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CHAPTER I

INTRODUCTION

1.1 Introduction

In recent decades, advances in the design of control systems have been made. With significant

developments of computing facilities, designers can focus more on the problem formulations

and let all computational tasks be carried out by computers using efficient numerical algorithms.

As a consequence, the design problem can be formulated in a more realistic manner, which

reflects more accurately the nature of the control requirements. In this direction, the framework

proposed by Zakian [1,2], which consists of the Principle of Matching (PoM) and the Method of

Inequalities (MoI), has been extensively used for designing control systems (see, for example,

[1–16] and the references therein).

Following Zakian’s framework [1, 2], it is readily appreciated that a principal aim in

control systems design is to guarantee that a response (or an output) v of the system stays within

a prescribed bound in the presence of all possible inputs (that is, inputs that can happen or are

likely to happen in practice). Accordingly, the design criterion can be expressed as

|v(t, f)| ≤ ε, ∀f ∀t ∈ R, (1.1)

where v(t, f) is the value of v at time t in response to a possible input f , and ε is the largest value

of |v(t, f)| that can be accepted. Criterion (1.1) is frequently employed in practice by engineers

to monitor the performances of the control systems and has long been investigated by a number

of researchers (see, for example, [1,2,7,14,17,18] and the references therein) with various sets

of f . Furthermore, criterion (1.1) is particularly useful in the design of critical systems [2, 19]

(see also [20]), in which any violation of the bound ε may result in an unacceptable operation.

See [8, 10, 12] for examples of critical systems.

This work considers the design of a feedback control system shown in Figure 1.1, where

Gc(s,p) is the transfer function of the controller with the design parameter p ∈ R
n and the

input f is known only to the extent that it belongs to a possible set P (that is, a set that contains

all possible inputs). The system is assumed to be at rest for t ≤ 0.

Following previous works (see, for example, [1,2,7,9,10,13,14,18]), it is readily appre-

ciated that P should contain all inputs satisfying bounding conditions on both magnitude and

slope. Therefore, in this work, we consider the following two possible sets.

P2 �
{
f | f ∈ L2, ḟ ∈ L2

}
(1.2)

P∞ �
{
f | f ∈ L∞, ḟ ∈ L∞

}
(1.3)
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Figure 1.1: A feedback control system.

where Ln (n = 2,∞) denotes the set of all functions f : R+ → R satisfying ‖f‖n < ∞. As

usual,

‖f‖2 �
{∫ ∞

0
|f(t)|2 dt

}1/2

(1.4)

‖f‖∞ � sup{|f(t)| : t ∈ R+}. (1.5)

The set P∞ is suitable for characterizing persistent inputs (that is, inputs that vary persistently

for all time) whereas P2 is suitable for characterizing transient inputs (that is, those that do

not). In comparison with the sets L2 and L∞, using P2 and P∞ as possible sets make the

design formulation more realistic and more appropriate because inputs in L∞ may have stepwise

discontinuities and those in L2 may have unbounded magnitudes, and hence these features may

not reflect accurately the physical behaviour of possible inputs. For further discussion, see [1,2].

In connection with (1.1), the design problem is to find Gc(s,p) satisfying

|e(f, t)| ≤ Emax

|u(f, t)| ≤ Umax

}
∀f ∈ P ∀t ≥ 0, (1.6)

where P can be either P2 or P∞. Obviously, inequalities (1.6) are equivalent to

ê ≤ Emax, ê � sup
f∈P

sup
t≥0

|e(f, t)|,

û ≤ Umax, û � sup
f∈P

sup
t≥0

|u(f, t)|,
(1.7)

where the performance measures ê and û are sometimes called the peak values of e and u,

respectively. Evidently, inequalities (1.7) become useful design criteria once ê and û can be

computed in practice. In case it is difficult to compute the peaks ê and û, one may replace ê and

û in the design inequalities (1.7) by upper bounds ẽ and ũ that are readily computable.

In searching for a solution of (1.7) in R
n, it is necessary that a search algorithm should

start from a stability point, that is, a point p for which

ê(p) < ∞ and û(p) < ∞. (1.8)

From the above, it is seen clearly that (1.8) is a necessary condition for the satisfaction of the

design criteria (1.7). For more discussion on this, see, for example, [2] and the references cited

therein.

So far, in connection with the possible sets P2 and P∞, the problem of solving (1.7) has

been developed only for the case of linear time-invariant plants. See [14] for the latest review
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ψ(·) Gp(s)
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Figure 1.2: Nonlinear plant models: a) with an input nonlinearity, b) with an output nonlinearity.

and also the references therein. Therefore, it is our aim in this thesis to extend the framework for

cases of nonlinear systems. Specifically, in this thesis, we assume that the plant is represented

as a cascade connection of a transfer function Gp(s) and a nonlinearity ψ. See Figure 1.2. Note

that nonlinear systems of this type, where the nonlinearity is introduced to simulate the effect

of either actuator or sensor nonlinear characteristics, constitute an important class of systems

found in practice [21].

In the context of the Principle of Matching, the main objective of this thesis is to develop a

systematic and practical method for designing the feedback control system shown in Figure 1.1,

where the plant takes the form of either Figure 1.2a or Figure 1.2b, so as to guarantee that the

criteria (1.7) are satisfied. To this end, the stability problem (1.8) needs to be resolved first.

That is to say, it is necessary to establish practical conditions for determining stability points of

the system. Once such a point is obtained, the design criteria (1.7) are suitable for solutions by

numerical methods, provided that ê and û can be computed in practice.

1.2 Literature Review

In this section, the design framework, which consists of the Principle of Matching (PoM) and

the Method of Inequalities (MoI) is briefly described.

1.2.1 The Method of Inequalities

The Method of Inequalities [2,3,18,22] is a design method that expresses constrains and design

specifications of a control system as a set of inequalities, that is,

φi(p) ≤ εi, i = 1, 2, . . . m, (1.9)

where φi(p) is a performance measure that characterizes a particular behavior of the system,

p ∈ R
n, as usual, denotes the design parameter, and εi is the maximum value of φi(p) that can

be accepted. The design solution is any point p that satisfies (1.9).

