
การวางแผนการเปลี่ยนการจับวัตถุรูปหลายเหลี่ยม วัตถุทรงหลายหน้า และวัตถุที่ถูกกำหนดด้วยจุดสัมผัส

นายธนะธร พ่อค้า

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรดุษฎีบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2553

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REGRASP PLANNING FOR POLYGONAL, POLYHEDRAL AND DISCRETE OBJECTS

Mr.Thanathorn Phoka

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2010

Copyright of Chulalongkorn University

vi

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Attawith Sudsang who has

patiently tutored me from the very start of my study. Dr. Sudsang not only shapes my

work but also inspires many of my thought. I also express my thankfulness to my disser-

tation committee: Dr. Prabhas Chongstitvatana, Dr. Boonserm Kijsirikul, Dr. Ratchatin

Chanchareon and Dr. Worasait Suwannik.

I also would like to thank all people, past and present, in the department of com-

puter engineering, the Intelligent System Laboratory 2 (ISL2) at Chulalongkorn Univer-

sity. I appreciate the financial support from the Thailand Research Fund through the

Royal Golden Jubilee Ph.D. Program under Grant No. Ph.D. 1.O.CU/49/D.1 and the 90th

Anniversary of Chulalongkorn University Fund through the Ratchadapiseksomphot Fund.

I would like to thank my family for their unconditional understanding, extensive

support and unceasing love which nourishes me when I need it most.

Contents
Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . xi

List of Figures . xii

Chapter

I Introduction . 1

1.1 Related Works . 3

1.1.1 Robot Hands . 4

1.1.2 Contact Kinematics, Dynamic and Control of Manipulation 4

1.1.3 Grasp Definition . 6

1.1.4 Force Closure . 7

1.1.5 Regrasp Planning . 9

1.1.6 Dexterous Manipulation Planning . 12

1.2 Problem Statement . 14

1.2.1 Contribution . 14

1.3 Dissertation Outline . 14

II Grasping and Regrasping Preliminaries . 15

2.1 Nomenclatures . 15

2.2 Contact Model . 15

2.3 Grasp and Wrenches . 16

2.3.1 Primitive Contact Wrenches . 17

2.3.2 Grasp Wrench Set . 18

2.4 Force Closure . 18

2.5 Condition of Force Closure . 19

2.6 Regrasping . 20

2.6.1 Finger Switching and Finger Sliding 21

III Regrasp Planning for a Polygonal Object . 22

3.1 Introduction . 22

3.2 Force-closure conditions in 2D . 23

viii

Chapter Page

3.3 Switching Graph for a Polygonal Object . 25

3.3.1 Representing Force-closure Grasps . 25

3.3.1.1 Representing Concurrent Grasps 26

3.3.1.2 Representing 2-finger Grasps 28

3.3.1.3 Representing Parallel Grasps 28

3.3.2 Finger Switching . 32

3.3.2.1 Finger Switching among Concurrent Grasps 33

3.3.2.2 Finger Switching between 2-finger Grasps and Concurrent

Grasps . 33

3.3.2.3 Finger Switching among Parallel Grasps 34

3.3.2.4 Finger Switching between Parallel Grasps and 2-finger

Grasps . 35

3.3.3 Finger Aligning . 36

3.3.4 Computing Switching Graph . 38

3.3.4.1 Computing Vertices of Concurrent Grasps 38

3.3.4.2 Computing Vertices of 2-finger Grasps 40

3.3.4.3 Computing Vertices of Parallel Grasps 40

3.3.4.3.1 . 41

3.3.4.4 Computing Edges . 42

3.4 Using Switching Graph . 42

3.5 Implementation and Results . 44

3.6 Summary . 46

IV Regrasp Planning for a Polygon with a Large Number of Edges 51

4.1 Introduction . 51

4.2 Representing force closure grasps . 51

4.2.1 Computing Gi,j . 53

4.2.2 Extending Configuration Space . 54

4.2.3 Constructing G . 56

4.3 Finger Switching . 59

4.4 Finger Aligning . 60

4.5 Constructing Switching Graph . 61

ix

Chapter Page

4.6 Using Switching Graph . 62

4.6.1 Unconstrained Regrasp Sequence . 62

4.6.2 Optimal Regrasp Sequence . 63

4.7 Experimental Results . 66

4.8 Summary . 68

V Regrasp Planning for a Polyhedral Object . 70

5.1 Introduction . 70

5.2 Force-closure conditions in 3D . 70

5.3 Switching Graph for a Polyhedral Object . 71

5.3.1 Representing Concurrent Grasps . 72

5.3.2 Finger Switching . 74

5.3.3 Finger Aligning . 74

5.3.4 Computing a Switching Graph . 75

5.3.4.1 Direct Geometric Computation 79

5.3.4.2 Random Sampling . 79

5.4 Implementation and Results . 80

5.5 Summary . 81

VI Regrasp Planning for a Triangular-Mesh Object 88

6.1 Introduction . 88

6.2 Regrasp Planning on Discrete Point Set . 89

6.2.1 Overview . 90

6.2.2 Spectral Clustering for Contact Point Set 90

6.2.2.1 Affinity Matrix . 91

6.2.2.2 Spectral Clustering Algorithm 93

6.2.3 Constructing Representative-Level Roadmap 94

6.2.4 Planning Regrasp Sequence . 94

6.3 Experiments and Results . 97

6.4 Summary . 99

VII Conclusion . 106

7.1 Dissertation Summary . 106

7.2 Further Improvement and Extension . 107

x

Chapter Page

7.3 Discussion . 109

Biography . 119

xi

List of Tables

Table Page

3.1 Results of the algorithm for all grasp types . 46

3.2 Combined results . 46

4.1 Switching graph construction of 10◦ half-angle 67

4.2 Switching graph construction of 15◦ half-angle 68

4.3 Switching graph construction of 20◦ half-angle 68

5.1 Results from direct intersection approach . 82

5.2 Results from random sampling approach for each test object with 1,000

sampling points . 82

5.3 Results from random sampling approach for each test object with 5,000

sampling points . 82

5.4 Results from random sampling approach for each test object with 10,000

sampling points . 83

5.5 Results from random sampling approach for each test object with 20,000

sampling points . 83

6.1 Result of 500 mesh objects clustered into 30 clusters 100

6.2 Result of 500 mesh objects clustered into 50 clusters 100

6.3 Result of 500 mesh objects clustered into 70 clusters 101

6.4 Result of 1000 mesh objects clustered into 30 clusters 101

6.5 Result of 1000 mesh objects clustered into 50 clusters 101

6.6 Result of 1000 mesh objects clustered into 70 clusters 102

6.7 Result of local planning of 500 mesh objects clustered into 30 clusters 102

6.8 Result of local planning of 500 mesh objects clustered into 50 clusters 102

6.9 Result of local planning of 500 mesh objects clustered into 70 clusters 103

6.10 Result of local planning of 1000 mesh objects clustered into 30 clusters 103

6.11 Result of local planning of 1000 mesh objects clustered into 50 clusters 103

6.12 Result of local planning of 1000 mesh objects clustered into 70 clusters 104

xii

List of Figures

Figure Page

2.1 Coulomb friction . 16

2.2 Regrasping overview . 21

3.1 Switching diagram . 25

3.2 Construction of a focus cell . 27

3.3 2-finger force-closure focus cell construction . 28

3.4 Construction of a common cone . 29

3.5 Three contact points forming a parallel grasp . 30

3.6 Representing a common cone . 31

3.7 Finger switching between concurrent grasps . 33

3.8 Finger switching between parallel grasps . 35

3.9 Finger switching between 2-finger grasps and parallel grasps 36

3.10 Finger aligning . 37

3.11 Generating candidate triples of concurrent grasps 40

3.12 Generating pairs of 2-finger grasps and triples of parallel grasps 40

3.13 Computing a vertex of parallel grasps . 41

3.14 Using switching graph . 44

3.15 Test polygons . 45

3.16 A regrasp sequence for concurrent grasps . 47

3.17 A regrasp sequence for parallel grasps . 48

3.18 A regrasp sequence for concurrent grasps and 2-finger grasps 48

3.19 A regrasp sequence for parallel grasps and 2-finger grasps 49

3.20 A regrasp sequence for all grasp types . 50

4.1 Computing Gi,j . 54

4.2 Extreme points of Gi,j . 55

4.3 Independent contact region mapping . 55

4.4 Extending configuration space . 57

4.5 Adjacencies of vertices . 58

4.6 Finger switching . 60

4.7 Finger aligning . 60

4.8 Using switching graph . 63

4.9 The largest square on Voronoi edges . 66

4.10 Determining a local optimum . 67

4.11 Test polygons . 67

xiii

Figure Page

4.12 A regrasp sequence . 69

5.1 Inverted friction cone . 72

5.2 Union volume . 73

5.3 Moving between non-overlapping cells . 75

5.4 Moving within a focus cell . 76

5.5 Parameterization of a unit normal vector . 77

5.6 Mapping from the spherical to cartesian coordinates 78

5.7 Two bounding boxes . 79

5.8 Test objects . 81

5.9 Shaded test objects . 84

5.10 A regrasp sequence of the object in Fig. 5.8(b) 85

5.11 A regrasp sequence of the object in Fig. 5.8(f) 86

5.12 A regrasp sequence of the object in Fig. 5.8(g) 87

6.1 Transformation distance . 92

6.2 Test objects . 98

6.3 A regrasping sequence for the object in Fig. 6.2(b) with 500 triangles clus-

tered into 50 groups . 104

6.4 A regrasping sequence for the object in Fig. 6.2(d) with 1000 triangles

clustered into 30 groups . 105

CHAPTER I

INTRODUCTION

The ability to manipulate objects is one of the fundamental tasks which we need a

robot to interact with its surroundings. Grasping and regrasping are operations which a

human performs to change the environment by grabbing an object, lifting and placing it

to another position or another posture. This seems to be a natural and simple ability for a

human but not for a robot. The robot does not have its own instinct to perform any task.

It has to be controlled restrictively on a task, the geometry of an object, the constraints

of itself and the environment. This challenges robotic researchers to analyze and transfer

these manipulation skills to a robot in the recent decades.

The central idea of manipulation is to move an object to a desire configuration while

the object being restrained in stable states. One approach of object manipulation is grasp-

ing an object in a fixed stable grasping configuration and then moving the object from

place to place. However, the pick and place operation is performed by a motion sequence

of an arm which requires a large workspace to change the grasping configuration even for

manipulating a small object. Further, it requires a stable placement for the object when

the robot changes a grasping configuration. To avoid these limitations, an in-hand ma-

nipulation is taken place to bring the object through several actions by changing grasping

configurations without releasing the grasped object. The operation of changing a grasp-

ing configuration is usually called regrasping. To achieve a manipulation task, the fingers

have to be moved several times to reach the target posture. This arises the in-hand manip-

ulation planning problem, given an initial grasp and a target grasp, the goal is to compute

the sequence of the fingers’ movements which changes the grasp to the target position

while still maintaining stability. For manipulation involving grasping, to verify stability

of a grasp, the force-closure property is usually considered in several literatures dealing

with the grasp synthesis problem.

In a manipulation, we have to consider all constraints arising from a task and a robot

hand. Despite planning a manipulation sequence considering all these constraints could

accomplish a task, there are some kinds of arising restrictions and drawbacks. All com-

plexities are gathered in the manipulation planning that might uses non-reasonable time to

compute a simple manipulation sequence. Further, combining mechanical constraints of

a robot hand in planning confines the result manipulation sequences to the specific robot

2

hand platform. Therefore, the manipulation sequences may be not feasible for another

hand platform.

The problem is that, currently, we have so many tasks, so many objects and so

many robot hands. There is no algorithm that works best on all settings. This is mainly

because tasks, objects and robot hands are varying. The problem of task/object/hand

dependency is the inspiration of this work. We propose to decompose the manipulation

problem into layers. We split the problem into three main levels, each of which considers

task constraints, object constraints and hand constraints separately. It allows a hardware

practitioner to concentrate on creating a hand. At the same time, we can imagine any use

of robot in manipulation. The advantage of the decomposition is that robot visionaries

can abstract their manipulation algorithms away from constraints and limitations of the

recent robot hand developments.

We aim to derive a framework that shall be applicable to any task, any object or any

robot hand. The key concept is simple; a task and a hand impose on manipulation planning

many constraints, which we simply decide to neglect them. Without any assumption on

a task or a hand, solutions from the algorithm will be dependent only on the object being

manipulated, not with any predefined hand or task. After solutions are identified, when

knowledge of a hand and a task is provided, we then find solutions that satisfy the arising

constraints.

Given an object to be manipulated, a condition that can be verified without con-

sidering constraints of a task and a robot hand is the force-closure condition because we

can consider only contact positions of the end effectors which are applicable only for

force-closure verification. This reduces our consideration into the problem of planning

a sequence of the end effectors from an initial grasp to a target grasp while all grasps in

the sequence maintain force-closure. We call a sequence of changing the end effectors’

positions regrasp sequence. The problem of determining such sequence is referred to as

regrasp planning problem.

This work studies the problem of regrasp planning which computes a sequence

of finger repositioning from initial grasping configuration to a desired configuration for

polyhedral-modelled object and a set of discrete points based on the following assump-

tions. The polyhedral model is chosen because most objects in the real world can be

represented by linear surfaces. An object is described by linear segments in 2D and flat

surfaces in 3D. Further, since the representation of an object is linear, we can efficiently

3

solve the regrasp planning problem using existing linear algebra and computational ge-

ometry algorithms. For a complex object, we describe it by a set of discrete points on its

surface. Approaches to handle this problem setting in both 2D and 3D workspace are also

proposed.

The hands are assumed to be equipped with three or four in 2D workspace and five

fingers in 3D workspace. 2- and 3-finger grasp are sufficient to grasp a 2D object and

4-finger grasp is sufficient to grasp a 3D object. The other one finger is used to switch

grasping position. Our planner aims to construct general solution satisfying grasping con-

straints regardless task constraints, kinematic constraints, dynamic constraints, etc. The

most advantage of general solution is independency. It is applicable to any task or hand in

the real world. A finger is therefore assumed to be a free-flying point contact. To maintain

stability, grasping constraint considered in this work is associated with force closure prop-

erty. Every grasping configuration in the obtained sequence of finger repositioning has to

satisfy force closure property to ensure stability during the entire repositioning process.

1.1 Related Works

Regrasp problem consists of various problems in many subfields on robotics.

Firstly, we have to define what we want the robot to do. This is according to task con-

straints. Based on the classification of grasp by Cutkosky (1989), two main grasping

types are concerned, fingertip grasp and power grasp. Fingertip grasps achieve dexterity

by holding the objects by the tips of the fingers. Power grasps are distinguished by large

areas of contact between the object and the fingers and palm which do not allow the mo-

tion of the grasped object. The grasps perform with low dexterity. For regrasping, the

fingertip grasps are preferred since the problem required dexterity of grasps.

Regrasp planning is the main theme of this work. The method reports a sequence of

fingers’ position from initial grasp to desired grasp given by task planner. The obtained

grasping positions not only associate with task requirement but also satisfy stability con-

straint. The force closure property is applied to satisfy the stability constraint. This means

that every grasping position in a sequence calculated by the method has to achieve force

closure grasp.

In practice, a robot finger is not a point. A grasp has to satisfy kinematic constraints

and dynamic constraints as well. Motions of fingers when a regrasp process is performed,

also introduce to a manipulation planning problem which mainly mentions accessability

4

and collision avoidance of a path from an initial configuration to a desired one.

1.1.1 Robot Hands

Dexterous manipulation or regrasp problem require a manipulator which is able

to change a grasped object’s configuration with respect to the hand without releasing it.

The robot hand is one suitable manipulator for this task. It may be designed to be an

approximation of the human hand or specified for particular tasks. A well-known 3-finger

robot hand is Barret Hand(Townsend, 2000) commercially made by Barrett Technology

Inc. Two fingers can be spread synchronously by 180◦ around the palm. The Utah/MIT

hand (Jacobsen et al., 1986) is the first anthropomorphic hand with four fingers. Each

finger has four degrees of freedom. The whole hand system is very large including the

out-hand actuators. The Robonaut hand (Lovchik and Diftler, 1999) designed for space

based operations has five fingers. The hand combined with wrist and forearm has fourteen

degrees of freedom. Another anthropomorphic hand is the DLR-Hand (Butterfaß et al.,

2001). The hand consists of four fingers with the actuators embedded inside.

1.1.2 Contact Kinematics, Dynamic and Control of Manipulation

When the object has been grasped, the hand is possible to perform in-hand manip-

ulation. To gain more dexterity, the hand is not required to maintain a rigid grasp. It

may therefore roll, slide or release and place fingers to change the grasp configuration.

The accurate control of the force applied to the object, which associates with the contact

constraints is required to achieve the operations.

One approach that the dexterous hand manipulates an object, is exploiting a rolling

contact. Rolling is the operation that the fingertip rolls without slipping on the object’s

surface. It is defined by the constraints that the fingertip and object velocities are equal at

contact point. The kinematic constraints and transformations between task-space and lo-

cal coordinates are presented in (Kerr and Roth, 1986) and (Montana, 1988). The rolling

constraints are formulated in different ways. Kerr and Rott (1986) derived the force anal-

ysis for the systems using a set of differential equations to describe the motion of the

object with pure rolling contact. Montana (1988) proposed a method for relating relative

rigid body motion to the rates of change of contact coordinates using a matrix formulation

of the motion of a point of contact over the rolling surfaces. Sarkar et al. (1997) intro-

duced local contact coordinates which allow them to formulate the dynamics and control

of manipulation via rolling contacts in explicit equations relating the velocities and ac-

5

celerations of the contact points. The formulation admits motion of the contacts during

the manipulation process. Li et al. (2000) developed a unified formulation describing the

relationship between the object motion and the joint motion.

Dexterous manipulation sometimes exploits slippage between the fingers and the

object to change grasping configuration. Sliding a finger along the surface of an object

requires a good model of the contact friction which is mostly assumed Coulomb friction

model. A finger exerts a force inward to the object’s surface when it slides along the

surface. According to Coulomb friction model, when the finger is sliding, the contact

force must lie on the edge of the friction cone. Brock (1988) derived a kinematic relation

between the object motion, the motion constraints and the grasp forces. Cole et al. (1989)

presented a coordinated control law for sliding contacts between an object and finger-

tip including a problem of choosing contact positions for collision avoidance. In (Cole

et al., 1992), the sliding motion of the fingertips along the object’s surface is dynamically

controlled simultaneously with controlling the position and orientation of the held object.

Zheng et al. (2000) formulated a dynamic control of a 3-finger robot hand manipulating

an object in 3D. One finger is allowed to slide on the object’s surface. Motion equations of

the whole system are derived. They also proposed a dynamic control law for linearizing

the system dynamics and realizing the desired object motion, the desired finger sliding

and desired grasping force.

Combinations of rolling and sliding are in consideration as well. Cai and Roth

(1987), (1988) studied spatial motions combining rolling and sliding between rigid bod-

ies for point contact and line contact, respectively. Chong (1993) proposed an algorithm

generating finite motion of object by considering sliding contacts as well as rolling con-

tacts between the fingertips and the object. The minimum contact forces and minimum

joint velocities are solved for the relative velocity at the contact point.

Forces applied to the object by the fingers are controlled for the desired manipula-

tion. Kerr and Roth (1986) developed a hand Jacobian which calculates the joint torques

from the desired contact forces. Yoshikawa and Nagai (1988) decomposed forces into

two components. Manipulating or external forces produce a net force and torque on the

object. The other forces are grasping or internal forces which produce no net force nor

torque on the object. These forces are used to maintain a secure grasp. The same authors

gave a physically reasonable definition of manipulating force and grasping force for 2-, 3-

and 4-finger hands in (1991). They also presented an algorithm for decomposing a given

fingertip force into manipulating and grasping forces. Using the concept of the manip-

6

ulating and grasping forces, they proposed a dynamic manipulation/grasping controller

of multifingered robot hands based on the dynamic control and the hybrid position/force

control. The controller consists of a compensator which linearizes the whole grasping

system and a servo controller for the linearized system. Nakamura et al. (1989) discussed

the dynamical coordination of a multifingered robot hand. The coordination problem is

solved in two phases. Firstly, determine the resultant force used for maintaining dynamic

equilibrium and for generating the restoring force. Secondly, determine the internal force

used to satisfy the static frictional constraints and is related to contact stability. Li et

al. (1998) studied a formulation of dynamic stability of grasping using Lapunov stability

theory for measurement purpose.

The systems discussed above are formed by complex constraints. A system that

a manipulation is achieved by low velocity motions is called quasi-static. Quasi-static

analysis results are therefore much simpler and practical. Fearing (1986) considered slip

from a quasi-static viewpoint to achieve grasp stability. Yoshikawa et al. (1993) used

controlled slip in quasi-static system to modify the grasp and increase manipulation range

for a 3-finger robot hand.

1.1.3 Grasp Definition

Secure holding an object in a robot hand is required in grasping. The concept of

a firm grasp is formalized in various ways. Equilibrium, force closure and form closure

property are usually applied to ensure the stability of a grasp. Equilibrium grasp is a grasp

that the resultant of forces and torques exerted to the grasped object are zero. According

to the definition, an equilibrium grasp cannot resist any disturbance. This property is

therefore not sufficient to ensure the stability of a grasp. Force closure grasp is a grasp

that can exert a resisting force and torque balancing any external disturbance on the ob-

ject. A closely related property to force closure is form closure firstly investigated by

Reuleaux (1963). The distinction between form closure and force closure is that form

closure considers the immobility of an object in presence of fixed contact points whereas

force closure considers how contact points can exert force and torque on an object. An-

other difference between form and force closure is the presence of friction. Friction effect

is considered in force closure while it is neglected in form closure analysis. Markenscoff

et al. (1990) provided an upper bound to the number of contacts necessary to achieve

form closure grasps. They showed that four contact points are sufficient for the form-

closure grasp of any planar object and seven contact points are sufficient in spatial case.

Bicchi (1995) considered form closure as a purely geometric property of a set of contact

7

constraints. Rimon and Burdick (1996) gave precise definitions for first and second order

form closure for frictionless grasps based on mobility theory. They also showed that a

frictionless grasp is force closure if and only if it is form closure for both first order and

second order.

1.1.4 Force Closure

To ensure that the object is grasped securely, the classical force closure condition

is employed. A grasp of an object achieves force closure when it can resist any external

wrench exerted on the grasped object. The well-known qualitative test for a force closure

grasp is to check whether the contact wrenches of the grasp positively span the whole

wrench space (Salisbury, 1982). This is equivalent to checking whether the convex hull

of the primitive contact wrenches contains the origin (Mishra et al., 1987b). Various

approaches for testing whether the origin is inside the convex hull are proposed. Yun-

Hui Liu (1998) proposed a recursive reduction technique which allows the problem of

testing convex hull containing the origin in high dimensions to be solved in the lowest

dimension. The same authors transformed this problem to ray-shooting which can be

solved by linear programming (Liu, 1999). Zhu and Wang (2003a) developed the force

closure test based on the concept of Q distance which uses a convex hull containing the

origin as a metric to test whether the origin lies in the interior of the convex hull of

the primitive wrenches. Recently, Zhu et al. (2004) discussed that the problem can be

transformed into the problem of calculation of distance between convex objects. They

proposed the use of pseudodistance function to solve the problem.

Other approaches of qualitative test for a force closure grasp by considering the

workspace, not the wrench space, were also investigated. Nguyen (1988b) proposed a

geometric method for testing 2-finger force closure grasps on polygonal objects. The

synthesis of stable grasps was proven by constructing virtual springs at the contact points,

such that a desired stiffness matrix about its stable equilibrium can be acquired. Ponce

et al. proposed the concept of non-marginal equilibrium which implies the force closure

property. Based on this concept, the qualitative tests of 3-finger grasps for polygonal

objects (Ponce and Faverjon, 1995a) and 4-finger grasps for polyhedral objects (Ponce

et al., 1997) were proposed.

For regrasping, a set of force closure grasps has to be calculated. In (Ponce and

Faverjon, 1995a) and (Ponce et al., 1997), a grasp is represented by parameters related

to positions on the grasped faces. To calculate all possible grasps, two(three) additional

8

parameters are required to construct linear constraints for 2D(3D) case. The additional

parameters have to be eliminated to acquire a set of force closure grasping positions on

given grasped faces. Sudsang and Ponce (1995) proposed another representation of grasps

avoiding the use of additional parameters. A point in workspace is used to represent a set

of force closure grasps.

Quantitative tests of force closure grasps are also considered to define the quality of

grasps. Kirkpatric et al. (1990) considered the most general stability measurement which

does not know a priori knowledge of disturbance. An external wrench is assumed to be

uniformly distributed in every direction. The minimum magnitude of a particular external

wrench that breaks force closure property is measured. This is equivalent to the radius of

the maximal ball that can fit inside the convex hull of primitive contact wrenches. Ferrari

and Canny (1992) applied this criterion to plan the optimal grasp. The radius of maximal

ball is used in many works, such as (Mirtich and Canny, 1993; Borst et al., 2003; Jia,

1995).

Recently, the best performance in resisting external wrenches as the optimality cri-

terion is still studied. Yun-Hui Lui (1999) addressed the problem of minimizing the L1

norm of the grasp forces in balancing an external wrench, which can be transformed to

ray-shooting problem. Zhu and Wang (2003a) addressed the problem of planning optimal

grasps that minimize the Q distance and expresses the best performance in firmly hold-

ing an object while resisting external wrench loads. Zhu et al. (2004) solved the same

problem by optimizing the pseudodistance function.

Methods mentioned above are used to determine grasps that require precision of

fingertip on the objects. To allow some positioning errors, the notion of independent con-

tact regions was introduced by Nguyen (1988b). In short, an independent contact region

is a parallel-axis rectangular region in fingers’ configuration space which represents ar-

eas on object’s boundary where fingers can be placed independently to compose a force

closure grasp. In (Nguyen, 1988b), Nguyen also showed how to geometrically determine

independent contact regions for 2-finger grasps of a polygon. Tung and Kak (1996) at-

tacked the completeness of the previous work and proposed an algorithm which is correct

and complete. Recently, Cornella and Suarez investigated an algorithm of determining

independent grasp regions on 2D discrete objects (Cornella and Suarez, 2005a). A four

frictionless grasp is considered. The algorithm determines the independent regions of two

fingers when the locations of the other two fingers are given.

