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CHAPTER I

INTRODUCTION

The finite element method is one U% ools for the numerical treatment

of partial differential equations (F DM Iﬁon the variational formulation

Adaptive finite ele te 70’s and now are stan-
dard tools in science a ective tools to obtain good
approximate solutions w, especially in presence of sin-
gularities

A key of AFEMs is an a timation. A posteriori error esti-
mates are computable estimates for the erro orms, typically in energy

norm, in term of théi- -p OXir da aﬁf the problem.

For elliptic PDEs, QF EMs are boil d(ajn to iterations of the form

AU %L&Mﬂsﬂ@ﬂ dM¥d o)
v A FFRRA R DI B e

MATE gomputes error estimates in suitable norm based on a posteriori error
estimators; REFINE refines the current mesh to obtain a finer mesh according to
the error indicators. The ultimate purpose is to construct a sequence of meshes
(approximate solutions) that will eventually reducing error in an efficient way in
term of degree of freedom.

For elliptic PDESs, a posteriori error estimation techniques were developed for



computing quantities nr to approximate the error in energy norm or other norms
on each finite element 7. These formed basis of adaptive mesh procedures de-
signed to control and minimize the error. In the last 30 years, many results
for elliptic error estimation techniques were obtained: we refer to Babuska and

Rheinboldt as representative of the Work Here are list of recent results of AFEM

i,

e W.Dorfler [4] desi of*FE@oved the convergence of algo-

for elliptic-type PDEs.

rithm for Poisson

e P. Morin, R.H nded the result of W.Dorfler

[4] for linear elli

e K. Mekchay and R.H.Nochetto [6], extended me result of [7] and proved

G ET@ ﬂoﬂ“ﬂﬁ WE f"i“ﬁ e

“(AVa) +b-Vu—tcu = f

AN I INY I

e functions on

e In the book by M. Ainsworth and J. T. Oden [1], they derived a posteriori
error estimates for nonlinear problems in general elliptic PDEs in term of

implicit forms.

e Recently in 2006, R.H. Nochetto, A. Schmidt, K.G. Siebert and A. Veeser

[8], they computed upper bounds and lower bounds of a posteriori error



estimates in the maximum norm for semi-linear Poisson equation,
—Au+ f(x,u) =0 in Q,

where f : 2 x R — R is assumed to be continuous in Q x R and non-

decreasing in the second argument.

In this thesis, we are in explicit a posteriori error esti-

as first derivative in second

where A is a functio i

argument. We estimate *\\1 ds of a posteriori error esti-
mates in the energy norum. |

We organized this thesis inf | Chapter II, we gave definitions
and theorems that are ;’-'?W 7 weak and discrete formulations of
our model problem t.'.’-i'-'f;-;'_""-‘-_"“"‘:;‘ff ------ te elementispace and the theorems for

deriving upper bound H A °T" e weak form of the model

problem including also‘the discrete problem In Chapter IV, we derived upper

and local lowﬂb%H Qn%ﬂlr ﬂeﬂvﬁcwl%']aﬂ ‘§ne idea for designing

AFEM algorit

ammn‘m UAIINYAY



CHAPTER 11

PRELIMINARY

We first introduced ined Sobolev spaces, refer to the
book of S. C. Brenner an

We reviewed Lebesg our attention for simplicity
to a real-valued functiong’ fon agiven doma at are Lebesgue measurable.

We denoted the Lebe gﬁ ‘

For 1 <p < oo, let "

0 ,—".-':
E —

and for p = oo, set

ﬂui}f’mﬂn’aﬁmﬂﬁ}
ool BHRNTRUAA TN A

LP(Q) == {f : |fllzr) < 00}

A multi-index « is an n-tuple of non-negative integers. Let o = (aq, ag, ..., ay,).
The length of « is given by |a] := Y"1 o;. For ¢ € C*, denoted by D*¢ the

[e%} Qn
usual partial derivatives (i) (i) ¢. Note that the order of this deriva-

ox1 Oxn

tive is given by |a|.



Definition 2.1.1. Let © be a domain in R™"(n > 1). Defined by C§°(£2) the set

of C*°(Q2) functions with compact support in €.

Note that a support of a continuous function f is the closure of the open set

{z : f(z) # 0}, denoted by supp(f).

Definition 2.1.2. We say that a gi tion f € LY(Q) has a weak derivative,

h that
] | d
/Qv(x)go(:c E f(Z) "‘ﬂ Vo e C5(Q).