In practice, these inequalities are usually solved numerically using search algorithms in

the space of design parameters. Throughout this work, an algorithm called the Moving Bound-

aries Process (MBP) [3] is used. Alternatively, other algorithms for solving (1.9) may be used

(see, for example, [2] and the references therein).
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1.2.2 The Principle of Matching

In the systems design by the Principle of Matching [1, 2, 4], designers are concerned with the

relation between the system and its environment. Specifically, the environment affects the sys-

tem by some signals. If, using appropriate and well-defined criteria, the resulted responses are

acceptable, then these signals are call tolerable inputs, and the system and its environment are

said to be matched. As far as the system performances are taken into account, a practical model

of the environment is required and usually characterized by a possible set P (see, Section 1.1).

Let T denote a set containing all tolerable inputs. Consequently, the main objective of a match

is to ensure that

P ⊆ T . (1.10)

For the problem considered in this thesis, condition (1.10) is equivalent to (1.7).

In a practical design, to compare the sets P and T , practical criteria (in forms of inequal-

ities) are required (see, for example, [1, 2] and also Section 1.1). Once the criteria are obtained,

the design problem can be solved by using the formulation described in Section 1.2.1.

1.3 Objectives

The purpose of this thesis is fourfold.

1. Study the input-output stability properties of Lur’e feedback systems to ensure that the

outputs are bounded for any input in the set P2 or P∞, where the linear subsystem belongs

to a large subclass of convolution systems.

2. Based on the obtained results, develop a useful inequality for determining stability points

of the system by numerical methods.

3. By using Zakian’s Principle of Matching [1, 2], develop a practical method for designing

feedback control systems where the plant takes the form of either Figure 1.2a or Fig-

ure 1.2b, so as to ensure that the error function e and the controller output u stay within

respective bounds for all time and for all possible inputs.

4. Design controllers for some practical applications to illustrate the effectiveness of the

developed method.

1.4 Scope of Thesis

The scope of this research work is specified as follows. Consider the nonlinear feedback system

as shown in Figure 1.1.

1. Provide stability conditions, and then develop a computationally tractable inequality for

determining stability points in connection with the possible sets P2 and P∞.
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2. Develop a practical method for designing the system where the plant is a linear time-

invariant subsystem and is subject to a nonlinearity in its input or output channels (see

Figure 1.2), so as to ensure the satisfaction of the design criteria (1.7).

3. Design controllers for some SISO systems whose the plant may be infinite-dimensional

by using the developed method.

1.5 Methodology

This thesis extends Zakian’s framework [2] for designing a feedback control system shown in

Figure 1.1.

First, stability points can be obtained efficiently using the stability results developed in

Chapter 2.

Second, it is suggested [23] that, by the decomposition technique used in [24, 25], the

nonlinearity ψ can be replaced by a constant gain and an equivalent disturbance, thus resulting

in a linear system subject to two inputs.

Next, by using the Schauder fixed point theorem (see, for example, [26, 27]), sufficient

conditions for the satisfaction of (1.7) are derived from the resultant linear system.

Finally, practical sufficient conditions for ensuring (1.7) are developed, providing surro-

gate design criteria that are in keeping with the MoI and suitable for solutions by numerical

methods.

1.6 Expected Outcomes

The outcome of this research work is expected to include

1. A numerical procedure for determining stability points of a class of nonlinear systems.

2. A practical method for designing the feedback control system shown in Figure 1.1 using

Zakian’s framework, which is considered as the most significant contribution of the thesis.

3. Numerical examples showing the usefulness of the developed method.

1.7 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 considers the input-output stability of

Lur’e systems in the above sense. The stability results and a numerical method for stabilizing

the system are presented. Chapter 3 develops a practical method for designing feedback control

systems with input nonlinearity. To illustrate the usefulness of the method, a numerical design

of a hydraulic force control system is carried out. The developed method is extended to the

case of systems with output nonlinearity in Chapter 4. The design of a heat-conduction process

shows that the control problem of an infinite-dimensional system can be solved efficiently using
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the proposed approach. Chapter 5 considers the design problem of a class of uncertain nonlinear

systems. Finally, we conclude the thesis in Chapter 6.



CHAPTER II

STABILITY CONDITIONS AND NUMERICAL

STABILIZATION

This chapter considers the stability of Lur’e systems in the sense that the outputs are bounded

for any input in the sets P2 and P∞, where the linear subsystem belongs to a large subclass of

convolution systems. It is shown that if the well-known Popov criterion is satisfied, then the

system is stable in the above sense for any nonlinearity lying in a sector bound. Based on the

Popov criterion, a practical inequality for determining stability points by numerical methods is

then developed. The usefulness of the obtained results is illustrated by a numerical example, in

which the plant is a nonrational transfer function.

2.1 Lur’e Systems

Consider the single-input, single-output feedback connection as shown in Figure 2.1, where ψ

is a nonlinear element, G is a linear subsystem, and input f1 together with f2 belong to either

P2 or P∞.

_

+ +
+_

G(s)ψ(·)
f1

f2

e us u y

Figure 2.1: Lur’e system.

Assumption 2.1. The nonlinear function ψ : R → R is continuous, time-invariant and memo-

ryless, and satisfies ψ(0) = 0.

The nonlinearity ψ is said to lie in the sector [k1, k2], denoted by ψ ∈ sector [k1, k2], if

ψ(0) = 0 and k1 ≤
ψ(σ)

σ
≤ k2 ∀σ 
= 0. (2.1)

See [28, p.2] for equivalent forms of (2.1) and see Figure 2.2 for its graphical description.

Assumption 2.2. The linear part is a time-invariant and non-anticipative subsystem with zero

initial conditions, and is characterized by a transfer function G(s). The input u and the output

y are related by the convolution integral

y(t) = g ∗ u (t) �
∫ t

0
g(t− τ)u(τ)dτ, t ≥ 0, (2.2)
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ψ

σ0

k1

k2

Figure 2.2: The nonlinearity ψ lying in a sector bound.

where g is the impulse response of G(s).

Note, in passing, that (2.2) is a very general representation which includes rational sys-

tems, infinite-dimensional systems and systems with delays (also see Section 2.4).