9

In order to find the best independent contact region, one needs to define what best

means. There have been many different definitions of the best independent contact region

due to different purposes and constraints of grasping devices. The two popular criteria

are: (1) the largest n-cube, and (2) the largest rectangular region (product of lengths on

every axis). Using the first criterion, the optimization can be done by linear program-

ming as discussed in (Ponce and Faverjon, 1995a) and (Ponce et al., 1997). Faverjon and

Ponce (1991) tackled the problem of 2-finger grasping on curved objects using the sec-

ond criterion. In their work, a numerical optimization algorithm was presented, but they

could not guarantee the algorithm’s completeness. Cornella and Suarez (2005b) presented

an approach to determine independent contact regions on polygonal objects considering

arbitrary number of friction or frictionless contacts on given edges. Their approach subdi-

vides configuration space so that the graspable region in each subdivision is convex, then

computes the independent contact region in each subdivision.

1.1.5 Regrasp Planning

Regrasp or dexterous manipulation is required when a grasp is not appropriate for

a specific task. A planner calculating a sequence of feasible configuration of robot hand

and object transforming to the desired one is applied to solve the problem. The obtained

results from a planner have to satisfy constraints considered in the system. The distinction

between various planners are constraints discussed above, kinematics, dynamic, stability

constraints, etc. In this work, force closure constraint is satisfied only for more general

results. Some different planners are discussed here.

Hong et al. (1990) proved the existence of two and three finger grasps for 2D

and 3D objects assuming isolated hard point contacts with friction. The manipulated

objects are assumed to be smooth. This paper also proposed a fine motion of an object

by repositioning the grasping fingers while maintaining a grasp during entire process. A

subclass of fine motion problem focused in this paper is gait problem. Finger gaits with

three and four fingers on the plane are proven for the existence. For the prove of three

finger gait, a two finger force closure condition is taken into consideration. In the case

of four finger gait, two different gaits can behave which are using two pairs separately or

using a three finger grasp and replacing one finger with the remaining finger to form a

new grasp.

Regrasp planning for reorientation of a prism was addressed by Omata and Nagata

(1994). The 4-finger hand and frictional contact point are assumed. The planner plans

10

a sequence of repositioning of fingers for horizontal rotation of an object for a desired

angle. The calculation of finger repositioning are classified into three problems. Problem

A(c) tests whether the finger c can be removed from the initial grasp. This problem can be

solved by linear programming method. Problem B(c, n) is solved for calculating feasible

region of finger c to form equilibrium grasp without finger n. The last one is problem

C(c, n, d) which calculates the feasible region of finger cwhen finger c and n form a grasp

without finger d. These two problem can be solved by non-linear programming. Problem

C is harder and takes more calculation time than B. Sequences of finger repositioning are

attained by a search tree. Each node represents a removed finger. The search algorithm

begins with solving problem A(c) then solves B(c, n) to remove finger n and bring finger

c to form a grasp. Problem C will be solved when the problem B cannot produce feasible

solution. Child nodes are expanded according to a heuristic function. The function is

based on a angle which a grasp can rotate the object, the depth of a node and the penalty

when problem C has to be solved.

Omata and Farooqi (1996) studied object reorientation by using regrasp primitive.

Two primitives are carried out for reorientation task. The rotation presented in (Omata and

Nagata, 1994) is a primitive that the fingers grasp on the side faces of the object and rotate

it. The pivoting primitive uses the two fingertips to form an axis of pivoting and the third

finger exerts the force on the side facts to rotate the object about the axis. The algorithm

of this primitive is explained in this paper. Based on the following assumptions, four

fingered hand and a prism object, sequential executions of these primitives can achieve

reorientation. The search tree is applied to solve the problem. Each branch represents

a primitive and each node contains the current orientation. The search procedure uses

quaternion concept to solve resultant rotation about a unique axis.

An approach to solve the problem of dexterous manipulation using geometrical rea-

soning techniques was proposed by Munoz et al. (1995). Kinematic constraints are re-

spected by checking non-penetration between the fingertips and the object. Some acces-

sibility limitations due to the kinematic constraints of the hand are also considered. Three

manipulation modes, which are fixed-point, rolling and sliding, are applied in the plan-

ning algorithm. A combination of manipulations in these three modes can form a nominal

trajectory of a task that the object is being grasped by a dexterous hand. A manipulation

task is represented by a homogeneous transformation that brings the object from its initial

configuration to its final configuration. The planner decomposes the transformation into

a sequence of infinitesimal motions by exploring the space of potential solutions for the

11

problem of changing the orientation of the grasped object. Each infinitesimal motion is

solved for every manipulation mode. The equilibrium constraints are considered in this

procedure. A solution is represented in the form of joint motion. The minimum joint

motion is selected by the planner for the particular infinitesimal motion.

Leveroni (1997) addressed finger gait problem for a planar convex object. One

method to determine whether local motions will suffice to reorient the object is the grasp

map, a graphical representation of all stable grasps. Workspace map is constructed to

determine workspaces of three fingers. A sequence of finger gaits can be extracted from

the combination of the grasp map and the workspace map. In planning, a new grasp

cannot always be found if the object is moved locally until a finger reaches a workspace

limit; often a grasp gait must occur before the limit is reached.

In (Cherif and Gupta, 1997), The system of Cherif and Gupta assumed that the ma-

nipulation system processes at low velocities. Planning feasible quasi-static trajectories

for the fingertips to move object to a desired configuration is available. Two motions

which are rolling and sliding the fingertips on the surface of the object are considered.

The planner is a 2-level planning scheme. The global planning level applies an A∗ search

algorithm to find connectivity between sub-goals in the configuration space of the object.

The nominal path generated by this planner ignores any manipulation constraints. The

second level is the local manipulation planner. The local planner is based on solving an

inverse finger motion problem to plan for feasible quasi-static motions of the hand-object

system between sub-goals. The instantaneous solution satisfies collision-free, reachabil-

ity, friction and equilibrium constraints.

Han and Trinkle (1998b) proposed a Framework for dextrous manipulation by

rolling fingers on the surface of an object and finger gaiting. Three taxonomies of ma-

nipulation tasks for multifingered hand systems are stated: Object Manipulation , Grasp

Adjustment and Dextrous Manipulation. The contribution of this paper is to purpose a

general methodology to implement large-scale object manipulation tasks when the capa-

bility of the fingers are limited by their workspace. Two strategies, finger rewind and

finger substitution, are applied to accomplish a task. Dextrous manipulation of a sphere

is exemplified. The condition of two soft-finger and three hard-finger force closure grasp

are derived for spherical object. The trajectory of the finger on the object is restricted to

be a great circle which simplifies contact constraint.

Regrasp planning for discrete contact points using independent regions is proposed

12

in (Roa and Suarez, 2009). The regrasp operation that is allowed in the work is only

motion of a finger without contact breaking. The main restriction of applying only regrasp

operation is that the approach fails to find a path between two grasps in distinct connected

grasp sets.

1.1.6 Dexterous Manipulation Planning

Since an object cannot move by itself. The robot hand has to grasp and move it from

one stable position to another. The objective of the planner is to calculate a path of robot

hand and object’s configuration from an initial configuration to a desired configuration

while avoiding collision with obstacles, other objects and self-collision.

Modelling the problem with as fully dynamic and using control-based planning

is costly expensive. Thus, Alami et al. (1989) developed another approach using two

distinct paths which are transfer paths and transit paths. The former are defined as motions

of the system while the robot hand grasps the object. Transit paths are defined as motions

of the robot when it moves alone while the object is in a stable position. Regrasping

operation is also calculated by the planner. Based on this concept, Koga and Latombe

(1994) solved the manipulation problem for robots with many degrees of freedom. The

planner compute a series of transfer and transit paths for the robot that make the robot

grasp and move the object from an initial configuration to a goal configuration. Recently,

probabilistic algorithms are applied for manipulation planner under continuous grasps and

placements in (Siméon et al., 2002), (Sahbani et al., 2002).

Nielsen and Kavraki (2000) developed a manipulation planner which extends the

probabilistic roadmap (PRM) frameworks. The planner consists of two levels. The first

level builds a manipulation graph. Nodes represent stable placements of the object. Edges

represent transfer and transit actions. The actual motion planning for the transfer and tran-

sit paths is done by PRM planners at the second level. The fuzzy roadmap was introduced

to apply in both levels. The computations is efficient by verifying that the edges are

collision-free only if they are part of the final path. Instead, the local planner assigns a

probability to the edge that expresses its belief that the edge is collision-free.

Sahbani et al. (2002) proposed a probabilistic algorithm for manipulation planning

under continuous grasps and continuous object placements. Instead of classifying the

regrasping operation as another subproblem, their approach transforms a regrasping op-

eration into a finite sequence of transfer and transit paths. Therefore, a particular planner

13

for the regrasping operation is not needed.

Saut et al. (2007) attacked in-hand manipulation planning problem by using PRM.

Two fundamental paths are applied which are transfer path and regrasp path. The object

is immobile and some fingers move to change the grasp during a regrasp path. Based on

PRM, a manipulation graph is constructed to plan a path between initial and goal con-

figurations. Instead of sampling a hand’s configurations in configuration space, grasping

configurations are sampled over grasp subspaces and then verified chain closures at con-

tact positions by considering the kinematics of the robot hand.

Xu and Li (2008) solved finger gait problem for a smooth surface object by evo-

lution of hybrid automaton. The finger gaiting is analyzed into discrete and continuous

characteristics. The discrete variables describe two actions of all fingers in either ma-

nipulation mode or substitution mode. The continuous variables represent the controls

of the fingertips in continuous time. In (Xu et al., 2007), the hybrid automaton is used

for finger gait planning by improving the RRT approach such that the discrete metric and

continuous matric are defined on the state space.

Huber and Grupen (2002) presented finger gaits as finite state control strategies in

a discrete event dynamic system framework. A small set of control laws are used as basis

controllers to solve a manipulation task in a bottom-up fashion. However, actual contact

locations and object motions are computed based on local contact information. There-

fore, this framework suits for local manipulation planning. Platt et al. (2004) presented

a control basis capable to generate a variety of force-based interaction focusing on the

grasp and contact artificial potentials. Finger gaits are formulated into states and actions

modeled in a Markov Decision Process (MDP) which is defined over the space of wrench

closure conditions. However, this space is not explicitly computed. A state in the MDP is

not a geometrical assertion but a report about the membership of grasps in the state.

Finger repositioning can be casted into a stratified system. Goodwine and Burdick

(2002) proposed a nonlinear motion planning algorithm in a stratified configuration space.

The configuration space of finger reposition consists of several smooth strata correspond-

ing to the conditions of fingers used in manipulation. Harmati et al. (2002) developed a

fitted stratified manipulation planning algorithm which works on a space that a fingertip

position is described more directly to its representation in the real physical system. A

semi-stratified was also proposed by assuming that a finger can be moved freely in the

space to provide a greater degree of freedom for finger repositions in manipulation plan-

14

ning and to allow more constraints taken into account. However, most works about the

stratified system study relations between a manipulated object and joint configurations

or fingertip positions while force-closure condition is mostly assumed. Therefore, result

trajectories obtained from these frameworks have to be verified for the force-closure con-

dition for a practical use. Trajectories that do not achieve force-closure are not applicable

in a real manipulation.

1.2 Problem Statement

Given an object (a polygon or a polyhedron or a set of contact points), an initial

grasp and a goal grasp, we wish to identify a regrasp sequence from the initial grasp to

the goal grasp.

1.2.1 Contribution

The contribution of this work is to proposed a framework for regrasp planning prob-

lem. Our planner reports a general set of feasible finger repositioning satisfying force clo-

sure property for task and constraint independence. An approach using a structure called

Switching Graph has been introduced. Connectivity in a graph presents ability to change

a grasping configuration to another. This allows the regrasp planning to be transformed

to graph search. A node in switching grasp represents a connected set of force closure

grasps for given surfaces. Any grasps of which representations are in the same node can

be transformed to one another using finger sliding along the continuous surfaces. An edge

connecting two nodes indicates the ability of switching one finger to another different sur-

face. Based on this structure, the obtained results are not a single solution, they are a set of

feasible solutions. An advantage of a set of solutions is that it allows any planner to find

a sequence of grasping positions which optimized according to some considered criteria

or to add more constraints for practical uses.

1.3 Dissertation Outline

In the next chapter, we provide a theoretical preliminaries on grasping which is

used subsequently in the remaining of the dissertation. The remaining chapters describe

algorithms to solve the problem in each setting which are regrasp planning for a polygon,

a polygon with a large number of edges, a polyhedron and a discrete contact point set.

Finally, Chapter 7 concludes our work and describes future extension of our work.

CHAPTER II

GRASPING AND REGRASPING PRELIMINARIES

In this chapter, we describe necessary definitions and propositions which will be

applied in the discussion on our regrasp planning problems.

2.1 Nomenclatures

Following the definitions in (Boyd and Vandenberghe, 2004), we denote by INT(·),

RI(·) and CO(·) the interior, the relative interior1 and the convex hull of a set. For an

arbitrary vector v, let us denote by Pv the plane containing the origin and orthogonal to v,

i.e., Pv = {x|x ·v = 0, x ∈ R3}. A point at x is said to lie in the positive side of, negative

side of, or exactly on Pv when x · v > 0,x · v < 0 or x · v = 0, respectively. A closed

half space H(v) is the set of all points that lie exactly on Pv or in the positive side of Pv.

An open half space H+(v) is simply H(v)− Pv. We define Hz+ to be H+((0, 0, 1)) and

Hz− to beH+((0, 0,−1)).

2.2 Contact Model

In grasping, the most commonly used contact model are hard contact without fric-

tion, hard contact with friction and soft finger contact. Soft contact grasp is different from

hard contact grasp with ability that soft finger can exert torque about the surface normal

while hard finger can exert force at contact point only. For analysis of hard contact, the

point contact without friction can only exert a unidirectional force normal to the surface.

Tangential forces can be produced by a finger up to the friction coefficient when friction

is considered.

Coulomb friction (Stewart, 2000) is usually applied for friction model. Coulomb’s

law of friction states that for a contact point exerting a force fN along the contact normal,

the friction force (the tangential contact force) is less than or equal to ft = µfN where µ

is the frictional coefficient. This equation indicates that when the contact is maintained

without slip, the contact can exert any force in a cone C of which the half angle is equal

to tan−1(µ). The cone is emanated from the contact point and the axis coincides with the

contact normal n. This cone is commonly called a friction cone. Cone in 2D case can

1A relative interior of a set is the interior relative to the affine hull of the set. Intuitively speaking, a
relative interior are all points not on the relative edge of the set, e.g., A relative interior of a line segment is
the segment minus its endpoints, regardless of the dimension where the line is situated.

16

be expressed by two vectors as shown in Figure 2.1(a). In 3D case, a cone is described

by quadratic function. Cone introduces complexity of nonlinearity to the problem. To

simplify the problem, a cone can be replaced with an m-sided pyramid (Figure 2.1(b)).

A pyramid has planar facets which avoid nonlinearity from the problem but at a price of

lesser precision.

θ

n

C

n

C

(a) (b)

Figure 2.1: Coulomb friction: (a) is the friction cone for 2D grasps and (b) is the friction
cone for 3D grasps and its approximating pyramid cone.

2.3 Grasp and Wrenches

Force closure is a property of a grasp which is defined by a set of contacts. Each

contact can be defined by its position and inward normal direction. In this work, it is

assumed that every contact of the same object is represented by the same contact model.

Definition 2.1 (Grasp) A graspG is defined by a set of ordered pairs {(p1,n1), . . . , (pn,nn)}
where pi and ni are the position vector and the inward normal vector of ith contact.

A grasp achieves force closure when the grasp is able to counterbalance any external

disturbance to the object being grasped. The external disturbance and the effect of contact

points are represented as a force f and a torque τ . In 2D, it is conventional to combine

a force f = (fx, fy) and a torque τ into an entity called a wrench w = (fx, fy, τ). A

wrench is a vector of force concatenated with a vector of torque. In 2D space, force can

be described by a 2D vector while torque is described by a 1D vector, hence, a wrench in

2D space is a 3D vector. Likewise, a wrench in 3D space is 6D vector formed by a 3D

force vector concatenated with a 3D torque vector. Formally, a wrench w is denoted by

(f , t) where f is a force vector and t is a torque vector.

Combining force and torque into wrench makes it simpler to consider the force clo-

sure property. An effect of a contact point or external disturbance can be easily described

17

as a wrench. For example, let us consider an equilibrium in terms of wrenches. An ob-

ject is said to be under equilibrium when the summation of all force and torque acting

on the object is zero. Using wrench notation, an object achieves equilibrium when the

summation of acting wrenches is the zero vectors.

Analysis on force closure concerns wrenches that can be exerted by a grasp. A

contact is associated with a set of wrenches that it can exert. The set of wrenches that

can be exert by a contact and by a grasp are referred as a contact wrench set and a grasp

wrench set, respectively. In force closure analysis, a contact wrench is allowed to take

arbitrarily large magnitude2. Since wrenches can be added up linearly, the set of wrenches

exertable by the grasp is the positive combination of wrenches of its contacts. Let us refer

to a positive combination of a set of vectors as a linear positive span, or positive span for

short. Exertable wrenches of a grasp is a positive span of a contact wrench set of each

contact.

Definition 2.2 (Positive Span) Let W be a set of vectors. A positive span of W , denoted

by SPAN+(W), is a set {αiwi|αi ≥ 0,wi ∈ W}.

2.3.1 Primitive Contact Wrenches

A contact wrench set can also be conveniently represented using positive span no-

tation. A frictionless contact can only exert force in one direction and its contact wrench

set is a ray in its respective wrench space. The ray can be represented as a positive span of

a single wrench with arbitrary length lying in the same direction. For a frictional contact,

a friction cone of which can be represented by positive span of its boundary force vectors.

These vectors corresponds to boundary wrenches and the whole contact wrench set can

be represented by a positive span of these boundary wrenches, using one single arbitrary

length for each direction.

We refer to unit length boundary wrenches as primitive contact wrenches. A contact

wrench set is a positive span of primitive contact wrenches. Similarly, a grasp wrench set

is a positive span of its contact wrench sets which is also equal the to positive span all of

primitive contact wrenches (from all contact points). Letw1, . . . ,wn be primitive contact

wrenches of a grasp. The grasp wrench set of a grasp whose primitive contact wrenches

are w1, . . . ,wn can be represented as follows.
2In practice, a magnitude of a wrench is limited by the realization of the contact, e.g., the actuator of

finger, the size of motor, etc. This detail is unrelated to the contact position and hence is neglected.

18

{Σn
i=1αiwi|αi ≥ 0} (2.1)

2.3.2 Grasp Wrench Set

Primitive contact wrenches and positive span represent a grasp wrench set in a com-

pact form. It is necessary to understand the properties of a grasp wrench set when it is

represented as a positive span of the primitive contact wrenches. A key feature of a

positive span is its convexity. Convexity of a grasp wrench set is an important property

exploited by most grasping works.

Other than convexity, a grasp wrench set also has other interesting properties. In the

3D frictional contact case, a friction cone is bounded by a quadratic surface, not a finite

number of wrenches. A prominent difference is that a 3D friction cone, though it still

maintains convexity, is no longer a linear structure. This implies that the corresponding

grasp wrench set itself is nonlinear as well. In many works, a circular friction cone is

simplified by an m-sided pyramid. Each boundary force vector of the pyramid yields one

primitive contact wrench. Since m is finite, the number of primitive contact wrenches

is also finite and thus the grasp wrench set can now be represented by linear surfaces

allowing several tools in linear algebra to be applicable for analysis.

2.4 Force Closure

A grasp achieves force closure when its grasp wrench set covers the entire wrench

space. A property called positively spanning is defined to describe that the positive span

of a vector set covers the entire space.

Definition 2.3 (Positively Span) We say that a set V of n-dimensional vector positively

spans Rn when SPAN+(V) = Rn

The force closure property can be formally defined using the notion of positively

spanning, namely, a grasp achieves force closure when its associated wrenches, i.e., the

polyhedral convex cone generated from the primitive contact wrenches, positively span

their respective wrench space (3D wrench space in case of planar grasp and 6D wrench

space in case of 3D grasp).

19

Definition 2.4 (Force Closure) A grasp, whose primitive contact wrenches form the set

W in Rn, is said to achieve force closure when SPAN+(W) positively span Rn.

Since the force closure property is defined over a set of vector (wrenches) associated

with a grasp, it is more convenient to say that a set of vector achieves force closure, even

though a set of vector cannot literally achieve force closure. Hereafter, saying that a set of

wrenches achieves force closure is a short hand of saying that a grasp whose associated

set of wrenches positively span Rn.

2.5 Condition of Force Closure

The force closure property is defined using the notion of positively spanning. How-

ever, it is still indefinite to assert whether a set of vectors positively span a space. In this

section we recite some of the well known conditions that assert on positively spanning of

a set of vectors.

Mishra et al. related positively spanning of a set of vectors with a convex hull of

the vectors. It is shown in (Mishra et al., 1987b) that a set of vectors W positively span a

space when the origin of the space lies strictly inside the convex hull of W .

Proposition 2.5 A set of wrenches W in Rn achieve force closure when the origin lies in

the interior of the convex hull of INT(CO(W)).

Proposition 2.5 transforms the force closure testing problem into a well defined

computational geometry problem. A straightforward approach to solve the problem is to

compute the convex hull of the primitive contact wrenches and directly whether the origin

lies inside the interior. From this approach, it comes directly that if we can identify a half

space through the origin that contains all primitive contact wrenches, the primitive contact

wrenches cannot positively span the space.

Proposition 2.6 A set of wrenches W do not positively span R3 if there exists a vector v

such that the closed half spaceH(v) contains every wrench in W .

A closely related property of force closure is equilibrium. Equilibrium indicates

that the net resultant wrench of the system is a zero vector. A grasp is said to achieve

20

equilibrium when it is possible for some contacts of the grasp to exert wrenches such that

the net resultant wrench is zero vector. Formally, a grasp is an equilibrium grasp when

Equation (2.2) has a non-trivial solution.

Σn
i=1αiwi = 0 (2.2)

Apparently, a grasp that achieves force closure also is an equilibrium grasp. How-

ever, the inverse is not necessary true. In the case of frictional contact, there exists a

special class of equilibrium grasp called non-marginal equilibrium. A grasp achieves

non-marginal equilibrium when the wrenches achieving equilibrium are not the wrenches

associated with the boundary of a force cone. In practice, it means that any equilibrium

grasp is also a force closure grasp under any arbitrarily greater frictional coefficient.

Nguyen (1988a) shows that a 2D 2-finger non-marginal equilibrium grasp is also a

force closure grasp. Ponce and Faverjon (1995a) show the same implication in the case

of 2D 3-finger grasp and also in the case of 3D 4-finger grasp (Ponce et al., 1997). Care

should be taken not to take this implication into general. Though it might seems that

non-marginal equilibrium implies force closure, this is not always true for any number of

fingers. For example a 3D two finger non-marginal equilibrium grasp does not achieve

force closure.

Proposition 2.7 A sufficient condition for 2- and 3-finger force closure in 2D and 4-finger

force closure in 3D is non-marginal equilibrium

2.6 Regrasping

Regrasping is a process of repositioning contact points of robot fingers. Two prim-

itive forms of repositioning are finger switching and finger sliding. To determine an ap-

propriate sequence of these two processes, we introduce a structure called a switching

graph. A node in a switching graph represents a connected set of force closure grasps on

three(four) particular polygonal edges(faces) in 2D(3D). An edge connecting two nodes

indicates that there exist a grasp associated with one node that can be switched to a grasp

associated with the other by finger switching. By using a switching graph, the regrasp

problem can be formulated into a graph search problem. A path from the graph search

21

(a) (b) (c)

Figure 2.2: Regrasping overview: (a) Initial grasping configuration (b) A result of finger
Switching. (c) a result of a finger sliding

determines a sequence of actions – switching and sliding to be executed in order to tra-

verse from the initial to the final grasp. The following sections will describe the finger

switching and sliding primitives and the switching graph in detail.

2.6.1 Finger Switching and Finger Sliding

Regrasping process which changes grasping configuration by placing an additional

finger on desired contact point and then releasing one finger of the initial grasp is called

finger switching. For example, let us assume that a starting grasp holds a polygonal object

on points pa,pb and pc and we want to switch to a grasp holding points pb,pc and pd.

A finger switching process starts by placing an additional finger on pd and then releas-

ing the finger at pa. If both grasps satisfy the force closure property, the entire process

still holds the force closure property. For the case of 4(5)-finger hand grasping a polyg-

onal(polyhedral) object, finger switching requires that two(three) grasping configurations

must have two contact points in common and both of them achieve force closure.

Finger sliding is a process for repositioning fingers by sliding them along edges(faces)

of a polygon(polyhedron) while maintaining a force closure grasp during the sliding pro-

cess. Using this process, we can change grasping configuration with in the same set of

force closure grasps. This means the relation between finger sliding and a node of switch-

ing graph. However, finger sliding may be hard to implement mechanically since it is

required that fingers must always touch the edge during sliding. Finger switching can im-

itate finger sliding by switching fingers from the initial to the final position of the sliding.

Examples of finger switching and sliding are shown in Figure 2.2.

CHAPTER III

REGRASP PLANNING FOR A POLYGONAL OBJECT

3.1 Introduction

A framework to deal with the problem of regrasp planning for a polygonal object

will be discussed in this chapter. Since we separate the regrasp planning from task and

mechanical constraints, general sets of force-closure grasps for an object can be com-

puted beforehand. We propose an efficient structure called Switching Graph to store sets

of force-closure grasps which will be further used to solve the regrasp planning problem.

Sets of force-closure grasps are computed by considering combinatorial sets of polygo-

nal edges. Each set is assigned to a vertex of the switching graph. Our planner exploits

the connectedness of a grasp set to compute a regrasp sequence between two grasps in the

same set. This type of sequence can be performed by continuous movements of end effec-

tors while all grasps in this sequence are guaranteed to satisfy the force-closure condition.

An edge joining two vertices indicates that a grasp in one vertex can change to a grasp

in the other vertex using a finger switching. The connectivity of this structure captures

ability to switch from one grasp set to another grasp set and allows regrasp planning to

be formulated as a graph search. Since the structure contains sets of grasps, the regrasp

planner is permitted to extract the information of the graph and compute a set of regrasp

sequences that ensures force-closure for every grasping configuration in the sequences

without reverifying all grasps in the sequences. An important advantage of our framework

is generality of solutions which does not specifically depend on a task or a robot hand.

By applying the switching graph, we can consider the regrasp planner as a middle-level

planner which acquires an initial and a goal grasp from a task planner then computes a set

of regrasp sequences and then transfers the solution set to mechanical-controlled level.

Another advantage is globalization of the switching graph. Since the switching graph

contains sets force-closure grasps considering all combinations of polygonal edges of an

object therefore it allows a planner to globally search for regrasp sequences.

The organization of this chapter is as follows. Force-closure conditions in 2D are

presented in Section 3.2. The switching graph for a polygon is discussed in Section 3.3.