Dy f, provided there is a

Example 2.1.3. Take = |z|. We claim that D] f

exists and is given by

To see this, we break the'interval (<1, e parts in which f is smooth,

and we integrate b V A ‘

/_}p )d = —x¢()dm+? 2 () dz
ALY INLRSHEAS.

ammmmﬂmﬁmﬂaﬂ

One maa check that D! f does not exist for i > 1. O

Definition 2.1.4. Let (2 be a domain in R, k£ be a non-negative integer, and
f € LY(€). Suppose that the weak derivatives D2 f exist for all |a| < k. Define

the Sobolev norms
1/p

1 llwesy == | D I1D5 o (2.1)

la|<k



and the semi-norms

1/p
|f|W’“vP(Q = (Z ”Daf”Lp(Q ) (2:2)

|la|=F

in the case 1 < p < 0o, and in the case p = co

i) < 00} - (2.3)

WkP(Q). L
Proof. See Theoremﬂ&él in B

AN ey
Hﬁﬂ“l‘ﬁ\?ﬂ TN TINGTHY: 7o

1. For u,v € L*(Q), (u,v) == [quv dz and |lullo := |lullr2) = v/ (u, u).
2. For u,v € HY(Q), (u,v); := (Vu, Vo) + (u,v).
3. For u,v € Hj(Q), (u,v); = (Vu, Vo) and |u|g1o) = /(Vu, Vu) = ||[Vullo.

4. For u e HY(Q), |ulmo) < [ullm @



Note that the Sobolev space H'(Q) is a Hilbert space (See Example 2.2.2 in

Brenner and Scott [3]).

Theorem 2.1.7 (Poincaré inequality). Suppose ), subset of R™, is an open

bounded domain. Then

Proof. See p.30 in Br

Corollary 2.1.8. ' i | o) is equibalent to the norm |- ) in

HL(9).

Proof. Let f € H} Q).

X

3
"y
|
d

|
.U

\Vf|2doey | |V f|*dx (by Theorem 2.1.7)

ﬂumﬁ 3NN
ARAATRERIINYAY

Therefore, | - |11 () is equivalent to the norm || - || z1(q)- O



2.2 Finite Element Spaces

In this section, we defined some continuous piecewise spaces of polynomial

function that are subspaces of H'(2).

Definition 2.2.1. Let  C R? be a polygonal domain. A triangulation T of Q

is a collection {T'} of triangles y/

1. Q=

2. for T,7" € T an . ‘\ & s.empty or consists of a vertex or
a common side. V4 4 3 |

Let w C Q. We =

o P, (w):= thes ‘ Ig : ia . two variables of degree less than

or equal to p;

e Hy := diamT = the _ .ué&- : ’y

-
Ll

o pr = the gy‘—- ------------- b ‘i T'. Regularity constant

is denoted by il m
ﬂUU?ﬂﬂWWWﬂ‘E 7

Definition 2. 2 2. A fami j:f ttian ulations={ ﬁ of 2 isisaid to be shape-

o e LN [t AL IUELARN ), vt

triangulations 7 .

Definition 2.2.3. Let 7 be a conforming triangulation. Then finite element

subspace of order p € N associated with 7 is defined by
VP = {ve CQ): VT € T,v|r € P,(T)}. (2.6)

If there is no ambiguity, we will use V for simplicity.



Refinement.

Let 7y be an initial triangulation of Q. If we decompose a subset of triangles of
7, into subtriangles such that the resulting set of triangles is again a triangulation
of ©, we call this a refinement of 7,. We may denote this triangulation by 7.

In this way we can construct a sequence of triangulations {73} such that 7, is

a refinement of 7.

A NINEIN:
R TREATHU IR 62

Definition 2.2.5. For T € 7y, we define the patch element of T to be

wr = U{T’ET:TOW#¢}.
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Figure 2.2.2: An/f a atCt to the element 7.

Theorem 2.2.6 (Th 2 7 \\ There is a linear interpolation

. 1 J
I — Tl ;ﬂ%
lo — Zrellr CHY"

nd S € OT we have

Vo € Hy(Q),  (2.7)
Vo € Hy(€), (2.8)
fl’t{ i "J
where Hg is the diameter of il o%id 5/3 18 a constant depending only on

the shape regularit

R

- -
Proof. See p.84 in Bss 2]. ' | O

ﬂuEI’J‘VIEJ'VliWEI’mﬁ
Qmaxﬂmmummmaﬂ



CHAPTER III

THE MODEL PROBLEM

3.1 The Model Problem
First, we introduc

Definition 3.1.1. L

for all p,q € R™ and so g W 1s strict monotonicity.