Let A denote the convolution algebra whose elements take the form

g(t) =

⎧⎪⎨
⎪⎩

ga(t) +
∞∑
i=0

giδ(t− ti), t ≥ 0

0, t < 0

, (2.3)

where δ(·) is the Dirac delta function, 0 = t0 < t1 < t2 . . . are constants and

∞∑
i=0

|gi| < ∞ and
∫ ∞

0
|ga(t)| dt < ∞. (2.4)

Accordingly, A can be seen as a set containing impulse responses of all BIBO stable linear-time

invariant systems. For details on this, see, for example, [28] and [29].

2.2 Stability Conditions for Lur’e Systems

This section presents two stability conditions for ensuring the boundedness of the system out-

puts for the case of the inputs in P2 (Theorem 2.1), and for the case of the inputs in P∞ (Theo-

rem 2.2).

2.2.1 Boundedness of output with respect to P2

When the system inputs are restricted in the two-norms of their magnitude and slope, the fol-

lowing theorem, which is essentially an extension of the result in [30] (see also [28]), can be

used.

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied. Suppose that f1, f2 ∈ P2 and that

g, ġ ∈ A. The responses e, u and y are bounded for any ψ ∈ sector [0, k] if there exist q ∈ R

and β ∈ R such that

Re [(1 + qjω)G (jω)] +
1

k
≥ β > 0, ∀ω ≥ 0. (2.5)
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Proof. By using the linearity of G(s), the input f2 can be replaced by an equivalent input r, at

f1. See Figure 2.3, where ys = y − r.

_

++ _
G(s)ψ(·)

f1

r

e usf ys

Figure 2.3: Equivalent closed-loop system.

Clearly,

r = g ∗ f2, ṙ = ġ ∗ f2 + g(0)f2. (2.6)

Since g ∈ A and ġ ∈ A, it follows that g does not contain any impulse. This can be seen by the

fact that if g contains any impulse, then ġ would have higher order impulses and thus would not

belong to A. Moreover, g(t) = 0 for all t < 0 by the definition (2.3). Therefore, g(0) < ∞. As

a consequence, equations (2.6) and condition f2 ∈ L2 imply that r ∈ P2. Hence, f ∈ P2.

By employing the method in [30], it can be proved that ys ∈ L∞. In the following, the

proof [28] that is different from the one in [30] is described.

From the equivalent system in Figure 2.3, it follows that

f = e+ g ∗ ψ(e). (2.7)

By differentiation, we have

ḟ = ė+ ġ ∗ ψ(e) + g(0)ψ(e). (2.8)

Thus, for any positive T , we have

∫ T

0
(f + qḟ)ψ(e)dt =

∫ T

0
[e− ψ(e)

k
]ψ(e)dt+ q

∫ T

0
ėψ(e)dt

+

∫ T

0
{[g + qġ + qg(0) +

1

k
] ∗ ψ(e)}ψ(e)dt.

(2.9)

Using Cauchy–Schwarz inequality and the sector condition yields

∫ T

0
(f + qḟ)ψ(e)dt ≤ (‖f‖2 + q‖ḟ‖2)‖ψ(e)‖2T , (2.10)

[
e− ψ(e)

k

]
ψ(e) ≥ 0, (2.11)

where ‖ψ(e)‖22T �
∫ T
0 [ψ(e)]2dt. Moreover, by virtue of Lemma A.1 in Appendix A, we can

assume that q ≥ 0. Thus,

q

∫ T

0
ėψ(e)dt = q

∫ e(t)

e(0)
ψ(e)de ≥ −q

∫ e(0)

0
ψ(e)de. (2.12)
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In connection with (2.5) and from the above, we obtain

(‖f‖2 + q‖ḟ‖2)‖ψ(e)‖2T ≥ β‖ψ(e)‖22T − q

∫ e(0)

0
ψ(e)de. (2.13)

Inequality (2.13) implies that there exists a real number C > 0 such that

‖ψ(e)‖2T < C. (2.14)

It is easy to see that C does not depend on T . Hence, ψ(e) ∈ L2. Then e ∈ P2 by (2.7)

and (2.8).

It is shown ( [2, p. 59], see also Lemma A.3 in Appendix A) that if f ∈ P2, then

f ∈ L∞. As a result, e, us, ys ∈ L∞. Since f2, r ∈ L∞ and y = ys + r, it readily follows that

u, y ∈ L∞.

Condition (2.5) is the well-known Popov criterion (see, for example, [21,29–31]). Tradi-

tionally, the criterion has been used to guarantee the global asymptotic stability of Lur’e systems

for any ψ ∈ sector [0, k] (known as absolute stability). It is interesting to note that the concept

of absolute stability is defined for unforced systems. In this work, however, the Popov criterion

is used to ensure the input-output stability of forced systems in connection with the sets P∞ and

P2.

Notice that, in connection with Theorem 2.1, the class of G includes all stable systems

whose impulse response g does not contain the Dirac delta function, for example, systems with

strictly proper rational transfer functions, and some infinite-dimensional systems such as heat-

conduction processes or systems with time-delays.

It may be noted that if one needs to ensure the boundedness of only e and y, then the

condition that f2 ∈ P2 can be relaxed and replaced with f2 ∈ L2. In this case, the input f2 and

hence u may not be bounded, but e and y are always bounded.

Remark 2.1. From Theorem 2.1, it follows that when k → ∞, (2.5) becomes

Re [(1 + qjω)G(jω)] ≥ β > 0, ∀ω ≥ 0. (2.15)

Remark 2.2. For ψ ∈ sector [k1, k2], the use of a loop transformation

ψ̃(e) = ψ(e)− k1e, G̃(s) =
G(s)

1 + k1G(s)
, (2.16)

yields ψ̃ ∈ sector [0, k2 − k1]. Hence, inequality (2.5) becomes

Re
[
(1 + qjω) G̃(jω)

]
+

1

k2 − k1
> 0, ∀ω ≥ 0. (2.17)

Remark 2.3. It is noted that Theorem 2.1 requires g ∈ A. However, it is also applicable for

the case of systems which have one pole at the origin. In this case, all the assumptions are the

same as those in Theorem 2.1 except that the nonlinearity ψ ∈ sector [ε, k+ ε] for a sufficiently

small ε > 0 and that g can be decomposed as

g(t) = c+ g1(t), t ≥ 0, (2.18)

where c > 0, g1 ∈ A and ġ1 ∈ A.
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2.2.2 Boundedness of output with respect to P∞

When the system inputs are persistent, the boundedness of the system outputs can be ensured by

the following theorem, in which an additional assumption on g is required. Note that Bergen [32]

considered a similar problem for rational systems with only input f1 ∈ P∞.