The description of grasp representations are appeared in Section 3.3.1. In this section,

we will describe simplification of a force-closure grasp set into a linear structure which

23

is easy to extract its information based on the assumption of a polygonal object. The

relation between regrasp operations and sets of grasps is presented in Section 3.3.2 and

3.3.3. Construction of the switching graph containing the sets of grasps is described in

Section 3.3.4. We provide a guideline of using the switching graph in Section 3.4. The

implementation of our approach and experimental results are shown in Section 3.5.

3.2 Force-closure conditions in 2D

In Chapter 2, we have described that 2- and 3-finger non-marginal equilibrium is

sufficient to satisfy force-closure in 2D. Due to (Nguyen, 1988b), the following proposi-

tion characterizes 2-finger equilibrium.

Proposition 3.1 A necessary and sufficient condition for two points to form an equilib-

rium grasp with non-zero contact forces is that the line joining both points lies completely

in the two double-sided friction cones at the points.

The following two propositions completely characterize 3-finger grasps achieving

equilibrium with non-zero contact forces.

Proposition 3.2 A necessary and sufficient condition for three points to form an equilib-

rium grasp with three non-zero contact forces, not all of them being parallel, is that (Pa)

there exist three lines in the corresponding double-sided friction cones that intersect in a

single point and (Pb) the vectors parallel to these lines and lying in the internal friction

cones at the contact points positively span1 R2.

For a polygonal object, given three edges, the set of equilibrium grasps satisfying

the conditions of Proposition 3.2 is described by non-linear relation of three contact posi-

tions and directions of forces in three friction cones. Instead of using Proposition 3.2, the

construction of the switching graph relies on a stricter condition given below in Proposi-

tion 3.4. The following definition is needed to write the proposition.

Definition 3.3 Let Ci(i = 1, 2, 3) be the cones centered on ωi with half angle θ. We

say that the three vectors ωi(i = 1, 2, 3) θ-positively span R2 when any triple of vectors

vi ∈ Ci(i = 1, 2, 3) positively span R2.
1A set of vectors positively spans Rn if any vector in Rn can be written as a positive linear combination

of the set.

24

It is easy to see that when three vectors θ-positively span the plane, the three vectors

positively span the plane and every pairwise angle is smaller than π−2θ. In the following

proposition and the remainder of the paper, we will denote by θ the half angle of every

friction cone.

Proposition 3.4 A sufficient condition for three points to form an equilibrium grasp with

non-zero contact forces is that: (Pa) there exist three lines in the corresponding double-

sided friction cones that intersect in a single point and (Pc) the internal normals at the

three contact points θ-positively span R2.

A proof of the above proposition can be found in (Ponce and Faverjon, 1995a). Note

that replacing condition Pb in Proposition 3.2 with condition Pc yields a stricter condition;

certain grasps satisfying Proposition 3.2 will not satisfy Proposition 3.4. Some of them,

however, form 2-finger force-closure grasps or parallel grasps satisfying Proposition 3.5.

The underlying reason for the use of a more restrictive condition will become clear as we

explain the representation of concurrent grasps in Section 5.3.1.

Proposition 3.5 A necessary and sufficient condition for three points to form an equi-

librium grasp with three parallel and non-zero contact forces is that there exist three

parallel lines in the corresponding double-sided friction cones and for three vectors par-

allel to these lines and lying in the internal friction cones at the contact points, the vector

parallel to the middle line are in the opposite direction from the other two.

Proof: Obviously, three parallel non-zero contact forces achieve a force equilibrium

only when exactly one of them lies in the opposite direction of the other two. If the

opposing force does not lie between the other two, the moment with respect to any points

along the other vectors will not be zero. To achieve force closure, that force must be in

the middle. In that case, it is obvious that a moment equilibrium can also be achieved.

This type of force-closure grasp is taken into account in order to cover some grasps

missing by applying Proposition 3.4. A formulation of the conditions in Proposition 3.4

into linear constraints will be described later in Section 3.3.1.3.

25

3.3 Switching Graph for a Polygonal Object

This work assumes finger switching performed by changing one contact at a time.

At least one free finger is needed when switching from one force-closure grasp to an-

other. In 2D workspace, 2-finger and 3-finger force-closure grasps are sufficient for grasp

stability. Therefore, a robot hand used in this work is assumed to be equipped with four

fingers. For 3-finger force-closure grasps, our approach consider (1) parallel grasps:

force-closure grasps satisfying Proposition 3.5, and (2) concurrent grasps: force-closure

grasps satisfying Proposition 3.42.

However, a parallel grasp and a concurrent grasp cannot switch to each other di-

rectly. For a parallel grasp satisfying Proposition 3.5, the three double-sided friction

cones of the three grasped edges, when being drawn at the same point, must intersect in

a nonempty region (i.e., so that three parallel lines in the cones exist). This prevents any

finger switching for a parallel grasp to result in a concurrent grasp because there is still a

pair of edges whose internal normals forbid the three internal normals from θ-positively

spanning the plane no matter which edge is chosen to participate in the finger switching. It

is, however, possible for a finger switching to change into a 2-finger force-closure grasp.

This information allows us to draw the diagram in Fig. 3.1 showing the overall structure

of a switching graph characterizing types of grasps a finger switching can transform a

certain type of grasps into.

Concurrent
grasps

Parallel
grasps

2−finger
grasps

Figure 3.1: Switching diagram

3.3.1 Representing Force-closure Grasps

Generally, a set of force-closure grasps can be described in the configuration space

of contact points. In 2D, a contact point on the object’s surface can be identified by
2by not using Proposition 3.2, some grasps may be missing as mentioned in Section 3.2 but this will al-

low simple characterization of independent contact regions which is an important foundation of the switch-
ing graph

26

one parameter. Hence, a 2- and 3-finger grasp is represented by a point in 2D and 3D

parameter spaces, respectively. However, it is not straight forward to compute and store

a grasp set in a data structure. In this section, we will describe representations of force-

closure grasp sets for each type. We transform the representation of grasps satisfying

Proposition 3.1 and 3.4 from parameter space into workspace. Since our representations

of 2-finger and concurrent grasps are in the same R2 space, therefore we can efficiently

compute a set of grasps by using computational geometry algorithms in 2D. In contrast,

since the lines of parallel forces intersect at infinity, a parallel grasp is represented by a

point in 3D parameter space but planning regrasp sequences can be reduced into a problem

in 2D.

3.3.1.1 Representing Concurrent Grasps

As mentioned earlier, a grasp is geometrically defined by the positions of the fingers

on the object’s boundary. Assuming that an object is a polygon, a contact point on a

polygonal edge can be defined by distance from an endpoint of the edge. This amounts to

using three parameters to uniquely define a 3-finger grasp (with the three grasped edges

already chosen). However, using Proposition 3.4, we can define a set of concurrent grasps

with only two parameters. In the following, we explain how this can be done.

Let us consider Fig. 3.2(a) where Ei, i = a, b, c (a 6= b 6= c) are the three shown

edges whose internal normals θ-positively span the plane. Consider also a point x0 such

that each of the three inverted friction cones3 at x0 intersects the corresponding edge in a

non-empty segment. Let us denote the intersection segment on edgeEi byE ′i and consider

a grasp defined by xi ∈ E ′i, i = a, b, c (Fig. 3.2(b)). Obviously from the construction,

the three double-sided friction cones at xi, i = a, b, c intersect in a region containing x0

(regardless of where xi is chosen in E ′i) and in turn, according to Proposition 3.4, the

three contact points xi, i = a, b, c form a concurrent grasp (Fig. 3.2(b)). Therefore, x0

can be used for defining a set of concurrent grasps formed by all possible triples xi ∈
E ′i, i = a, b, c. Equivalently, we obtain the following proposition (a 3D version of this

proposition can be found in (Sudsang and Ponce, 1995)).

3an inverted friction cone w.r.t an edge is a friction cone projecting toward the edge with its axis parallel
to the normal of the edge

27

Proposition 3.6 A sufficient condition for three fingers to form a concurrent grasp is that

the internal normals of the three grasped edges θ-positively span the plane and there exists

a point x0 such that the inverted friction cones at this point intersect the three grasped

edges.

Note that each point x0 satisfying Proposition 3.6 yields three independent con-

tact regions where fingers can be placed independently while achieving concurrent grasp:

these regions are simply the intersection of the inverted cones in x0 with the contact edges

(Fig. 3.2(b)).

cE bE

aE

x
0

E'a

bE'cE'

(a)

E'b
E'c

aE'xa

x c

xb

0
x

(b)

bE

aE

Ec

a,b,cF

(c)

Figure 3.2: Construction of a focus cell: (a) inverted friction cones, (b) independent
contact regions, (c) focus cell from the intersection of the union of cones

We are now ready to discuss how a vertex in the switching graph represents a set of

grasps. A vertex of the switching graph represents a set of concurrent grasps by having

an association with a set of all points x0 satisfying Proposition 3.6 for a given triple of

edges. Since an inverted friction cone at x0 intersect the corresponding edge when x0 lies

in the polygon defined by the union of all double-sided friction cones at every point on

the edge (Fig. 3.2(c)), the set of all x0 satisfying Proposition 3.6 can be obtained from the

intersection of the three polygons each of which is the union of all double-sided friction

cones on each edge. In the following definition, we give a name for the intersection

polygon for future references.

Definition 3.7 The polygon defining the set of all points x0 satisfying Proposition 3.6 for

a given set of three edges Ei, Ej and Ek where i 6= j 6= k will be called the focus cell for

the edges and will be denoted by Fi,j,k

With the above definition, we can say that a vertex in the switching graph represents

28

a set of concurrent grasps on edge Ei, Ej and Ek by having an association with Fi,j,k, the

focus cell for the triple of edges.

3.3.1.2 Representing 2-finger Grasps

A point in the plane can be also used to represent a set of 2-finger grasps. This

representation is applied for a simplicity of checking a finger switching between a 2-

finger grasp and a concurrent grasp as described in Section 3.3.2.2. To understand the

process, consider Fig. 3.3(a) showing a grasp at xa on Ea and xb on Eb. To achieve

force-closure, according to Proposition 3.1, the line segment L joining xa and xb must lie

within the friction cones at the contact points (Ca and Cb). An equivalent condition is that

the arrangement of the segment L must be within the double-sided cone C∩a,b where C∩a,b
is obtained from the intersection of double-sided friction cones Ca and Cb drawn at the

same point (Fig. 3.3(b)). In other words, the double-sided friction cones intersects when

the angle between two associated normals of the contact edges is in (π − 2θ, π + 2θ).

Following (Nguyen, 1988b), this allows independent contact regions to be found as the

intersection between the double-sided cone C∩a,b at a point x0 and the two grasped edges

(Fig. 3.3(c)). The corresponding focus cell is, in turn the set all points x0 with non-empty

independent contact regions. Like the concurrent case, the focus cell can be constructed

from the intersection of the two polygon each of which is the union of the cone C∩a,b at all

points on each edge (Fig. 3.3(d)).

Eb

Ea

L

Cb

Ca

(a)

C∩
a,b

Ca

Cb

(b)

E ′
b

E ′
a

C∩
a,b

x0

(c)

Fa,b

Eb

Ea

(d)

Figure 3.3: 2-finger force-closure focus cell construction. (see text)

3.3.1.3 Representing Parallel Grasps

Parallel grasp is another type of 3-finger grasps. It provides additional force-closure

grasps that cannot satisfy the conditions of Proposition 3.4. Since the lines of forces

29

forming a parallel grasp do not intersect at a point, a set of parallel grasps cannot be

represented by any elements in the plane. We use three parameters to indicate positions

on three grasped edges instead.

However, we do not apply the condition in Proposition 3.5 to construct a set of

parallel grasps directly because the conditions are formulated into non-linear constraints.

We have presented a new condition for three contact points to form a parallel grasp. Let

us consider Proposition 3.5. There exists three parallel forces from three contact points

xa,xb and xc whose normals respectively are na,nb and nc (Fig. 3.4(a)) when there

exists i, j, k ∈ {a, b, c} and i 6= j 6= k such that the intersection of cones Ci, Cj and

−Ck, all of them originated at the same point, is not empty (Fig. 3.4(b)). This condition

is equivalent to the condition that the angle between ni,nj and −nk are pairwisely less

than 2θ. If we limit θ to be less than π/4 (i.e., friction coefficient < 1), only one triple

of (i, j, k) will satisfy the previous condition. We call the contact point that has opposite

direction force as a center point. We define a structure called a common cone that aids in

existence checking of a parallel grasp as follows. A common cone exists only when three

contact points xa, xb and xc have three parallel forces, one of them lies in the opposite

direction from the other two. From Fig. 3.4(a), xa is the center point, a common cone

C∩a,b,c is the double-sided cone of the intersection of three cones −Ca, Cb and Cc (Fig.

3.4(c)). If we draw a common cone on the center point, part of the plane that is not

occupied by the cone will be divided into two regions. These regions are called the outer

regions. The next proposition from (Phoka et al., 2005) uses the notion of outer regions

to define a necessary and sufficient condition for an existence of a parallel grasp when θ

is less than π/4.

Ca

xa

xcxb

Cb
Cc

nb

na

nc

(a)

−Ca

Cb Cc

(b)

C∩
a,b,c

(c)

Figure 3.4: Construction of a common cone: (a) A parallel grasp. (b) Three friction cones
of (a) drawn at the same point. The dashed cone is inverted. (c) A common cone.

Proposition 3.8 A necessary and sufficient condition for three contact points xa,xb and

30

xc, whose normals respectively are na,nb and nc, to form a parallel grasp is that two

following conditions hold. (Pd) a common cone C∩na,nb,nc
is not empty. (Pe) Let us

assume that the center point of these three points be xa. The points xb and xc do not lie

in the same outer region separated by the common cone C∩a,b,c originated at xa (Fig. 3.5).

Proof: For the sufficient side, let us draw a segment connecting pb and pc. If both

of them do not lie in the same side of the common cone, the segment pbpc will definitely

intersect the common cone. Let px be any point in the intersection of pbpc and the common

cone, we can draw a line from pa to px. That line definitely lies in the friction cone of pa
(see Fig. 3.5). A line parallel to papx that passes pb also lies in the friction cone of pb,

and so is the case of pc. From a construction of a common cone, we can find three forces

parallel along these lines that form a parallel grasp.

For the necessary side, if there exists a parallel grasp, a common cone will also

exist. Now, if pb and pc lie in the same side, pbpc does not intersect the common cone.

A line lying in the middle of pb and pc, which is necessary for a parallel grasp, must

intersect with the segment pbpc. However, since pb and pc lie completely in one outer

region, every point in pbpc also lies in that outer region. It follows that if we pick some

points on pbpc and use it to define a middle line, the other two lines passing through pb
and pc that are parallel to the first line will also lie outside their respective common cone.

Thus, at least one of them must lie outside its friction cone. This completes the proof as a

contrapositive.

xa

xb

xc

C∩
a,b,c

Figure 3.5: 3 contact points forming a parallel grasp: When pbpc intersects with the com-
mon cone, we can find three parallel lines and vectors that satisfy 3.8

Since we are dealing with a polygonal object, we need a representation of a contact

point on a polygonal edge. Let Ea be an edge with an end point a0 and a unit direction ta.

The length of Ea is la. A point xa on an edge Ea can be represented by xa = a0 + uata

31

Ec

xa

na

C∩
a,b,c

n1

n0

Eb

nc

nb

Figure 3.6: Representing a common cone: A common cone on point xa and vectors n0

and n1.

where ua ∈ [0, la]. By using this representation, we can represent a set of all grasping

configurations Ga,b,c by a polytope in 3D, each dimension represents a value of ua, ub and

uc, respectively.

The polytope P is defined by a set of linear constraints. For a polytope of Ea, Eb
and Ec, contact points xa,xb,xc are constrained to be on the polygonal edges. We define

length constraints

0 ≤ ui ≤ li for i = a, b, c (3.1)

Next, a set of constraints that bounds contact points to satisfy Proposition 3.8 is

presented. Let us assume that the center edge is Ea and the others are Eb and Ec. In-

tuitively, if one point xb on Eb lies in an outer region (separated by a common cone of

some point xa on Ea), the second point xc on Ec must be in a common cone of the third

point or in the other outer region. However, the feasible area may not be convex so we

construct it from a union of six convex polytopes. We denote L(n,x) ≡ n · −−→xax ≥ 0 and

R(n,x) ≡ n · −−→xax ≤ 0 to describe the constraints of a point x on the left and the right

side of the half space described by the normal vector n and a line passing through xa. We

define constraints for each of them as follows.

K0 ≡ L(n0,xb) ∩ L(n1,xb) ∩R(n0,xc) ∩R(n1,xc) (3.2)

K1 ≡ R(n0,xb) ∩R(n1,xb) ∩ L(n0,xc) ∩ L(n1,xc) (3.3)

K2 ≡ L(n0,xb) ∩R(n1,xb) (3.4)

K3 ≡ L(n0,xc) ∩R(n1,xc) (3.5)

32

K4 ≡ R(n0,xb) ∩ L(n1,xb) (3.6)

K5 ≡ R(n0,xc) ∩ L(n1,xc) (3.7)

Where n0 and n1 are the normal vector of left margin and right margin of the

common cone respectively (see Fig. 3.6). The first two constraints, K0 and K1, are cases

that ub and uc are on two distinct outer regions separated by a common cone at ua while

the others are for the cases when ub or uc are in the common cone. Each sub-polytope P′i

are defined as a convex hull constrained by Eqs. (3.1) and Ki. These polytopes represent

a connected set of all parallel grasps on the edges Ea, Eb and Ec and involve with a vertex

in the switching graph.

3.3.2 Finger Switching

Regrasp process which changes grasping configuration by placing an additional fin-

ger on desired contact point and then releasing one finger of the initial grasp is called fin-

ger switching. Intuitively, considering grasps on two different edge sets, a finger switching

can be performed when contact points on the common grasped edges are restrained. In

parameter spaces, the common contact points are computed in subspaces of the common

edges. It requires projections of two grasp sets onto the subspaces. The projections are

then checked for the intersection which indicates a set of common contact points. This

method is applied for parallel grasps as described in Section 3.3.2.3. On contrary, our

algorithm computes finger switching of 2-finger and concurrent grasps in 2D workspace.

This operation involves with an edge in the switching graph. Considering two grasp

sets associated with two vertices, existence of finger switching between these sets indi-

cates an edge linking the related vertices. Switchings among concurrent grasps or between

concurrent grasps and 2-finger grasps can be described by a set of common points in the

plane representing grasps on distinct grasped edges. Finger switching of parallel grasp

is computed in parameter subspace of two common edges. Representation of a 2-finger

grasp set is transformed into parameter space when finger switching into a parallel grasp

is needed.

33

3.3.2.1 Finger Switching among Concurrent Grasps

For the sake of representing a set of concurrent grasps by a focus cell, finger switch-

ing is related to the intersection of two focus cells that their associated grasps have

two common grasped edges. Let us consider two focus cells Fa,b,c and Fa,b,d such that

Fa,b,c ∩ Fa,b,d 6= ∅ (Fig. 3.7) where q be a point in Fa,b,c ∩ Fa,b,d. Clearly, q defines

two sets of concurrent grasps: one for triple of edges Ea, Eb, Ec and the other for triple

of edges Ea, Eb, Ed. Let us suppose that the fingers 1,2 and 3 are respectively on edges

Ea, Eb and Ec and forming one of the concurrent grasps defined by q. It is easy to see that

the hand can switch to another concurrent grasp on edges Ea, Eb and Ed by placing finger

4 on any point in the intersection between edge Ed and its inverted friction cone at q (Fig.

3.7(c)). Once finger 4 is on Ed, finger 3 can leave edge Ec resulting in a switching from a

concurrent grasp on Ea, Eb, Ec by fingers 1,2,3 to another concurrent grasp on Ea, Eb, Ed
by fingers 1,2,4. This finger repositioning sequence enables us to plan finger switching by

identifying intersection between two focus cells for which their triples of grasped edges

are different from each other by only one edge.

bE
aE

cE

Fa,b,c

q

(a)

dE

bE

aE

a,b,dF

q

(b)

4

3

2U

1

dE
cE

bE

aE
a,b,c
F Fa,b,d

q

(c)

Figure 3.7: Finger switching between concurrent grasps: (a) Fa,b,c, (b) Fa,b,d, (c) their
intersection

3.3.2.2 Finger Switching between 2-finger Grasps and Concurrent Grasps

According to the assumption of a 4-finger hand used in this work, any couple of 2-

finger grasps can always switch to each other. Therefore, an edge linking any two vertices

of two 2-fingers grasps always exists.

Let us consider 2-finger grasps on Ea, Ec and concurrent grasps on Eb, Ec, Ed.

Since a set of 2-finger grasps and a set of concurrent grasps are represented by points

in the plane, finger switching between these grasp types can be described by the intersec-

34

tion between two focus cells Fa,c and Fb,c,d whereEc is the common edge. Clearly, a point

q lying in Fa,c ∩ Fb,c,d represents two sets of grasps. The independent contact regions of

Eb, Ec, Ed are formed by the projections of the inverted cones at q onto them, namely,

the intersections are denoted by E ′b, E
′
c, E

′
d. The independent contact regions of 2-finger

grasps on Ea, Ec are determined by the intersections between Ea, Ec and the cone C∩a,c
emanated from q. Let theses independent contact regions denoted by E ′′a and E ′′c . From

the construction of C∩a,c, it is clear that C∩a,c is a subset of Cc when their origin is at the

same point. Therefore, E ′′c is also a subset of E ′c. To perform a finger switching, three

fingers forming a concurrent grasp have to be placed on E ′b, E
′′
c , E

′
d and the other finger

has to be positioned on E ′′a to form a 2-finger grasp with the finger on E ′′c .

3.3.2.3 Finger Switching among Parallel Grasps

Parallel grasps can switch among them or to 2-finger grasps. In the former case,

finger switching requires that two non-switching contact points must remain the same

during the process. Formally, there will be an edge connecting a vertex va,b,c and a vertex

vb,c,d when there exists a triple of points (xa,xb,xc) ∈ Ga,b,c and a triple (x′b,x
′
c,x

′
d) ∈

Gb,c,d such that xb = x′b and x′c = x′c.

To check whether there exist grasps from two grasp sets that can switch to each

other, we consider two polytopes representing these grasp sets. Let P1 be the polytope

for edges Ea, Eb, Ec and P2 be the polytope for edges Eb, Ec, Ed. The space of P1 and

P2 have two components (axes) in common, namely the axes of ub and uc. These com-

ponents correspond to the non-switching edges, i.e., the common edges of both grasps.

The projection of P1 on the space of these two components represents the set of points on

edges Eb and Ec that a parallel grasp on Ea, Eb and Ec is possible. Similarly, the projec-

tion of P2 represents the subspace of parallel grasps on Eb, Ec and Ed. If the intersection

between these two projections is not empty, then there exists points on Eb and Ec that

form a parallel grasp on both Ea, Eb, Ec and Eb, Ec, Ed. The reverse is also definitely

true. Fig. 3.8 depicts the projection process.

The process is completed by picking six sub-polytopes P′0 . . .P
′
5 associated with a

parallel grasp vertex. We find their projections on a non-switching plane by examining

their extreme points. For each sub-polytope, we project every extreme point of it on

the non-switching plane and construct a convex hull from these points. The union of all

35

ua

uc

ua

ub

(a)

ua

uc

ua

ub

(b)

ud

uc
ub

(c)

ub

uc

(d)

Figure 3.8: Finger switching between parallel grasps: (a) A polytope representing possi-
ble contact points (in term of ua, ub and uc (b), (c) two polytopes and their projections.
(d) Intersection of the projected polygon representing a set of common points for a finger
switching.

projected convex hulls is a projection of the entire polytopes.

3.3.2.4 Finger Switching between Parallel Grasps and 2-finger Grasps

Planning finger switching between parallel grasps and 2-finger grasps requires more

operations because the representations of two grasp types are different. A set of 2-finger

grasps has to be transformed into positions on the grasped edges. Let a parallel grasp is

on edges Ea, Eb, Ec and a two finger grasp is on edges Ea, Ed where Ea is the common

edge. To transform the representation of 2-finger grasps, we compute the projections of

cones C∩a,d emanated from all points in the focus cell Fa,d to Ea, Ed. the double-sided

cone C∩a,d is drawn at every point in the focus cell Fa,d to intersect with the grasped edges.

The intersections are regions that are feasible for 2-finger grasps (Fig. 3.9(a)) and denoted

by E ′′a , E
′′
d . For the parallel grasp, the polytopes of the parallel grasps are projected onto

ua axis (Fig. 3.9(b)). The union of projections Ia of the polytopes is transformed into

a region on Ea. We denote this region by E ′a which is a feasible region that can form

parallel grasps with some points on Eb, Ec. Clearly, a finger switching can be performed

36

Ed

Ea
E ′′

a

E ′′
d

Fa,d

C∩
a,d

(a)

ua

ub

uc

ua

Ia

(b)

Figure 3.9: Finger switching between 2-finger grasps and parallel grasps: (a) A focus cell
is transformed into graspable regions on the grasped edges. (b) A polytope is projected in
the axis of the common edge.

when the finger on Ea is placed in E ′a ∩ E ′′a and forms a 2-finger grasp with a point on

Ed and a parallel grasp with two points each of which is on Eb, Ec concurrently. Non-

empty intersection region E ′a ∩ E ′′a indicates finger switching. As a result, there exists an

edge joining the vertices associated with these two grasp sets. The number of common

fingers for switching between 2-finger grasp and parallel grasp is up to two fingers. If two

edges are in common, one non-empty intersection region on a common grasped edge is

sufficient to perform finger switching.

3.3.3 Finger Aligning

Finger aligning is a process for repositioning fingers by rolling or sliding them along

edges of a polygon while maintaining a force-closure grasp during the repositioning pro-

cess. By applying this operation, we can change grasping configuration with in the same

connected set of grasps. This expresses the direct relation between finger aligning and a

vertex of switching graph explained in section 3.3.1.

Finger aligning is necessary as exemplified in the following instance. Let us con-

sider Fig. 3.10(a). Obviously, because Fa,b,c ∩ Fb,d,e = ∅, it is not possible to switch

directly from a grasp on edges Ea, Eb, Ec to another grasp on edges Eb, Ed, Ee using fin-

ger switching. However, suppose the current grasp onEa, Eb, Ec is defined by q1, a finger

switching can be performed to switch to another grasp on edge Ea, Eb, Ed (i.e., q1 is in

both Fa,b,c and Fa,b,d) and somehow if the hand can adjust the finger to change from the

grasp defined by q1 to a grasp defined by q2 (which could be any point in Fa,b,d ∩ Fb,d,e),
another finger switching at q2 can be applied to switch to a grasp on edge Eb, Ed, Ee as

37

desired.

b,d,e

2
q

1
q

F

F

F

a,b,d

a,b,c

(a)

E'
d d

E'a E''a

E''

Fa,b,d

q

q

bb
E' E''

1

2

(b)

Figure 3.10: Finger aligning: (a) moving between non-overlapping focus cells, (b) mov-
ing locally within a focus cell

In fact, for 2-finger and concurrent grasps, changing grasping configuration within

the same focus cell is the process we referred to as finger aligning. This process can be

accomplished by taking advantage of the idea that force-closure can be maintained during

finger sliding, finger rolling , or finger switching within an independent contact region.

