alternative to the traditional motion 
capture. This work will focus on motions of 
the human hand. The expected end product is a 
software system that is capable of retargeting 
hand motions from 2D video sequence to a 3D 
hand model. The motion input will be 2D 
video sequence of hand gestures from a 
monocular video camera. The output will be 
the animation of the deformed hand. 

II. RELATED WORK 

A. Hand Model 

 Hand anatomy has long been studied 
and well understood in the field of anatomy 
and biomechanics [1]. Hand is one of the most 
complex body parts. Most animation research 
focuses on its two main functionalities which 
are grasping and fine motor skills. Many 
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aspects have been studied such as its 
constraints, limitations, DOFs, bones, tendons, 
and muscles.  Several hand models have been 
proposed over the years. Examples are [13], 
[7], [6], [9], [19], [11], [18], [17] [10], etc.  
Each has its own strengths and weaknesses. 
Whichever one we should use depends on the 
task at hand.  More closely related to our work 
are [19] and [11]. In particular, they also 
consider inter -joint dependencies.  

 Our hand model will be a relatively 
simple kinematic chain consisting of joints and 
segments. Each joint has a number of DOFs 
and limitations. Also, interdependence 
between finger joints will be used. More 
details are further explained in the Methods 
section. 

B. Depth Reconstruction 

 Depth reconstruction refers to the 
process of extracting the depth information 
from 2D data. Its challenge lies in the fact that 
it is an under-determined problem. To solve it, 
we need to pose some constraints or use some 
assumptions and find a solution under that 
framework. 
Study on 3D Depth recovery from 2D input 
has been performed for some time. There have 
been several techniques proposed. Reference 
[24] proposes an algorithm to compute the 
three dimensional structure of a scene from a 
pair of stereo images.  Reference [2] constructs 
a 3D object query from 2D drawings. Their 
algorithm can handle objects with both planar 
and curved faces.  Reference [25] estimates 3D 
depth from a single still image. It proposes the 
use of monocular cues (e.g., texture variations 
and gradients, defocus, color/haze, etc.) in 
addition to the stereo cues. 
 More recently, Reference [21] and [22] 
reconstruct a human-like figure motion from 
2D video stream. They assume an existence of 
a library of motions similar to the target 
motion video stream and assume the length of 
each segment is known. A library of motions 
that are similar to the target motions is used to 
provide a reference frame that will be warped 
based on the target frame to get the final pose. 
A technique based on Motion Trend Analysis 
has been proposed in [29] and [30]. The 
method uses the information solved in the 
previous frame to solve for the next frame 
except the first frame. Reference [16] exploits 
the domain specific knowledge about the target 
motions to find certain joint locations and to 
limit possible poses. Reference [26], [14], [23], 

and [16] use the orthographic projection 
method to determine the Z coordination.  
 To derive the Z coordinate from a 
single image, they assume the point 
corresponding and segment lengths are known 
and the certain distance between object and the 
camera are maintained. The problem of 
standard reflective ambiguity is also 
mentioned and resolved mostly with 
constraints.  Reference [23] improves upon 
[26] by allowing some perspective cases to 
work properly. 
 Our method is similar to the one 
described in [26] which uses the scaled 
orthographic projection model. However, our 
system intends to work with a video sequence 
instead of a single image. Moreover, occlusion 
is also considered in our work. 
C. Interdependence 

Interdependence refers to the influence of a 
finger joint on others. Each finger joint is not 
fully independent but to some degree depend 
on the movement of some other joints on the 
hand. This can be viewed as dependence 
constraints between the joints of each finger 
and between fingers. This concept has been 
studied and used in several works. Reference 
[31] observes that naturally a DIP joint cannot 
be moved without moving the PIP joint of the 
same finger. In another word there is a 
dependency between them. The reference [31] 
approximates the relationship between the two 
joint angle to be DIP = 2/3 PIP. They use this 
dependency to reduce the number of DOF by 
making DIP fully depend on PIP. Reference 
[12] uses interdependence in their work. 
Reference [3] expands the idea by assigning the 
degree of dependency between each joint 
across fingers.  

III. METHODS 

A. Input Acquisition 

 Our retarget system will need two 
inputs from the user 

 The length of each segment. We need 
the length of each segment for 3D 
depth reconstruction.  

 The feature points (XY coordinates) of 
a hand in a video frame from a 2D 
monocular video sequence of hand 
gestures. In our experiment, a 3D hand 
model will be created and animated 
using Maya software. Then we write a 
MEL script to extract the XYZ 
coordinates of each feature point in 
each frame. The XY part will be used 
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as the input to our experimental 
system. A benefit to this method is that 
we will also have the Z coordinate to 
verify our result.  

B. Our Hand Model 

 Our retarget system retargets input hand 
motion to a 3D hand model. The specification 
of our 3D target hand model (Fig. 1) is as 
follows: 

 There are 16 joints and 22 degrees of 
freedom (DOF) in each hand and wrist 

 The wrist has two DOFs 
 Each finger except thumb has three 

joints and sum up to 16 DOFs in a 
hand 

 
Figure 1.  shows the DOFs of each of the joint in our 

hand model. The black node has 2 DOFs. The white node 
has 1 DOF.  

C. Feature Points Identification (XY 
Coordinates) 

 For each input image sequence of a 
hand gesture, we assume that the locations of 
all feature points (Fig. 2) are available to us 
(unless they are occluded). A feature point in 
our case includes the location of a joint in each 
finger and the wrist location. The location will 
be specified as the XY coordinates of the 
following locations: 

 5 tips of Thumb, Index, Middle, 
Ring and Little fingers 

 4 Distal interphalangeal joints 
(DIP) of Index, Middle, Ring and 
Little fingers 

 
Figure 2.  shows the feature point locations of our hand 

model.  

 1 Interphalangeal joints (IP) of 
Thumb 

 4 Proximal interphalangeal joints 
(PIP) of Index, Middle, Ring, and 
Little fingers 

 5 Metacarpophalangeal joints 
(MCP) of Thumb, Index, Middle, 
Ring and Little fingers 

 1 fold of the palm 
 1 wrist 

 In some images, it may be impossible to 
identify all of these feature point locations 
because of occlusion. In such cases, we will 
need some technique to approximate their 
locations. These techniques are 
interdependence, previous frame data and 
constraints. Also, one assumption is that if a 
feature point is occluded, probably its exact 
location is irrelevant in that context and it 
should be able to be estimated by its rest pose 
which is approximately somewhere in the 
middle of its range (in case of a joint) [20]. 
D. 3D Depth Reconstruction 

 Since our input is a sequence of 2D 
images, the information we get for each feature 
point is 2D. Thus, we need a way to compute 
for the Z coordinate. To do this, we adopt the 
method in [26] which uses the scaled 
orthographic projection model.   A projection 
of a point (x, y, z) in three-dimensional space 
to the point (x, y, 0) on the x-y plane can be 
represented as a matrix (1). 
 

                       
 

(1)  
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 In scaled orthographic projection, we 
simply add a scale factor, s, (2). This results in 
a simple scaling of the object coordinates. The 
scaled-orthographic model amounts to parallel 
projection, with a scaling added to mimic the 
effect that the image of an object shrinks with 
the distance [23]. 
 

 
1 0 0

0 1 0

X
u

s Yv
Z

 
   

             
 

                        (2) 

 

 The formula is expressed in (4). The 

followings show the derivation of (4). l  
denotes the segment length between point 1 

and 2. X ,Y ,Z  are the actual coordinates. 
u , v  are the scaled X  and Y respectively. 
s  is the scale factor. 
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 From (4) we assume an arbitrary depth 

(e.g. 0) for 1Z
and compute for 2Z

. In this 

case, we also know 1u
, 2u

, 1v
, 2v

, and l . If we 
also know s , the scale factor, then we will be 

able to solve for 2Z
.    In our case we assume 

that the distance between the camera and the 
hand is much greater than the depth of Z 
coordinate. (Note that this assumption is 
needed for the scaled orthographic projection 
model to work.) With this assumption, the 
scale factor is almost constant for all the joints 
on the hand. So we can use the same scale 
value for all the feature points. Now to 
compute for the scale factor, s , we use (5) to 
find the overall minimum value of s . Note 
that (5) comes from the fact that (4) has a real 
solution. We will use the minimum overall 
value of s  in our computation since the 

absolute values of X , Y and Z are not 
necessary. All we need is the relative depth 
between each feature point. Once we obtain s , 

we can use (3) to find the value of X and Y . 

We then use the computed 2Z
 as the 1Z

 of the 
next segment. We then repeat this process until 
all feature points are computed. One issue that 
we still have is the reflective ambiguity. This 

stems from the fact that the 1Z
or 2Z

in (4) 
can be the smaller one based on the 2D 
information we have.  In our case, joint angle 
limit, physiological constraints are used to pick 
the more likely configuration.  
From this step, we can obtain XYZ coordinates 
of feature points. These values are used to 
compute the joint angle data for each joint. 
However, in the case where the source and 
target model have different scale, we need to 
scale this coordinates data to the correct value 
before they can be used to compute the joint 
angle.  