Theorem 2.2. Let Assumptions 2.1 and 2.2 be satisfied. Suppose that f1, f2 ∈ P∞ and that

g, ġ ∈ A. The outputs e, u and y are bounded for any ψ ∈ sector [0, k] if there exist q ∈ R,

β ∈ R and α > 0 such that (2.5) is satisfied and∫ ∞

0
e2αtg2(t)dt < ∞. (2.19)

Proof. Consider the equivalent closed-loop system shown in Figure 2.3, where r is defined

by (2.6) and f1, f2 ∈ P∞. It is easy to show that r ∈ P∞, and hence f ∈ P∞. The rest of the

proof readily follows the technique used in [32] and, for the sake of completeness, the outline is

given as follows.

According to [31, 32], Theorem 2.2 only needs to be proved for the nonlinearity ψ in the

reduced sector [ε, k − ε] where ε > 0 is arbitrarily small. Also, without loss of generality, we

can assume that q ≥ 0 (see Lemma A.2 in Appendix A).

Note that

e(t) = f(t)−
∫ t

0
eα(t−τ)g(t− τ)e−α(t−τ)us(τ)dτ . (2.20)

Using the triangle inequality and Cauchy-Schwarz inequality (a special case of Hölder inequal-

ity) yields

|e(t)| ≤ |f(t)|+
[∫ t

0
e2αxg2(x)dx

]1/2
e−αt

[∫ t

0
e2ατu2s(τ)dτ

]1/2
. (2.21)

By Lemma A.5 (see Appendix A), it follows that if all the conditions of Theorem 2.2 are satis-

fied, then the following inequality holds for sufficiently small α > 0

∫ t

0
e2ατu2s(τ)dτ ≤

∫ t

0

e2ατ

β2

[
f(τ) + qḟ(τ)

]2
dτ +

2q

β

∫ e(0)

0
ψ(e)de, ∀t ≥ 0. (2.22)

From (2.21) and (2.22), we arrive at the following inequality

|e(t)| ≤ |f(t)|+
[∫ t

0
e2αxg2(x)dx

]1/2 {
1

β2

∫ t

0
e−2α(t−τ)

[
f(τ) + qḟ(τ)

]2
dτ

+
2q

β
e−2αt

∫ e(0)

0
ψ(e)de

}1/2

.

(2.23)

According to the conditions of Theorem 2.2, it is easy to show that the right-hand side of inequal-

ity (2.23) is bounded for all t ≥ 0. It follows immediately that e is bounded. As a consequence,

u, us and y are also bounded.



12

Obviously, the class of G(s) in Theorem 2.2 is a subset of that in Theorem 2.1. One can

see that if g decays to zero exponentially, then condition (2.19) is always satisfied. Therefore,

Theorem 2.2 is applicable to an important subclass of convolution systems (comprising, for

example, rational systems, retarded delay differential systems and feedback systems with a heat

equation).

Note, in passing, that condition (2.19) arises as a consequence of using the exponential

weighting technique (see, for example, [28, 32]) in proving Theorem 2.2.

It is also worth noting that Remarks 2.1 and 2.2 in the preceding subsection are also

valid in this case. An extension of Theorem 2.2 to the case that G(s) contains one integrator is

presented in Remark 2.4.

Remark 2.4. For the case G(s) has one pole at the origin, all the assumptions are the same as

those in Theorem 2.2 except that ψ ∈ sector [ε, k + ε] for a sufficiently small ε > 0 and

g(t) = c+ g1(t), t ≥ 0, (2.24)

where c > 0, g1, ġ1 ∈ A and there exists α > 0 such that∫ ∞

0
e2αtg21(t)dt < ∞. (2.25)

Furthermore, the condition f2 ∈ P∞ can be relaxed to f2 ∈ L∞ without having to change

the theorem’s results. In addition, it is shown [32] that for q = 0, the system is L∞ stable. That

is to say, the bounding conditions on the slopes of the inputs are not necessary. If this is the

case, then the nonlinear element may be time-varying as long as it satisfies the sector bound

condition (2.1).

2.3 Numerical Stabilization

This section develops a practical inequality for obtaining design parameters (which are usually

coefficients in controller transfer functions) such that the system responses are guaranteed to be

bounded with respect to the set P2 or P∞ and for any nonlinearity lying in a sector bound.

Theorems 2.1 and 2.2 provide sufficient conditions to ensure the boundedness of the

outputs of the closed-loop system in Figure 2.1. Both theorems share the same condition (2.5)

that can be tested graphically based on the analysis of the Popov plot of G(jω), which is the

plot of ωIm [G(jω)] versus Re [G(jω)]. Since β > 0 can be arbitrarily small, inequality (2.5)

is equivalent to the following: the Popov plot lies to the right and is bounded away from the

straight line that has a slope 1/q and passes through the point K � (−1/k, 0). This line is

called the Popov line. See Figure 2.4.

Define Ω as the convex hull of the Popov plot (that is, the minimal convex set containing

the plot). Then, the relation between the Popov plot and its convex hull is stated in the following

proposition.
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0

0

Re

ω
Im

 

 

Convex hull of Popov plotPopov line

Popov plot

Figure 2.4: The Popov plot lying to the right of the Popov line.

Proposition 2.1. The Popov plot lies to the right of the Popov line if and only if so does the

convex hull Ω.

Proof. By virtue of Proposition B.1 (see Appendix B), the proof readily follows.