We illustrate in the case of concurrent grasps. Let us consider Fig. 3.10(b) showing

configuration points q1 and q2 in the same focus cell Fa,b,d. The inverted friction cones

at q1 intersect the three grasped edges in the three independent contact regions E ′a, E
′
b

and E ′c and likewise the inverted friction cones at q2 intersect the three grasped edges in

E ′′a , E ′′b and E ′′d . Suppose that the three fingers are at xa ∈ E ′a,xb ∈ E ′b and xc ∈ E ′c.

This can be represented by q1. To move from q1 to q2, we move the three fingers from

xi to x′i ∈ E ′i ∩ E ′′i (i = a, b, c). It is sufficient to ensure force-closure during the fingers’

motion by maintaining that the fingers are in the independent contact regions of q1 during

the entire process. This can be done by rolling or sliding the fingers along the grasped

edges from xi to x′i(i = a, b, c). Instead of rolling or sliding, it is also possible to apply

finger switching within each independent contact region by placing a free finger at x′i and

lifting off the finger at xi. Because there is only one free finger during a concurrent grasp,

this kind of finger switching can be performed in one independent region at a time.

By continuity, for any point in a focus cell of 2-finger or concurrent grasps, there

exists a neighborhood for which the independent contact regions of the point intersect the

independent contact regions of every point in the neighborhood. That is, there always

exists a finger repositioning sequence to move between any pair of configuration points

in the same focus cell.

Finger aligning for parallel grasps is trivial from the construction of a grasp set

38

that is formed by a union of connected convex hulls. Each vertex in the switching graph

corresponds to exactly one grasp set. Every grasp in each vertex can be repositioned

to another grasp of the same vertex by finger aligning because of continuity in a set of

parallel grasps for each triple of polygon’s edges.

3.3.4 Computing Switching Graph

To construct a switching graph, all of its vertices and edges have to be found. The

constructions of switching graphs for all grasp types will be explained in this section. In

the proposed algorithms, required information about an edge is maintained in a structure

EdgeStruct. An instance of EdgeStruct for an edge contains two fields which are (1) id:

the number uniquely identifying the edge, and (2) normalAngle: the angle between the

internal normal of the edge and the x-axis written in radian in the range from 0 to 2π. The

input of the algorithm is an array allEdge[1..n] containing EdgeStruct instances for all

edges of the polygon. The algorithm begins by sorting allEdge in an increasing order of

the field normalAngle then constructs an array upper[1..m1] containing all EdgeStruct

instances such that the field normalAngle is in the range [0, π) and an array lower[1..m2]

containing all EdgeStruct instances in array allEdge that are not in array upper. The

algorithm sorts upper in the increasing order of normalAngle and sorts lower in the

decreasing order of normalAngle (this takes O(n) time since upper and lower are con-

structed from allEdge which is already sorted).

3.3.4.1 Computing Vertices of Concurrent Grasps

We compute all focus cells to identify vertices of all concurrent grasp sets. Com-

puting all focus cells requires identifying all triple of edges having concurrent grasps

satisfying Proposition 3.6. Instead of enumeratively checking all triples, the number of

candidate triples can be significantly reduced by considering only those triples whose

internal normals θ-positively span the plane. Let us present an algorithm for generat-

ing these candidate triples and then discuss how it works. The algorithm proceeds as

described in the following pseudocode.

39

1: for i = 1 to m1 do

2: α = upper[i].normalAngle

3: j = 1

4: while j ≤ m2 and lower[j].normalAngle ≥ α + π + 2θ do

5: β = lower[j].normalAngle

6: for each k such that

allEdge[k].normalAngle ≥ β − π + 2θ and

allEdge[k].normalAngle ≤ α + π − 2θ do

7: generate candidate triple of edges:

{upper[i].id, lower[j].id, allEdge[k].id}
8: j = j + 1

This algorithm is based on the idea that selecting one normal restricts how the next

one can be selected. The algorithm selects the first normal from the upper half of the

unit circle (line 1) and the second normal from the lower one (line 4). This is due to the

fact that three vectors cannot be in the same half of the unit circle when they θ-positively

span the plane. According to Definition 3.3, once the first normal is selected, it is needed

that the angle between the first and the second normals is smaller than π − 2θ. This

amounts to choosing the second normal in the lower circle and outside the cone with

half angle 2θ and centered on the vector opposite to the first normal (Fig. 3.11(b)). This

results in two regions where the second normal may be chosen (regions A and B in Fig.

3.11(b)). However, the region starting at smaller angle (region B) need not be considered

because selecting the second normal from this region would lead to generating triples that

were already generated in previous iterations (i.e., generating the third normal that was

already considered as the first or second normals in previous iterations). Once the first

and second normals are determined, Definition 3.3 is used again to specify the range of

angles where the third normal can be selected (line 6 and region C in Fig. 3.11(c)). Note

that although the upper bound running time of this algorithm is O(n3), it is in practice

output sensitive and efficient. This claim is supported by experimental results in Section

3.5 that the number of the candidate triples generated from the presented algorithm varies

closely with the number of focus cells found for polygons with varying number of edges.

40

π
2π
0

upper

lower

i

j

(a)

2θ
2θ

B A

(b)

C

i

j

2θ
2θ

2θ
2θ

(c)

Figure 3.11: Generating candidate triples of concurrent grasps (see text)

3.3.4.2 Computing Vertices of 2-finger Grasps

Before computing focus cells for 2-finger grasps, the angle between the normals of

two grasped edges is necessary to be in range (π− 2θ, π+ 2θ). The algorithm starts with

selecting one edge from allEdge in range [0, π + 2θ) because an edge out of this range

induces redundant pairs of edges (Fig. 3.12(b)). Let normalAngle of this edge be α, the

other edge is restricted by its normal being in range (α+π−2θ, α+π+2θ) (Fig. 3.12(a))

and not exceeding 2π to avoid redundancy. The generated candidates are then computed

for focus cells. A non-empty focus cell is associated with a vertex in the switching graph.

2θ
2θ

α

(a)

2θ

2θ
2θ

(b)

α

β
α + θ

β − θ

β + π − 2θ

β + π − θ

α + π + θ

α + π + 2θ

(c)

Figure 3.12: Generating pairs of 2-finger grasps and triples of parallel grasps

3.3.4.3 Computing Vertices of Parallel Grasps

To participate a switching graph, we start by building all vertices of parallel grasps.

Since solving linear constraints of three grasped edges that induce null polytopes is worth

nothing, we need a condition that can check the existence of a parallel grasp on three

polygonal edges. Proposition 3.8 can be extended to cover an existence of a parallel grasp

on three polygonal edges. We define a union volume Ua
a,b,c of polygonal edges a, b and c

on edge a as the union of all common cones C∩a,b,c originated on every points of edge a.

A union volume also divides the plane into two outer regions. We can uniquely identify

the edge that contains a center point in the same way as the case of point. This edge will

be called the center edge. Fig. 3.13 illustrates a union volume.

41

nb Ea

Eb
Ec

na
nc

C∩
a,b,c

(a)

Ua
a,b,c

(b)

Figure 3.13: Computing a vertex of parallel grasps: (a) Three edges and a common cone
drawn on some points on center edge. (b) A union volume.

Proposition 3.9 A necessary and sufficient condition for the existence of a parallel grasp

on three polygonal edgesEa, Eb andEc, whose normals arena,nb andnc, is that the two

following conditions hold. (Pd) a common cone C∩a,b,c is not empty. (Pf) Let us assume

that the edges that contain a center point is Ea. The edges Eb and Ec do not entirely lie

in the same outer region separated by the union volume Ua
a,b,c.

Proof: Let pb be a point on eb and pc be a point on ec. If two edges eb and ec do

not entirely lie in the same outer region, then there exists pb and pc such that the line pbpc
intersects with the union volume. According to the definition of the union volume, the

point on the intersection of pbpc and the union volume must lie in a common cone of some

point on ea. Let us assume that the origin of that common cone is pa. Three points pa, pb
and pc must form a parallel grasp according to Proposition 3.8. This complete the proof

for the sufficient condition.

For the necessary side, since eb and ec entirely lie on the same outer region, every

pair of point pb on eb and pc on ec also lies outside the union volume. From the definition

of the union volume, we know that for every point pa on ea, any pair of pb and pc will lie

outside the common cone originated at pa. From Proposition 3.8, we know that there can

not be a parallel grasp. Thus, the proof is completed.

3.3.4.3.1 We compute all vertices by using a condition Pd in Proposition 3.9 for prun-

ing. The pruning starts by iteratively selecting the first edge. It limits that the angle of a

normal vector between itself and a second edge must be less than than 2θ. Let α be the

42

value of normalAngle of a first edge and β be the value of normalAngle of the second

edge. Clearly, β has to be selected in range (α + θ, α − θ). The value of normalAngle

of a third edge is restricted in the range (β + π− 2θ, α+ π + 2θ) (Fig. 3.12(c)). All gen-

erated triples satisfying Pd are then checked against Pf. If a triple passes the verification,

it constitutes a vertex in the switching graph.

3.3.4.4 Computing Edges

Once all vertices are computed, every pair of concurrent grasp vertices having two

common edges are checked for intersection of the associated focus cells. Also, the focus

cells of every pair of concurrent grasp vertex and 2-finger grasp vertex having one com-

mon edge are checked for intersection. If the intersection is not empty, an edge is created

in the graph for linking the two vertices that represent the two focus cells. According to

the number of fingers, any two vertices representing sets of 2-finger grasps are always

adjacent.

For parallel grasps, every pair of parallel grasp vertices having two common edges

are checked for intersection of the projections of the polytopes associated with the vertices

as described in Section 3.3.2.3. To save time, when a vertex is computed in the first step,

we do a preprocessing of computing a projection of its polytope on all three pairs of

planes (plane (ua, ub), plane (ub, uc) and plane (ua, uc)). If the intersection on subspace

is not empty, an edge linking these vertices is created. Vertices of 2-finger grasps are also

considered for switching to parallel grasps. A parallel grasp vertex and a 2-finger grasp

vertex having at least one common edge are checked for intersection of their graspable

regions on the common edge.

3.4 Using Switching Graph

A switching graph provides a tool for planning a regrasp sequence. A graph search

is performed to find a path joining the two vertices representing the two grasp sets. A path

connecting the vertex containing the initial grasping position and the vertex containing the

required grasping position indicates a sequence of edges that a finger switching should

be performed. However, a path in a switching graph does not directly determine which

contact points on grasping edges are to be used in each step. For a pair of vertices having

an edge connecting them, a switching graph tells us that we can switch between two

grasps on these edges but it does not tell which contact points that we can do a finger

switching. This section describe a method of transforming a path in a switching graph to

43

an actual regrasp sequence.

First, let us consider a finger switching. Finger switching takes place when we move

from one vertex to another vertex in a graph. An edge in the graph tells us that a finger

switching is viable. We have to find two grasps on each vertex that have non-switching

contact points on common edges. For finger switching among concurrent grasps or be-

tween concurrent grasps and 2-finger grasps, the intersection of the two associated focus

cells is used to compute switchable regions on the grasped edges. A point in the intersec-

tion indicates regions on the common edges which fingers can be positioned on them and

form two different grasps with the two switched edges. The calculation of the switchable

regions has been described in Section 3.3.2.1 and 3.3.2.2.

In the case of switching between parallel grasps, we pick a point from the intersec-

tion of the projections of polytopes described in Section 3.3.2.3. That point indicates two

actual points on non-switching edges. The next step is to find a point forming a grasp of

the first vertex and a point forming a grasp of the second vertex. Let us consider a poly-

tope defined in Section 3.3.1.3. Once a value of (ub, uc) in the intersection of projected

P1 and P2 is chosen, we can construct a set of feasible contact points for the other two

fingers by solving the linear system in (1)-(7) with the fixed values ub and uc. To switch

between a parallel grasp and a 2-finger grasp, a common contact point is picked from the

intersection of graspable regions on the common edge. Contact points on the remaining

switched edges of parallel grasps are obtained by solving the same linear system with

the fixed value of parameter on the common edge. The graspable region on the switched

edge for 2-finger grasps is obtained by projecting the double-sided cone originated from

the common contact point to the switched edge. The intersection of the cone and the edge

indicates a region that a finger can be placed to form a 2-finger grasp with the common

contact point.

Next, let us consider a finger aligning. We exemplify in 3-finger grasp situation.

Finger aligning may be required in-between two finger switching, i.e., when we just tra-

versed from vertex va,b,c to vertex vb,c,d and about to move to the next vertex vb,c,f . Let

us assume that the first finger switching is just performed and we currently are in a grasp

represented in vb,c,d. In order to perform the next finger switching, i.e., to move to the

vertex vb,c,f , the grasping position must have two contact points in common with the fi-

nal grasp. An appropriate grasping configuration is computed as described earlier in this

section when we have to change from the finishing grasp of the first switching to the a

next switching. Since these two grasps lie on same polygon’s edges, we can change the

44

b, c, f
v

a, b, c b, c, fG b, c, dG G

v
a, b, c b, c, d

v

Final����

������������

�����
�����
�����

�����
�����
�����

Initial

Figure 3.14: A corresponding between vertices and edges in a switching graph and a
finger switching and a finger aligning. A dashed line in the bottom figure represents a
finger aliging while a solid line represents a finger switching

current grasp to an appropriate grasp for the next switching by a finger aligning. Fig. 3.14

shows the corresponding between a switching graph and the actual action performed on a

regrasp.

Since the switching graph contains sets of grasps, additional constraint, such as

finger kinematics, may be incorporated as a search policy to find a sequence that meets

additional requirement. Once a path is found, for each pair of consecutive vertices in

the path, a grasp in the associated grasp set is chosen such that a finger switching can

occur. Again, the grasp can be selected such that the resulting grasps optimize some

criteria. After these grasps are computed, finger aligning can be planned to complete

the sequence. An advantage of this approach is that a path in the graph represents a set

of regrasp sequences, not just one. This allows selecting sequences based on additional

constraint or any fine tuning on the sequences to be performed more efficiently than an

approach that returns one sequence at a time.

3.5 Implementation and Results

We have implemented the regrasp planning for concurrent grasps, parallel grasps

and 2-finger grasps based on the switching graph concept. The program is written in C++

using LEDA library (Mehlhorn and Naher, 2000). To achieve accuracy, rational numbers

supported by LEDA are used in geometric computation. All run times are measured on a

PC with a 2.8 GHz CPU.

Some test polygons with varying number of edges are shown in Figure 3.15. The

results classified for each grasp type are in Table 3.1 showing the numbers of candidate

sets, vertices and connected components of switching graphs. Table 3.2 shows the overall

results when all grasps are taken into account and combined in one switching graph.

45

The results show that concurrent grasps are quite complete in themselves since the

combination with 2-finger grasps and parallel grasps decreases the number of connected

components only for the object in Fig. 3.15(b). The numbers of parallel grasp vertices are

small comparing with concurrent grasps but they provide more 3-finger grasps that do not

satisfy the strong condition in Proposition 3.4. 2-finger grasps play a role as transitions

between concurrent grasps and parallel grasps. Moreover, they can decrease the number

of connected components as we can see in the cases of parallel grasps for all objects and

concurrent grasps for the object in Fig. 3.15(b).

Some regrasp sequences are presented in Fig. 3.16 - 3.20. Fig. 3.16 shows a regrasp

sequence for only concurrent grasps. A regrasp sequence for parallel grasps is shown in

Fig. 3.17. The cones in this figure are common cones for parallel grasps. Fig. 3.18

presents an example when 2-finger grasps are taken into account with concurrent grasps.

Dashed line segments represent line joining two contact points which form 2-finger grasp.

An example of parallel grasps and 2-finger grasps is appeared in Fig. 3.19. The cones

in Fig. 3.19(b) and Fig. 3.19(i) of the parallel grasps are the common cones. Fig. 3.20

shows a regrasp sequence from a concurrent grasp to a parallel grasp. The cones in Fig

3.20(a)-(d) are double-sided friction cones whereas the cones in Fig 3.20(f) are common

cones for the parallel grasp.

In conclusion, the most important grasp type is concurrent grasp which covers the

most number of vertices and captures the connectivity of the switching graph. However,

more grasps found induces more running time from the computation of edges linking

switchable vertices. Also, 2-finger grasps cannot be neglected because they are transition

between concurrent grasps and parallel grasps which cannot directly switch to the other

different type. In practice, 2-finger grasps can shorten a path from two vertices represent-

ing the same grasp type.

(a)

(f)(e)(d)

(c)(b)

Figure 3.15: Test polygons

46

Table 3.1: Results of the algorithm for all grasp types

Fig. #edge
2-finger grasps concurrent grasps parallel grasps
#vertex #can #vertex #can #CC #vertex #can #CC

3.15(a) 15 10 13 43 61 1 11 11 4
3.15(b) 20 12 26 77 121 6 31 40 4
3.15(c) 25 21 40 185 250 2 81 101 3
3.15(d) 30 22 42 407 577 1 62 78 3
3.15(e) 35 26 64 550 853 2 122 162 4
3.15(f) 40 37 97 736 1074 1 249 358 1

Table 3.2: Combined results

Fig. #vertex #CC time(s)
3.15(a) 64 1 1.05
3.15(b) 120 3 1.89
3.15(c) 267 2 6.34
3.15(d) 491 1 12.13
3.15(e) 698 2 20.98
3.15(f) 1022 1 38.27

3.6 Summary

We have proposed a method for solving the regrasp planning problem for a polygon.

A hand using in this work is assumed four free-flying fingers. Our method provides

general solutions represented by a graph which allows us to plan a regrasp sequence by

using a graph search. Since an obtained result is a set of general solutions satisfying

force-closure thus other constraints can be taken into account to determine an appropriate

regrasp sequence for a given hand platform. The experimental results show the efficiency

of our algorithm which can cover many sets of grasps. The switching graphs have a few

number of connected components which means that any two vertices in a graph are mostly

connected.

47

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.16: A regrasp sequence for concurrent grasps

48

(a) (b)

(c) (d)

Figure 3.17: A regrasp sequence for parallel grasps

(a) (b) (c)

(d) (e) (f)

Figure 3.18: A regrasp sequence for concurrent grasps and 2-finger grasps

49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.19: A regrasp sequence for parallel grasps and 2-finger grasps

50

(a) (b) (c)

(d) (e) (f)

Figure 3.20: A regrasp sequence for all grasp types

CHAPTER IV

REGRASP PLANNING FOR A POLYGON WITH A

LARGE NUMBER OF EDGES

4.1 Introduction

This chapter addresses the problem of regrasp planning for a polygon with a large

number of edges. We consider the case that uses minimum number of fingers to grasp

and regrasp, i.e., 2-finger grasps is taken into account and one additional finger is used

for a finger switching. Therefore, a hand applied in this work is assumed to equip with

three fingers. To obtain the complete structure for regrasp planning of an object, all force

closure grasps are computed in grasp space. Instead of naively constructing a switching

graph from all uncombined sets of grasps computed from all combination of polygonal

edges, we propose to merge sets of grasps that connect to one another into a connected set.

In grasp space, a connected set allows continuous changing among any grasping configu-

rations in the set, i.e., it allows continuous movements of fingers across polygonal edges.

The obtained connected sets are then used to construct nodes of a switching graph. We

propose an output sensitive algorithm which efficiently computes all edges of a switching

graph. Regrasp planning then can be formulated as a graph search problem where nodes

of the graph represent connected sets of force closure grasps while an edge connects two

sets that can be changed between each other by finger switching. A method for finding

the optimal solution of a finger switching is also presented.

4.2 Representing force closure grasps

In this section, we describe how to represent and construct the configuration space

that characterizes all force closure grasps. The polygonal boundary of the rigid object to

be grasped must not be self-intersecting but could be broken into many simple polygons.

It is sufficient to consider only the case that the boundary is composed of at most two

simple polygons: if there are more than two simple polygons that define the boundary, we

can pick two at a time and run the same algorithm over all possible pairs.

The configuration space of the problem is clearly the contact space. A configuration

52

consists of two parameters, each of which defines where each finger is placed along the

boundary of the grasped object. This section describes how to represent and construct the

configuration space that characterizes all force closure grasps.

The entities of a polygon needed in our discussion are defined as follows. A simple

polygon P is described by n distinct vertices vi ∈ R2 where i ∈ Zn
1. It is assumed

that vi are arranged counterclockwise if they represent the outer boundary of the object,

or arranged clockwise if they represents the hole inside the object. Edges Ei are line

segments with endpoints vi and vi+1. Every point p on the boundary of P can be mapped

to the length of curve measured counterclockwise from v0 to p along the boundary. We

will write length(p) to represent such length. Lengths of Ei can be computed by the

equation li = ‖vi+1 − vi‖. It is obvious that Li = length(vi) =
∑
j∈Zi

lj . We denote by

L the total length of the boundary of P , which can be computed by L =
∑
i∈Zn

li.

Next, let us define the tangents of Ei as ti = (vi+1 − vi)/li. The normal vectors ni
of Ei are unit vectors that are perpendicular to ti and point inward. Note that ni can be

obtained by rotating ti counterclockwise by π/2 radian. The cone of forces Ci that can be

exerted on the edge Ei is defined by two vectors ni + (tanα)ti and ni− (tanα)ti where

α ∈ [0, π/2) is the half-angle of the friction cone.

Since we deal with two fingers that might not reside on the same polygon, two sets

of entities for different polygons are needed. Let all entities defined above correspond to

the polygon P which is in contact with the first finger, and let n′, v′i, E
′
i, length

′, l′i, L
′
i,

L′, t′i, n
′
i and C ′i be defined similarly for the polygon P ′ in contact with the second finger.

If the two fingers are on the same polygon, then n = n′, length = length′, L = L′ and

Xi = X ′i where X = v, E, l, L, t,n or C.

The configuration space C of the two fingers is [0, L)×[0, L′). Given a configuration

(u, u′) ∈ C, we say that (u, u′) composes a 2-finger grasp if and only if the two contact

points length−1(u) and (length′)−1(u′) achieve force closure. (Recall that length is a

function that maps a vertex into a number, so length−1 gives a vertex.) Let the graspable

set G ⊆ C be the set of all configurations that compose 2-finger grasps (Obviously, G is

the set of all configurations contained in all force closure regions mentioned in Section

??). Also let the graspable subsets Gi,j be graspable regions on edges Ei and E ′j defined

by

Gi,j = G ∩ ([Li, Li+1]× [L′j, L
′
j+1]).

1Zn is a group of non-negative integers less than n. Addition and subtraction are computed modulo n.

53

4.2.1 Computing Gi,j

Clearly each Gi,j corresponds to configurations whose one finger is on Ei and the

other is onE ′j . This problem of finding all force closure grasps on a pair of edges has been

well studied. Using Proposition 3.1, it has been shown in (Faverjon and Ponce, 1991) that

Gi,j can be defined by eight linear inequalities in the parameters u and u′. Here, let

us present an easier method to define Gi,j . We define the inverted force cone −C ′j as

{−x | x ∈ C ′j}. It was shown in (Nguyen, 1988b) that emptiness of Ci,j = Ci ∩ (−C ′j)
implies emptiness of Gi,j . If Ci,j is not empty, we claim that Gi,j can be defined by no

more than six points on the bounding rectangle. The claim is justified as follows.

Since a 2-finger grasp can be either compressive(squeezing grasp) or expan-

sive(stretching grasp), we define for simplicityDCi,j = Ci,j∪(−Ci,j) as the double-sided

cone of Ci,j so that both the stretching and squeezing cases can be dealt with together.

Now we prove the above claim by examining DCi,j centered on Ei. Let us first extend

both sides of the edges Ei and E ′j to infinity, choose an arbitrary real number u, find

p(u) = length−1(u) on Ei, then let DCi,j(u) be the cone DCi,j centered at p(u). The

intersection I(u) of E ′j and the cone DCi,j(u) is a line segment on E ′j which represents

the region that the second finger can be placed to achieve force closure with the first fin-

ger at p(u). This means for a given position of the first finger u, length′(I(u)) is the

corresponding graspable interval in the second finger’s configuration space (Fig. 4.1(a,

b)).

It is easy to see that if u moves by ∆u, p(u) will move in the direction of ti by the

same distance ∆u, the endpoints of I(u) will move in the direction of−t′j by the distance

proportional to ∆u, and the endpoints of length′(I(u)) will move in the −∆u direction

by the distance proportional to ∆u (Fig. 4.1(c, d)). These linear relationships imply

that the graspable region is bounded by two straight lines. It is now obvious that cutting

Ei and E ′j to their original lengths is equivalent to imposing four rectangular constraints

u ≥ Li, u ≤ Li+1, u′ ≥ L′j and u′ ≤ L′j+1 in the (u, u′)-space (Fig. 4.1(e)). Therefore,

Gi,j can be defined with no more than six points on the bounding rectangle. In the real

implementation, all defining points of Gi,j can be found by computing endpoints of four

intersections: DCi,j(vi) ∩ E ′j , DCi,j(vi+1) ∩ E ′j , DCi,j(v′j) ∩ Ei, and DCi,j(v′j+1) ∩ Ei
(Fig. 4.2).

54

Ei

E ′
j

DCi,j(u)

p(u)

I(u)

(a) (b)

Ei

E ′
j

p(u)

(c) (d)

u

p(u + ∆u)

∆u{

∆u

{ {λ1∆u λ2∆u

(e)
Li Li+1

L′
j

L′
j+1

Gi,j

length′(I(u))

λ1∆u

λ2∆u

{

{

{

Figure 4.1: Computing Gi,j: (a) I(u) is the graspable region of the second finger when
the first finger is at p. (b) length′(I(u)) is an interval in u′ configuration space. (c) End-
points of I(u) move by the distances proportional to ∆u. (d) Endpoints of length′(I(u))
move by the same distances as endpoints of I(u), giving two straight lines bounding the
graspable region. (e) Gi,j is the result of cutting the infinite area by the rectangle.