E. Interdependence 

 The purpose of using the 
interdependence in this work is two fold. 
Firstly, by taking the interdependence into 
account, the finger movement is more realistic. 
Secondly, the interdependence in conjunction 
with the coordinate and joint angle data help us 
fill in the missing data in case of a joint 
occlusion. We implement it as a dependency 
list of joints. The entry of this list will contain 
a joint ID and the list of its dependent joints 
together with the amount of dependency. For 
example,  

  
Index PIP: Index DIP (50), Middle 
PIP (25), Ring PIP (15) 
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 This entry says that if the Index Pip is 
moving x points, the Index DIP should be 
moving 1/2x points, the Middle PIP should be 
moving 1/4x points if no other force is exerted 
upon them. 
The exact number and amount of dependence 
between each joint are studied from other 
research works such as [31], [12], [3], and our 
own observation.  We plan to assign a default 
set of joint interdependence.  But a user can 
optionally fine tune these values. 

F. Constraint Identification 

 In addition to the joint angle and 
physiological constraints, another constraint is 
needed to make sure the end effectors are at 
the right position. For example, in a pose 
where the tip of thumb and the tip of index 
finger are touching, this fact should be 
enforced at the target hand as well.  
To determine “coincident” constraint, we use 
the XYZ coordinate of the feature points and a 
threshold. If the distance between any feature 
points is less than the threshold, we will 
consider them touching. The exact value of the 
threshold will be determined later.   

G. Joint Angle Data Calculation & 
Retargeting  

 The inverse kinematics is used to 
calculate the joint angle data given the XYZ 
coordinates of a desired pose obtained from 
the 2D input data and 3D depth reconstruction.  
 Since a hand model is fairly complex, 
the incremental approach of inverse Jacobian 
is used instead of the analytic approach. 
From this step, we will get the joint angle data 
for all the joints ready to be retargeted to our 
3D hand model. 

IV. RESULT EVALUATIONS 

 The result of the retarget will be 
evaluated by comparing the result of our 
calculation with the data retrieved from Maya 
software. 

V. CONCLUSION 

 We have described a technique to 
retarget a 2D video sequence to a 3D hand 
model. The working horse in our techniques is 
the orthographic projection method which is 
used to determine the Z coordination. The 
occlusion is also tackled with the 
interdependence, previous frame data, and 
natural rest pose of a hand. 
 We expect that our experiment on 
applying a variety of techniques to build a 

working system for hand motion retarget from 
2D video input will afford us to find out how 
well these techniques are working in practice 
and hopefully to discover some new insights 
based on the experience of building such 
systems that will be beneficial to others 
attempting similar tasks in the future. 
Moreover, we hope that our system can be used 
to generate interesting hand animation from 2D 
video. Some of the potential applications are 
sign language interpreter, movie and game 
industry, etc. 
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Appendix B 
Z Order Computation Program 

 This program computes the Z coordinate of all feature points on a hand in a frame. It 
is written in C++ using Visual Studio 2008. The input is the list of X, Y coordinates of the 
feature points on a hand for 100 frames. The program computes the corresponding Z 
coordinates of feature points on a hand of each frame. The output is written to a file. 
 
#include <iostream> 
#include <limits> 
#include <cmath> 
#include <map> 
#include <vector> 
#include <fstream> 
#include <string> 
 
using namespace std; 
 
 
class MyException 
{ 
 string m_msg; 
 int m_num; 
 
public: 
 MyException(const string& msg, int num) 
 { 
  m_msg = msg; 
  m_num = num; 
 } 
 
 void print() 
 { 
  cerr << m_msg << " (" << m_num << ")" << endl; 
 } 
 
 static const int EXC_OUT_OF_RANGE = 1; 
}; 
//////////////////////////////////////////////// 
class Vertex 
{ 
public: 
  double x, y, z; //actual x, y, z 
  double u, v, w;    // observed (scaled) x and y 
  int id; 
  bool m_uvSetFlag; 
 
  public: 
    Vertex():x(numeric_limits<double>::min()),  
   y(numeric_limits<double>::min()),  
   z(0), u(numeric_limits<double>::min()),  
   v(numeric_limits<double>::min()),  
   w(numeric_limits<double>::min()),  
   id(-7777), m_uvSetFlag(false) {} 
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    Vertex(int iid):x(numeric_limits<double>::min()),  
  y(numeric_limits<double>::min()),  
  z(0),  
  u(numeric_limits<double>::min()),  
  v(numeric_limits<double>::min()),  
  w(numeric_limits<double>::min()),  
  id(iid),  
  m_uvSetFlag(false) {} 
    Vertex(int iid, double uu, double 
vv):x(numeric_limits<double>::min()), 
  y(numeric_limits<double>::min()),  
  z(0),  
  u(uu),                             
  v(vv),  
  id(iid),  
  m_uvSetFlag(false) {} 
 
    void print() 
    { 
     cerr << "id = " << id << " u = "  
   << u << " v = " << v  
   << " w = " << w  
   << " x = " << x  
   << " y = " << y  
   << " z = " << z << endl; 
    } 
 
    void setUV(double uu, double vv) 
    { 
     u = uu; 
     v = vv; 
     m_uvSetFlag = true; 
    } 
 
    /** 
     * This will only work if setUVSetFlag is called properly 
     * when U and V are set. 
     */ 
    bool isUVSet() const 
    { 
     return m_uvSetFlag; 
    } 
 
    void setUVSetFlag(bool v) 
    { 
     m_uvSetFlag = v; 
    } 
 
}; 
 
 
//////////////////////////////////////////////// 
/** 
 * Define our hand model 
 * - how many feature points in the hand 
 * - segment length of each segment 
 */ 
 
/*************************************************** 
 * 
 * 
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 * 
 *                  |    |     |     | 
 *                 3|   6|    9|   12| 
 *                  |    |     |     | 
 *                 4|   7|   10|   13| 
 *                  |    |     |     | 
 *             0|  5|   8|   11|   14| 
 *              | 
 *             1|         -16 palm fold 
 *              | 
 *             2| 
 *                        -15 wrist 
 * 
 * 
 * 
 * 
 *                  |    |     |     | 
 *                 3|   7|   11|   15| 
 *                  |    |     |     | 
 *                 4|   8|   12|   16| 
 *                  |    |     |     | 
 *                 5|   9|   13|   17| 
 *                  |    |     |     | 
 *                 6|  10|   14|   18| 
 *             0| 
 *              | 
 *             1|         -20 palm fold 
 *              | 
 *             2| 
 *                        -19 wrist 
 * 
 *  - The reference point (the first point to compute Z order is 20 
 *  - 2,20 
 *  - 6,20 
 *  - 10,20 
 *  - 14,20 
 *  - 18,20 
 *  - 6, 10, 14, 18 bend forward only (no sideward or backward) 
 *  - 2 bends in toward 20 only 
 */ 
 
class HandModel 
{ 
private: 
 static map<int, int> m_associateVertices; 
 static map<pair<int, int>, double > m_segmentLengths; 
 static map<int, int> m_ZCoordinateComputeOrder; 
 static map<int, int> m_interdepNeighbors;  
 static map<int, int> m_interdepIntraFingerNeighbors; 
  
 
public: 
 const static int NUM_FEATURE_POINTS = 21; 
 const static int PALM_FOLD_INDEX = 20; 
 const static int PIVOT_POINT = 20; 
 const static int WRIST_INDEX = 19; 
 
 static void init() 
 { 
   m_associateVertices[0] = 1; 
   m_associateVertices[1] = 2; 
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   m_associateVertices[2] = PALM_FOLD_INDEX;  
 
   m_associateVertices[3] = 4; 
   m_associateVertices[4] = 5; 
   m_associateVertices[5] = 6; 
   m_associateVertices[6] = PALM_FOLD_INDEX; 
 
   m_associateVertices[7] = 8; 
   m_associateVertices[8] = 9; 
   m_associateVertices[9] = 10; 
   m_associateVertices[10] = PALM_FOLD_INDEX; 
 
   m_associateVertices[11] = 12; 
   m_associateVertices[12] = 13; 
   m_associateVertices[13] = 14; 
   m_associateVertices[14] = PALM_FOLD_INDEX; 
 
   m_associateVertices[15] = 16; 
   m_associateVertices[16] = 17; 
   m_associateVertices[17] = 18; 
   m_associateVertices[18] = PALM_FOLD_INDEX; 
 
   m_associateVertices[19] = 2; 
   m_associateVertices[20] = -1; //mean its own z coordinate 
is 0 
 