Let Q CR™ (n > 2) al domain, f € C(2 x R) and has
first derivative in second a R"™ be strict monotonicity.

tic PDE with vanishing
ﬂ%@?%%ﬁﬂﬂqﬂinﬁ 32)

on oS (3.3)

ARIAINITUNAINGA S

The wedk formulation of this problem reads as follows: find u € Hj () satisfying

As the model prob ”k.

Dirichlet boundary cmdltlon

B(u, ) = L(u; p), Vo € Hy(9), (3.4)

where
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and
0 = [ s (36)
The corresponding discrete problem then reads as follows: find uy € V$,(Q2) such
that
= L(u Vo € Vi (). (3.7)
Remark 3.1.2. ~— / 2
emar 7 | / ‘
—
1. If u satisfies eq en w is calleda weak solution of (3.2) and

\\ finite element solution and
\ VB (v,v) for v € HY(Q).

0 Q) and satisfies

(3.3) by [3].

2. If ugy satisfies e

is unique by [7]

Let || - || denotes the e
The error £ == u — ug

B(&w,p) = Bu ) 2 3 “ Vo € Hy(Q). (3.8)

For convenienceptes ) " denoted by f and fy,

respectively.

e Y TS

Proof. Let ¢ G%H . Then

ARNAINIUAMINYIAL, oo

= L(u; ¢) — L(ug; p), by equation (3.7)
:/f(x,u)¢dx—/f(x,uH)¢dx, by equation (3.6)
0
/[f z,u) — f(z,uy)|pde,
=(f—fu. 9)-
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3.2 Coercivity and Continuity

Definition 3.2.1. A bilinear form B(-,-) on a norm linear space H is said to be
bounded (or continuous) if 3 ¢; < oo such that
B(v,w) < cr||vllullwlle,  Yv,we H,

.,

cafjp

and coercive on V C H if 3

e V.
———
) g .':4._'~.- (3.5) is coercive on HJ (L)
tw.€ Hy(). Since A is strict
e get AVo-Vo > 0|Vu[?. Take

monotonicity, we can

integral over 2,

|
P = 0 Voll§ = 0lvlin q).

B(v,v) = / (AVu -
Q
Since two norms . eq ' = il ||§{1(Q)-

Finally, we wi V\ \'J v,w € HY(Q). By the

Cauchy-Schwarz inequality,

‘o o/ |
Fl 58 ARG e
Since A is smdqgth, A is boundedfon Q. Let G4A) = |Au_L]oo Then
Glvgagasmnilﬂng@iﬂf%ilngﬁi;L7
< CA)vllar@llwla @
0

Theorem 3.2.3. The norm || - ||y (q) is equivalent to the norm || - || in Hy(Q).

Proof. By the coercivity and continuous of the bilinear form B (Lemma 3.2.2),

we get Theorem 3.2.3. O
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3.3 [L?’-Estimates

Under the assumptions and notations of the model problem we can estimate

the L2-error as follows.

Theorem 3.3.1 (Duality). Let L*( Q) be a space with the norm || - ||o and the

scalar product (-,-). Let Hy(
another norm || - ||. Then ite el

Vi C Hy(Q) satzsﬁes7 ~—
; G vl + 1 = Sl

G which s also a Hilbert space under

utzon ug of equation (3.7) in

). (3.9)

Here, for g € L*(2) € Hy($2) the corresponding unique solution of

[ — wnllo < C

| w e Hy(Q). (3.10)
Proof. By considering 1 (L*(Q))*, the dual space

-
el

of L?(Q2). We can 4

B lwlo= ~ sup M

9eL?(Mllgllo<1

e o S ANETITHENDT w1
““Wﬁéﬁff'ﬁﬁi uwnwmaﬂ

for all v € H1

(3.11)

B(ug,v) = {fu,v), for all v € V§,.