4.2.2 Extending Configuration Space

Since each finger can be positioned anywhere in its ICR in order to form a force

closure grasp, and its position can be represented by one parameter, it is clear that the

ICRs can be depicted in the configuration space as rectangles whose sides are parallel

to u and u′ axes. The mapping results in one rectangle if the ICRs do not contain v0

or v′0, two rectangles if the ICRs contain v0 or v′0 but not both, or four rectangles if the

ICRs contain both v0 and v′0 (Fig. 4.3). To eliminate the need to find ICRs with multiple

rectangles, we extend the domain of length−1 and (length′)−1 to the whole real line so

they both become functions with periods L and L′ respectively. (length and length′ are

no longer one-to-one.) The new G in the expanded configuration space R2 can be defined

from the old G with these periodic relations:

55

(a)

DCi,j(vi)

vi vi+1

v′
j

v′
j+1

DCi,j(vi+1)

vi vi+1

v′
j

v′
j+1

DCi,j(v
′
j+1)

vi vi+1

v′
j

v′
j+1

DCi,j(v
′
j)

vi vi+1

v′
j

v′
j+1

(c)

(b)

(d)

(e)

Ia

Ib

Ic Id

length′(Ia)

length′(Ib)

length(Ic)

length(Id)

u′

u
Gi,j

Figure 4.2: Extreme points of Gi,j: Four intersections Ia, Ib, Ic and Id are shown in (a),
(b), (c) and (d). Gi,j can be immediately defined by these intersections as shown in (e).

u

u′

L

L′

0
v0

v′
0

Figure 4.3: The independent contact region shown in thick lines (left) maps to four rect-
angles in the configuration space (right).

• (u, u′) ∈ G⇔ (u+ L, u′) ∈ G.

• (u, u′) ∈ G⇔ (u, u′ + L′) ∈ G.

We claim that despite infiniteness of G, the ICRs have one corresponding rectangle

within G ∩ [0, 2L]× [0, 2L′]. This is easily proved by the following argument.

56

• Suppose a position of one finger is given, there must be some positions of the second

finger that do not form force closure with the first finger.

• It follows that all u-constant line segments in G are shorter than L′ and all u′-

constant line segments in G are shorter than L.

• Since the ICRs can be mapped into some rectangles in G whose sides are axis-

parallel segments in G, one of these rectangles must lie inside [0, 2L]× [0, 2L′].

The special case where the two fingers touch the same polygon can be handled with a

smaller configuration space. G will be symmetric about the axis u = u′, which means

we can cut out one half of G that lies above (or below) the line u = u′ (Fig. 4.4(a)).

The remaining part of G above u′ > L (or to the right of u > L) can also be eliminated

because to every rectangle crossing the line u′ = L (or the line u = L), there corresponds

a rectangle in [0, 2L]× [0, L] (or [0, L]× [0, 2L]) that represents the same configurations

(Fig. 4.4(b)). Finally, the region to the right of the line u = u′ − L (or above the line

u = u′ + L) is redundant because no point on this line is in G (Fig. 4.4(c)). Therefore,

the region of consideration is the shaded portion as shown in Fig. 4.4(d).

4.2.3 Constructing G

Now we know that each Gi,j contains at most six defining vertices, so all Gi,j can

be constructed within O(nn′) time. In the final algorithm, we will need the polygonal

representation of G, so adjacent Gi,j must be merged together into big pieces. Many

simple polygons may be needed to define G because G does not have to be simple nor

connected.

A vertex of some Gi,j is a defining vertex of G, or defines G, if it is a vertex on a

boundary of G. It can be observed that a vertex v of some Gi,j defines G if and only if

one of the following is true:

• v is not at a corner of the bounding rectangle.

• v is a corner of four bounding rectangles (one contains Gi,j and the other three are

adjacent), but is not contained in some Gk,l bounded by these rectangles.

Note that if Gi,j is neither empty nor full (“full” means Gi,j = [Li, Li+1]× [L′j, L
′
j+1]), at

least one vertex of Gi,j must be a defining vertex of G.

57

u

u′

0

L

L

2L

2L

Axis of Symmetry

u′ = u

u

u′

0

L

L

2L

2L

Same Configurations

u

u′

0

L

L

2L

2L

Not Graspable

u′ = u − L

Impossible

Same Configurations

Not Graspable

u′ = u

u

u′

0

L

L

2L

2L

(a)

(c) (d)

(b)

Remaining Portion

Figure 4.4: (a) The axis of symmetry is u′ = u. (b) For each rectangle that crosses the line
u′ = L, there corresponds another rectangle in [0, 2L]× [0, L] that crosses the line u = L.
(c) The line u′ = u and u′ = u − L never intersect G, and the part of G to the right of
u′ = u− L represents the same configurations as the remaining portion in [0, L]× [0, L].
(d) The remaining portion to consider is shown in the shaded area.

The algorithm to find all simple polygons that define boundaries of G is described

as follows. Let us first attach a state “used/unused” to all vertices of all Gi,j . All vertices

are initialized as “unused”. We scan through all values of i and j, and do the following:

• While Gi,j has an “unused” vertex v that defines G,

– It is clear that v is on a boundary of G, so we can trace the boundary of G

from v until we get back at v.

– All vertices traced along the way defines a simple polygon which is a boundary

of G. Mark these vertices as “used”.

Note that tracing the boundary of G from Gi,j may involve many Gk,l.

The tracing process can be simplified by first defining adjacencies of vertices that

defineG. Situations when two vertices v1 and v2 that defineG are adjacent inG are listed

below:

58

• If v1 and v2 are adjacent in the polygonal representation of Gi,j and they lie on

different sides of the bounding rectangle ofGi,j , they are adjacent inG (Fig. 4.5(a)).

• If v1 and v2 are adjacent in the polygonal representation of Gi,j and they lie on the

same side of the bounding rectangle of Gi,j , we assume without loss of generality

that v1,v2 ∈ {Li}×[L′j, L
′
j+1]. v1 and v2 will be adjacent inG ifGi−1,j∩v1v2 = ∅

(Fig. 4.5(b)).

• If v1 and v2 belong to different pieces, i.e. Gi,j and Gk,l, we assume without loss of

generality that v1 ∈ Gi,j,v2 ∈ Gi−1,j . v1 and v2 can be adjacent in G if and only

if they lie on the same segment {Li} × [L′j, L
′
j+1] and

– v1v2 ⊆ Gi−1,j and v1v2 ∩Gi,j = {v1}, or

– v1v2 ⊆ Gi,j and v1v2 ∩Gi−1,j = {v2} (Fig. 4.5(c)).

Li

L′
j

L′
j+1

Gi−1,j Gi,j

v2

v1

v1

v2

Li

L′
j

L′
j+1

Gi−1,j Gi,j

v1

v2

(a) (b) (c)

Figure 4.5: Adjacencies of vertices

A vertex on a boundary of G defines either an outer boundary or a hole of G. It is

necessary to distinguish that the vertex defines an outer boundary or a hole. A sequence

of vertices representing a polygon starting at v is obtained when a tracing gets back at

v but we do not exactly know the orientation of the sequence. We firstly assume that it

represents a simple closed polygon and then rearrange it into a counterclockwise order. To

rearrange it, we start with the vertex that is extreme in u′ direction denoted by vi. Let its

adjacent vertices be vi−1 and vi+1. The cross product of vi−1vi and vivi+1 is calculated.

Since the internal angle at the extreme vertex is convex and strictly less than π, they orient

counterclockwise when the cross product is positive. If the cross product is negative, the

sequence of the vertices is reversed.

The rearranged sequence defines an outer boundary when two adjacent vertices vi
and vi+1 of the sequence form the segment vivi+1 such that the graspable region is on the

left side of vivi+1, whereas the sequence represents a hole when the graspable region is

on the right side of vivi+1. All vertices in the sequence are identified that they define an

outer boundary or a hole for further use.

59

The number of vertices defining G can be decreased by eliminating collinear ver-

tices. Let a connected boundary of G consist of n vertices vi ∈ R2 where i ∈ Zn. A

vertex vi can be eliminated when the slope of vi−1vi is equal to the slope of vivi+1.

4.3 Finger Switching

Regrasp process which changes grasping configuration by placing an additional fin-

ger on desired contact point and then releasing one finger of the initial grasp is called

finger switching. Intuitively, considering grasps on two different grasp sets, a finger

switching can be performed when there exists a common contact point on the grasped

object. In grasp space, the common contact points are computed in subspaces of one pa-

rameter. It requires projections of two grasp sets onto the subspaces. The projections are

then checked for the intersection which indicates a set of common contact points. This

operation involves with an edge in the switching graph. Considering two grasp sets asso-

ciated with two nodes, existence of finger switching between these sets indicates an edge

linking the two nodes.

Finger switching requires that one non-switching contact points must remain the

same during the process. Formally, there will be an edge connecting a node va and a node

vb when there exists a couple of points (length−1(ua), length
−1(u′a)) where (ua, u

′
a) ∈ Pa

and a couple (length−1(ub), length
−1(u′b)) where (ub, u

′
b) ∈ Pb such that ua = ub or

u′a = u′b.

To check whether there exist grasps from two grasp sets that can switch to each

other, we consider two polygons representing these grasp sets. The projection πu(Pa) of

Pa on the axis of parameter ua (Fig. 4.6(a)) represents the set of points on the object

that are possible to form 2-finger grasps with some points corresponding to the projec-

tion πu′(Pa) of Pa on the axis of parameter u′a. Similarly, the projections of Pb (Fig.

4.6(b)) represents the subspaces of 2-finger grasps . Note that πu(Pa) and πu(Pb) are in

the same subspace, if the intersection between these two projections is not empty (Fig.

4.6(c)), then there exists points length−1(ua) on the object that form 2-finger grasps with

length−1(u′a) and length−1(u′b) concurrently when ua = ub is satisfied. We apply the

same process to check the existence of finger switching on the space of parameters u′a and

u′b by considering πu′(Pa) and πu′(Pb).

60

u

u′

Pa

πu(Pa)

(a)

u

u′

Pb

πu(Pb)

(b)

πu(Pa)

u

πu(Pb)

(c)

Figure 4.6: Finger switching: The projection of (a) Pa, (b) Pb on u parameter space. (c)
Overlapping projections

4.4 Finger Aligning

Finger aligning is a process for repositioning fingers by rolling or sliding them along

edges of a polygon while maintaining a force closure grasp during the repositioning pro-

cess. By applying this operation, we can change grasping configuration with in the same

connected set of grasps. This expresses the direct relation between finger aligning and a

node of the switching graph.

Finger aligning is necessary as exemplified in the following instance. Let us con-

sider Fig. 4.7(a). Obviously, because the current position of finger 1 cannot form a 2-

finger grasp with the upper part, it is not possible to switch directly from the current grasp

to a grasp that one finger is placed on the upper part using finger switching. However,

somehow if the hand can continuously adjust finger 1 and 2 to change from the current

grasp to a new grasp in Fig. 4.7(b), a finger switching can be performed to switch to

another grasp by placing finger 3 on the upper part to form a 2-finger grasp with finger 1

(Fig. 4.7(c)) and then releasing the finger 2 (Fig. 4.7(d)).

1

2

3

(a)

1

2

(b)

1

2

3

(c)

1

3

(d)

Figure 4.7: Finger aligning

Finger aligning is trivial from the construction of connected grasp sets P1, . . . , Pm.

Each node in the switching graph corresponds to exactly one grasp set. Every grasp

in each node can be repositioned to another grasp of the same node by finger aligning

61

because of continuity in a connected set of 2-finger grasps.

4.5 Constructing Switching Graph

To construct a switching graph, all of its vertices and edges have to be found. We

compute all Gi,j and construct G to identify all connected polygons P1, . . . , Pm. Each

connected polygon is associated with a node of the switching graph.

To construct all edges, all polygons have to be checked for finger switching among

them. Instead of exhaustively testing all pair of polygons, we apply a sweep algorithm to

find overlaps among the projections of the polygons in a parameter subspace. Let the pro-

jection πu(Pa) of a polygon Pa on the axis of parameter ua be represented by an interval

(la : ha) where la is the lower endpoint and ha is the higher endpoint. The lower endpoint

and the higher endpoint are obtained from the leftmost vertex and the rightmost vertex of

Pa respectively. The intervals of all polygons are used in our algorithm. We firstly sort

all endpoints in increasing order and store the sorted endpoints into an event queue E. A

priority queue Q is used to store intervals and identify overlaps among intervals. The pri-

ority of a interval is based on the value of its higher endpoint, less value has more priority.

We are now ready to start the sweeping process from the first element in E. An endpoint

is dequeue from E. If it is a lower endpoint, its associated interval is added into Q. Oth-

erwise, if it is a higher endpoint, its associated interval is dequeued from Q. Clearly, the

interval has the highest priority, we can use ExtractMin operation of the priority queue to

remove it from Q. Let the dequeued interval be (l : h). All remaining intervals in Q have

the lower endpoints that less than h and the higher endpoints that higher than h therefore

they overlap the interval (l : h). As a consequence, the associated node of the interval

(l : h) has edges linking nodes associated with the remaining intervals in Q. The process

is repeated from dequeuing E and so on until E is empty. We also have to check overlaps

in the subspace u′ using the same algorithm. The pseudocode of edge construction is as

follows.

1: E = Sort(l1, h1, l2, h2, . . . , lm, hm)

2: while E is not empty do

3: e = E.Dequeue()

4: if e is lower endpoint then

5: Q.Insert(interval of e)

6: else

7: Q.ExtractMin()

8: L = all remaining elements of Q

62

9: v = the associated node of e

10: for all i ∈ L do

11: n = the associated node of i

12: link(v, n)

13: end for

14: end if

15: end while

The construct of the event queue E takes O(m logm) running time. A prior-

ity queue using a heap give performance O(1) to insert an element into Q. Extract-

Min operation takes O(logm). For all endpoints, our output sensitive algorithm takes

O(m logm+mk) where k is the average number of overlapping intervals of one interval.

4.6 Using Switching Graph

4.6.1 Unconstrained Regrasp Sequence

A switching graph provides a tool for planning a regrasp sequence. A path connect-

ing the node containing the initial grasping position and the node containing the required

grasping position indicates a sequence of edges that a finger switching should be per-

formed. However, a path in a switching graph does not directly indicate which contact

points on grasping edges are to be used in each step. For a pair of nodes having an edge

connecting them, a switching graph tells us that we can switch between two grasps from

two grasp sets but it does not tell which grasping points that we can perform a finger

switching. This section describe a method of transforming a path in a switching graph to

an actual regrasp sequence.

First, let us consider a finger switching. Finger switching takes place when we

move from one node to another node in a graph. An edge in the graph tells us that

a finger switching is viable. We have to find two grasps on each node that have one

non-switching contact point in common. We pick a point from the intersection of the

projections described in section 4.3. That point indicates one actual non-switching point.

The next step is to find a point forming a grasp of the first node and a point forming a

grasp of the second node. Let us consider a polygon defined in section 4.3. Once a value

of ua or u′a in the intersection of the projections of Pa and Pb is chosen, we can construct

a set of feasible contact points for the other finger by intersecting Pa with the line passing

ua and parallel with the axis of u′a or the line passing u′a and parallel with the axis of ua

63

va vb vc

Pb Pc

Final

Pa

Initial

Figure 4.8: A corresponding between nodes and edges in a switching graph and a finger
switching and a finger aligning. A dashed line in the bottom figure represents a finger
aligning while a solid line represents a finger switching

Next, let us consider a finger aligning. Finger aligning may be required in-between

two finger switchings, i.e., when we just traversed from node va to node vb and about to

move to the next node vc. Let us assume that the first finger switching is just performed

and we currently are in a grasp represented in vb. In order to perform the next finger

switching, i.e., to move to the node vc, the grasping position must have one contact point

in common with the final grasp. However, it might not be the current grasp. When an

appropriate grasping configuration is computed as described earlier in this section, we

have to change from the finishing grasp of the first switching to the a next switching.

Since these two grasps are from the same connected set, we can change the current grasp

to an appropriate grasp for the next switching by a finger aligning. Fig. 4.8 shows the

corresponding between a switching graph and the actual action performed on a regrasp.

4.6.2 Optimal Regrasp Sequence

In this section, we will plan for a regrasp sequence that independent contact regions

(ICR) are locally optimized for each finger switching using the principle of L∞ Voronoi

diagram (Papadopoulou and Lee, 2001). We propose to accomplish this task by comput-

ing the L∞ Voronoi diagram of the edges of G. Considering only part of the resulting L∞
Voronoi diagram that lies inside G, we claim that the largest square in G must be centered

at a vertex of the diagram. Before proving this claim, let us briefly review the concept of

L∞ Voronoi diagram.

TheL∞ Voronoi diagram is conceptually defined in the same manner as the ordinary

Voronoi diagram except that L∞ distance metric is used instead of the more familiar L2.

Recall that the L∞ distance d(p, q) between two points p = (px, py) and q = (qx, qy)

is given by d(p, q) = max(|px − qx|, |py − qy|), i.e., the maximum of the differences in

each coordinate, and the L∞ distance d(p, e) between point p and segment e is defined to

64

be minq∈e d(p, q), i.e., the shortest L∞ distance between p and any point on e. Let S be

a set of segments in the plane. A point lies on the L∞ Voronoi diagram of S if, among

all segments in S, at least two of them are equally of the lowest L∞ distance to the point

(in other words, they are the L∞ nearest segments of the point). Equivalently speaking,

considering the definition of the L∞ distance, a point is on the L∞ Voronoi diagram of

S if it is the center of a square that touches at least two of the segments in S without

having its interior intersect with any. An L∞ Voronoi edge is defined to be the set of all

points on the L∞ Voronoi diagram that are on the same straight line segment. A Voronoi

vertex is defined to be the point at which at least two Voronoi edges meet (implying that

the point is equally L∞ far from at least three segments). Since every point on the L∞
Voronoi diagram lies at least on one Voronoi edge, the L∞ Voronoi diagram is essentially

a network of straight line segments. Specifically, the L∞ Voronoi diagram of S divides the

plane into polygonal regions called Voronoi regions. Each Voronoi region is associated

with a unique segment in S such that the region entirely contains the segment, and any

point in the interior of the region is L∞ closer to this segment than to any other segment

in S.

ICR are defined by a rectangle in G whose shorter side length is maximum. We

extend to the problem of optimizing ICR for a finger switching which involves two grasps

concurrently. The measure of goodness of two rectangles Ra with side lengths a1 and a2

and Rb with side lengths b1 and b2 is given by f(Ra, Rb) = min{a1, a2, b1, b2}. Our goal

is to maximize f(Ra, Rb) such that the grasps represented by the centers of Ra and Rb

can switch to each other.

To optimize the criterion, we use another representation of a square to describe ICR.

Let v be a point inG and let square(v) denote the largest square centered at v that is fully

contained in G. The size of square(v) is determined by size(v) = minp∈∂G(d(v,p))

where d(v,p) = max(|uv − up|, |u′v − u′p|). Therefore, any largest square is described

by its center v and size(v). Let va ∈ Pa and vb ∈ Pb, it is clear that maximizing the

criterion is equivalent to maximizing min{size(va), size(vb)}. We denote by πu(v) and

πu′(v) the projections of a point v on the axis of u and u′ parameters respectively. The

problem is transformed to locating the centers va ∈ Pa and vb ∈ Pb of two squares such

that πu(va) = πu(vb) or πu′(va) = πu′(vb) and min{size(va), size(vb)} is maximal.

Our algorithm exploits an important characterization of Voronoi edges which allows

us to search squares centered on them to optimize the criterion. We claim that the largest

square(v) must be centered on a Voronoi edge when one parameter of the point v ∈ P

65

is restrained. This is justified by the following argument:

We describe in the case that parameter u is restrained as shown by the dotted line in

Fig. 4.9(a).

• If v is inside a Voronoi region whose upper and lower boundaries are a Voronoi

edge and an edge of P (v4 in Fig. 4.9(a)), square(v) must have one corner on that

polygonal edge. Moving v away from that polygonal edge will increase size(v).

We can move v in such direction until it reaches a Voronoi edge while square(v)

is growing.

• If v is on a Voronoi region whose upper and lower boundaries are both Voronoi

edges (v2 in Fig. 4.9(a)), moving v in one direction, size(v) is increasing or de-

creasing along the way, and size(v) is decreasing or increasing along the opposite

way until it reaches a Voronoi edge (v1 and v3 in Fig. 4.9(a)).

This argument allows us to search two points va ∈ V Ea and vb ∈ V Eb such that πu(va) =

πu(vb) or πu′(va) = πu′(vb) for optimizing min{size(va), size(vb)} where V Ea and

V Eb are sets of Voronoi edges of Pa and Pb.

Searching procedure begins with identifying an interval for finger switching by the

intersection between πu(Pa) and πu(Pb) or πu′(Pa) and πu′(Pb). We again describe in the

case of an interval in the space of parameter u. Let πu(Pa)∩πu(Pb) 6= ∅ be denoted by an

interval (l : h). Voronoi edges in V Ea and V Eb that intersect this interval are considered.

It is possible that we obtain many branches of Voronoi edges. All combinations of pairs

of Voronoi edge branches are investigated, a pair consists of one Voronoi edge branch

from V Ea and another branch from V Eb. For each pair, we divide the two branches us-

ing subintervals defined by all Voronoi vertices in the branches as shown by the dotted

lines in Fig. 4.9(b). Voronoi vertices are used to determine subdivisions of two Voronoi

edge branches because sizes of largest squares centered at them are critical. Each pair

of subsets of two Voronoi edges in a subinterval is then searched for local optimization

of the criterion. Let the two subsets be represented by two segments whose endpoints

are sa, ta and sb, tb. Since the size of a square centered on a Voronoi edge linearly in-

creases or decreases and a Voronoi edge is also linear, therefore the size of a square can

be parameterized by a parameter α. We define new size functions as

sizea(α) = size(sa) +
α

r
(size(ta)− size(sa))

66

sizeb(α) = size(sb) +
α

r
(size(tb)− size(sb))

where r is the length of the associated subinterval and α ∈ [0, r]. Clearly, α can be linearly

inverted for positions on the segments. Let ↑, ↓ be increasing and decreasing. The locally

optimum is obtained as follows (Fig. 4.10).

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↓, α = 0 induces a local optimum.

• If α ↑⇒ sizea(α) ↑ and sizeb(α) ↑, α = r induces a local optimum.

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(0) ≤ sizeb(0), α = 0 induces a local

optimum.

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(r) ≥ sizeb(r), α = r induces a local

optimum.

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(0) > sizeb(0) and sizea(r) <

sizeb(r), α causing sizea(α) = sizeb(α) induces a local optimum.

• The remaining cases are replica of the last three cases.

All pairs of segments from all subintervals are queried for local optima. Our ap-

proach is done when all combinations of pairs of Voronoi edge branches have been ex-

plored. The best local optimum is the optimal solution for a finger switching.

v1

v2

v3

v4

(a)
l h

(b)

Figure 4.9: The largest square on Voronoi edges

4.7 Experimental Results

We have implemented the regrasp planning for a polygon with a large number of

edges based on the switching graph concept. The program is written in C++ programming

language. All run times are measured on a PC with a 2.4 GHz CPU.

67

α

size(α)

α

size(α)

0 r 0 r α

size(α)

α

size(α)

0 r

0 r α

size(α)

0 r

sizea(α) = sizeb(α)

sizea(α)

sizeb(α)

Figure 4.10: Determining a local optimum

Some test polygons with varying number of edges are shown in Fig. 4.11. We also

vary the half-angle of the friction cone by 10◦, 15◦ and 20◦.

(a) (b) (c) (d)

Figure 4.11: Test polygons with number of edges (a) 128 (b) 200 (c) 256 (d) 300

Table 4.1: Switching graph construction of 10◦ half-angle

Fig. #node #edge #CC time for nodes time for edges
(a) 70 162 15 0.11 0.03
(b) 35 79 6 0.20 0.03
(c) 84 222 11 0.25 0.05
(d) 134 400 11 0.30 0.09

The results of switching graph constructions are shown in Table 4.1-4.3. They

present for all test objects the number of connected polygons or nodes of switching

graphs, edges of switching graphs, the number of connected components of the switching

graphs, time spent in node and edge construction in second. The number of nodes of a

switching graph depends on the object’s shape. An object with more complexity produces

more connected polygons. The number of connected components indicates probability to

have a path joining any two nodes in the switching graph. The half-angle of the friction

cone heavily effects the results. It’s clear that larger friction cone induces larger feasible

68

Table 4.2: Switching graph construction of 15◦ half-angle

Fig. #node #edge #CC time for nodes time for edges
(a) 65 194 5 0.16 0.03
(b) 41 121 4 0.22 0.02
(c) 85 323 3 0.31 0.06
(d) 150 630 4 0.39 0.19

Table 4.3: Switching graph construction of 20◦ half-angle

Fig. #node #edge #CC time for nodes time for edges
(a) 58 230 3 0.17 0.03
(b) 41 156 2 0.27 0.03
(c) 84 424 2 0.38 0.06
(d) 143 782 2 0.45 0.08

grasp sets. This causes sets of force closure grasps to be merged more and connected

polygons to be larger. As a result, the number of nodes decreases while the number of

edges increases so that the number of connected components of a switching graph de-

creases. Run times of node constructions depend on areas of merged connected polygons

which are inherited from the objects’ shapes and the values of the half-angles. For an

edge construction, a run time relates to the number of connected polygons.

An example of a regrasp sequence is presented in Fig. 4.12. The sequence is com-

puted using the algorithm described in Section 4.6.1. The dashed lines are lines connect-

ing two contact points which entirely lie in the two associated friction cones.

4.8 Summary

We have proposed a method for solving the regrasp planning problem for a polygon

with a large number of edges. A hand using in this chapter is assumed three free-flying

fingers. Our method provides complete solutions represented by a graph which allows us

to plan a regrasp sequence by using a graph search. The experimental results show the

efficiency of our algorithm which merges grasp sets that are adjacent to one another into

one connected set. The obtained connected sets are used to construct a switching graph

in realtime.

69

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: A regrasp sequence for the object in Fig. 3.15(c) when the half-angle is 15◦.

CHAPTER V

REGRASP PLANNING FOR A POLYHEDRAL

OBJECT

5.1 Introduction

This chapter addresses the regrasp planning problem of a 5-finger hand manipulat-

ing a polyhedron. We propose a technique for computing a sequence of finger reposi-

tioning that transforms an initial grasp into a desired one while keeping the manipulated

object in a force-closure grasp during the entire process.

The proposed technique is based on the idea that a set of force-closure grasps can be

represented geometrically as a compact set of points in 3D space. Based on this represen-

tation, overlapping volumes corresponding to different sets of grasps can be represented

as a switching graph. The switching graph captures ability to switch from one set of

grasps to another and, as a result, allows the regrasp planning to be thought of as a graph

search problem. We demonstrate that the switching graph can be efficiently constructed

for test objects with over 40 faces using a randomized technique. Note that although fin-

ger kinematics and other relevant constraints are not initially taken into account, different

search strategies and policies may be later incorporated to generate regrasping sequences

that meet additional requirements.