   //////////////////////////////////////////// 
   m_segmentLengths[pair<int, int>(0, 1)] = 2.391958;  
   m_segmentLengths[pair<int, int>(1, 2)] = 2.092683;  
   m_segmentLengths[pair<int, int>(2, 1)] = 2.092683; 
 
   m_segmentLengths[pair<int, int>(3, 4)] = 1.70821;  
   m_segmentLengths[pair<int, int>(4, 5)] = 1.83695;  
   m_segmentLengths[pair<int, int>(5, 6)] = 2.430827;  
   m_segmentLengths[pair<int, int>(6, 5)] = 2.430827;  
 
   m_segmentLengths[pair<int, int>(7, 8)] = 2.109315;  
   m_segmentLengths[pair<int, int>(8, 9)] = 2.017658;  
   m_segmentLengths[pair<int, int>(9, 10)] = 2.29072;  
   m_segmentLengths[pair<int, int>(10, 9)] = 2.29072;  
 
   m_segmentLengths[pair<int, int>(11, 12)] = 1.719452;  
   m_segmentLengths[pair<int, int>(12, 13)] = 2.559455;  
   m_segmentLengths[pair<int, int>(13, 14)] = 1.914169;  
   m_segmentLengths[pair<int, int>(14, 13)] = 1.914169;  
 
   m_segmentLengths[pair<int, int>(15, 16)] = 1.422462;  
   m_segmentLengths[pair<int, int>(16, 17)] = 1.363195;  
   m_segmentLengths[pair<int, int>(17, 18)] = 1.198547;  
   m_segmentLengths[pair<int, int>(18, 17)] = 1.198547;  
 
   m_segmentLengths[pair<int, int>(19, 2)] = 3.655157; 
   m_segmentLengths[pair<int, int>(PALM_FOLD_INDEX, 19)] = 
3.755123;  
 
   m_segmentLengths[pair<int, int>(2, PALM_FOLD_INDEX)] = 
3.755729;  
   m_segmentLengths[pair<int, int>(6, PALM_FOLD_INDEX)] = 
2.81398;  
   m_segmentLengths[pair<int, int>(10, PALM_FOLD_INDEX)] = 
1.719374; 
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   m_segmentLengths[pair<int, int>(14, PALM_FOLD_INDEX)] = 
2.078661; 
   m_segmentLengths[pair<int, int>(18, PALM_FOLD_INDEX)] = 
2.968683;  
   /////////////////////// 
   m_ZCoordinateComputeOrder[0] = PALM_FOLD_INDEX; //or 
should be first ones? 
 
   m_ZCoordinateComputeOrder[1] = 2; 
   m_ZCoordinateComputeOrder[2] = 1; 
   m_ZCoordinateComputeOrder[3] = 0; 
 
   m_ZCoordinateComputeOrder[4] = 6; 
   m_ZCoordinateComputeOrder[5] = 5; 
   m_ZCoordinateComputeOrder[6] = 4; 
   m_ZCoordinateComputeOrder[7] = 3; 
 
   m_ZCoordinateComputeOrder[8] = 10; 
   m_ZCoordinateComputeOrder[9] = 9; 
   m_ZCoordinateComputeOrder[10] = 8; 
   m_ZCoordinateComputeOrder[11] = 7; 
 
   m_ZCoordinateComputeOrder[12] = 14; 
   m_ZCoordinateComputeOrder[13] = 13; 
   m_ZCoordinateComputeOrder[14] = 12; 
   m_ZCoordinateComputeOrder[15] = 11; 
 
   m_ZCoordinateComputeOrder[16] = 18; 
   m_ZCoordinateComputeOrder[17] = 17; 
   m_ZCoordinateComputeOrder[18] = 16; 
   m_ZCoordinateComputeOrder[19] = 15; 
 
   m_ZCoordinateComputeOrder[PALM_FOLD_INDEX] = 19; //or 
should be first ones? 
 
   ////////////////////////////////////////////////// 
   m_interdepNeighbors[0] = 0; 
   m_interdepNeighbors[1] = 1; 
   m_interdepNeighbors[2] = 2; //-1; //mean its own z 
coordinate is 0 
 
   m_interdepNeighbors[3] = 7; 
   m_interdepNeighbors[4] = 8; 
   m_interdepNeighbors[5] = 9; 
   m_interdepNeighbors[6] = 10; 
 
   m_interdepNeighbors[7] = 11; 
   m_interdepNeighbors[8] = 12; 
   m_interdepNeighbors[9] = 13; 
   m_interdepNeighbors[10] = 14; 
 
   m_interdepNeighbors[11] = 15; 
   m_interdepNeighbors[12] = 16; 
   m_interdepNeighbors[13] = 17; 
   m_interdepNeighbors[14] = 18; 
 
   m_interdepNeighbors[15] = 11; 
   m_interdepNeighbors[16] = 12; 
   m_interdepNeighbors[17] = 13; 
   m_interdepNeighbors[18] = 14; 
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   m_interdepNeighbors[19] = 19; 
   m_interdepNeighbors[20] = 20; //mean its own z coordinate 
is 0 
 
 
   ////////////////////////////////////////////////// 
   m_interdepIntraFingerNeighbors[0] = 1; 
   m_interdepIntraFingerNeighbors[1] = 2; 
   m_interdepIntraFingerNeighbors[2] = 2;  
 
 
   m_interdepIntraFingerNeighbors[3] = 4; 
   m_interdepIntraFingerNeighbors[4] = 5; 
   m_interdepIntraFingerNeighbors[5] = 6; 
   m_interdepIntraFingerNeighbors[6] = 6; 
 
   m_interdepIntraFingerNeighbors[7] = 8; 
   m_interdepIntraFingerNeighbors[8] = 9; 
   m_interdepIntraFingerNeighbors[9] = 10; 
   m_interdepIntraFingerNeighbors[10] = 10; 
 
   m_interdepIntraFingerNeighbors[11] = 12; 
   m_interdepIntraFingerNeighbors[12] = 13; 
   m_interdepIntraFingerNeighbors[13] = 14; 
   m_interdepIntraFingerNeighbors[14] = 14; 
 
   m_interdepIntraFingerNeighbors[15] = 16; 
   m_interdepIntraFingerNeighbors[16] = 17; 
   m_interdepIntraFingerNeighbors[17] = 18; 
   m_interdepIntraFingerNeighbors[18] = 18; 
 
   m_interdepIntraFingerNeighbors[19] = 19; 
   m_interdepIntraFingerNeighbors[20] = 20; 
 
 
    
 } 
 
 static double findSegmentLength(const Vertex& v1, const Vertex& v2) 
 { 
  cerr << "findSegmentLength for (" << v1.id << ", "  
   << v2.id << ") is " << m_segmentLengths[pair<int, 
int>(v1.id,v2.id)]  
   << endl; 
  return m_segmentLengths[pair<int, int>(v1.id,v2.id)]; 
 } 
 
 /** 
  * Returns the vertex associated with vertex v. 
  * By association, we mean the vertex that together with v 
  * defines a segment length 
  */ 
 static int findAssociateVertex(Vertex v) 
 { 
  cerr << "findAssociateVertex for " << v.id 
    << " is " << m_associateVertices[v.id] << endl; 
  return m_associateVertices[v.id]; 
 } 
 
 static int findNeighborId(Vertex v) 
 { 
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  cerr << "findNeighborId for " << v.id  
    << " is " << m_interdepNeighbors[v.id] << endl; 
  return m_interdepNeighbors[v.id]; 
 } 
 
 static int findIntraFingerNeighborId(Vertex v) 
 { 
  cerr << "findIntraFingerNeighborId for " << v.id  
   << " is " << m_interdepIntraFingerNeighbors[v.id] << endl; 
  return m_interdepIntraFingerNeighbors[v.id]; 
 } 
 
 /** 
  * Returns the feature point to calculate at the order i th 
  */ 
 static int findZCoordinateComputeOrder(int i) 
 { 
  cerr << "findZCoordinateComputeOrder for "  
   << i << " is " << m_ZCoordinateComputeOrder[i] << endl; 
  return m_ZCoordinateComputeOrder[i]; 
 } 
 
}; 
 
map<int, int>  HandModel::m_associateVertices; 
map<pair<int, int>, double > HandModel::m_segmentLengths; 
map<int, int> HandModel::m_ZCoordinateComputeOrder; 
map<int, int>  HandModel::m_interdepNeighbors;  
map<int, int>  HandModel::m_interdepIntraFingerNeighbors; 
 
 
//////////////////////////////////////////////// 
/* the data for each frame */ 
class Frame { 
 
public: 
 Frame():m_scale(numeric_limits<double>::max()),  
  m_restedPalmScale(numeric_limits<double>::max()),  
  m_id(-1) {} 
 Frame(int id):m_scale(numeric_limits<double>::max()),  
  m_restedPalmScale(numeric_limits<double>::max()),  
  m_id(id) {} 
 
private: 
 Vertex m_featurePoints[HandModel::NUM_FEATURE_POINTS]; 
 double m_scale; 
 double m_restedPalmScale; 
 int m_id; 
 
 
private: 
 //helper 
   double pow2(double d) { return pow (d, 2); } 
 
public: 
   int getId() { return m_id; } 
 void setId(int id) { m_id = id; } 
 
   void print() 
   { 
    cerr << "feature points: " << endl; 
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    for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i) 
    { 
     m_featurePoints[i].print(); 
    } 
    cerr << "scale: " << m_scale << endl; 
 