Let Km � (−1/km, 0) denote the point in Ω that is furthest to the left on the negative

real axis. If such a point does not exist, then Km is at the origin (that is, km = ∞). Then it

can be shown that Ω lies to the right and is bounded away from the Popov line if and only if the

point K lies to the left of the point Km. That is to say, for a given sector [0, k], condition (2.5)

is satisfied if and only if

k < km. (2.26)

Note that, for a given Popov plot {ReG(jω) + jωImG(jω) : ω ∈ [0,∞] }, the convex

hull Ω can be computed efficiently by using available methods. In this thesis, the method given

in [33] is used. Once Ω is obtained, the point Km can be determined easily. In this connection,

the algorithm for evaluating km is outlined in Table 2.1.

From the above, it is easy to see that the convex hull Ω, and hence the value km, depend

only on G(jω) and can be obtained numerically. It should be noted that when the Popov plot of

G(jω) has a complex shape (see Figure 2.4), it is easier to determine km from Ω than from the

Popov plot. Therefore, inequality (2.26) provides a computationally tractable test for checking

the satisfaction of Theorems 2.1 and 2.2.

Furthermore, condition (2.26) can be used to develop a useful inequality for stabilizing

the system in conjunction with the method of inequalities. To this end, let p ∈ R
n be a vector

of design parameters in G(s,p). Also let φ(p) � k − km(p) and replace (2.26) by

φ(p) ≤ −γ, (2.27)
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input: Popov plot

output: km

begin

compute Ω;

P � {(x, y) | (x, y) ∈ Ω, x < 0, y = 0};

if P = { },

km = ∞;

else

km = −1/ min
(x,y)∈P

x ;

end

end

Table 2.1: Algorithm for determining km using the convex hull of the Popov plot.

where γ is a small positive number. Clearly, a stability point is obtained by solving (2.27). Since

φ(p) can readily be computed in practice, it follows that inequality (2.27) provides a practical

condition for obtaining a stability point p. The condition is in keeping with the method of

inequalities [3] and is always soluble by numerical methods.

It should be noted that the convex hull Ω can be obtained numerically for ω ∈ [0,∞] if it

lies entirely in the finite plane, that is, the Popov plot is in the finite plane. This requirement can

be guaranteed by the following proposition.

Proposition 2.2. If the impulse response g of a transfer function G(s) can be decomposed as

g(t) � c+ g1(t), t ≥ 0, where g1, ġ1 ∈ A and |c| < ∞, then the Popov plot of G(s) lies in the

finite plane.

Proof. First, notice that

G(jω) =
c

jω
+G1(jω). (2.28)

Hence,
Re [G(jω)] = Re [G1(jω)]

Im [G(jω)] = Im [G1(jω)]−
c

ω
.

(2.29)

Second, it can be shown [28, 29] that if g1 ∈ A, then the function ω �→ G1(jω) is

continuous and bounded on R. That is to say,

|Re [G1(jω)]| < ∞, ∀ω ∈ R. (2.30)

Similarly, condition ġ1 ∈ A implies that the function ω �→ jωG1(jω) is bounded on R. Thus,

|Re {jω[G1(jω)]}| = |ωIm [G1(jω)]| < ∞, ∀ω ∈ R. (2.31)

It follows from (2.29), (2.30) and (2.31) that Re [G(jω)] and ωIm [G(jω)] are bounded on R.

This completes the proof.
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Proposition 2.2 is stated and proved for cases where G(s) may have one pole at the origin.

Therefore, it is applicable to the class of G(s) in Theorems 2.1, 2.2 and Remarks 2.3, 2.4.

2.4 Numerical Example

2.4.1 Stability Conditions of Systems with Input Nonlinearity

The aim of this subsection is to demonstrate that the stability results for Lur’e systems developed

in Section 2.2 can easily be applied to systems with a nonlinearity at the input channel of the

plant.

Consider the system shown in Figure 2.5, where Gp(s) and Gc(s,p) are the transfer func-

tions of the plant and the controller with a design parameter p ∈ R
n, respectively. Clearly,

this system can be transformed into the form of Lur’e system shown in Figure 2.1, where

G(s,p) � Gc(s,p)Gp(s). Let gc, gp and g denote the impulse responses of Gp(s), Gc(s)

and G(s), respectively.

+
+_

+
Gp(s)Gc(s,p) ψ(·)

f1

f2

e usu y

Figure 2.5: A feedback control system with an input nonlinearity and with two inputs.

Proposition 2.3. Consider the system in Figure 2.5. If inequality (2.27) holds and if gc, gp, ġ ∈
A, then the system responses e, u, us and y are bounded with respect to P2 for any ψ ∈
sector [0, k]. In addition, if condition (2.19) is also satisfied, then the system responses are

bounded with respect to P∞ and P2.

Proof. By straightforward manipulations, the proof readily follows from Theorems 2.1 and 2.2.

In case the composite transfer function G(s) has an integrator, by using appropriate loop

transformations, it can be shown that the system responses are always bounded. For details on

this, see Appendix C.

2.4.2 Stabilization of a Heat-Conduction Process

In order to illustrate that the stability conditions in Theorem 2.1 and 2.2 are applicable to a

wide range of linear time-invariant subsystems, consider a heat-conduction process in a metallic

rod; see Figure 2.6. The rod has length L, cross-sectional area A, and is made of material with

density ρ, heat capacity C and thermal conductivity σ.
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u(t)

x

θ(L, t)

0 L

Figure 2.6: The heating metallic rod.

The control signal u(t) is the heat flow injected at x = 0. The output y(t) = θ(L, t) is

the temperature measured at x = L. It is shown [34] that with appropriate boundary conditions,

the transfer function of the process is nonrational and given by

Gp(s) =
a√

λs sinh(
√
λs)

, (2.32)

where a � 1/(σA) and λ � Cρ/σ. Suppose that with a suitable setting, we have

Gp(s) =
20√

s sinh(
√
s)
. (2.33)

It is known (see, for example, [35]) that the transfer function Gp(s) has one pole at the origin

and the others on the negative real axis. The impulse response gp is given by

gp(t) = 20 + 40
∞∑
n=1

(−1)ne−n2π2t, t > 0. (2.34)

For the case Gc(s) = 1, the impulse response gp satisfies Remarks 2.3 and 2.4, and there-

fore both Theorems 2.1 and 2.2 are applicable. The Popov test gives km = 0.8899, ensuring

that the responses e, u, us and y are bounded for any ψ ∈ sector (0, km).