5.2 Force-closure conditions in 3D

For 3D grasp, we also exploit the condition of non-marginal equilibrium to imply

force-closure for a grasp. A zero-pitch wrench w = (f , t) for the force f can be thought

of as the line of action of this force and can be written in Plücker coordinates. Equilibrium

therefore implies that the lines (represented as Plücker vectors) associated with the contact

forces are linearly dependent. As mentioned in (Ponce et al., 1997), Grassman geometry

(Dandurand, 1984), which characterizes the varieties of various dimensions formed by

sets of dependent lines, can be applied to yield a necessary and sufficient condition for

non-planar equilibrium, namely, the contact forces must positively span1 R3 and their

1A set of vectors positively spans some space when any vector in the space can be written as a linear
combination of the vectors in the set with positive coefficients

71

lines of action all intersect in a point (concurrent grasps), lie in two flat pencils having

a line in common (pencil grasps), or form a regulus (regulus grasps). Instead of using

this condition directly for grasp computation, (Ponce et al., 1997) proposes a sufficient

condition that does not depend on the actual contact forces. This condition provides an

underlying idea for constructing the switching graph. It is given here as Proposition 5.2

which requires the following definition.

Definition 5.1 Let Vi, i = 1, 2, 3, 4 be the four cones of half-angle θ centered on vector

vi. We say that the four vectors vi, i = 1, 2, 3, 4 θ-positively span R3 if any combination

of vectors v′i ∈ Vi, i = 1, 2, 3, 4 positively span R3.

To tell whether four given vectors θ-positively span R3, we may verify that for any

triple v1,v2,v3 of these vectors, the cones V1, V2, V3 of half-angle θ centered on v1,v2

and v3 lie in the interior of the same half-space and the cone−V4 of half-angle θ centered

on the direction opposite to the fourth vector v4 lies in the interior of the intersection of

the trihedra formed by all triples of vectors belonging to V1, V2 and V3. Geometrically, it

can be shown that the intersection of the trihedra is essentially the trihedron bounded by

three planes, each of which passes through the origin and touches two of the three cones

V1, V2, V3 while separating them into different half-space from the remaining cone.

In the following proposition and the remainder of the paper, we will denote by θ the

half angle of every friction cone.

Proposition 5.2 A sufficient condition for four non-coplanar points to form a force-

closure grasp is that: (P1) there exist four lines in the corresponding double-sided friction

cones that either intersect in a single point, form two flat pencils having a line in common

but lying in different planes, or form a regulus, and (P2) the internal normals at the four

contact points θ-positively span R3.

5.3 Switching Graph for a Polyhedral Object

The switching graph concept is based on the idea that a set of concurrent grasps can

be represented by a point in 3D space. This representation will be explained in detail in

Section 5.3.1. We will also show how contiguous points representing concurrent grasps

can be grouped together to form a cell. A vertex of a switching graph represents a set of

72

grasps by establishing an association with a cell. The way we form a cell allows us to

compute (1) a finger aligning between two grasps within the same cell and (2) a finger

switching between a grasp in one cell and another grasp in another cell (associated with a

neighboring vertex). This computation will be discussed in Section 5.3.4.

5.3.1 Representing Concurrent Grasps

As mentioned earlier, a grasp is geometrically defined by the positions of the fin-

gers on the object’s faces. Assuming polygonal object model, the position of a contact

point can be defined by specifying an ordered pair representing coordinates of the point

on the corresponding grasped face. With four grasping fingers, this amounts to using

eight parameters to uniquely define a grasp (with the four grasped faces already chosen).

However, using Proposition 5.3 from (Sudsang and Ponce, 1995), we can define a set

of concurrent grasps with only three parameters. This proposition follows directly from

Proposition 5.2.

Proposition 5.3 A sufficient condition for four fingers to form a force-closure grasp is

that the four internal normals at the four contact points θ-positively span R3 and there

exists a point x0 such that the inverted friction cones at this point (Fig. 5.1) intersect the

four contact faces.

x0

F

Figure 5.1: Inverted friction cone of face F at x0

Note that each point x0 satisfying Proposition 5.3 yields four independent con-

tact regions where fingers can be placed independently while achieving concurrent grasp:

these regions are simply the intersection of the inverted friction cones in x0 with the con-

tact faces. As we will discuss in Section 5.3.3, locally adjusting contact points within

independent contact regions is a means for finger aligning to move from one grasping

configuration to another one belonging to the same vertex in the switching graph.

We are now ready to discuss how a vertex in a switching graph represents a set of

grasps. A vertex of a switching graph represents a set of concurrent grasps by having an

association with a set of all points x0 satisfying Proposition 5.3 for a given combination

73

of four faces. Since an inverted friction cone at x0 intersect the corresponding face when

x0 lies in the volume defined by the union of all double-sided friction cones at every point

on the face (Fig. 5.2(a)), the set of all x0 satisfying Proposition 5.3 can be obtained from

the intersection of the four volumes each of which is the union of all double-sided friction

cones on each face. In the following definition, we name the union and the intersection

for future references.

Definition 5.4 The union of all double-sided friction cones at every point on face Fa will

be called the union volume for the face and will be denoted by Ua.

(a) (b)

Figure 5.2: Union volume: (a) construction, and (b) its shape (see text)

Definition 5.5 The volume containing all points x0 satisfying Proposition 5.3 for a given

combination of four faces Fi, Fj, Fk and Fl where i 6= j 6= k 6= l will be called the focus

cell for the faces and will be denoted by Ci,j,k,l.

Before proceeding to the next section, it is helpful to discuss briefly about the shape

of the union volume and the focus cell. Let us begin by considering an example of a

triangular face with its union volume. As shown in Fig. 5.2(b), the union volume is

composed of two symmetric parts (in mirror-like fashion): one above the face, and the

other one below. Note that the union volume is an unbounded body. This is because

double-sided friction cones are symmetric and unbounded. Clearly from the construction,

the boundary of the union volume consists of unbounded rectangular and conic patches

(at rounded corners). With conic parts involved, quadric surfaces are needed to exactly

describe the union volume’s boundary. This requirement implies that to construct a focus

cell by intersecting four union volumes, univariate polynomial equations of degree upto 8

are to be solved (e.g., to obtain curved edges from intersecting two conic patches and to

obtain a vertex from intersecting three conic patches). A typical technique to avoid this

complexity is to give up some exactness by approximating conic parts of the boundaries of

74

union volumes with multi-facet pyramids. This approximation will allow a union volume

to be described as a polyhedron and, in turn, a focus cell can readily be obtained using

an algorithm for intersecting polyhedra (Hoffman, 1989). This approximation scheme

should be used with caution because when the number of facets of the approximating

pyramids is too large, the resulting polyhedron will have so many faces that intersecting

polyhedra might be slower than using algorithms for computing intersection of quadric

surfaces (Hoffman, 1989). This issue on construction of focus cells will become important

as we discuss how to build a switching graph in Section 5.3.4. Before then, let us explain

how focus cells are related to finger switching and finger aligning operations.

5.3.2 Finger Switching

Let us consider two focus cells Ca,b,c,d and Ca,b,c,e such that Ca,b,c,d ∩ Ca,b,c,e 6= ∅.
Let q be a point in Ca,b,c,d ∩ Ca,b,c,e. Clearly, q defines two sets of concurrent grasps:

one for the combination of faces Fa, Fb, Fc, Fd and the other for the combination of

faces Fa, Fb, Fc, Fe. Let us suppose that the fingers 1,2,3 and 4 are respectively on faces

Fa, Fb, Fc and Fd and forming one of the concurrent grasps defined by q. It is easy to see

that the hand can switch to another concurrent grasp (represented by q) on faces Fa, Fb, Fc
and Fe by placing finger 5 on any point in the intersection between face Fe and its inverted

friction cone at q (because q ∈ Ca,b,c,d ∩ Ca,b,c,e). Once finger 5 is on Fe, finger 4 can

leave face Fd resulting in a switching from a concurrent grasp on Fa, Fb, Fc, Fd by fingers

1,2,3,4 to another concurrent grasp on Fa, Fb, Fc, Fe by fingers 1,2,3,5. This finger repo-

sitioning sequence enables us to plan finger switching by identifying intersection between

two focus cells having one different grasped face.

5.3.3 Finger Aligning

Clearly, a finger switching cannot occur between two grasps whose corresponding

focus cells do not overlap. For example, let us consider focus cells in Fig. 5.3. Obviously,

because Ca,b,c,d ∩ Ca,b,c,f = ∅, it is not possible to switch directly from a grasp on faces

Fa, Fb, Fc, Fd to another grasp on faces Fa, Fb, Fc, Ff using a finger switching discussed

in the previous section. However, suppose the current grasp on faces Fa, Fb, Fc, Fd is

defined by q1, a finger switching can be performed to switch to another grasp on faces

Fa, Fb, Fc, Fe (q1 is in both Ca,b,c,d and Ca,b,c,e) and somehow if the hand can adjust the

fingers to change from the grasp defined by q1 to a grasp defined by q2 (which could be

any point in Ca,b,c,d ∩Ca,b,c,e), another finger switching at q2 can be applied to switch to a

grasp on faces Fa, Fb, Fc, Ff as desired.

75

C

2
qq1

a,b,c,fCa,b,c,e
Ca,b,c,d

Figure 5.3: Moving between non-overlapping cells

In fact, changing grasping configuration within the same focus cell is the process

we referred to as finger aligning. This process can be accomplished by taking advantage

of the idea that force closure can be maintained during finger sliding, finger rolling (see

(Han and Trinkle, 1998b; Bicchi and Marigo, 2000) on how to apply rolling in dexterous

manipulation), or finger switching within an independent contact region. To illustrate, let

us consider Fig. 5.4 showing configuration points q and q′ in the same focus cell Ca,b,c,d.

The inverted friction cones of the four grasped faces at q intersect the faces in the four

independent contact regions Ra, Rb, Rc and Rd and likewise the inverted friction cones at

q′ intersect the four grasped faces in R′a, R
′
b, R

′
c and R′d. Suppose that the four fingers are

at xa ∈ Ra,xb ∈ Rb,xc ∈ Rc and xd ∈ Rd. This can be represented by q. To move from

q to q′, we move the four fingers from xi to x′i ∈ Ri ∩R′i(i = a, b, c, d). It is sufficient to

ensure force closure during the fingers’ motion by maintaining that the fingers are in the

independent contact regions of q during the entire process. This can be done by rolling

or sliding the fingers on the grasped faces from xi to x′i(i = a, b, c, d). Instead of rolling

or sliding, it is also possible to apply finger switching within each independent contact

region by placing a free finger at x′i and lifting off the finger at xi. Because there is only

one free finger during a concurrent grasp, this kind of finger switching can be performed

in one independent region at a time.

By continuity, for any point in a focus cell, there exists a neighborhood for which

the four independent contact regions of the point intersect the four independent contact

regions of every point in the neighborhood. That is, there always exists a finger repo-

sitioning sequence to move between any pair of configuration points in the same focus

cell.

5.3.4 Computing a Switching Graph

To construct a switching graph, all of its vertices and edges need to be found. To

identify all vertices of a switching graph, we compute all focus cells and to identify all

76

dR’

dF
dR

aR

aR’
a

F

q’q

bR’
bR

bF

a,b,c,d
C

cR
cR’

cF

Figure 5.4: Moving within a focus cell

edges, we compute all pairs of overlapping focus cells with three common grasped faces.

Computing all focus cells requires identifying all combinations of four faces with

concurrent grasps satisfying Proposition 5.3. Instead of enumeratively checking all com-

binations, the number of candidates can be significantly reduced by considering only

those combinations whose internal normals positively span the plane. Our technique for

generating such combinations is based on the fact that when three normals are given, the

fourth one must lie strictly inside the trihedron formed by the inverses of the three given

normals in order that the four normals positively span R3 (otherwise, they would be in the

same half space).

It is also important that every combination of four normals is listed without any

repetition. This is essentially the problem of generating all k-subsets (i.e., subsets with k

members) of a given set with nmembers. A simple solution for this problem is to assign a

totally ordered relation to all members of the set and list every k-subset in the form of a k-

tuple for which each element (except the last one) precedes the next one according to the

assigned order. Applying this method to our problem, each unit normal is reparameterized

using an ordered pair of two angles (α, β) where α ∈ [0, 2π] is the angle between the x-

axis and the projection of the normal on the x-y plane, and β ∈ [0, π] is the angle between

the z-axis and the normal. With this parameterization, a sorted order can be imposed by

defining that a normal na = (αa, βa) precedes a normal nb = (αb, βb) when αa < αb,

or when βa < βb in the case that αa = αb. For clarity, let us present pseudocode of

the resulting algorithm. In the pseudocode, the n sorted unit normals are stored in the

array normal[1..n] with corresponding indices to faces in the array faceId[1..n] and

variable upwardIndex containing the index to the last normal in the array with angle

β smaller than π/2 (i.e., all normal vectors in normal[1..upwardIndex] points in the

upward direction).

77

x

n

β

α

z

y

Figure 5.5: Parameterization of a unit normal vector

1: for i = 1 to upperIndex do

2: n1 = normal[i]; f1 = faceId[i]

3: for j = i+ 1 to n− 2 do

4: n2 = normal[j]; f2 = faceId[j]

5: for k = j + 1 to n− 1 do

6: n3 = normal[k]; f3 = faceId[k]

7: m = max(k + 1, upperIndex+ 1)

8: Compute all normal vectors in normal[m..n]

that is contained in the trihedron formed by

−n1,−n2 and −n3

From line 1 of the above pseudocode, we can see that every first normal is chosen

such that it has to point upward (with β < π/2). This is because choosing a first normal

with angle β ≥ π/2 would result in having all four normals with β ≥ π/2 which means

that they are all in the same lower half-space and therefore cannot positively span R3. The

same reason is applied in line 7 to allow a fourth normal to point downward only (with β >

π/2), otherwise all four normals would be pointing upward and lie in the same upper half-

space. Line 7 also incorporates the fact that, to generate different combinations without

repetition, a fourth normal must be after the third normal according to the sorted order

(i.e., with greater β than that of the third normal). The following paragraphs describe how

line 8 can be implemented.

Because a unit normal can be thought of as a point on the unit sphere, and a trihedron

formed by three unit vectors intersects the unit sphere in a triangular region (bounded by

three sections of great circles), all normal vectors contained in the trihedron are therefore

78

those vectors corresponding to the points lying inside this triangular region. If we can

somehow map the surface of the sphere onto the plane, a range searching algorithm can

be applied to find the desired normals.

In fact, we have already mentioned such mapping. Recall that we parameterize

every unit normal using an ordered pair of angles (α, β). This allows each normal vector

to be mapped to a point in the α-β plane. The triangular region on the sphere mentioned

above will be mapped to a planar region bounded by three vertices and three curved edges

(Fig. 5.6). Since a curve of constant α (resp. β) on the sphere maps to a straight line

parallel to the β-axis (resp. α-axis) on the α-β plane, it is intuitive that the smallest

isothetic box2 covering the planar region can be drawn by considering only the range

of the coordinates of the three vertices. With this bounding box, we can then apply an

orthogonal range searching algorithm (de Berg et al., 1997) to find all the points contained

in the box (note that before applying the range searching, the bounding box may need to

be clipped to ensure that the angle β of a fourth normal is greater than that of the third

normal). For each point obtained, its corresponding normal is checked with the three

previously chosen normals to tell whether they can positively span R3. By using range

trees (de Berg et al., 1997) to perform orthogonal range searching, the overall algorithm

runs in O(n3 log2 n).

Figure 5.6: Mapping from the spherical to cartesian coordinates

In constructing the bounding box described above, it is important to take into ac-

count nature of the mapping from the spherical to the cartesian coordinates. In particular,

when the triangular region on the sphere intersects the arc defined by α = 0 (Fig. 5.7)

, two bounding boxes are to be constructed to reflect that the arcs α = 0 and α = 2π

coincide.

Another case is when the triangular region covers the “south pole” (bottommost

point) of the sphere. When this occurs, the normals corresponding to the three vertices of

2a rectangle with its sides parallel to the axes

79

α = 0

Figure 5.7: Two bounding boxes are needed when the triangular region cross over the arc
α = 0

the triangular region have their normal projection on the x-y plane positively spanning the

plane. This should be handled by constructing a bounding box covering the entire range

of α (from 0 to 2π).

Every combination of faces found by the algorithm outlined above is also tested

whether the corresponding four normal vectors θ-positively span R3. This can be done

in constant time by following geometric description given after Definition 5.1. Now that

we know all combinations of faces whose normal vectors θ-positively span R3, the next

step is then to find which ones of these combinations yield focus cells, and which pairs of

these focus cells overlap. In this paper, we investigate two different approaches for this

task: direct geometric computation, and random sampling.

5.3.4.1 Direct Geometric Computation

To test whether a combination of four faces Fa, Fb, Fc, Fd (with normals θ-positively

spanning R3) forms a focus cell, intersection of the union volumes Ua, Ub, Uc, Ud is com-

puted. The intersection, if not empty, is the resulting focus cell Ca,b,c,d. To find overlap-

ping focus cells corresponding to an edge in the switching graph, all pairs of resulting

focus cells with one different face are again checked for intersection.

5.3.4.2 Random Sampling

The underlying idea is that all the points contained in a focus cell are contained in

all the union volumes of the faces that form the cell. This implies that if we have found

such points, we have an evidence showing that the corresponding focus cell exists. Like-

wise, we can conclude that two focus cells overlap if we can find some points that are

contained in both cells. Following this simple idea, instead of directly computing inter-

section to explicitly obtain focus cells, a number of points in 3D are randomly selected,

each of which is then tested to list all faces whose union volumes can contain the point.

80

The resulting list of faces is then scanned for matching with combinations of four faces

whose normal vectors θ-positively span R3 (obtained from the algorithm previously de-

scribed). A matching indicates a focus cell found, and any pair of matching with the two

corresponding combinations having one different face indicates that the corresponding

focus cells overlap and an edge in the switching graph linking the two cells exists.

It is clear that the completeness of the switching graph generated using this approach

depends heavily on the number of sampled points and the region in R3 where the sampling

takes place. To define the sampling region that is guaranteed to cover all focus cells

without actually computing them is still an open problem. Our implementation shown

in the next section relies on an ad hoc alternative by defining the sampling region to be

the cube obtained from enlarging the smallest isothetic cube that can contain the object

four times about its center. Although a complete switching graph cannot be guaranteed,

experimental results show large number of vertices and edges are found within a fraction

of the time used by the direct geometric approach.

5.4 Implementation and Results

We have implemented the regrasp planning based on the switching graph concept

described in the paper. The program is written in C++ using ACIS library (Corney and

Lim, 2002) for geometric computation. All run times are measured on a PC with a 2.4

GHz CPU.

Some test polyhedra are shown in Fig. 5.8 and 5.9. Test results in Table 5.1 show

the number of focus cells found, the number of links found, the number of connected

component of switching graphs and the run time for each object in Fig. 5.8 when using

the direct intersection approach to build the switching graph. Test results from random

sampling approach with 1,000, 5,000, 10,000, and 20,000 sampling points are shown in

Tables 5.2-5.5 correspondingly (these are numbers of one run for each test object to show

tendency of the random approach). Without guaranteeing a complete switching graph, the

random sampling approach appears to generate a large portion of the graph when spending

only small amount of time compared with the direct intersection approach. In particular,

for most objects, the random sampling approach is much faster and also producing the

nearly complete switching graph. It is of course difficult to give a general statement from

only few examples, however we feel that the random sampling approach is very promising

especially in its ability to quickly produce a sketch of the switching graph. Fig. 5.10, 5.11

and 5.12 show snapshots of a short sequence of finger repositioning generated from the

81

program to transform the initial grasps into the target grasps. With a switching graph

already computed, the program takes less than 0.1 second to generate the sequence.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: Test objects with the number of faces = (a) 14, (b) 24, (c) 34, (d) 36, (e) 38,
(f) 40, (g) 42, (h) 47 and (i) 67

5.5 Summary

We have presented a method for regrasp planning of a polyhedron by a 5-finger hand

based on the concept of the switching graph. A set of force-closure grasps is represented

geometrically as a compact set of points in 3D space which allows us to solve the regrasp

planning problem by computational geometry algorithms in 3D. Based on this represen-

tation, overlapping volumes corresponding to different sets of grasps can be computed by

finding intersections between polyhedrons representing the grasp volumes. The experi-

mental results demonstrate an efficient implementation of the proposed approach. The

direct computation provides a complete switching graph while the randomized approach

is more efficient in the aspect of computational time when an input object consists of a

large number of faces.

82

Table 5.1: Results from direct intersection approach for each test object in Fig. 5.8

Fig. # focus cells # links # cc time (s)
5.8(a) 22 24 3 1.61
5.8(b) 177 384 1 19.03
5.8(c) 503 1408 1 49.99
5.8(d) 585 1664 5 60.97
5.8(e) 509 1451 12 53.59
5.8(f) 527 1430 8 46.99
5.8(g) 830 2434 17 52.89
5.8(h) 2319 13331 20 461.42
5.8(i) 621 2498 3 136.92

Table 5.2: Results from random sampling approach for each test object in Fig. 5.8 with
1,000 sampling points

Fig. # focus cells # links # cc time (s)
5.8(a) 14 14 2 0.06
5.8(b) 111 217 1 0.2
5.8(c) 268 520 5 0.63
5.8(d) 226 462 10 0.79
5.8(e) 99 130 15 0.94
5.8(f) 92 157 5 1.03
5.8(g) 137 286 1 1.38
5.8(h) 716 3237 8 2.16
5.8(i) 50 129 4 8.56

Table 5.3: Results from random sampling approach for each test object in Fig. 5.8 with
5,000 sampling points

Fig. # focus cells # links # cc time (s)
5.8(a) 22 24 3 0.36
5.8(b) 177 384 1 0.56
5.8(c) 311 612 5 1.22
5.8(d) 338 688 4 1.45
5.8(e) 158 250 11 1.56
5.8(f) 413 917 12 1.69
5.8(g) 235 520 11 2.03
5.8(h) 1150 5013 2 2.98
5.8(i) 236 817 3 9.58

83

Table 5.4: Results from random sampling approach for each test object in Fig. 5.8 with
10,000 sampling points

Fig. # focus cells # links # cc time (s)
5.8(a) 22 24 3 0.67
5.8(b) 177 384 1 1.06
5.8(c) 495 1307 1 2.3
5.8(d) 493 1146 9 2.39
5.8(e) 196 303 14 2.55
5.8(f) 429 948 15 2.52
5.8(g) 482 1166 16 3.25
5.8(h) 1826 9276 4 4.97
5.8(i) 360 1436 4 11.28

Table 5.5: Results from random sampling approach for each test object in Fig. 5.8 with
20,000 sampling points

Fig. # focus cells # links # cc time (s)
5.8(a) 22 24 3 1.28
5.8(b) 177 384 1 1.95
5.8(c) 503 1359 1 3.9
5.8(d) 548 1378 1 4.17
5.8(e) 274 466 15 4.16
5.8(f) 505 1225 10 4.14
5.8(g) 545 1333 17 5.11
5.8(h) 2065 11279 11 8.66
5.8(i) 370 1467 3 14.16

84

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Shaded test objects with the number of faces = (a) 14, (b) 24, (c) 34, (d) 36,
(e) 38, (f) 40, (g) 42, (h) 47 and (i) 67

85

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: A regrasp sequence generated from a switching graph of the object in Fig.
5.8(b)

86

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.11: A regrasp sequence generated from a switching graph of the object in Fig.
5.8(f)

87

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.12: A regrasp sequence generated from a switching graph of the object in Fig.
5.8(g)

CHAPTER VI

REGRASP PLANNING FOR A TRIANGULAR-MESH

OBJECT

6.1 Introduction

As we have described in the previous chapters, regrasp planning can be formulated

as a graph search problem where vertices of the graph represent force closure grasps

while an edge connects two grasps that can be changed between each other by simple

movement. To construct such graph, it is required to compute all force closure grasps and

calculate all possible simple movements. This approach works well when the object is of

low complexity, e.g. polyhedron with small number of facets. However, this is not the

case for most real world objects, especially when the information of the object is acquired

by sensor rather than being nicely modeled by human.

To achieve complete automation, it is vital for the robot to be able to perform sens-

ing by itself. Acquisition of object spatial structure is usually done via range sensing

devices such as a laser range finder or stereoscopic cameras. The data obtained through

this method usually involve thousands of surface points. This poses a very challenging

issue in grasp planning because of the combinatorial explosion of the search space. Given

a thousand contact points, the number of all possible 4-finger grasps reach 1012, beyond

the address space of an ordinary computer. Considering all possible grasps would take

too much time. To provide a trade-off between accuracy and computational simplicity,

Goldfeder et al. (2007) applied superquadric fitting to parameterize object shapes from

the point-cloud input. A grasp planning is performed in the hierarchy of superquadrics

from the coarsest to finer approximations. In (Huebner et al., 2008), the minimum vol-

ume bounding box approach is used to fit input data by primitive box shapes. The result

bounding boxes and data points are iteratively split to yield better box approximations.

A grasp planner exploits the approximations as clues to synthesize grasps on arbitrary

objects.

While the grasp planning problem for discrete contact points just recently began to

receive more attention, the regrasp planning problem in the same setting remains mostly

89

unexplored. Most existing works in grasp planning for point data approximate the model

of the object using only spatial information from the input points. Although this approach

may be sufficient for computing a single grasp, it offers no clues on how a regrasp se-

quence can be obtained. The main contribution of this paper is to present a novel method

for organizing the input contact points to facilitate the regrasp planning process. Our un-

derlying idea is to partition the input points based on their wrenches. Contact points that

can exert similar wrenches are grouped together. For each group, a representative is se-

lected. Every set of representatives that can form a force closure grasp is then computed

and referred to as a representative grasp. Our idea is motivated by a typical regrasping

scenario when a supporting finger need to be placed on the object before some finger

in a force closure grasp can be lifted off. Obviously, if the supporting finger can exert

wrenches similar to those by the finger to be lifted off, it is likely that the object will still

remain in force closure after the finger swap. The most important product of the proposed

clustering strategy is the roadmap structure that leads to significant reduction of the search

space. This structure is a graph that captures how representative grasps can switch among

one another via finger swapping. Since each representative grasp roughly describes a

different way wrenches can be aligned to form a force closure grasp, the roadmap some-

what approximates the global relationship that describes how force closure grasps can be

switched among one another. Of course, an arbitrary force closure grasp may not be a

member of the roadmap. Therefore, to utilize the roadmap for regrasp planing from an

arbitrary initial grasp to a target grasp, we need regrasp sequences that bring the initial

and the target grasps to some grasps in the roadmap. We will present methods for comput-

ing such sequences based on the clustering information. Preliminary experimental results

show that most regrasp planning problems can be solved within a few seconds or a few

minutes by our approach whereas exhaustive search takes about a day or longer.

6.2 Regrasp Planning on Discrete Point Set

In this chapter, we assume that the model of the input object is described by trian-

gular meshes. This will result in a polyhedron with a large number of triangular facets.

Each facet is usually very small relative to the entire object. We use the centroid of each

facet as a possible contact point. This approach is also adopted in (Roa and Suarez, 2008).