   } 
   Vertex& getFpRef(int index) 
   { 
    cerr << "entering Frame::getFpRef\n"; 
    if (index < 0 || index >= HandModel::NUM_FEATURE_POINTS) 
    { 
     cerr << "error: out of range\n"; 
     throw MyException("out of range", 
MyException::EXC_OUT_OF_RANGE); 
    } 
 
    return m_featurePoints[index]; 
   } 
 
 void setfp(int index, const Vertex& v) 
 { 
  cerr << "entering Frame::setfp " << "(" << this->getId() << 
")"  
   << index << " " << v.u << ", "  
   << v.v << "fp id is " <<  v.id << "\n"; 
  if (index < 0 || index >= HandModel::NUM_FEATURE_POINTS) 
  { 
   cerr << "error: out of range\n"; 
   return; 
  } 
  m_featurePoints[index] = v; 
 } 
 
  /** 
   * Find only once per frame. 
   * We reuse the same scale factor for all reference points in the 
frame 
   * 
   * OUTPUT: m_scale is set if not already 
   */ 
  double findMinimumScale() 
  { 
   cerr << "entering Frame::findMinimumScale\n"; 
 
   if (m_scale == numeric_limits<double>::max()) //first time check 
   { 
    // equation 8 
    // Find the minimum overall scale over all reference point 
pairs 
    for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i) 
    { 
     Vertex vertex1 = m_featurePoints[i]; 
     Vertex vertex2 = 
m_featurePoints[HandModel::findAssociateVertex(vertex1)]; 
 
     const double l = HandModel::findSegmentLength(vertex1, 
vertex2); 
     cerr << "Frame::findMinimumScale(): the current segment 
length is " << l << endl; 
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     double s = sqrt(pow2(abs(vertex1.u-vertex2.u)) + 
pow2(abs(vertex1.v-vertex2.v))) / l; 
 
     cerr << "Frame::findMinimumScale(): the current scale is 
" << s << endl; 
 
     //keep minimum over all 
     if (s < m_scale) 
     { 
      m_scale = s; 
     } 
    } 
   } 
 
   cerr << "exiting Frame::findMinimumScale(): the minimum scale is 
" << m_scale << endl; 
   return m_scale; 
  } 
 
 
 
  /** 
   * Compute z coordinates of all feature points (of this frame) 
   * 
   * output: x, y, z of all feature points 
   * outf: the output file 
   */ 
  void computeZCoordinates(ofstream& outf)   //output: Z coordinates 
  { 
   for (int i = 0; i < HandModel::NUM_FEATURE_POINTS; ++i) 
   { 
    //doComputeZCoordinate(i); 
    int j = HandModel::findZCoordinateComputeOrder(i); 
    doComputeZCoordinate(j, outf); 
   } 
  } 
 
  double getScaleBasedOnRestedPalm()  
  { 
   return 1; 
 
   //input 
   //segment length of palm 
   //observed x,y of the two end points of palm 
   if(m_restedPalmScale != numeric_limits<double>::max()) 
    return m_restedPalmScale; 
 
   // equation 8 
   Vertex vertex1 = m_featurePoints[HandModel::PALM_FOLD_INDEX]; 
   Vertex vertex2 = m_featurePoints[HandModel::WRIST_INDEX]; 
   const double l = HandModel::findSegmentLength(vertex1, vertex2); 
   cerr << "Frame::getScaleBasedOnRestedPalm(): the current segment 
length is " << l << endl; 
 
   double s = l / sqrt(pow2(abs(vertex1.u-vertex2.u)) + 
pow2(abs(vertex1.v-vertex2.v))); 
 
   cerr << "Frame::getScaleBasedOnRestedPalm(): the scale is " << s 
<< endl; 
   return m_restedPalmScale = s; 
  } 
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  double  findScaledSegmentlength(const Vertex& v1, const Vertex& v2, 
double scale) 
  { 
   double segmentLength = HandModel::findSegmentLength(v1, v2); 
   cerr << "findScaledSegmentlength() segmentLength: " << 
segmentLength << ", scale:" << scale << "= " << segmentLength/scale << 
endl; 
   return segmentLength/scale; 
  } 
 
  /** 
     * find the Z coordinate for the feature point i 
     * 
     * input: u, v of feature point i 
     * output: x, y and z of feature point i 
     */ 
    void doComputeZCoordinate(int i, ofstream& outf) 
    { 
     cerr << "entering Frame::doComputeZCoordinate\n"; 
 
     Vertex& vertex1 = m_featurePoints[i]; 
     Vertex& vertex2 = 
m_featurePoints[HandModel::findAssociateVertex(vertex1)]; 
 
     // special case for the first feature point 
     if(vertex1.id == HandModel::PIVOT_POINT) 
     { 
      const double s = getScaleBasedOnRestedPalm(); 
      vertex1.w = 0; 
    vertex1.w = -0.219004; // <--- !!!! hard code with the 
actual value 
      vertex1.x = vertex1.u / s; 
      vertex1.y = vertex1.v / s; 
      vertex1.z = 0; // <--- hard code to 0 
    vertex1.z = -0.219004;  
 
 
 
    //////////////////////////////////////////////////////// 
    // 
    // FORMAT: 
    // j0 32 -4.92007 -1.23411 1.3899 
    // 
    outf << "j" << vertex1.id << " " // node name e.g. "j0" 
     << this->getId() << " "        // frameId 
     << vertex1.x << " " 
       << vertex1.y << " " 
       << vertex1.z 
     << endl; 
 
      return; 
     } 
  
     //find the scaled segment length 
     double l = findScaledSegmentlength(vertex1, vertex2, 
getScaleBasedOnRestedPalm()); 
 
   // check first if its gonna be a negative value (which cannot be 
sqrt'ed) 
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   while (( pow2(l) - pow2(abs(vertex1.u-vertex2.u)) - 
pow2(abs(vertex1.v-vertex2.v)) ) < 0) 
   { 
    cerr << "WARNING: length is adjusted (+0.001) before (" << l 
<< ") after (" << l+0.001 << ")" << endl; 
    // adjust the length segment length until the value is 
positive 
    l += 0.001; 
   } 
 
     vertex1.w = sqrt( pow2(l) - pow2(abs(vertex1.u-vertex2.u)) - 
pow2(abs(vertex1.v-vertex2.v)) ) + vertex2.w; 
 
     // Tip 
     if (vertex1.id == 0 || vertex1.id == 3 || vertex1.id == 7 || 
vertex1.id == 11 || vertex1.id == 15) 
     { 
    // what we do here is using the angle ABC to determine 
whether D's z should be less than C's z 
    // if the ABC is < 90 degree then D should be point toward 
the palm 
    Vertex& vertexB = 
m_featurePoints[HandModel::findAssociateVertex(vertex2)]; 
    Vertex& vertexA = 
m_featurePoints[HandModel::findAssociateVertex(vertexB)]; 
    //                   A         B         C 
    double ag = angle(vertexA, vertexB, vertex2); //get angle at 
B 
    if (0  < ag && ag <= 90)  
    { 
     vertex1.w = vertex2.w - ( sqrt( pow2(l) - 
pow2(abs(vertex1.u-vertex2.u)) - pow2(abs(vertex1.v-vertex2.v)) ) ); 
    } 
    else 
    { 
     cerr << "YYYY point away from the palm" << endl; 
    } 
     } 
 
     const double s = getScaleBasedOnRestedPalm(); 
     // equation 6 
     vertex1.x = vertex1.u / s; 
     vertex1.y = vertex1.v / s; 
     vertex1.z = vertex1.w / s; 
 
   //////////////////////////////////////////////////////// 
   // 
   // FORMAT: 
   // j0 32 -4.92007 -1.23411 1.3899 
   // 
   outf << "j" << vertex1.id << " " // node name e.g. "j0" 
    << this->getId() << " "        // frameId 
    << vertex1.x << " " 
      << vertex1.y << " " 
         << vertex1.z 
    << endl; 
   //////////////////////////////////////////////////////// 
    } 
 
    double angle(const Vertex& vertexA, const Vertex& vertexB, const 
Vertex& vertexC) 
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    { 
     // law of cosines 
     // 
     // b2 = a2 + c2 - 2ac cos x 
     // 
     //             C 
     //            /\ 
     //           /   \ 
     //     b    /       \   a 
     //         /          \ 
     //        /             \ 
     //       /          (x   \ 
     //     A -----------------B 
     //                c 
     // 
     // 2ac cos x = a2 + c2 - b2 
     //      x = arccos ((a2 + c2 - b2)/2ac) 
     // 
     double a =  sqrt(pow2(vertexC.z - vertexB.z) + pow2(vertexC.y - 
vertexB.y)); 
  double b =  sqrt(pow2(vertexC.z - vertexA.z) + pow2(vertexC.y 
- vertexA.y)); 
  double c =  sqrt(pow2(vertexA.z - vertexB.z) + pow2(vertexA.y 
- vertexB.y)); 
 
  double x = acos((pow2(a) + pow2(c) - pow2(b))/(2*a*c)); 
  const double PI = 3.14159265; 
 
  double result = x * 180.0 / PI; 
 
  return result; 
    } 
}; 
 