By Lemma 3.1.3, B(u — ugy,v) = (f — fu,v) for all v € V§,. Moreover, if we

insert w := u —ug € HJ(Q) in (3.10), for any v € V4 and g € L*(Q), by
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continuity of the bilinear B and Cauchy-Schwarz inequality we get

<g,’U/—UH> :B(U—’UJH,QOQ),
=B(u—ug,pg —v)+ Blu —uy,v),

< Cllu = unll - llpg = vll +{f = fu,v),

= Julloll#g,llo,

Nf = fallolleg.zllo-

Since (2 is the convex ?y"-u 1, the solution of equation (3.10) has H?-

regular (Regularity-theorem [p.89, 2]). Therefore, th ete is constant ¢ depending
A

only on €, B and | K ' IT stying

ﬂuﬂ%ﬂﬂM%WQ%%i

Then ¢, is botnded on its domaan Thus 2P is also bounded Now the duality

@ O BTV 8

||U—UH||0 = sup (g, u —ug)
g€L?(),llgllo<1

SC(IIU—UHII sup - inf o, —of +[|f - fH||o>-

geL2(),]|gllo<1 VEVH
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Corollary 3.3.2. Under the hypotheses of Theorem 3.3.1 and f has first deriva-

tive in second argument with || fu||r~@) < p <1 for some positive p. Then
lu = unllo < CrH|u — unlmg)

where H is the maximum of Hy for T'€ Ty and a constant Cy depends only on

fullo- (3.12)
Apply the mean value t flu sug)| = | ful, u)||lu—ug|
for some . Take L?-nodh 6 hoflisides nid estimate || £.(u)lo < |l fullz=(@) <

Since p < 1, we cal .'" and side with the term on

the left-hand side:

ﬂummamﬁmﬂm
R FAR AR URT IR AN ©



CHAPTER IV

A POSTERIORI ERROR ESTIMATES

In the first step, we dec )equation in Lemma 3.1.3 for the

true error into local co B aﬁt

Let p € H}(Q) bw \\v\ rltlng the single integral over

the whole domain as ividual elements gives

B(E NE TN AN -wdx}.

TeTy

AVUH

%ﬁm Wﬁﬁ%ﬁﬁwﬁw

He amammmn NYIRE

and nr is the unit outward normal vector to 9T'. Each of these quantities is well-
defined thanks to the smoothness of the data and regularity of the approximation

uy when restricted to a single element.
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The contribution from the final term in equation (4.1) can be rewritten by
observing that the trace of the function ¢ matches along an edge shared by two
elements, giving

Ben o) = 4 [ = fupodo + [ Rrptr} -

TeETy

> ] e

SedTy

.

s and faces) of 7y and the final

where 07y is the set of in
summation is over the se ¢ 1nter-element sides S on the

interior of the mesh.

UH)T' nrr

defined on the side S s I¥ represents the jump discon-

tinuity in the approxim on the interface. Then, they will

be denoted by

Thus equation (4. -V_{» en

B(Ew, e Z /f fo)edr + | Rredz —|—Z /Jsgods. (4.3)

@ii ANLNINYNTS
%ﬁﬁmﬂﬂ?ﬂi ThRANTVRE o

Fmally, we defined local indicators and error estimators for finding upper

bounds and local lower bounds.

Definition 4.0.3. For T' € 75 and S € 07y an inter-element side, we define the

local error indicator ng(T) by

g (T) = H%”RTH%Q(T) + Z HSH‘]SH%%S)?
Scor
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and the error estimator ny(w) for w C Q by

W)= Y uu(T).

T€Ty TCw
4.1 Upper bounds
Let Zy be the Clément inter operator. For a given ¢ € H}(Q), where
Iy € Vg, and by the 7Le mma 3.1. | &yi‘cy (4.4), we get
pe ' \.‘\ﬁ JsTypds

and then subtracti

B(Ex o) )i DT R — Tug)da

B(En, o) % iRtz o — Zrol o)

‘|‘ Z ||JS||L2(S)||<P Zr ol r2(s)-

o e o] e ﬂﬂmmmm
SLZERE TN A TE

+ Z CHE | Jsll 125 | Vol 12 (on)-
SedTy

Applying Cauchy-Schwarz inequality leads to

B(&wu, ) < |f — fullollello

1/2
JrC||V90||0{ Z HE|Ro||Z2y + Z HS”JS”%?(S)} . (4.6)

TeTy SedTy



20

Therefore,

B(&n, o) < |If = fulollello + Coa (@I Velo Ve € Hy(Q).