Since we consider discrete contact points, finger rolling and finger sliding which require

continuous motion at a contact are not permitted. Only finger switching is considered in

the planning.

90

6.2.1 Overview

The first step of regrasp planning is to compute a roadmap of all possible grasping

configurations. Since we consider 4-finger grasps, a grasping configuration consists of

four contact points. A grasping configuration that satisfies force closure induces a vertex

in the roadmap and the configuration is stored in this vertex. An edge joining two vertices

exists when two associated grasping configurations can switch to each other. This work

assumes five fingers for regrasping. Four fingers are used to securely grasp the object. The

remaining finger is used for finger switching. This means that two grasping configurations

that have one distinct contact point can perform finger switching which implies that there

exists an edge joining the two vertices corresponding to these two grasping configurations.

There are some drawbacks associated with this traditional approach. Suppose there

areN contact points to consider. The possible grasping configurations are as many asN4.

For each grasping configuration, there can be as many as 4N other grasping configura-

tions that can be reached directly by finger switching. Consequently, size of a roadmap

constructed from a large number of contact points could easily become larger than the

memory space of an ordinary computer.

To overcome these limitations, we propose to cluster the input contact points into

groups. Instead of using all contact points, one contact point is picked from each group

to be a representative for constructing the representative-level roadmap. The number of

groups is a user-defined variable which indicates trade off between completeness and re-

source used in the computation. Of course, the representative-level roadmap does not

cover grasping configurations consisting of some contact points that are not representa-

tives. A local planner is required to compute a path from such grasping configurations to

a grasp in the representative-level roadmap.

6.2.2 Spectral Clustering for Contact Point Set

Before constructing a representative-level roadmap, we apply spectral clustering

algorithm to partition the input contact points into meaningful clusters. In spectral clus-

tering, users are free to define how a cluster is meaningful according to their task at hand.

However, the definition of meaningful clusters from existing works, mostly in the field of

computer graphics, are not related to our regrasp planning problem. Our proposed idea

is to define meaningful clusters from similarity of wrenches by means of grasping. Re-

call the finger switching operation: the remaining finger is placed on the object then one

91

finger is lifted to change grasping configuration. To maintain force closure, a reasonable

heuristic is to ensure that the chosen contact point for the remaining finger and the contact

point of the finger to be lifted can produce similar wrenches.

Spectral clustering takes a contact point set as input to compute an affinity matrix

which embeds similarities of every pair of contact points. The matrix is solved for eigen-

vectors corresponding to the k largest eigenvalues. The eigenvectors are then used to

determine the clustering of contact points.

6.2.2.1 Affinity Matrix

Affinity matrix contains information that reflects how contact points are grouped

according to their applicable forces and torques. Each pair of contact points is measured

for pairwise distance. The pairwise distances of all pairs form a matrix that encodes

similarity between contact points. An affinity matrix is symmetric and denoted by A ∈
RN×N , where 0 ≤ aij ≤ 1 for all contact points i and j. Element aij encodes the

likelihood that contact points i and j can be clustered into the same group. Let f i, ri be a

unit force perpendicular to the object’s surface and the position of ith contact point w.r.t.

a reference point o. The associated torque is ti = (ri − o) × f i. The wrench generated

by f i at this contact point i is therefore wi = (f i, ti). When friction is assumed, the

friction cone at contact point i is approximated using an m-sided pyramid bounded by

f i1, . . . ,f im. The associated wrench cone is defined bywi1, . . . ,wim and called primitive

wrenches.

Since a force closure test in the wrench space considers only the directions of

wrenches, the distance function is formulated based on measuring the angle between two

wrenches from two distinct contact points, which can be calculated from their inner prod-

uct. However, the torque component of a wrench depends on the choice of the origin

assumed in the torque calculation. We therefore use the centroid of the object as the ref-

erence origin. Since any vector (ri − o) is a constant vector, the toque component of the

associated wrench is not affected by any rigid transformation applied to the object, i.e.,

independent from the object’s pose.

The proposed pairwise distance between two contact points i and j considers the

difference between wrenches that the two contact points can exert. Roughly speaking,

we compare the geometries of the two wrench cones. Instead of integrating all differ-

ences between all pairs of wrenches from the two cones, an approximation is taken by

92

comparing only the boundaries of the linearized wrench cones, i.e., angles between the

primitive wrenches from the two wrench cones are measured. Each primitive wrench of

i is compared with a primitive wrench of j. Obviously, there are many ways to match

pairs of primitive wrenches for comparison. We have to select one correspondence that is

appropriate for the distance function. Since the linearization of a friction cone is in either

a clockwise or counterclockwise order, the result primitive wrenches are arranged in the

same order and a reasonable correspondence of the primitive wrenches has to preserve this

order. The starting index for a wrench cone in the comparison is however not necessary

the first index obtained from the linearization. The indices of the primitive wrenches of a

contact point can all be shifted by an integer x while preserving the order. Without loss

of generality, we apply the shifting x for the primitive wrenches of the contact point j.

The angles between wi1, . . . ,wim and wj(1+x mod m), . . . ,wj(m+x mod m) are measured

pair by pair in order (Fig. 6.1). The summation of these angles defines our geometrical

difference between these two wrench cones. However, this value is varied by changing

x. We imitate the principal of the shortest distance between two bodies in the Euclidean

space: by varying x, the minimal summation of angles is used as the pairwise distance.

The difference between two wrench cones is measured as follows

M(i, j) = min
m∑
k=1

angle(wik,wj(k+x))

where 0 ≤ x ≤ m − 1 and k + x ∈ Zm. Since value of M(i, j) depends on the number

of pyramid’s sides, the distance function is normalized as d(i, j) = M(i, j)/m.

1 2
3

4
5

6

1
2 3

4
56

(a)

1 2
3

4
5

6

5
6 1

2
34

(b)

Figure 6.1: Transformation distance: An example of cones in 3D where the numbers show
the order of comparison (a) x = 0 (b) x = 2

The Gaussian similarity function is applied to encode pairwise measures into the

affinity matrix. It is formed by an exponential function as

93

a(i, j) = e−d(i,j)/2σ
2

.

Clearly, 0 ≤ aij ≤ 1, and contact points of which their pairwise distance is smaller

have larger affinities between them. The issue of choosing σ is neglected. We simply

choose σ as the average of all measures, i.e., σ = 1
N2

∑
1≤i,j≤N d(i, j).

6.2.2.2 Spectral Clustering Algorithm

The spectral clustering algorithm in (Ng et al., 2001) is applied. The eigenvectors

of the affinity matrix are used in clustering of contact points. The spectral clustering

algorithm from (Ng et al., 2001) is as follows.

i. Compute the affinity matrix A.

ii. Define D to be the diagonal matrix whose (i, j)-element is the sum of A’s i-th row,

and construct the matrix L = D−1/2AD−1/2

iii. Compute the eigenvectors v1, . . . ,vk of L associated with the k largest eigenvalues.

iv. Construct the matrix V = [v1v2 . . .vk] ∈ RN×k by stacking the eigenvectors in

columns.

v. Form the matrix U from V by normalizing the row sums to have unit length, that is

uij = vij/(
∑
k v

2
ij)

1/2

vi. Extracting each row of U as a point in Rk, cluster them into clusters K1, . . . , Kk by

performing k-means algorithm

vii. Assign the original contact point pi to cluster Kj if and only if row i of the matrix

U is assigned to cluster Kj .

After running the clustering algorithm, we need to construct some structures for

further uses in regrasp planning. Let the input contact points be stored in a table denoted

by TO. From the above clustering algorithm, Euclidean distances in the affinity matrix are

used to partition the input contact points. We then apply the same distance measurement

for the successor procedures instead of the pairwise distance measurement proposed in

Section 6.2.2.1. The contact point associated with the row vector of U that is closest

to the center of Kj is chosen to be the representative of the cluster Kj . We construct a

94

matrix E to store Euclidean distances between all row vectors of U and the centers of all

clusters. A matrix F contains Euclidean distances among all row vectors. A table TR is

constructed to store all representatives.

6.2.3 Constructing Representative-Level Roadmap

We are now ready to compute a roadmap for the representatives. All vertices are

constructed by checking force closure grasp for every four representatives in TR. We call

such grasping configurations representative grasping configurations. Each representative

grasping configuration satisfying force closure is assigned to a vertex. The number of ver-

tices in a switching graph is equal to the number of grasps found in force closure checking.

In this chapter, we apply the algorithm of (Niparnan and Sudsang, 2007) for fast filter-

ing grasps that do not satisfy the necessary condition. Grasps that pass the filter are then

verified for force closure by applying the algorithm of (Zhu and Wang, 2003a). An edge

joining two vertices of which corresponding representative grasping configurations can

switch to each other can be easily computed by checking the number of common contact

points between the two corresponding configurations. Since 4-finger force closure grasps

are considered, two representative grasping configurations can switch to each other when

they share three common contact points. The computed representative-level roadmap is

denoted by R.

6.2.4 Planning Regrasp Sequence

The regrasp sequence planning process is splitted into two level search: in

representative-level roadmap and in local roadmap. In the previous section, the construc-

tion of representative-level roadmap has been described. A regrasp sequence acquired

from the representative-level roadmap contains only configurations consisting of contact

points in TR which is a subset of of the original contact point set TO. This means that

traversal in the representative-level roadmap does not cover grasping configurations that

consist of some contact points in TO\TR. Therefore, for arbitrary initial and goal grasps,

the regrasp planner has to find regrasp sequences that link both grasps to some grasps in

the representative-level roadmap.

An intuitive way is to find a path from the initial grasp or the goal grasp to their

representative grasp, i.e., the grasp that consists of the representatives of all contact points

forming the initial grasp or the goal grasp. The planner performs Algorithm 1 which ex-

ploits a heuristic of similarity in a cluster to determine a vertex in the representative-level

95

roadmap that the initial grasp or the goal grasp should be switched to. Let g be the initial

grasping configuration or the goal grasping configuration that consists of contact points

pa, pb, pc and pd. Let us denote by pa′ , pb′ , pc′ and pd′ the representatives of the clusters

that respectively contain pa, pb, pc and pd. Also denote by g′ the representative grasping

configuration consisting of pa′ , pb′ , pc′ and pd′ . If g′ does not achieve force closure, i.e. the

vertex defining g′ is not in the representative-level roadmap R, the planner then performs

Algorithm 2. Otherwise, a regrasp sequence from g to g′ is planned as follows.

For each contact point pi′ of g′ (i = a, . . . , d), all contact points in TO that are in the

same cluster of pi′ are considered. We exploit nearness among pi, pi′ and contact points

in the cluster to limit search space in local planning. The distance Fii′ between pi and pi′

is queried from F . A contact point j in the cluster that induces Fij ≤ Fii′ and Fi′j ≤ Fii′

is copied to a set Si. We then compute all possible 4-finger force closure grasps such

that the first, second, third and forth contact points are picked from Sa′ , Sb′ , Sc′ and Sd′ ,

respectively. A local roadmap is then constructed such that each of its vertices represents

each force closure grasp mentioned above, and each of its edges joins two vertices repre-

senting two grasping configurations with three common contact points (finger switching

is possible). With a local roadmap, any graph search can be used to retrieve a path from

the vertex representing g′ to the vertex representing g. If no such path can be found, the

planner invokes Algorithm 2.

Algorithm 1
1: Determine pa′ , pb′ , pc′ , pd′ and g′

2: if g′ 6∈ R then
3: Algorithm 2
4: else
5: Determine Sa′ , Sb′ , Sc′ , Sd′

6: L = ConstructRoadmap(Sa′ , Sb′ , Sc′ , Sd′)
7: if path = FindPath(L, g, g′) then
8: return path
9: else

10: Algorithm 2
11: end if
12: end if

Algorithm 2 again exploits the information of clusters. It is invoked when g′ does

not achieve force closure or Algorithm 1 fails to find a regrasp sequence from g to g′. The

underlying idea of this algorithm is to find another appropriate representative grasping

configuration, which the given grasping configuration will change to, that satisfies force

closure and has one different contact point from g′. Since the new representative grasping

96

configuration does not consist of all representatives of the given grasping configuration,

to apply the same local planning strategy, we have to relocate one contact point of the

given grasping configuration from its cluster to the cluster of the different representative.

A local planning, is then performed among one changed cluster and three unchanged clus-

ters, which guarantees that g and the new representative grasping configuration are force

closure. However, this method perturbs the local properties of the changed clusters. To

minimize the effect of this transfer and to maximize the use of local property, this algo-

rithm aims to transfer one contact point in g to its second nearest cluster. The procedure

FindNearestCluster begins with finding vertices in R of which the representative grasp-

ing configuration f ′ has one distinct representative from g′. Let px′ and py′ be the distinct

representative of g′ and f ′. The associated contact point of px′ is denoted by px. We query

the matrixE for the distance between px and the center of clusterKy′ of py′ . All represen-

tative grasping configurations in R having one distinct representative from g′ are used to

query the distances. The pair that induces the shortest distance between them is selected

for locality reason. Now we redefine some notations to understand the pseudocode. Let

the selected contact point be px, its cluster be Kx′ , its second nearest cluster be Ky′ and

the representative grasping configuration possessing the cluster Ky′ be f ′. This procedure

returns the variable X which consists of px, Kx′ , Ky′ and f ′. If X is determined, we then

temporarily add px into Ky′ . Let f ′ consist of pq, pr, ps, pt. We perform a local roadmap

construction as applied in Algorithm 1 and find a path between g and f ′ which both are

members of the local roadmap.

Algorithm 2
1: Determine pa′ , pb′ , pc′ , pd′

2: X = FindNearestCluster(pa′ , pb′ , pc′ , pd′)
3: if X is not determined then
4: Algorithm 3
5: else
6: Add px into Ky′

7: Determine Sq, Sr, Ss, St
8: L = ConstructRoadmap(Sq, Sr, Ss, St)
9: if path = FindPath(L, g, f ′) then

10: Remove px from Ky′

11: return path
12: else
13: Remove px from Ky′

14: Algorithm 3
15: end if
16: end if

If finding a path from g to f ′ still does not achieve, Algorithm 3 is applied by updat-

97

ing the representative-level roadmap. The contact points pa, pb, pc, pd are now considered

as representatives. Let TG be a set of the contact points {pa, pb, pc, pd}. All grasping con-

figurations partially consisting of some contact points in TG are verified for force closure

condition and reported as new vertices in R. New edges are computed among the new

vertices and between the new vertices and the recent vertices of R to complete updating

R. Clearly, g is associated with a vertex in R. Therefore, a path from g to any grasp in R

can be computed by a graph search.

Algorithm 3
1: TG = {pa, pb, pc, pd}
2: TA = TR ∪ TG
3: L = ConstructRoadmap(TA, TA, TA, TG)
4: Update R by adding L and linking L to R

In conclusion, the overall algorithm firstly clusters the input contact points. Then

a representative-level roadmap R is constructed from the representatives. To query a

regrasp sequence from an initial grasping configuration g to a goal grasping configuration

h, they have to be linked with R by using Algorithm 1 and 2. These algorithms find a

path between g to a vertex in R and so on for h. If the algorithms fail to report a path,

Algorithm 3 is performed by adding g or h into R. Finally, a graph search is then applied

to find a path connecting two grasps in R.

6.3 Experiments and Results

The test objects are shown in Fig. 6.2. They are simplified and modeled with about

500 and 1000 triangular meshes. The half angle of friction cones is 10◦. All objects are

clustered into 30, 50 and 70 groups for regrasp planning. All run times are measured on a

PC with a 2.4 GHz CPU. Examples of regrasping sequences are presented in Fig. 6.3 and

6.4.

Table 6.1-6.6 show the result from the construction of representative-level roadmaps.

The result presents for each test object the number of force closure grasp vertices of the

resulting representative-level roadmap, time spent in the construction and the number of

connected components of the roadmap. The numbers of vertices of roadmaps depend

heavily on the numbers of groups. Another factor is the object’s shape. The objects in

Fig. 6.2(a) and (f) result in more vertices than the others due to their sphere-like shapes

which generally yield more force closure grasps. Note that the number of vertices is much

smaller than the total number of force closure grasps that can be formed by the input con-

tact points (up to millions for each test object). Small number of connected components

98

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Test objects

indicates high probability to have a path joining any two vertices in the roadmap.

The tables also present the result from querying regrasping sequences. We ran-

domly pick 30 pairs of force closure grasps to serve as the initial and target grasps for

each query. Although the number of connected components of the representative-level

roadmaps are quite large for some objects, successful regrasping sequences can be found

for most pairs of grasps. This implies that the majority of grasps lie in the same connected

component. The success rates tend to increase when the numbers of groups are increased

as we can see from the situations when the numbers of groups are changed from 30 to

50. Minimum, maximum and average querying times are also shown in the tables. The

numbers of vertices and the numbers of meshes affect computational times used to find a

path connecting two grasps. The former effects when Algorithm 2, 3 and representative-

level planner are executed whereas the later effects when all local planners are executed.

From out experiments, minimum times are spent when both initial and target grasps can

connect to representative-level roadmaps by Algorithm 1. Maximum times mostly occur

when Algorithm 3 is provoked. However, when the number of groups is quite low such

as 30 groups of 1,000 triangles, the average number of members in a group is greater

than the number of groups so that computing a local roadmap by Algorithm 1 and 2 takes

more computational time than provoking Algorithm 3. As discussed above, our approach

provides trade off between completeness and resource used in the computation. From the

results, the numbers of vertices and the success rates depend on the numbers of groups.

Less number of groups provides faster computational times but variations of grasps and

success rates decrease. This is reasonable for an ordinary personal computer to be used

99

in the regrasp planning problem.

For more insight of the local planners, the results of local planning are shown in

Table 6.7 - 6.12. For each setting, we sample 10,000 force closure grasps. For Algorithm

1, each sampled grasp is verified whether the associated representatives form a force

closure grasp. The numbers of force closure grasps found are shown in percent. For

Algorithm 2, the procedure FindNearestCluster is executed for each sampled grasp. A

grasp passes the verification if the variableX is determined. Then 30 grasps are randomly

picked from the sampled grasps that pass the verification for each algorithm. Each grasp

is planned for a regrasping sequence that joins it to the representative-level roadmap.

The results list the numbers of grasps (out of 30) for which such sequence are found. To

measure the efficiency of Algorithm 3, 30 sampled grasps that do not pass the verifications

of Algorithm 1 and 2 are randomly picked. We then perform Algorithm 3 for each of them

and verify whether it connects with part of the representative-level roadmap that exists

before the update by Algorithm 3.

The results show the low passing rate of the verification by Algorithm 1 for

some objects. Most grasps that pass the verification however can be connected to the

representative-level roadmap. Algorithm 2 appears to be more effective than Algorithm

1. The passing rates for the verification of Algorithm 2 are significantly higher than

those of Algorithm 1, (with slightly fewer regrasping sequences found on average). How-

ever, Algorithm 1 is still needed because of its considerably higher verification speed.

By varying the numbers of groups, in most cases, the results show that the execution

rates of Algorithm 1 and 2 increase and the numbers of achievements of path connec-

tion also tend to increase when the number of group is increased. Although applying

Algorithm 3 can connect most grasps to the representative-level roadmap, it takes much

longer to update the representative-level roadmap than to run both Algorithms 1 and 2 (the

computational times are not shown here). However, computational time of Algorithm 3

will decrease when the number of groups is decreased because the number of vertices of

the representative-level roadmap decreases and updating the representative-level roadmap

takes less computational time.

6.4 Summary

We have proposed a new approach to solve the regrasp planning problem. Existing

methods typically solve the problem only for a complete solution. However, using such

approach on real world data such as highly complex contact points is next to impossible.

100

Table 6.1: Result of 500 mesh objects clustered into 30 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 2156 1 3.04 30 0.21 3.46 0.94
(b) 1101 1 1.60 30 0.14 3.27 1.28
(c) 386 7 0.66 28 0.16 2.06 0.94
(d) 341 13 0.61 26 0.12 2.98 1.01
(e) 374 14 0.65 27 0.15 1.82 0.76
(f) 2071 1 2.84 30 0.31 7.16 1.80

Table 6.2: Result of 500 mesh objects clustered into 50 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 15928 1 22.67 30 1.62 19.92 2.47
(b) 7752 2 10.89 30 0.79 17.32 3.12
(c) 2970 12 4.98 30 0.32 7.42 1.82
(d) 2281 12 4.25 29 0.23 6.16 1.92
(e) 2479 31 4.39 28 0.24 7.77 2.69
(f) 10993 2 15.54 30 1.13 15.85 3.25

This is due to combinatorial explosion of the search space. Our approach provides trade

off between completeness and the resource used in the computation. It clusters the input

using spectral clustering. The representatives from all clusters are used to constrain pos-

sible search space. The underlying idea is similar to that of the classical motion planning

problem. We construct a partial solution, called a representative-level roadmap. This al-

lows the original problem to be divided into three parts: planning regrasp sequence from

the starting grasp to the roadmap, planning regrasp sequence in the roadmap and, finally,

planning regrasp sequence from the roadmap to the target grasp. Since the set of rep-

resentatives contains much fewer contact points, solving the problem on the roadmap is

much less complex. Nevertheless, this is achieved at the cost of completeness.

101

Table 6.3: Result of 500 mesh objects clustered into 70 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 69898 1 100.55 30 10.88 76.42 13.42
(b) 30434 1 44.58 30 4.02 23.48 4.84
(c) 8562 9 16.28 30 0.67 10.06 4.07
(d) 10322 10 19.03 30 0.73 22.41 3.79
(e) 7683 23 14.87 30 0.45 15.29 4.20
(f) 51675 3 73.17 30 8.49 160.31 14.02

Table 6.4: Result of 1000 mesh objects clustered into 30 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 2813 1 3.91 30 1.17 19.50 7.26
(b) 754 1 1.13 29 0.89 25.13 7.34
(c) 846 2 1.29 30 0.16 11.45 3.33
(d) 321 14 0.59 24 0.42 6.49 2.68
(e) 278 12 0.51 28 0.20 7.45 1.78
(f) 1137 3 1.66 30 1.15 29.11 7.67

Table 6.5: Result of 1000 mesh objects clustered into 50 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 17056 1 24.25 30 2.19 42.75 10.56
(b) 6249 1 9.02 30 0.85 11.95 3.28
(c) 3747 7 6.02 30 0.40 6.01 2.36
(d) 1969 11 3.75 29 0.20 7.40 2.29
(e) 3770 12 6.09 30 0.43 9.67 2.79
(f) 14580 2 20.37 30 2.04 21.25 5.65

102

Table 6.6: Result of 1000 mesh objects clustered into 70 clusters

Fig. #Vert #CC time(s) #Con
Search time(s)

min max avg
(a) 79444 1 110.41 30 15.82 18.16 16.83
(b) 25064 2 36.04 30 3.62 28.40 7.37
(c) 9288 19 17.08 30 0.89 12.99 4.19
(d) 11352 11 20.19 30 1.01 23.53 5.29
(e) 8258 23 15.33 29 0.76 10.12 4.28
(f) 46386 3 64.47 30 7.88 164.11 22.22

Table 6.7: Result of local planning of 500 mesh objects clustered into 30 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 24.58 30 87.75 29 30
(b) 25.94 29 81.23 30 30
(c) 8.90 22 72.47 24 29
(d) 7.57 26 70.49 26 29
(e) 6.06 25 63.01 23 28
(f) 37.88 30 84.77 30 30

Table 6.8: Result of local planning of 500 mesh objects clustered into 50 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 30.21 30 93.24 30 30
(b) 34.88 28 87.45 29 30
(c) 15.24 27 84.69 24 29
(d) 9.62 28 81.14 24 30
(e) 9.62 27 79.12 21 29
(f) 32.32 30 90.33 30 30

103

Table 6.9: Result of local planning of 500 mesh objects clustered into 70 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 40.59 30 95.08 28 30
(b) 47.41 29 92.49 24 30
(c) 14.65 27 89.13 20 30
(d) 14.90 26 91.72 23 30
(e) 10.25 27 87.35 19 30
(f) 47.54 30 93.64 30 30

Table 6.10: Result of local planning of 1000 mesh objects clustered into 30 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 30.28 30 86.91 30 30
(b) 24.49 30 80.42 28 30
(c) 15.92 26 79.84 24 29
(d) 6.46 28 68.67 28 30
(e) 4.01 25 60.50 27 29
(f) 25.27 30 83.20 30 30

Table 6.11: Result of local planning of 1000 mesh objects clustered into 50 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 30.01 30 92.79 30 30
(b) 38.01 30 89.28 30 30
(c) 17.18 25 84.08 22 30
(d) 9.05 28 78.80 30 30
(e) 10.59 27 85.08 27 30
(f) 43.17 30 92.03 29 30

104

Table 6.12: Result of local planning of 1000 mesh objects clustered into 70 clusters

Fig.
Algorithm 1 Algorithm 2 Algorithm 3

%run #connect %run #connect #connect
(a) 38.39 30 95.07 30 30
(b) 40.72 29 91.80 28 30
(c) 12.89 28 89.44 23 30
(d) 16.06 28 90.74 27 30
(e) 9.23 27 86.34 28 30
(f) 49.28 29 93.77 30 30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: A regrasping sequence for the object in Fig. 6.2(b) with 500 triangles clustered
into 50 groups

105

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 6.4: A regrasping sequence for the object in Fig. 6.2(d) with 1000 triangles clus-
tered into 30 groups

CHAPTER VII

CONCLUSION

7.1 Dissertation Summary

In this work, we consider the problem of regrasp planning on an object that is de-

scribed by a polygon, polyhedron or a set of discrete contact points. Given an object, our

algorithm constructs a graph structure that stores sets of force-closure grasps and captures

abilities of changing grasping configurations among these grasp sets using basic opera-

tions which are finger switching and finger aligning.

For a polygon, our algorithm computes a switching graph to store sets of force-

closure grasps. A node in the graph contains a set of 2-finger grasps, concurrent grasps

or parallel grasps for couple or triple of polygonal edges. In the same node, a finger

aligning can be performed without losing contacts on the grasped edges. A finger switch-

ing is performed to change grasping configuration between two different sets of grasped

edges. This operation directly involves with an edge of the switching graph. We apply a

necessary and sufficient condition for 2-finger force-closure grasp to compute a 2-finger

grasp node. However, in the case of 3-finger grasps, a necessary and sufficient condition

is non-linear. We simplifies the condition into two grasping types : concurrent grasps

and parallel grasps of which constraints are linear. Further, representations of all grasping

types are in 2D and 3D spaces, we can apply linear algebra and computational geometry

theory to compute the complete switching graph.

For a polygon consisting of a large number of edges, we propose an algorithm to

solve the problem of finger switching by three fingers. A node in a switching graph

contain a connected set of 2-finger grasps. This allows finger aligning across edges of

a polygon and also reduces computational cost of a switching graph construction. By

applying the principal of L∞ Voronoi diagram, we can locally optimize finger switching

based on independent contact region criterion.