////////////////////////////////////////////////// 
class DataTracker 
{ 
private: 
 vector<Frame> m_frames; 
 int m_cur_frame; 
 int m_total_frames; 
 
public: 
 DataTracker():m_cur_frame(0),m_total_frames(0) {} 
 
 int init() //Currently read data from an input file 
 //The input file provides a list of 2D feature points of ALL frames 
 { 
  cerr << "entering DataTracker::init\n"; 
 
  //open file 
  ifstream is; 
  is.open("c:\\data.txt"); 
 
  if (!is.is_open()) 
  { 
   cerr << "cannot open input file\n"; 
   return -1; 
  } 
 
  Frame f[100]; 
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  m_total_frames = 100; 
  cerr << "total frames is " << m_total_frames << endl; 
 
  // set frame id :( 
  for (int i=0; i< m_total_frames; ++i) 
  { 
   //print frame for debugging 
   f[i].setId(i); 
  } 
 
  while(!is.eof()) 
  { 
   //double u[HandModel::NUM_FEATURE_POINTS], 
v[HandModel::NUM_FEATURE_POINTS]; 
 
   string jointName; 
   int frameNumber; 
   double u; 
   double v; 
   double w; 
 
   is >> jointName >> frameNumber >> u >> v >> w; 
 
   int j; 
   char c; 
   // parse for j from jointName e.g. "x12" => 12 
   sscanf(jointName.c_str(), "%c%d", &c, &j); 
 
   cout << jointName << " => " << c << ", " << j << endl; 
 
   //set it 
   f[frameNumber].setfp(j, Vertex (j, u, v)); 
   f[frameNumber].getFpRef(j).setUVSetFlag(true); 
  } 
 
  for (int i=0; i< 100; ++i) 
  { 
   m_frames.push_back(f[i]); 
  } 
 
  for (int i=0; i< m_total_frames; ++i) 
  { 
   //print frame for debugging 
   m_frames[i].print(); 
  } 
 
  return 0; 
 } 
 
 Frame& getCurrentFrame() //2D feature point from data tracking 
 { 
  if (m_cur_frame >= m_total_frames) 
  { 
   cerr << "ERROR: entering DataTracker::getCurrentFrame\n"; 
   return m_frames[0]; 
  } 
  return m_frames[m_cur_frame++]; 
 } 
 
 int getTotalFrames() 
 { 
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  return m_total_frames; 
 } 
 
 vector<Frame>& getFrames() 
 { 
  return m_frames; 
 } 
 
}; 
 
//////////////////////////////////////////////// 
class TwoDResolver 
{ 
private: 
 static TwoDResolver* m_instance; 
 
public: 
 static TwoDResolver* instance() 
 { 
  cerr << "entering TwoDResolver::instance\n"; 
  if ( m_instance == 0) 
  { 
   m_instance = new TwoDResolver(); 
  } 
  return m_instance; 
 } 
 
 enum FillInMissingDataMethod { 
     FILL_IN_MISSING_DATA_NOTHING = 1, 
     FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA = 2, 
     FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA = 3, 
     FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA = 4, 
     
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FRAME_DATA = 5, 
     
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VALUE_FRAME_DATA 
= 6 
         }; 
 
 /** 
  * Interdependence 
  * 
  * Use different techniques 
  */ 
 void fillInMissingData(Frame* f, DataTracker& dt, enum 
FillInMissingDataMethod method) 
 { 
  //which feature points are missing 
  for(int i=0; i< HandModel::NUM_FEATURE_POINTS; ++i) 
  { 
   if(f->getFpRef(i).isUVSet()) 
    continue; 
 
   // CLUTCH 
   // if it gets here it means this feature point uv is 
missing 
   // which means there feature point ismissing so 
DataTracker didn't read it from the input file 
   // So we have to add it 
   // since the call f->getFpRef(i) above automatically add 
it (with default value) 
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   // we need to correct its id. 
   f->getFpRef(i).id = i; 
 
   //missing data, synthesize one 
   switch (method) 
   { 
    case FILL_IN_MISSING_DATA_NOTHING: 
     break; 
 
    case FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA: 
     cerr << "previous : " << f->getFpRef(i).id << 
endl; 
     fillInVertexUsePreviousFrame(f->getFpRef(i), f-
>getId(), dt); 
     break; 
 
    case FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA: 
     cerr << "previous diff : " << f->getFpRef(i).id 
<< endl; 
     fillInVertexUsePreviousDiffFrame(f->getFpRef(i), 
f->getId(), dt); 
     break; 
 
    case 
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA: 
     cerr << "previous diff interdep : " << f-
>getFpRef(i).id << endl; 
     fillInVertexUsePreviousDiffInterdepFrame(f-
>getFpRef(i), f->getId(), dt); 
     break; 
      
 
    case 
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FRAME_DATA: 
     cerr << "previous diff interdep intrafinger : " 
<< f->getFpRef(i).id << endl; 
    
 fillInVertexUsePreviousDiffInterdepIntraFingerFrame(f->getFpRef(i), 
f->getId(), dt); 
     break;    
 
 
    case 
FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VALUE_FRAME_DATA
: 
     cerr << "previous diff interdep intrafinger 
value: " << f->getFpRef(i).id << endl; 
    
 fillInVertexUsePreviousDiffInterdepIntraFingerValueFrame(f-
>getFpRef(i), f->getId(), dt); 
     break;  
   }; 
  } 
 } 
 
 void fillInVertexUsePreviousFrame(Vertex& v, int frameId, 
DataTracker& dt) 
 { 
  // get the previous frame 
  if (frameId == 0) 
  { 
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   //first frame missing :( 
   throw 9999; //give up 
  } 
  Frame& f = dt.getFrames()[frameId-1]; 
  double prevFrameU = f.getFpRef(v.id).u; 
  double prevFrameV = f.getFpRef(v.id).v; 
 
  v.setUV(prevFrameU, prevFrameV); 
 } 
 
 void fillInVertexUsePreviousDiffFrame(Vertex& v, int frameId, 
DataTracker& dt) 
 { 
  // get the previous frame 
  if (frameId == 0 || frameId == 1) 
  { 
   //first frame missing :( 
   throw 9999; //give up 
  } 
 
  //previous frame 
  Frame& pf = dt.getFrames()[frameId-1]; 
  double prevFrameU = pf.getFpRef(v.id).u; 
  double prevFrameV = pf.getFpRef(v.id).v; 
 
  //previous's previous frame 
  Frame& ppf = dt.getFrames()[frameId-2]; 
  double prevprevFrameU = ppf.getFpRef(v.id).u; 
  double prevprevFrameV = ppf.getFpRef(v.id).v; 
 
 
  double currentU = prevFrameU + (prevFrameU - prevprevFrameU); 
  double currentV = prevFrameV + (prevFrameV - prevprevFrameV); 
  v.setUV(currentU, currentV); 
 } 
 
 void fillInVertexUsePreviousDiffInterdepFrame(Vertex& v, int 
frameId, DataTracker& dt) 
 { 
  // get the previous frame 
  if (frameId == 0 || frameId == 1 || frameId == 2) // bec we 
need at least three to determine if direction reverses 
  { 
   throw 9999; //give up 
  } 
 
  //previous frame 
  Frame& pf = dt.getFrames()[frameId-1]; 
  double prevFrameU = pf.getFpRef(v.id).u; 
  double prevFrameV = pf.getFpRef(v.id).v; 
 
  //previous's previous frame 
  Frame& ppf = dt.getFrames()[frameId-2]; 
  double prevprevFrameU = ppf.getFpRef(v.id).u; 
  double prevprevFrameV = ppf.getFpRef(v.id).v; 
 
  //check if neighbor's direction is reversed now  
  //if so , we should move in the reverse direction 
  Frame& pppf = dt.getFrames()[frameId-3]; 
  double neighborPrevPrevPrevFrameU = 
pppf.getFpRef(HandModel::findNeighborId(v.id)).u; 
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  double neighborPrevPrevPrevFrameV = 
pppf.getFpRef(HandModel::findNeighborId(v.id)).v; 
  double neighborPrevPrevFrameU = 
ppf.getFpRef(HandModel::findNeighborId(v.id)).u; 
  double neighborPrevPrevFrameV = 
ppf.getFpRef(HandModel::findNeighborId(v.id)).v; 
  double neighborPrevFrameU = 
pf.getFpRef(HandModel::findNeighborId(v.id)).u; 
  double neighborPrevFrameV = 
pf.getFpRef(HandModel::findNeighborId(v.id)).v; 
 
  double currentU; 
  double currentV; 
 
      //U 
      // 4 > 3 < 5 or 3 < 5 > 4 == reverse 
   // if trend is bucking down and we're going up, reverse it 
   if ( 
    (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU 
&& neighborPrevPrevFrameU > neighborPrevFrameU) && 
    (prevprevFrameU < prevFrameU) 
      ) 
   { 
    cerr << "reverseU\n"; 
    //reverse U direction 
    currentU = prevFrameU - (prevFrameU - 
prevprevFrameU);  
   } 
 