So, substituting v — ug € HJ(2) in place of ¢ results in the estimate

lu —wrll® < I1f = fallo V(= un)lo- (4.7)

o — unl? <

By equivalence of | 41 (q

"|u " alloE € (). (4.8)

Theorem 4.1.1 (Upper boun
AAEdss < 2

|||u—u L HI f = fullo

where the constants V ."-'4‘ ity, a coercivity constant,
the domain 2, and tl l' data of the problem and Cy ‘L depends on p in Corollary
AN O N T

Proof. Follows'at once from prev1ous arguments O

Qﬁﬁﬂﬂ\ﬂ‘im UNIINYAY
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4.2 Lower bounds

A key role for estimating the local lower bounds will be played by certain
locally supported, nonnegative functions that are commonly referred to as bub-
ble functions. The two types of bubble functions are interior bubble functions,
bble functions, supported on a pair of

1

Let ¢r € P3(T) ' ior ub@)n with supp(¢¥r) = T and

OSnglandmaW
zeT ’

Theorem 4.2.1. T}

supported a single element, and

elements.

dimensional space P.

and

where the constant Viw

Proof. See Theorem 2. %m Ainsworth an Oden [1]. O

AP UNINEND T e s
AR v Ty

and
Theorem 4.2.2. Let S € JT be an edge and let g be the corresponding edge
bubble function. Let P(S) be the finite-dimensional space of functions defined on

S. Then for v € P(S), there exists a positive constant such that

O ol < / bs?ds < Clo|as)
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and

1/2

P svll ey + Hy P [svlm < CllvlZ2(s),

where the constant C'is independent of v and Hrp.

Proof. See Theorem 2.4 in Ainsworth and Oden [1]. O

(4.9)

where R be the LQM ; space of polynomials P, over the

on the boundary of element

the domain as a continuous

function by defining i sidest e eleme o be zero. Thus, inserting

B(5H7R_T¢T‘ _.7-_!: : ;I Yrdr + / RrRrprdr,

C—————y ¥

| v’ dx—/ﬂRTRT— o= ) (7 - (R o + B(En, Rar).
ﬂUﬂ?ﬂﬂWiWﬂnﬂ'ﬁ o

Applying the gecond part of prop%;tles of bubble functions, We obtain

ARANT A %R WIRANYIRY o

and therefore

Applying Cauchy-Schwarz inequality to the first term of (4.10) leads to
| 0rRa(Re = Ra)do < 6 Rl oo [ R = Rl
T
By equation (4.11),

/ brRr(Rr — Rr)dr < C|Re 2y | R — Rerll p2 ). (4.12)
T
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Similarly, for the second term of (4.10) we obtain

/T(f — fu)Rerdz < O\ f = fullizen) |Rrl 2ry.- (4.13)

Since the bilinear form B is bounded and supp (Rr¢7) =

MR o), (4.14)

—9 R \ _— —" o
YrRer de < Cl[Rell2e U Re~ Rallzayt I1f — fullza + Hr'll€nllmen )

and rescaling (4. 9) —————————————— : \:"

IRz || 2y < C{|| 7~ RT||L2(T) + ||f fH||L2(T) Hi leullmery} - (4.15)

By triangle @U&l’} Yl E]V]ﬁw 81107
QRARIANAIBARY oo

Hence, the desired bound on the actual residual follows from (4.15) and (4.16),

IRT |2y < C{IRr — Relleery + I1f = fullrzery + HR Nullmr ) - (4.17)

By applying the first part of Theorem 4.2.2,

[Tl < € [ vsTslds (4.18)
S
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where Jg is the best L?-projection of Jg onto P,(S). We extend Jg constantly
along the normal such that it is defined on wg. The function ¢ = Jg1bg vanishes
on the boundary of the subdomain wg. Extending ¢ by zero outside wg to the
whole of the domain ) gives a function ¢ € H(€2). The residual equation (4.3),

with this choice of ¢, yields

B(En. Tatbs) = / f ReTstsde + /S JsTsibsds,

and thus
/ bels ds = / bRy Jsdz

s
(4.19)
Each of these terms ca i od ] : o T b\‘ 4.2.2 and Cauchy-Schwarz

inequality. The first ter
s = Jslz2(s),
S

F S”Lz(S)' (420)

.»‘
B(Ers Jsvs) < CliEulliyws Vs s m ws),

AU INEHANELED, (42)
- ”WW’] I NRIINYIN Y

VsRrJsdr < |Re||r2we) 1¥sTs | 2 (ws)