Now suppose that we wish to design a controller Gc(s,p) so that the outputs of the system

are bounded with respect to P2, or P∞, for any nonlinearity lying in a wider sector bound, for

example ψ ∈ sector (0, 2]. To this end, the structure of the controller is chosen as

Gc(s,p) =
s+ p1
s+ p2

, (2.35)

where p = [p1, p2]
T is the design parameter. Note that if p2 > 0, then the impulse response of

G(s) satisfies Remarks 2.3 and 2.4.

In this thesis, inequality (2.27) is solved by using the MBP algorithm [3]. From a starting

point p0 = [1, 1]T , a stability point p = [0.35, 13.10]T is located within 10 iterations for which

φ(p) = −0.5553 (the corresponding km = 2.5553). The Popov plots of Gp(s) and G(s) are

displayed in Figure 2.7.

2.5 Conclusions and Discussion

This chapter has considered input-output stability properties of Lur’e systems, in which the

linear subsystem is allowed to be a nonrational transfer function belonging to a subclass of A.
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Figure 2.7: The Popov plots of Gp(s) and G(s).

It is shown that if the inputs have either bounded two norms, or bounded infinity norms, on

both their magnitude and slope, then the well-known Popov criterion ensures the boundedness

of the outputs for any nonlinearity lying in a given sector bound. Based on the obtained results,

this chapter develops a practical condition for obtaining stability points that is readily soluble

by numerical methods. The merit of the contribution has been demonstrated by the numerical

example, where the plant is governed by a heat-conduction equation.

In control systems design using Zakian’s framework, the problem of finding stability

points arises in the following way. A chief design objective is to ensure that the output v always

stays within a desired bound during operation for any input f ∈ P , that is to say,

v̂ ≤ ε, v̂ � sup
f∈P

sup
t≥0

|v(f, t)| , (2.36)

where ε > 0 is given. In searching for a solution in the space R
n, it is necessary that a search

algorithm should start from a stability point, that is, a point p for which

v̂(p) < ∞. (2.37)

It is important to note [2, 36] that in general, inequality (2.37) cannot be solved by numerical

methods using only the performance function v̂. Therefore, it is necessary to replace (2.37) by

a practical (either equivalent or sufficient) condition of the form

φ(p) ≤ C, (2.38)

where φ(p) is always finite and can be computed in practice, and C is a specified bound (see,

for example, inequality (2.27)). Accordingly, condition (2.38) provides a useful inequality for

obtaining stability points by numerical methods. For further discussion, see [36] and [2].
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In connection with the results obtained in this chapter for determining stability points,

the design problem for Lur’e systems based on the criterion of the form (2.36) is soluble by

numerical methods if the peak output v̂ can be computed in practice.



CHAPTER III

DESIGN OF FEEDBACK SYSTEMS WITH INPUT

NONLINEARITY

This chapter develops a practical method for designing a feedback control system comprising a

static memoryless nonlinearity and linear time-invariant convolution subsystems so as to ensure

that the error function and the controller output stay within prescribed bounds for all time and

for all inputs having bounded magnitude and bounded slope. Since the original design criteria

are computationally intractable, we derive practical sufficient conditions for ensuring them. The

conditions provide surrogate design criteria that are in keeping with the method of inequalities.

Essentially, the nonlinearity is replaced with a fixed gain and an equivalent disturbance; thus, the

nominal system used during the design process becomes linear and the associated performance

measures are readily obtainable by known methods. A design example of a hydraulic force

control system is carried out to demonstrate the usefulness of the method.

3.1 Introduction

This chapter considers the design of a feedback control system shown in Figure 3.1, where ψ(·)
is a continuous, time-invariant and memoryless nonlinear function, Gp(s) and Gc(s,p) are the

transfer functions of the plant and the controller with the design parameter p ∈ R
n, respectively.

The system is assumed to be at rest for t ≤ 0. The input f is known only to the extent that it

belongs to a possible set P described by

P �
{
f ∈ L∞ | ‖f‖∞ ≤ M, ˙‖f‖∞ ≤ D

}
, (3.1)

where the bounds M and D are given.

_

+f e u us y
Gp(s)ψ(·)Gc(s,p)

Figure 3.1: A feedback control system with an input nonlinearity.

The design problem considered in the chapter is to determine a controller transfer function

Gc(s,p) such that design objectives (1.7) are satisfied, that is,

ê ≤ Emax, ê � sup
f∈P

‖e‖∞,

û ≤ Umax, û � sup
f∈P

‖u‖∞,
(3.2)
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where Emax and Umax are the given bounds. Recall that ê and û are the peak values of e and

u with respect to the possible set P , respectively. Evidently, once ê and û can be computed

in practice, inequalities (3.2) become useful design criteria that can be solved by numerical

methods.

So far, the problem of computing ê and û, and hence that of solving the design crite-

ria (3.2), have been investigated only for cases of linear time-invariant systems (see, for exam-

ple, [6, 13, 14, 17] and also the references therein). In general, computing the peaks ê and û

for general nonlinear systems are extremely difficult, since the optimization problems defined

in (3.2) are non-convex and infinite-dimensional.

The purpose of this chapter is to develop a practical method for designing the con-

troller Gc(s) satisfying the design criteria (3.2) for Gp(s) representing a lumped- or distributed-

parameter system. To this end, we derive sufficient conditions of the form

ẽ ≤ Emax and ũ ≤ Umax (3.3)

to ensure the satisfaction of (3.2), where ẽ and ũ are readily computable upper bounds of ê and

û. As a consequence, inequalities (3.3) are more tractable and suitable for solution by numerical

methods for a wide range of Gp(s).

The key ideas are as follows. First, by the decomposition technique used in [24], the

nonlinearity ψ is replaced by a constant gain and an equivalent disturbance, thus resulting in a

linear system subject to two inputs. Second, by using Schauder’s theorem (see, for example,

[37]), sufficient conditions for (3.2) are derived from the resultant linear system and then are

used to develop practical design inequalities to achieve (3.2).