   // if trend is bucking up and we're going down, reverse it 
   else if ( 
    (neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU 
&& neighborPrevPrevFrameU < neighborPrevFrameU) && 
    (prevprevFrameU > prevFrameU) 
      ) 
      { 
    cerr << "reverseU\n"; 
    //reverse U direction 
    currentU = prevFrameU - (prevFrameU - 
prevprevFrameU);  
   } 
   // otherwise don't reverse it 
   else 
   { 
    cerr << "not reverseU\n"; 
    currentU = prevFrameU + (prevFrameU - 
prevprevFrameU); 
   } 
 
 
   //V 
   if ( (neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV 
&& neighborPrevPrevFrameV < neighborPrevFrameV) && 
    (prevprevFrameV < prevFrameV) 
    ) 
   { 
    cerr << "reverseV\n"; 
    //reverse U direction 
    currentV = prevFrameV - (prevFrameV - 
prevprevFrameV); 
   } 
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   else if ( 
    (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV 
&& neighborPrevPrevFrameV > neighborPrevFrameV) && 
    (prevprevFrameV > prevFrameV) 
    ) 
   { 
    cerr << "reverseV\n"; 
    //reverse U direction 
    currentV = prevFrameV - (prevFrameV - 
prevprevFrameV); 
   } 
   else 
   { 
    cerr << "not reverseV\n"; 
    currentV = prevFrameV + (prevFrameV - 
prevprevFrameV); 
   } 
 
  v.setUV(currentU, currentV); 
 } 
 
 void fillInVertexUsePreviousDiffInterdepIntraFingerFrame(Vertex& v, 
int frameId, DataTracker& dt) 
 { 
  // get the previous frame 
  if (frameId == 0 || frameId == 1 || frameId == 2) // bec we 
need at least three to determine if direction reverses 
  { 
   throw 9999; //give up 
  } 
 
  //previous frame 
  Frame& pf = dt.getFrames()[frameId-1]; 
  double prevFrameU = pf.getFpRef(v.id).u; 
  double prevFrameV = pf.getFpRef(v.id).v; 
 
  //previous's previous frame 
  Frame& ppf = dt.getFrames()[frameId-2]; 
  double prevprevFrameU = ppf.getFpRef(v.id).u; 
  double prevprevFrameV = ppf.getFpRef(v.id).v; 
 
  //check if neighbor's direction is reversed now  
  //if so , we should move in the reverse direction 
  Frame& pppf = dt.getFrames()[frameId-3]; 
  double neighborPrevPrevPrevFrameU = 
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevPrevPrevFrameV = 
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
  double neighborPrevPrevFrameU = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevPrevFrameV = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
  double neighborPrevFrameU = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevFrameV = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
 
  double currentU; 
  double currentV; 
 
  //U 
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  if (  
   (neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU && 
neighborPrevPrevFrameU < neighborPrevFrameU) && 
   (prevprevFrameU > prevFrameU) 
   ) 
  { 
   cerr << "reverseU\n"; 
   //reverse U direction 
   currentU = prevFrameU - (prevFrameU - prevprevFrameU); 
   
  } 
  else if (  
    (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU && 
neighborPrevPrevFrameU > neighborPrevFrameU) && 
    (prevprevFrameU < prevFrameU) 
   ) 
  { 
   cerr << "reverseU\n"; 
   //reverse U direction 
   currentU = prevFrameU - (prevFrameU - prevprevFrameU);  
  } 
  else 
  { 
   cerr << "not reverseU\n"; 
   currentU = prevFrameU + (prevFrameU - prevprevFrameU); 
  } 
 
  //V 
  if (  
   (neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV && 
neighborPrevPrevFrameV < neighborPrevFrameV) && 
    (prevprevFrameV > prevFrameV) 
  ) 
  { 
   cerr << "reverseV\n"; 
   //reverse U direction 
   currentV = prevFrameV - (prevFrameV - prevprevFrameV); 
  } 
  else if ( 
   (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV && 
neighborPrevPrevFrameV > neighborPrevFrameV) && 
   (prevprevFrameV < prevFrameV) 
   ) 
  { 
   cerr << "reverseV\n"; 
   //reverse U direction 
   currentV = prevFrameV - (prevFrameV - prevprevFrameV); 
  } 
  else 
  { 
   cerr << "not reverseV\n"; 
   currentV = prevFrameV + (prevFrameV - prevprevFrameV); 
  } 
 
  v.setUV(currentU, currentV); 
 } 
 
 void 
fillInVertexUsePreviousDiffInterdepIntraFingerValueFrame(Vertex& v, int 
frameId, DataTracker& dt) 
 { 



    

 

67

  // get the previous frame 
  if (frameId == 0 || frameId == 1 || frameId == 2) // bec we 
need at least three to determine if direction reverses 
  { 
   throw 9999; //give up 
  } 
 
  //previous frame 
  Frame& pf = dt.getFrames()[frameId-1]; 
  double prevFrameU = pf.getFpRef(v.id).u; 
  double prevFrameV = pf.getFpRef(v.id).v; 
 
  //previous's previous frame 
  Frame& ppf = dt.getFrames()[frameId-2]; 
  double prevprevFrameU = ppf.getFpRef(v.id).u; 
  double prevprevFrameV = ppf.getFpRef(v.id).v; 
 
  //check if neighbor's direction is reversed now  
  //if so , we should move in the reverse direction 
  Frame& pppf = dt.getFrames()[frameId-3]; 
  double neighborPrevPrevPrevFrameU = 
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevPrevPrevFrameV = 
pppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
  double neighborPrevPrevFrameU = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevPrevFrameV = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
  double neighborPrevFrameU = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighborPrevFrameV = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
 
  //prevFrameU and prevprevFrameU of intra neighbor 
  double neighbour_prevFrameU = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighbour_prevFrameV = 
pf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
 
  //Frame& ppf = dt.getFrames()[frameId-2]; 
  double neighbour_prevprevFrameU = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).u; 
  double neighbour_prevprevFrameV = 
ppf.getFpRef(HandModel::findIntraFingerNeighborId(v.id)).v; 
  double currentU; 
  double currentV; 
 
  ////U 
  if ( (neighborPrevPrevPrevFrameU > neighborPrevPrevFrameU && 
neighborPrevPrevFrameU < neighborPrevFrameU) && 
    (prevprevFrameU > prevFrameU) 
   ) 
  { 
   //reverse U direction 
   //apply rate of change instead 
   double chnageby = abs(neighbour_prevFrameU - 
neighbour_prevprevFrameU); 
   double percenttochange = (chnageby * 100.0) / 
neighbour_prevprevFrameU; 
   double amounttochange = (prevFrameU * 
percenttochange)/100.0; 
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   // apply the amount with the correct sign 
   if(neighbour_prevFrameU - neighbour_prevprevFrameU < 0) 
    currentU = prevFrameU - (-1.0* abs(amounttochange)); 
   else  
    currentU = prevFrameU - (abs(amounttochange)); 
 
 
  } 
  else if ( 
   (neighborPrevPrevPrevFrameU < neighborPrevPrevFrameU && 
neighborPrevPrevFrameU > neighborPrevFrameU) && 
   (prevprevFrameU < prevFrameU) 
   ) 
  { 
   //reverse U direction 
   //apply rate of change instead 
   double chnageby = abs(neighbour_prevFrameU - 
neighbour_prevprevFrameU); 
   double percenttochange = (chnageby * 100.0) / 
neighbour_prevprevFrameU; 
   double amounttochange = (prevFrameU * 
percenttochange)/100.0; 
 
   // apply the amount with the correct sign 
   if(neighbour_prevFrameU - neighbour_prevprevFrameU < 0) 
    currentU = prevFrameU - (-1.0* abs(amounttochange)); 
   else  
    currentU = prevFrameU - (abs(amounttochange)); 
  } 
  else 
  { 
   cerr << "not reverseU\n"; 
   currentU = prevFrameU + (neighbour_prevFrameU - 
neighbour_prevprevFrameU); 
  } 
 
  ////V 
  if ( (neighborPrevPrevPrevFrameV > neighborPrevPrevFrameV && 
neighborPrevPrevFrameV < neighborPrevFrameV) && 
    (prevprevFrameV > prevFrameV) 
  ) 
  { 
   //apply rate of change instead 
   double chnageby = abs(neighbour_prevFrameV - 
neighbour_prevprevFrameV); 
   double percenttochange = (chnageby * 100.0) / 
neighbour_prevprevFrameV; 
   double amounttochange = (prevFrameV * 
percenttochange)/100.0; 
 
   // apply the amount with the correct sign 
   if(neighbour_prevFrameV - neighbour_prevprevFrameV < 0) 
    currentV = prevFrameV - (-1.0* abs(amounttochange)); 
   else  
    currentV = prevFrameV - (abs(amounttochange)); 
  } 
  else if ( 
   (neighborPrevPrevPrevFrameV < neighborPrevPrevFrameV && 
neighborPrevPrevFrameV > neighborPrevFrameV) && 
   (prevprevFrameV < prevFrameV) 