The second term is .,.'ﬁ .

ws

< CHG || Rerl|p2(s) 15 | 22¢s)- (4.22)
Finally the estimation of the last term is
/ (f = fu)Tsvsdr < ||f = full2ws | Ts¥s|| 2 (ws)s
ws

< CHY?\f = full s 175 | 2(s)- (4.23)
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As a consequence of these estimates and the bound (4.18), we conclude that

1 Tsllr2cs) < C{I[Ts — Jsllras) + Hy IRl i2ws) + Hs 2110 1 ws)

+ HP|f = full2ws) -

By triangle inequality similar to (4.16), we obtain

%ﬂms) + Hg P Enlm ws)

”L ws)}\ (4 24)
ri 1\ \m erms of the true error, giving

Wezcos) + Hs 1€l i1 ws)

1 sl r2es) < C{IIs =

+
Applying the estima

175l 2cs) < C{Il g

(4.25)

Theorem 4.2.3. Let T I der : ’I terior and boundary residuals

associated with the finite ele '=-v'—— nation constructed from the subspace

L L%
o e

V¢ . Suppose that _;% o _7"," to the interior and

boundary residuals ubspace. Then,

] X
|Rrll2(r) < ?ij”ﬁART”L?(T) + s fullz2@ rEullmen ) (4.26)

JANININIANS
mmsnmum“mLmé;a'gm

+ HPNf = fullizes b (4.27)

~

where C'is a positive constant depending only on the shape regularity of elements
and the selection of the finite-dimensional subspace used to approximate the inte-

rior and boundary residuals.

Proof. Follows at once from previous arguments. O
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Finally, by definition of the indicator and Theorem 4.2.3,

i (T)? = Hi | Rellzary + Y HsllJsllzas)
Scor

< CH7|[Rr — RT||%2(T) + CHZ|f - fH”%?(T) + CHEHH%P(T)-i'

C > {Hs|Js - Js||L2(5) + Hs||RT Rl Zo (g + €01 1 (wg) +

Scor
HE||f = fullee
For wp .= |
scor
M (T) < Cl[Enll T ™ A — Rell7as, 3 Hgl[Js — JS||%2(S)} +
2 car

CHi |1 - NGV | (4.28)

where the constant (', 1 €5 dep y on the shape regularity, and the

the element T by

oscy (T Hg||Js — JS”%?(S)a

“{.—7 4

[

and for w C €, we

¢l osc(w % oscy (T

o o 48 mmw 47109
JRARAAT WV INEIGE oo

Theorem 4.2.4 (Local lower bound).

M5(T) < Crll€u B oy + Co0scy(@r) + CsHEN = [z

where the constant Cy, Cy and C3 depend only on the shape regularity, and the

data of the problem.

Proof. Follows at once from previous arguments. O
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4.3 Conclusions

In previous section, we derived the upper and local lower bounds for a poste-

riori error estimates. The Theorem 4.1.1 gives the upper bound,

lw — unll < Cinu(Q2) + CoHI| f — fullo,

and the Theorem 4.2.4 give
a(T) < Cilu C298 HE|\f = fullien)
n =Vl v , 34 HIlL2(@r)

Note that the upper b ' ' llo coming from the nonlin-

ror bounds. Since it is not

computable in term of g;ven data and known information like ng(T") or oscy(T),

due to the k:ﬁyl%ﬁf’} W &}%W&] ’}nﬂlﬁus term with the fol-

lowing two 1déﬂs First, if f hag first derlvagve in the sec&yd argument and

1708 ) QFLEH A QR BYD e may st

the terms Ilf — fullo in the error term ||u — ug||, namely

£ () = fCumllo < [ fulle@llu — unllo < pllu — unl.
With this we obtain the Corollary 4.3.1.

Corollary 4.3.1. Upper bounds: ||u—ug| < Cng(S2).

Local lower bounds: Cin%(T) < Cooscy (o) + |lu — uH||H1 )"
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In this case, we obtain the same error estimates as for linear cases. Thus the
algorithm of AFEM can be designed similarly. Second, we may try approximate
|| f=frlL2(wr) by something that can be computed and use this also as an indicator
similar to the role of ny(T) and oscy(T) in the AFEM algorithm. This may

require a further analysis to obtain such the approximation. With the given a

posteriori error estimates, on AFEM algorithm as follows.