The organization of this chapter is as follows. Section 3.2 uses the decomposition tech-

nique to derive sufficient conditions for ensuring the satisfaction of the original design crite-

ria (3.2); the main result is stated in Theorem 3.2. Section 3.3 derives sufficient conditions

for (3.2) that are in the spirit of the Method of Inequalities. The stability condition to ensure the

boundedness of the system outputs is given in Section 3.4. The developed method is illustrated

with a design example of a hydraulic force control system in Section 3.5. Finally, conclusions

and discussion are given in Section 3.6.

3.2 Main Results

This section derives the main results of the chapter by making use of the technique due to [24],

in which the nonlinearity is replaced with a constant gain and an equivalent disturbance. The

result is presented in Theorem 3.2, providing sufficient conditions for the satisfaction of the

original design criteria (3.2). The conditions will be used in Section 3.3 to develop practical

design inequalities for determining a controller Gc(s) satisfying the design criteria (3.2).

Assumption 3.1. For every input f ∈ P , there are unique e : R+ → R and u : R+ → R that
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satisfy the following equations

u = gc ∗ e
e = f − us ∗ gp = f − ψ(u) ∗ gp,

(3.4)

where gp and gc are the impulse responses of the plant and the controller, and gc ∗ e is the

convolution of gc and e, given by

gc ∗ e (t) �
∫ t

0
gc(t− τ)e(τ)dτ, t ≥ 0. (3.5)

Next, the decomposition technique is introduced. For a fixed value K ∈ R, define a

function φ : R → R such that

φ(x) � ψ(x)−Kx, x ∈ R. (3.6)

Consequently, the nonlinearity can be represented as in Figure 3.2.

+

+

ψ(u)u

φ(·) φ(u)

K

Figure 3.2: Decomposition of the nonlinearity ψ.

As a result, the nonlinear system (3.4) is equivalent to the system shown in Figure 3.3.

Note that if u ∈ L∞, then so does φ(u).

+

_

+

+

f e u us y

φ(·)

Gp(s)Gc(s) K

Figure 3.3: Equivalent system for the system (3.4).

Oldak, Baril and Gutman [24] used the decomposition (3.6) in connection with the design

by quantitative feedback theory (see, for example, [37]) for feedback systems containing hard

nonlinearities found in practice such as saturation, dead-zone, friction, etc. It is important to note

that the design formulation considered here is very different from that in [24]. For example, the

design objectives are different.

Now consider the auxiliary system shown in Figure 3.4, where f ∈ P and w ∈ U , defined

by

U � {x ∈ L∞ | ‖x‖∞ ≤ Umax} . (3.7)
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The system in Figure 3.4 is described by

u′ = gc ∗ e′

e′ = f − gp ∗ [Ku′ + φ(w)] .
(3.8)

+

_

+

+

f e′ u′ u′s y′

w φ(w)
φ(·)

Gp(s)Gc(s) K

Figure 3.4: Auxiliary nonlinear system.

Let h be the impulse response of the transfer function

H(s) � Gp(s)Gc(s)

1 +KGp(s)Gc(s)
. (3.9)

Assumption 3.2. The impulse response h satisfies conditions that h ∈ A and ḣ ∈ A.

It should be noted that by virtue of the convolution representation, the plant transfer

function Gp(s) in (3.4) can represent a lumped- or distributed-parameter system as long as h

satisfies Assumption 3.2. For example, the plant can be a system with time-delays or a heat

conduction process.

In the following, the main result is stated and can be proved by using the technique due

to [27], which is essentially an application of Schauder’s theorem (see, for example, [26, 27]).

Theorem 3.1 (Schauder Theorem [26]). Let Ω be a closed, bounded and convex subset in a

Banach space1. Every compact mapping Φ : Ω → Ω has a fixed point.

For a function x : R+ → R and for a fixed T > 0, define xT as follows

xT (t) =

{
x(t), 0 ≤ t ≤ T

0, t > T.

Also, for a given X ⊂ L∞, define

XT = {xT | x ∈ X} .

Theorem 3.2. Let Assumptions 3.1 and 3.2 be satisfied. The design criteria (3.2) for the system

in Figure 3.1 are satisfied if the following conditions for the system in Figure 3.4 hold:

ê′ ≤ Emax, ê′ � sup
f∈P, w∈U

‖e′‖∞

û′ ≤ Umax, û′ � sup
f∈P, w∈U

‖u′‖∞.
(3.10)

1which is defined as a complete normed vector space (see, for example, [38, 39]).
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Proof. Consider the system in Figure 3.4 with f ∈ P , w ∈ U . From (3.8), we have

u′ = h1 ∗ φ(w) + h2 ∗ f, (3.11)

where h1 and h2 are the impulse responses of H1(s) and H2(s), respectively, given by

H1(s) = − Gp(s)Gc(s)

1 +KGp(s)Gc(s)
, H2(s) =

Gc(s)

1 +KGp(s)Gc(s)
. (3.12)

Now, define

E � {x ∈ L∞ | ‖x‖∞ ≤ Emax} . (3.13)

Let (3.10) hold. Consequently, it follows that e′ ∈ E and u′ ∈ U for all f ∈ P and all w ∈ U .

Accordingly, for any T ∈ [0, ∞) and for each f ∈ PT , equation (3.11) defines an operator

Φ : UT → UT such that

u′T = Φ(wT ). (3.14)

Note that UT is a bounded, closed and convex subset of the Banach space LT for any T ∈
[0, ∞).

Furthermore, by abuse of notation, φ(x) can be seen from (3.6) as a function generated

by a mapping φ : L∞ → L∞ such that

φ(x) = ψ(x)−Kx, x ∈ L∞. (3.15)

Evidently, φ is continuous on L∞ because of the continuity of ψ. Consequently, by virtue of

Lemma D.1, it can be shown that if h1, ḣ1 ∈ A, then the operator Φ is compact over UT . In

view of Schauder theorem, it follows that for any T ∈ [0, ∞) and for each f ∈ PT , there exists

u† ∈ UT such that

u† = Φ(u†). (3.16)

Let e† ∈ ET denote the associated error of the system (3.8). Hence,

u† = gc∗e†,

e† = f − gp ∗
[
Ku† + φ(u†)

]
.