    

 

69

   ) 
  { 
   //apply rate of change instead 
   double chnageby = abs(neighbour_prevFrameV - 
neighbour_prevprevFrameV); 
   double percenttochange = (chnageby * 100.0) / 
neighbour_prevprevFrameV; 
   double amounttochange = (prevFrameV * 
percenttochange)/100.0; 
 
   // apply the amount with the correct sign 
   if(neighbour_prevFrameV - neighbour_prevprevFrameV < 0) 
    currentV = prevFrameV - (-1.0* abs(amounttochange)); 
   else  
    currentV = prevFrameV - (abs(amounttochange)); 
  } 
  else 
  { 
   cerr << "not reverseV\n"; 
   currentV = prevFrameV + (neighbour_prevFrameV - 
neighbour_prevprevFrameV); 
  } 
  v.setUV(currentU, currentV); 
 } 
 
 void addFrame(Frame& f) 
 { 
  cerr << "entering TwoDResolver::addFrame\n"; 
 } 
}; 
 
TwoDResolver* TwoDResolver::m_instance = 0; 
 
//////////////////////////////////////////////// 
class Renderer { 
private: 
 static Renderer* m_instance; 
 
public: 
 static Renderer* instance() 
 { 
  cerr << "entering Renderer::instance\n"; 
  if ( m_instance == 0) 
  { 
   m_instance = new Renderer(); 
  } 
  return m_instance; 
 } 
 
 void addFrame(Frame& f) 
 { 
  cerr << "entering Renderer::addFrame\n"; 
 } 
}; 
 
Renderer* Renderer::m_instance = 0; 
//////////////////////////////////////////////// 
 
int main() 
{ 
 try { 
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  HandModel::init(); 
 
  DataTracker dt; 
  if (dt.init() != 0) // may pass in some input file 
  { 
   return 0; 
  } 
 
  // open an output file 
  // This will keep our computed z order 
  // plugin myTranslateTo will read this file into maya 
  // 
  ofstream outf; 
  outf.open("c:\\computedData.txt"); 
 
  if (!outf.is_open()) 
  { 
   cerr << "cannot open output file\n"; 
   throw 7777; 
  } 
 
 
  TwoDResolver* twoDResolver = TwoDResolver::instance(); 
  Renderer* renderer = Renderer::instance(); 
 
  for(int i=0; i< dt.getTotalFrames(); ++i) 
  { 
   cerr << "****************** START FRAME " << i << " 
***************************\n"; 
   // get current frame 
   Frame& f = dt.getCurrentFrame(); //2D feature point from 
data tracking 
 
   f.print(); 
 
   // Missing data synthesis techniques: pick one 
   //output: all 2D feature points 
   //twoDResolver->fillInMissingData(&f, dt, 
FILL_IN_MISSING_DATA_NOTHING);  
   //twoDResolver->fillInMissingData(&f, dt, 
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_FRAME_DATA);   
   //twoDResolver->fillInMissingData(&f, dt, 
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_FRAME_DATA);   
   //twoDResolver->fillInMissingData(&f, dt, 
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_FRAME_DATA);   
   //twoDResolver->fillInMissingData(&f, dt, 
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_FR
AME_DATA);  
   twoDResolver->fillInMissingData(&f, dt, 
TwoDResolver::FILL_IN_MISSING_DATA_PREVIOUS_DIFF_INTERDEP_INTRAFINGER_VA
LUE_FRAME_DATA); 
 
   //once we get the scaled length of each segment 
   //compare this with the observed length of each segment 
   //we know if the segment is tilting (has depth) 
   //and we can compute the depth (Z dimension) from the 
   //scale factor we have, the obserb 
   f.computeZCoordinates(outf);            //output: Z 
coordinates 
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   cerr << "***** END FRAME " << i << "******\n"; 
  } 
 
  outf.close(); 
 
 } 
 catch(MyException &e) 
 { 
  e.print(); 
 } 
 return 0; 
} 
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Appendix C 
 Coordination Export Program 

 
 This program is to export X, Y, Z coordinates of feature points of each animation frame 
to a text file. It is written as a Maya Plugin using Maya C++ API. To load the plugin to Maya, 
first make sure the .mll library is in a plugin path recognized by Maya. Then, open the script 
editor in Maya and type in the following command: 

 loadPlugin myCmd; 
. 
#include <math.h>  
#include <maya/MIOStream.h>  
#include <maya/MSimple.h>  
#include <maya/MPoint.h>  
#include <maya/MPointArray.h>  
#include <maya/MDoubleArray.h>  
#include <maya/MFnNurbsCurve.h>  
 
#include <maya/MSimple.h>  
#include <maya/MGlobal.h>  
#include <maya/MString.h>  
#include <maya/MDagPath.h>  
#include <maya/MFnDagNode.h>  
#include <maya/MFnTransform.h>  
#include <maya/MVector.h>  
#include <maya/MSelectionList.h>  
#include <maya/MIOStream.h>  
 
#include <fstream> 
 
DeclareSimpleCommand( doHelix, "Autodesk - Example", "8.0");  
 
MStatus doMe( const MArgList& )  
{  
    MDagPath            node;  
    MObject             component;  
    MSelectionList      list;  
    MFnDagNode          nodeFn;  
 MFnTransform        transformFn; 
    MGlobal::getActiveSelectionList( list );  
 
 // open output file 
 // 
 std::ofstream outf; 
 outf.open("c:\\data.txt"); 
 
 // loop through all selected nodes 
 // 
    for ( unsigned int index = 0; index < list.length(); index++ )  
    {  
        list.getDagPath( index, node, component );  
        nodeFn.setObject( node );  
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  transformFn.setObject( node ); 
 
  for (int i =0; i < 100; ++i) 
  { 
   MGlobal::viewFrame(i); 
   MVector transformVector = transformFn.getTranslation( 
MSpace::Space::kWorld ); 
 
   outf << nodeFn.name().asChar() << " " 
     << i  << " " 
     << transformVector.x << " "  
        << transformVector.y << " " 
     << transformVector.z << endl; 
  } 
    }  
 
 // close output file 
 // 
 outf.close(); 
 
    return MS::kSuccess;  
}  
 
 
MStatus doHelix::doIt( const MArgList& args)  
{  
    MStatus stat;  
  
 doMe(args); 
    return stat;  
}  
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Appendix D 
 Coordination Import Program 

 
 This program is to import X, Y, and our computed Z coordinates of feature points of 
each animation frame to Maya. It is written as a Maya Plugin using Maya C++ API. To load 
the plugin to Maya, first make sure the .mll library is in a plugin path recognized by Maya. 
Then, open the script editor in Maya and type in the following command: 

 loadPlugin myTranslateTo; 
 
#include <math.h>  
#include <maya/MIOStream.h>  
#include <maya/MSimple.h>  
#include <maya/MPoint.h>  
#include <maya/MPointArray.h>  
#include <maya/MDoubleArray.h>  
#include <maya/MFnNurbsCurve.h>  
 
#include <maya/MSimple.h>  
#include <maya/MGlobal.h>  
#include <maya/MString.h>  
#include <maya/MDagPath.h>  
#include <maya/MFnDagNode.h>  
#include <maya/MFnTransform.h>  
#include <maya/MVector.h>  
#include <maya/MSelectionList.h>  
#include <maya/MIOStream.h>  
 
#include <fstream> 
#include <map> 
#include <string> 
 
// Use helper macro to register a command with Maya.  It creates and 
// registers a command that does not support undo or redo.  The  
// created class derives off of MPxCommand. 
// 
DeclareSimpleCommand( mtt, "", "8.0"); 
 
using std::string; 
using std::map; 
 
map<string, map<int, MVector> > g_inputData; 
 
MStatus readComputedData() 
{ 
 // open input file 
 // this is the file that contains our computed z order 
 // 
 std::ifstream inf; 
 inf.open("c:\\computedData.txt"); 
 
 if (!inf.is_open()) 
 { 
  cerr << "cannot open input file\n"; 
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  return MS::kFailure; 
 } 
 
 // read all data for all frames 
 // 
 // FORMAT: 
 // j0 32 -4.92007 -1.23411 1.3899 
 string nodeName; 
 int frameId; 
 double u; 
 double v; 
 double w; 
 
 while (!inf.eof()) 
 { 
  inf >> nodeName >> frameId >> u >> v >> w; 
 
  //add it to heap 
  g_inputData[nodeName][frameId] = MVector(u, v, w); 
  cerr << "INPUT readComputedData(): from input file: " << 
nodeName << " , " << frameId << ", "  
   << g_inputData[nodeName][frameId].x 
   << g_inputData[nodeName][frameId].y 
   << g_inputData[nodeName][frameId].z 
   << endl; 
 } 
 
 inf.close(); 
 return MS::kSuccess; 
} 
 
 
MStatus doMe( const MArgList& )  
{  
    MDagPath            node;  
    MObject             component;  
    MSelectionList      list;  
    MFnDagNode          nodeFn;  
 MFnTransform        transformFn; 
    MGlobal::getActiveSelectionList( list );  
 