The Adaptive Finite I etho COIlSlStS of loops of the form

REFINE

The procedure SOLV \ o ation uy . Note that they re-
1)

quires methods for e Newton’s method. The pro-

cedure ESTIMATE d  the Gl ators ng (T), oscillation oscy (T)

and approximation of putable for each element. De-

HESEes
pending on their relative sizes, these qu es are later used by the procedure
..f"-f':yn'_

o

MARK to mark elemen and the ;‘i." ' bset of 7 of elements to

‘; lements in the subset to

2
ﬂﬂﬂ’)ﬂﬂﬂ‘iﬂﬂ’]ﬂ‘ﬁ

’QW']Mﬂ?ﬂJ UAIINYAY

be refine. Finally, pio

maintain mesh confom’nity
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NOTATIONS

|- v The norm on the space V, p.5-6
|- lw  The semi-norm on the space W, p.6

|-llo  The norm on L*(Q), p.

Il I The energy normy|

first derivativ

P,(w) The set of '!I' po X .'I’,j: les of degree

i

less than or equakto p, p

n ol nﬂmwmm
o ARAREAS U N

0Ty The set inter-element sides, p.18
Hrp The diameter of on the element T', p.8
Hg The diameter of on the side S C T, p.10

H The maximum of Hr for T' € Ty, p.15



oT The diameter of the largest circle inscribed in T', p.8
KT The regularity constant on the element 7', p.8

wg The union of the pair elements sharing the interior side .S, p.21
wr The patch element of‘ the element T, p.9

wr

Tu

En

Ro(up) inte g of > element T, p.17
Js(ug) 1 v, 19C ity \ . ; ment T, p.18
nu(T)

oscy (T)

Ur

Vs .-‘: ide S, p.21

iF |

AULINENINYINT
ARIAATAUNNIING A Y

30



REFERENCES
[1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element
analysis, John Wiley & Sons, Inc., New York, 2000.
[2] D. Braess, Finite elements, Cambrige University Press, New York, 2001.

[3] S. C. Brenner and L. R. Scott, The mathematical theory of finite element
models, Springer-Verlag, Inc., Ne ork, 1994.

[4] W. Dorfler, A convergence adaptive 'f rithm for Poisson’s equation, STAM
J. Numer. Anal. 3 Y C

[5] L. C. Evans, Partial.di ial equations; Gradunate studies in mathematics
19, AMS (1998). ‘ .

4 g ergence of ad aptive finite element meth-

ods for general ( oat elliptic PDEs, SIAM J. Numer. Anal. 43,
1803-1827 (2005 - N

- y, nvergence of adaptive finite

[7] P. Morin, R. H. Ng¢ el
.44, 631 - 658 (2002).

element methods, S ,m lw

er d A Veeser, Pointwise a poste-

[8] R. H. Nochetto, A. Schmidé; 4
riori error estimates for .ti': ot ear equations, Numerische Mathe-
matik, Springer-Verlag ..—' ; 04, 515 - 538 (2006).

2

-

2
ﬂ‘lJEIT’J'ﬂWﬁWEI’]ﬂ‘i

’QW'WMﬂ‘iEU UAIINYAY



32

VITA

Name Mr. Suttisak Jamp

Date of Birth 26 August

Place of Birth Loei [haile

Education

Scholarship Develo eﬁm ’\\n\ on of Science and
Techublogy ? ect \ 2ST)
Conference Give a talle '

_F J"’ ' al
L lic Partial

V — /Y

4™ Annual
.,I T

)
Mgptmg in Mathematlcs 5-6 March 2009

N AN EJ%%W&J ’m @ incar Bl
che aéﬁﬁ”ﬁj g o i

Mathematics onference 2 09 25 26 May 2009
Attend

e The 13" Annual Meeting in Mathematics, 6-7 May 2008

e The 14" Annual Meeting in Mathematics, 5-6 March 2009



	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents
	CHAPTER I INTRODUCTION
	CHAPTER II PRELIMINARIES
	2.1 Sobolev Spaces
	2.2 Finite Element Spaces

	CHAPTER III THE MODEL PROBLEM
	3.1 The model problem
	3.2 Coercivity and Continuity
	3.3 L2 -Estimates

	CHAPTER IV A POSTERIORI ERROR ESTIMATES
	4.1 Upper Bounds
	4.2 Lower Bounds
	4.3 Conclusions

	References 
	Vita