For the 3D case, for each four faces of a polyhedron, we consider only concurrent

grasps which can be represented by a set of points in spatial. Out algorithm applies the

same principal of the polygon case. A node of the switching graph contains a set of

107

concurrent grasps for four grasped faces. An edge linking two nodes when there exist

two grasps from the distinct nodes that change to each other using a finger switching.

However, computing a complete switching graph may take much running time. We pro-

pose a random approach to compute partial solution of a switching graph. The obtained

switching graph is constructed in lazy fashion, i.e., actual force-closure grasp sets are not

computed when the switching graph is being constructed. The results show that the ran-

dom approach drastically decreases running time but it can almost capture the topology

of the complete switching graph.

For the discrete contact point set case, we propose a heuristic approach to solve the

regrasp planning problem. Since the input is discrete, only the finger switching is consid-

ered. Our algorithm exploits similarities among contact points to group them into disjoint

clusters. This principal is induced from the finger switching. If we want to change one

contact point in a grasping configuration, contact points that produce similar wrenches

are appropriate for switching. Therefore, contact points producing similar wrenches are

grouped into the same cluster. A representative contact point is chosen for each cluster. A

graph structure called representative-level roadmap is construted by considering 4-finger

force-closure grasps whose configurations consist of representative contact points to de-

crease search space for regrasp planning. Clearly, this roadmap does not cover all con-

tact points. Given arbitrary initial and target grasping configurations, a local planner is

also proposed to find paths from these grasping configurations to the representative-level

roadmap. In our experiments, the results show that our approach can mostly find a re-

grasp sequence between two arbitrary grasping configurations in a few seconds whereas

constructing the complete roadmap and planning a regrasp sequence over it seem to be

not possible using an ordinary PC.

7.2 Further Improvement and Extension

In this section we list some future improvement and extension that could be done to

this work.

1. Condition improvement: All force-closure conditions applied for regrasp plan-

ning of a polygon and a polyhedron are sufficient conditions. To plan in the com-

plete search space, necessary and sufficient conditions could be taken place. A new

planner is needed to handle with non-linear constraints. Appropriate grasping rep-

resentations are also required to describe a set of force-closure grasps. However, it

is quite complex to compute the exact geometry of a grasp set. A node of a switch-

108

ing graph may contain a set of constraints instead. An edge may contain a set of

constraints for finger switchings. We can apply non-linear optimization to prove

the existence of a solution of non-linear constraints. we are also interested in addi-

tion of the other two types of 4-finger force closure grasps (i.e., pencil and regulus

grasps) to our regrasp planning.

2. Optimized regrasp sequence: A regrasp sequence obtained from our algorithm is

guaranteed for force-closure but it is not considered for its quality or qualities of

grasps in the sequence. Quality measure metrics for a grasp can be exploited such

as independent contact region, Q-distance, etc. There are many ways to determine

a quality of a regrasp sequence such as integrating qualities of all grasps in the

sequence or optimizing bound of qualities of all grasps in the sequence.

3. Random approach improvement and application: The random approach in this

work uses the ordinary random function in C++ programming language. There

are many probabilistic approaches in motion planning such as PRM and RRT that

could be improve convergence of the switching graph construction. We can also

apply the random approach to plan a regrasp sequence over pre-computed sets of

force-closure grasps and finger switching in a switching graph. For example, in the

case of a polyhedron, sample points in a focus cell for finger aligning and sample

points in the intersection of two focus cell that have one distinct grasped face for

finger switching operations.

4. Local planning improvement: For the problem of regrap planning for discrete

contact points, we can speed up the local planner by exploiting the properties of

the spectral clustering algorithm. In the clustering procedure, the measurement of a

contact point is converted into Euclidean space and L−2 distance is used to cluster

contact points. Since L − 2 distance is metric distance function, we can apply the

existence nearest neighbor search algorithms to improve the determination of sets

Si.

5. Including hand constraints: With pre-computed sets of force-closure grasp at

hand, we can plan a regrasp sequence in these sets including kinematic and dy-

namic constraints of a hand without verifying for force-closure anymore. Recently,

probabilistic approaches are reasonable when these constraints are included.

109

7.3 Discussion

An autonomous robot that accomplishes a required task with minimum supervision

is a goal yearned by most researchers. A similar goal is also set for the dexterous manip-

ulation problem. It is the uttermost goal of this dissertation to, at least, provide a stepping

stone to that problem.

Recently, robot hands are widely applied to many tasks instead of human because

they work with more decision and endurance. As we can see in many industries, robot

hands are programmed to assembly cars or tiny circuit boards. However, the ability of

the robot hands are much less comparing with a human hand. To control a robot hand, a

planner has to consider many constraints : task, grasping stability, kinematic constraints

and dynamic of the hand. Kinematic focuses on a robot hands’ geometry, an object’s

geometry, configurations and limitations that allow us to derive relations among joints

and fingertips’ positions and also relations between the hand and the object. Many works

in kinematics often assume that a robot hand is perfectly controlled neglecting hand dy-

namic. Actually, forces at fingertips are exerted via movements or rotations of joints in a

robot hand which requires analysis of hand dynamic. The remaining procedure is to con-

trol forces and torques of joints for precision of fingertip positioning and forces exerted

at the fingertips. Although hand kinematic and dynamic are necessary for analysis of the

dexterous manipulation, it also requires higher level planner that provides a manipulation

sequence satisfying grasping constraints. Recently, there are a few works that attack the

problem of planning a sequence of finger repositioning which our work focuses on. Our

planner provides a sequence of finger repositioning that all grasps in the sequence satisfy

force-closure. For a given object, our approach constructs a graph structure that contains

a set of force-closure grasps in a node and an edge is associated with the finger switching

operation. We apply this graph structure as a framework for the regrasp planning problem.

Since the graph contains sets of force-closure grasps, a planner is allowed to include other

constraints such as kinematic or dynamic of an arbitrary hand for a regrasp sequence that

all grasps satisfying these additional constraints also maintain force-closure.

The main advantage of the switching graph is that it explicitly contains sets of

force-closure and sets of finger switchings. Note that the traditional necessary and suffi-

cient conditions for computing a set of force-closure grasp on given edges are non-linear.

Therefore, the set of force-closure grasps is implicitly represented by non-linear con-

straints which are complex to transform them into geometries. The advantage of our

approach is strongly based on the simplifications of force-closure conditions. In 2D, we

110

classify grasps into three types which are the 2-finger grasp, the concurrent grasp and

the parallel grasp. For given grasped edges, the conditions of all grasping types can be

formulated into linear constraints. A set of 2-finger grasps and a set of concurrent grasps

are represented by a set of points in the plane. In contrast, a set of parallel grasps consists

of polytopes in the 3D parameter space. Finger switchings between grasps in distinct two

sets are computed using existing boolean operation of polygons in the plane. Although

our approach simplifies the force-closure conditions into sufficient conditions, but we can

solve the problem efficiently using linear algebra and computational geometry in 2D. The

results evidences that the proposed approach covers a large number of force-closure grasp

sets which adequate for the regrasp planning of a polygon.

For a polyhedron, we focus on concurrent grasps which are natural for 3D grasp-

ing, i.e., exerted forces intersect at a point. A set of points in spatial is used to represent

a concurrent grasp set. Although the condition of concurrent grasps is just a sufficient

condition, but it reduces the dimension of the representation from 8D (2 parameters for

a contact point) into 3D. This condition allows us to apply the existing geometric com-

putation library which is ACIS library to our implementation. Moreover, based on the

representation of concurrent grasps in 3D, the regrasp planning problem can be efficiently

solved using a probabilistic approach in low dimensions.

Our last problem is the regrasp planning for discrete contact points. Discrete contact

points suit more to the data acquisition sensors, such as a laser range scanner or a stereo-

scopic camera which are widely available. Discrete contact point model also calls forth

the need to handle input of a large number of contacts. Though it is possible to approx-

imate the scanned data with one polynomial, this approach suffers from the high cost of

curve fitting and the accuracy problem from Runge phenomenal. Spline fitting, arguably,

reduces the effect of both problems but the result is still a large number of polynomials.

In fact, when the resolution of the scan is large enough, spline fitting results in similar

representation of discrete contact points. We realize that the use of the discrete contact

point model is necessary for complete automation. Evidently, this problem is included as

one objective of this dissertation.

Using discrete contact points result in an enormous number of contact points of

which all force closure grasps and finger switchings must be computed. The number

of the solutions can be as high as O(N4) and O(N5). It is precisely this problem that

our work tries to cope with. Instead of planning in the whole search space, we apply a

two-level scheme approach to plan in much smaller search space. We show that, at least,

111

the pre-computed representative-level roadmap contains partial solutions; it is possible to

solve a regrasp planning problem using our proposed local planner in much lesser time

than complete approach and there are many possible improvement that could be done.

Another advantage of our framework is generality of the structure which does not

specifically depend on a task or a robot hand. The switching graph can be considered as a

middle level in manipulation planning. Given an initial grasp and a goal grasp from a task

planner, the switching graph provides sets of force-closure grasps and finger switchings

that involve changing of grasps between the two grasps. These sets and their relations

are then transferred to lower levels to compute feasible trajectories of a hand constrained

on the grasp sets and the finger switching sets. More practically, the switching graph

can be applied to other planner. Computed grasp sets serve explicit wrench closure sets

for the approach in (Jr et al., 2004). Also, finger switching sets can be applied to search

for transitions of contacts. For the recent approach in (Saut et al., 2007), the switching

graph provides the explicit grasp subspaces from which a PRM planner can sample grasp

sequences without verifying all generated grasps for the force-closure condition. Another

advantage is globalization of the switching graph. Once we compute a switching graph

that contains all force-closure grasps for an object, the switching graph then allows a

planner to globally search for sets of force-closure grasps and finger switchings.

The author strongly believe that, with the proposed algorithms and the proposed

approaches, we could see many interesting, or the ultimate, solution to the dexterous

manipulation problem in the near future.

References

Alami R., Siméon T. and Laumond J.P. A geometrical approach to planning manipulation

tasks. In International Symposium on Robotics Research. 1989.

Bicchi A. On the closure properties of robotic grasping. International Journal of Robotics

Research, 14(4) (August 1995): 319–334.

Bicchi A. and Marigo A. Rolling contacts and dexterous manipulation. In IEEE Int. Conf.

on Robotics and Automation. 2000.

Borst C., Fischer M. and Hirzinger G. Grasping the dice by dicing the grasp. In IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems. 2003.

Boyd S. and Vandenberghe L. Convex Optimization. New York: Cambridge University

Press, 2004.

Brock D.L. Enhancing the dexterity of robot hands using controlled slip. In IEEE Int.

Conf. on Robotics and Automation. 1988.

Butterfaß J., Grebenstein M., Liu H. and Hirzinger G. DLR-hand II: Next generation

of a dextrous robot hand. pp. 109–114, In IEEE Int. Conf. on Robotics and

Automation. 2001.

Cai C. and Roth B. On the spatial motion of a rigid body with point contact. pp. 686–695,

In IEEE Int. Conf. on Robotics and Automation. 1987.

Cai C. and Roth B. On the spatial motion of a rigid body with line contact. pp. 1036–1041,

In IEEE Int. Conf. on Robotics and Automation. 1988.

Cherif M. and Gupta K.K. Planning quasi-static motions for re-configuring objects with

a multi-fingered robotic hand. pp. 986–991, In IEEE Int. Conf. on Robotics and

Automation. 1997.

Chong N.Y., Choi D. and Suh I.H. A finite motion planning strategy for multifingered

robotic hands considering sliding and rolling contacts. pp. 180–187, In IEEE

Int. Conf. on Robotics and Automation. 1993.

Cole A.A., Hsu P. and Sastry S. Dynamic regrasping by coordinated control of sliding

for a multifingered hand. pp. 781–786, In IEEE Int. Conf. on Robotics and

Automation. 1989.

113

Cole A.A., Hsu P. and Sastry S. Dynamic control of sliding by robot hands for regrasping.

IEEE Transactions on Robotics and Automation, 8(1) (February 1992): 42–52.

Cornella J. and Suarez R. Determining independent grasp regions on 2d discrete objects.

In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2005a.

Cornella J. and Suarez R. Fast and flexible determination of force-closure indepen-

dent regions to grasp polygonal objects. In IEEE Int. Conf. on Robotics and

Automation. 2005b.

Corney J. and Lim T. 3D Modeling with ACIS. Kippen Stirling: Saxe-Coburg Publica-

tions, 2002.

Cutkosky M.R. On grasp choice, grasp models, and the design of hands for manufacturing

tasks. IEEE Transactions on Robotics and Automation, 5(3) (1989): 269–279.

Dandurand A. The rigidity of compound spatial grid. Structural Topology, 10.

de Berg M., van Kreveld M., Overmars M. and Schwarzkopf O. Computational Geometry:

Algorithms and Applications. Berlin Heidelberg: Springer, 1997.

Faverjon B. and Ponce J. On computing two-finger force-closure grasps of curved 2D ob-

jects. pp. 424–429, In IEEE Int. Conf. on Robotics and Automation. Sacramento,

CA. 1991.

Fearing R. Implementing a force strategy for object re-orientation. In IEEE Int. Conf. on

Robotics and Automation. 1986.

Ferrari C. and Canny J. Planning optimal grasps. pp. 2290–2295, In IEEE Int. Conf. on

Robotics and Automation. Nice, France. 1992.

Goldfeder C., Allen P.K., Lackner C. and Pelossof R. Grasp planning via decomposition

trees. In IEEE Int. Conf. on Robotics and Automation. 2007.

Goodwine B. and Burdick J. Motion planning for kinematic stratified systems with appli-

cation to quasi-static legged locomotion and finger gaiting. IEEE Transactions

on Automatic Control, 18(2) (2002): 209–222.

Han L. and Trinkle J. Dextrous manipulation by rolling and finger gaiting. pp. 730–735,

In IEEE Int. Conf. on Robotics and Automation. 1998a.

Han L. and Trinkle J. Dextrous manipulation by rolling and finger gaiting. In IEEE Int.

Conf. on Robotics and Automation. 1998b.

114

Harmati I., Lantos B. and Payandeh S. On fitted stratified and semistratified geomet-

ric manipulation planning with fingertip relocations. International Journal of

Robotics Research, 21(5) (2002): 489–510.

Hoffman C.M. Geometric and Solid Modeling. Morgan Kaufmann, San Mateo, Califor-

nia, 1989.

Hong J., Lafferiere G., Mishra B. and Tan X. Fine manipulation with multifinger hands.

pp. 1568–1573, In IEEE Int. Conf. on Robotics and Automation. Cincinatti, OH.

1990.

Huber M. and Grupen R.A. Robuts finger gaits from closed-loop controllers. In IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems. 2002.

Huebner K., Ruthotto S. and Kragic D. Minimum Volume Bounding Box Decomposition

for Shape Approximation in Robot Grasping. In IEEE Int. Conf. on Robotics

and Automation. 2008.

Jacobsen S., Iversen E., Knutti D., Johnson R. and Bigger K. Design of the utah/mit

dextrous hand. pp. 96–102, In IEEE Int. Conf. on Robotics and Automation.

1986.

Jia Y.B. On computing optimal planar grasps. In IEEE Int. Conf. on Robotics and

Automation. 1995.

Jr R.P., Fagg A.H. and Grupen R.A. Manipulation gaits: Sequences of grasp control tasks.

In IEEE Int. Conf. on Robotics and Automation. 2004.

Kerr J. and Roth B. Analysis of multifingered hands. International Journal of Robotics

Research, 4(4) (1986): 3–17.

Kirkpatrick D., Mishra B. and Yap C. Quantitative Steinitz’s theorems with applica-

tions to multifingered grasping. pp. 341–351, In 20th ACM Symp. on Theory of

Computing. Baltimore, MD. 1990.

Koga Y. and Latombe J. On multi-arm manipulation planning. In IEEE Int. Conf. on

Robotics and Automation. 1994.

Leveroni S.R. Grasp Gaits for Planar Object Manipulation. Ph.D. thesis, Massachusetts

Institute of Technology, Department of Mechanical Engineering (1997).

115

Li J., Zhang Y. and Zhang Q. Kinematic algorithm of multifingered manipulation with

rolling contact. pp. 338–343, In IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems. 2000.

Li Y.F., Tso S.K. and Meng Q. Grasping force measurement for dynamic grasp stabil-

ity assessemnt. IEEE Transactions on Instrumentation and Measurement, 47(5)

(1998): 1294–1299.

Liu Y.H. Computing n-finger force-closure grasps on polygonal objects. In IEEE Int.

Conf. on Robotics and Automation. 1998.

Liu Y.H. Qualitative test and force optimization of 3-d frictional form-closure grasps

using linear programming. IEEE Transactions on Robotics and Automation,

15(1) (1999): 163–173.

Lovchik C.S. and Diftler M.A. The robonaut hand: A dexterous robot hand for space. pp.

907–912, In IEEE Int. Conf. on Robotics and Automation. 1999.

Markenscoff X., Ni L. and Papadimitriou C.H. The geometry of grasping. International

Journal of Robotics Research, 9(1) (February 1990): 61–74.

Mehlhorn K. and Naher S. Leda: A Platform for Combinatorial and Geometric

Computing. New York: Cambridge University Press, 2000.

Mirtich B. and Canny J. Optimum force-closure grasps. Technical Report ESRC 93-

11/RAMP 93-5, Robotics, Automation, and Manufacturing Program, University

of California at Berkeley (July 1993).

Mishra B., Schwartz J. and Sharir M. On the existence and synthesis of multifinger

positive grips. Algorithmica, Special Issue: Robotics, 2(4) (November 1987a):

541–558.

Mishra B., Schwartz J. and Sharir M. On the existence and synthesis of multifinger

positive grips. Algorithmica, Special Issue: Robotics, 2(4) (November 1987b):

541–558.

Montana D.J. Kinematics of contact and grasp. International Journal of Robotics

Research, 7(3) (1988): 17–32.

Munoz L.A., Bard C. and Najera J. Dexterous manipulation: A geometrical reasoning

point of view. pp. 458–463, In IEEE Int. Conf. on Robotics and Automation.

1995.

116

Nakamura Y., Nagai K. and Yoshikawa T. Dynamics and stability in coordination of

multiple robotic mechanisms. International Journal of Robotics Research, 8(2)

(1989): 44–61.

Ng A.Y., Jordan M.I. and Weiss Y. On spectral clustering: Analysis and an algorithm.

pp. 849–856, In Advances in Neural Information Processing Systems 14. MIT

Press. 2001.

Nguyen V. Labeling polyhedral scenes. pp. 1160–1165, In Proc. DARPA Image

Understanding Workshop. 1988a.

Nguyen V.D. Constructing force-closure grasps. International Journal of Robotics

Research, 7(3) (June 1988b): 3–16.

Nielsen C.L. and Kavraki L.E. A two level fuzzy prm for manipulation planning. In

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2000.

Niparnan N. and Sudsang A. Positive span of force and torque components of four-

fingered three-dimensional force-closure grasps. pp. 4701–4706, In IEEE Int.

Conf. on Robotics and Automation. Roma, Italy. 2007.

Omata T. and Farooqi M.A. Regrasps by a multifingered hand based on primitives. pp.

2774–2780, In IEEE Int. Conf. on Robotics and Automation. 1996.

Omata T. and Nagata K. Planning reorientation of an object with a multifingered hand.

pp. 3104–3110, In IEEE Int. Conf. on Robotics and Automation. 1994.

Papadopoulou E. and Lee D.T. The l∞-voronoi diagram of segments and vlsi applications.

Int. J. Comput. Geometry Appl., 11(5) (2001): 503–528.

Phoka T., Pipattanasomporn P., Niparnan N. and Sudsang A. Regrasp planning of four-

fingered hand for parallel grasp of a polygonal object. In IEEE Int. Conf. on

Robotics and Automation. 2005.

Ponce J. and Faverjon B. On computing three-finger force-closure grasps of polygonal ob-

jects. IEEE Transactions on Robotics and Automation, 11(6) (December 1995a):

868–881.

Ponce J. and Faverjon B. On computing three-finger force-closure grasps of polygonal ob-

jects. IEEE Transactions on Robotics and Automation, 11(6) (December 1995b):

868–881.

117

Ponce J., Sullivan S., Sudsang A., Boissonnat J.D. and Merlet J.P. On computing four-

finger equilibrium and force-closure grasps of polyhedral objects. International

Journal of Robotics Research, 16(1) (February 1997): 11–35.

Reuleaux F. The Kinematics of Machinery. Macmillan 1876, republished by Dover, NY,

1963.

Rimon E. and Burdick J. On force and form closure for multiple finger grasps. pp.

1795–1800, In IEEE Int. Conf. on Robotics and Automation, volume 2. 1996.

Roa M. and Suarez R. Independent contact regions for frictional grasps on 3d objects. In

IEEE Int. Conf. on Robotics and Automation. 2008.

Roa M. and Suarez R. Regrasp planning in the grasp space using independent regions. In

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2009.

Sahbani A., Cortés J. and Siméon T. A probabilistic algorithm for manipulation planning

under continuous grasps and placements. In IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems. 2002.

Salisbury J. Kinematic and force analysis of articulated hands. Ph.D. thesis, Stanford

University, Stanford, CA (1982).

Sarkar N., Yun X. and Kumar V. Dynamic control of 3-d rolling contacts in two-arm ma-

nipulation. IEEE Transactions on Robotics and Automation, 13(3) (June 1997):

364–376.

Saut J., Sahbani A., El-Khoury S. and Perdereau V. Dexterous manipulation planning

using probabilistic roadmaps in continuous grasp subspaces. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems. 2007.

Siméon T., Cortés J., Sahbani A. and Laumond J.P. A manipulation planner for pick and

place operations under continuous grasps and placements. In IEEE Int. Conf. on

Robotics and Automation. 2002.

Stewart D.E. Rigid-body dynamics with friction and impact. IEEE Transactions on

Robotics and Automation, 42(1) (March 2000): 3–39.

Sudsang A. and Ponce J. New techniques for computing four-finger force-closure grasps

of polyhedral objects. In IEEE Int. Conf. on Robotics and Automation. 1995.

Townsend W.T. The BarrettHand grasper–programmably flexible part handling and as-

sembly. Industrial Robot: An International Journal, 27(3) (2000): 181–188.

118

Tung C.P. and Kak A.C. Fast construction of force-closure grasps. IEEE Transactions on

Robotics and Automation, 12(4) (1996): 615–626.

Xu J., Koo T.J. and Li Z. Finger gaits planning for multifingered manipulation. In

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2007.

Xu J. and Li Z. A kinematic model of finger gaits by multifingered hand as hybrid automa-

ton. IEEE Transactions on Automation Science and Engineering, 5(3) (2008):

515–522.

Yoshikawa T. and Nagai K. Evaluation and determination of grasping forces for multi-

fingered hands. In IEEE Int. Conf. on Robotics and Automation. 1988.

Yoshikawa T. and Nagai K. Manipulating and grasping forces in manipulation by mul-

tifingered robot hands. IEEE Transactions on Robotics and Automation, 7(1)

(1991): 67–77.

Yoshikawa T., Yokokohji Y. and Nagayama A. Object handling by three-fingered hands

using slip motion. pp. 99–105, In IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems. 1993.

Zheng X.Z., Nakashima R. and Yoshikawa T. On dynamic control of finger sliding and

object motion in manipulation with multifingered hands. IEEE Transactions on

Robotics and Automation, 18(5) (October 2000): 469–481.

Zhu X., Ding H. and Tso S.K. A pseudodistance function and its applications. IEEE

Transactions on Robotics and Automation, 20(2) (2004): 344–352.

Zhu X. and Wang J. Synthesis of force-closure grasps on 3-d objects based on the q

distance. IEEE Transactions on Robotics and Automation, 19(4) (2003a): 669–

679.

Zhu X. and Wang J. Synthesis of force-closure grasps on 3-D objects based on the q

distance. IEEE Trans. Robot. Autom., 19(4) (August 2003b): 669–679.

119

Biography

Thanathorn Phoka was born in Bangkok, Thailand, on December, 1980. He re-

ceived B.Eng. and M.Eng., both in computer engineering, from Chulalongkorn Univer-

sity, Thailand, in 2002 and 2004, respectively. In his master degree and the first few years

in his doctorate, he also serves as a teaching assistant at the Department of Computer En-

gineering, Chulalongkorn University. His bachelor degree and his master master degree

have been supervised by Dr. Attawith Sudsang. His doctorate has been also under the

supervision of Dr. Attawith Sudsang. In summer 2005, he was granted a visiting scholar-

ship by Toshiba International Foundation to participate in training at Humancentric Lab-

oratory, Research and Development Center, Toshiba Corporation, Kawasaki. Since 2007,

he has received a grant from the Thailand Research Fund through the Royal Golden Ju-

bilee Ph.D. Program under Grant No. Ph.D. 1.O.CU/49/D.1. In 2007, he additionally

received a grant from the 90th Anniversary of Chulalongkorn University Fund through

the Ratchadapiseksomphot Fund. His field of interest includes various topics in Robotics

with emphasis on regrasp planning, grasp planning, grasp analysis and dexterous manipu-

lation. In September 2009 - January 2010, he researched at Computer Science Department

Department of Electrical Engineering, Stanford University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Related Works
	1.2 Problem Statement
	1.3 Dissertation Outline

	Chapter II Grasping and Regrasping Preliminaries
	2.1 Nomenclatures
	2.2 Contact Model
	2.3 Grasp and Wrenches
	2.4 Force Closure
	2.5 Condition of Force Closure
	2.6 Regrasping

	Chapter III Regrasp Planning for a Polygonal Object
	3.1 Introduction
	3.2 Force-closure conditions in 2D
	3.3 Switching Graph for a Polygonal Object
	3.4 Using Switching Graph
	3.5 Implementation and Results
	3.6 Summary

	Chapter IV Regrasp Planning for a Polygon with a Large Number of Edges
	4.1 Introduction
	4.2 Representing force closure grasps
	4.3 Finger Switching
	4.4 Finger Aligning
	4.5 Constructing Switching Graph
	4.6 Using Switching Graph
	4.7 Experimental Results
	4.8 Summary

	Chapter V Regrasp Planning for a Polyhedral Object
	5.1 Introduction
	5.2 Force-closure conditions in 3D
	5.3 Switching Graph for a Polyhedral Object
	5.4 Implementation and Results
	5.5 Summary

	Chapter VI Regrasp Planning for a Triangular-Mesh Object
	6.1 Introduction
	6.2 Regrasp Planning on Discrete Point Set
	6.3 Experiments and Results
	6.4 Summary

	Chapter VII Conclusion
	7.1 Dissertation Summary
	7.2 Further Improvement and Extension
	7.3 Discussion

	References
	Vita