 
 // read input file 
 // keep it in heap 
 if (readComputedData() != MS::kSuccess) 
 { 
  return MS::kFailure; 
 } 
 
 // loop through all selected nodes 
 // 
    for ( unsigned int index = 0; index < list.length(); index++ )  
    {  
        list.getDagPath( index, node, component );  
        nodeFn.setObject( node );  
 
  transformFn.setObject( node ); 
 
  // find the last frame 
  // 
  unsigned int max_frame = 0; 
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  for(map<string, map<int, MVector> >::iterator mit = 
g_inputData.begin(); mit != g_inputData.end(); ++mit) 
  { 
    //map<int, MVector>& rmap = g_inputData[i]; 
   cout << "mit->second.size() > max_frame " << mit-
>second.size() << " " << max_frame << endl; 
   if (mit->second.size() > max_frame) 
   { 
    cout << "set mit->second.size() " << mit-
>second.size() << endl; 
    max_frame = mit->second.size(); 
   } 
  } 
 
  cout << "max_frame " << max_frame << endl; 
  for (int i =0; i < max_frame; ++i) 
  { 
   MGlobal::viewFrame(i); 
   //MVector transformVector = transformFn.getTranslation( 
MSpace::Space::kWorld ); 
 
   // Set translate fo this frame for this feature point 
   //tatus MPxTransform:: translateTo (const MVector & 
newTrans, MSpace::Space space , const MDGContext &context )  
 
   // Set to what we read from our computed data file 
   // 
   if (MS::kSuccess != 
transformFn.setTranslation(g_inputData[nodeFn.name().asChar()][i], 
MSpace::Space::kWorld)) 
   { 
 
    cerr << "ERROR!!!!!!!!!!!!!!: SET TRANSLATE TO: " 
     << nodeFn.name().asChar() << " " 
     << i  << " " 
     << g_inputData[nodeFn.name().asChar()][i] 
     << g_inputData[nodeFn.name().asChar()][i].x << " "  
        << g_inputData[nodeFn.name().asChar()][i].y << " " 
     << g_inputData[nodeFn.name().asChar()][i].z << endl; 
 
   } 
   else 
   { 
    cerr << "SUCCESS: SET TRANSLATE TO: " 
     << nodeFn.name().asChar() << " " 
     << i  << " " 
     << g_inputData[nodeFn.name().asChar()][i] 
     << g_inputData[nodeFn.name().asChar()][i].x << " 
"  
     << g_inputData[nodeFn.name().asChar()][i].y << " 
" 
     << g_inputData[nodeFn.name().asChar()][i].z << 
endl; 
   } 
  } 
 
    }  
 
    return MS::kSuccess;  
}  
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MStatus mtt::doIt( const MArgList& args ) 
{  
 return doMe(args); 
}  
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Appendix E 
 Coordination Data Sort Program 

 
open($fh, "<c:\\computedData.txt") || die ("cannot open input file"); 
$i = 0; 
 
while ($line=<$fh>) 
{ 
$lines[$i] = $line; 
$i++; 
} 
 
print sort numerically @lines; 
 
sub numerically {  
    @as = split (/ /, $a); 
    @bs = split (/ /, $b); 
 
$as[0] cmp $bs[0]  
 || 
$as[1] <=> $bs[1]  
} 
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Appendix F 
 Original and Computed Data Diff Program 

 
#include <iostream> 
#include <string> 
#include <fstream> 
#include <map> 
 
using namespace std; 
 
class ArgumentParser 
{ 
private: 
 ArgumentParser(); 
 
public: 
 static void parse(int argc, char** argv); 
 static const string& getFile1() { return file1; } 
 static const string& getFile2() { return file2; } 
 static bool getsortByFrame() { return sortByFrame; } 
 static bool getsortByJoint() { return sortByJoint; } 
 
private: 
 static bool sortByFrame; 
 static bool sortByJoint; 
 static string file1; 
 static string file2; 
}; 
 
bool ArgumentParser::sortByFrame = false; 
bool ArgumentParser::sortByJoint = false; 
string ArgumentParser::file1; 
string ArgumentParser::file2; 
 
void ArgumentParser::parse(int argc, char** argv) 
{ 
 for (int i=0; i< argc; ++i) 
 { 
  if(string(argv[i]) == "-s") 
  { 
   sortByFrame = false; 
   sortByJoint = false; 
 
   string nextArg(argv[++i]); 
   if (nextArg == "f") //sort by frame 
    sortByFrame = true; 
   else if (nextArg == "j") //sort by joint 
    sortByJoint = true; 
  } 
  else if(string(argv[i]) == "-f1") 
  { 
   file1 = string(argv[++i]); 
  } 
  else if(string(argv[i]) == "-f2") 
  { 
   file2 = string(argv[++i]); 
  } 
 } 
} 
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/************************************************** 
   * j0 0 -4.6975 -0.206784 5.0577 
   * name frame x y z 
   * 
   * - we open two input files 
   * - for file1, file2 
   * - read line by line and put in 
   * map1[jointNumber][frameNumber] = {x,y,z} 
   * map2[jointNumber][frameNumber] = {x,y,z} 
   * 
   * compare choices 
   * - compare z value 
   * 
   * sort choice 
   * - by joint 
   * - by frame 
   * 
   * name -> "j0" we'll extract to 0 
   * 
 */ 
class Point3D 
{ 
public: 
 Point3D(double xx, double yy, double zz): x(xx), y(yy), z(zz) {} 
 Point3D(): x(0), y(0), z(0) {} 
 
 double x; 
 double y; 
 double z; 
}; 
 
/************** 
 * Per file 
 * keep in map 
 */ 
class DataSet 
{ 
public: 
 // read data into map 
 DataSet(const string& inputFileName); 
 std::map <int, std::map<int, Point3D> >& getAllData() {  cerr << 
"map size is " << m_map[2].size() << endl ; return m_map; } 
 
private: 
 map<int, map<int, Point3D> > m_map; 
}; 
 
DataSet::DataSet(const string& inputFileName) 
{ 
 std::ifstream inf; 
 inf.open(inputFileName.c_str()); 
 
 int i = 0; 
 while(!inf.eof()) 
 { 
  char j; 
  string jointName; 
  int jointNumber; 
  int frameNumber; 
  double x; 
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  double y; 
  double z; 
 
  //j0 5 -4.76268 -0.427315 4.82576 
  inf >> jointName >> frameNumber >> x >> y >> z; 
  sscanf(jointName.c_str(), "%c%d", &j, &jointNumber); 
 
  m_map[jointNumber][frameNumber] = Point3D(x, y, z); 
 
  cerr << "input line = " << ++i << endl; 
 } 
} 
 
/*********************************    MAIN PROCEDURE    
*************************************/ 
void compareZ(map<int, map<int, Point3D> >& map1, map<int, map<int, 
Point3D> >& map2) 
{ 
 // assume 2 maps have the same number of entries 
 // 
 //j0 5 -4.76268 -0.427315 4.82576 
 //map [joint] [ frame] 
 
 map < int, map <int, double> > results; 
 
 for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame 
 for(int j= 0; j < map1[i].size(); ++j) 
 { 
  results[i][j] = map1[i][j].z - map2[i][j].z; 
 } 
 
 if (ArgumentParser::getsortByJoint()) 
 { 
  // sort by joint 
  for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame 
  for(int j= 0; j < map1[i].size(); ++j) 
  { 
   cout << "j" << i << " " 
     << j << " " 
     << map1[i][j].x << " " 
     << map1[i][j].y << " " 
     << results[i][j] << endl; 
  } 
 } 
 else if (ArgumentParser::getsortByFrame()) 
 { 
  // sort by frame 
  for(int j= 0; j < map1[0].size(); ++j)  
  for(int i= 0; i < map1.size(); ++i) // i is joint; j is frame 
  { 
   cout << "j" << i << " " 
     << j << " " 
     << map1[i][j].x << " " 
     << map1[i][j].y << " " 
     << results[i][j] << endl; 
  } 
 } 
} 
 
/********* 
 * 2 argument 
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 * a.out -s[j,f] -f1 <inputfile1> -f2 <inputfile2> 
 */ 
int main(int argc, char** argv) 
{ 
 try 
 { 
  ArgumentParser::parse(argc, argv); //assume argument is 
correct 
  DataSet dataSet1(ArgumentParser::getFile1()); 
  DataSet dataSet2(ArgumentParser::getFile2()); 
 
  // now we got all data in two maps 
  // let's compare 
  // 
  map<int, map<int, Point3D> >& map1 = dataSet1.getAllData(); 
  map<int, map<int, Point3D> >& map2 = dataSet2.getAllData(); 
 
  //compare Z 
  compareZ(map1, map2); 
 } 
 catch (...) 
 { 
 } 
} 
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