(3.17)

Or equivalently,
u† = gc∗e†,
e† = f − gp ∗ ψ(u†).

(3.18)

It readily follows from Assumption 3.1 that e† and u† are also the error and the controller output

of the system (3.4) for any T > 0. As a result, conditions e† ∈ ET and u† ∈ UT imply that (3.2)

is satisfied, and therefore the proof is completed.

Obviously, ê, ê′, û and û, depend on the design parameter p. Theorem 3.2 states that if

there exists a point p satisfying

ê′ ≤ Emax and û′ ≤ Umax,
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then

ê ≤ Emax and û ≤ Umax.

In other words, the design problem of the original nonlinear system can now be replaced by that

of the auxiliary system (3.8). This is the key result of this section, providing an important step

in deriving more tractable design inequalities.

It is important to note that the system (3.8) with two inputs f and φ(w) is linear. Now

define

Dw � {d ∈ L∞ | d = φ(w), w ∈ U} (3.19)

and consider the system in Figure 3.5 where f ∈ P and d ∈ Dw.

_

+ +

+

f e′ u′ u′s y′

d

Gp(s)Gc(s) K

Figure 3.5: Nominal linear system of the system (3.4).

Obviously, this system is equivalent to the system (3.8). Consequently, the peak values ê′

and û′ can be computed as follows

ê′ = sup
f∈P, d∈Dw

‖e′‖∞

û′ = sup
f∈P, d∈Dw

‖u′‖∞
. (3.20)

Since every d ∈ Dw depends on w, it follows that the set Dw cannot be readily employed in the

design. Note, however, that d is always bounded for any w ∈ U , or more specifically,

sup
w∈U

‖d(w)‖∞ ≤ N, with N � sup
|x|≤Umax

|ψ(x)−Kx|. (3.21)

Thus, by defining

D � {d ∈ L∞ | ‖d‖∞ ≤ N} , (3.22)

it is readily follows that Dw ⊆ D, and hence

ê′ ≤ ẽ, ẽ � sup
f∈P, d∈D

‖e′‖∞

û′ ≤ ũ, ũ � sup
f∈P, d∈D

‖u′‖∞
. (3.23)

As an immediate consequence, the following result is obvious.

Theorem 3.3. Let Assumptions 3.1 and 3.2 be satisfied. The design criteria (3.2) are satisfied if

ẽ ≤ Emax and ũ ≤ Umax. (3.24)

Proof. The proof readily follows from the above discussion.
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Notice that in contrast to Dw, any input in D does not depend on w. Therefore, ẽ and

ũ can be computed numerically by using available methods developed for linear systems (see

Section 3.3). Hence, (3.24) become computationally tractable design inequalities.

3.3 Surrogate Design Criteria

Based on the results in Section 3.2, the aim of this section is to elaborate the computation of the

performance measures ẽ and ũ, thereby providing design criteria in the form of inequalities that

are suitable for solution by numerical methods [36].

By the linearity of the system in Figure 3.5, it follows immediately that

ẽ = φef + φed

ũ = φuf + φud,
(3.25)

where
φef � sup

f∈P, d=0
‖e′‖∞, φed � sup

f=0, d∈D
‖e′‖∞,

φuf � sup
f∈P, d=0

‖u′‖∞, φud � sup
f=0, d∈D

‖u′‖∞.
(3.26)

From a well-known result in linear systems theory (see, for example, [28]), the numbers φed and

φud are expressed as

φed = N

∫ ∞

0
|e′d(δ, t)|dt, φud = N

∫ ∞

0
|u′d(δ, t)|dt, (3.27)

where e′d(δ, t) and u′d(δ, t) are the values of e′ and u′ at time t, respectively, with f being zero

and d being the Dirac delta function. From (3.27), it is clear that φed and φud can be obtained by

standard numerical algorithms. Moreover, the numbers φef and φuf can be computed by using

known methods (see, for example, [13, 14, 40]). In this work, the approach developed in [14] is

employed. Therefore, the values ẽ and ũ can readily be obtained in practice.

From the above, define

φ1 � ẽ = φef +N

∫ ∞

0
|e′d(δ, t)|dt,

φ2 � ũ = φuf +N

∫ ∞

0
|u′d(δ, t)|dt.

(3.28)

Evidently, the associated performance measures φef , φed, φuf and φud depend on the gain K,

and thus so do φ1 and φ2. As a result, to achieve a better design, K can as well be allowed to be

an additional design parameter. To this end, the design problem is now to determine a controller

transfer function Gc(s,p) such that the following inequalities are satisfied

φ1(p̃) ≤ Emax

φ2(p̃) ≤ Umax,
(3.29)

where

p̃ � [pT , K]T . (3.30)

From the above discussion, the main following providing a useful computational tool is stated.
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Theorem 3.4. Let Assumptions 3.1, and 3.2 be satisfied. If inequalities (3.29) hold, then the

design criteria (3.2) are satisfied.

Proof. By Theorems 3.3, the proof follows readily from the above.

Notice that φ1(p̃) and φ2(p̃) are readily computable. Accordingly, inequalities (3.29)

are practical sufficient conditions that are used for determining a controller Gc(s,p) satisfying

the design criteria (3.2) by numerical methods. In addition, (3.29) are appropriately called the

surrogate design criteria.

3.4 Stability Condition

Following Zakian’s framework [2, 3, 18, 36], it is readily appreciated that in searching for a

design solution of (3.29) in R
n, a numerical search algorithm needs to start from a stability

point of the nominal system, that is, a point p̃ for which

φ1(p̃) < ∞ and φ2(p̃) < ∞. (3.31)

It should be noted that for cases of linear systems, the problem of finding such a point has been

investigated extensively (see, for example, [2, 11, 36, 41] and the references therein).

Moreover, it follows from Theorem 3.4 that the design solution of the nonlinear system

can be found if the design criteria for the nominal (linear) system (3.29) are satisfied. Recall

that the inequalities (3.29) are sufficient for (3.2). If (3.29) are not satisfied, then no conclusion

can be drawn about either the existence of the solution of (3.2) or the stability of the original

nonlinear systems. In this connection, either when inequalities (3.29) have no solution or when

the search algorithm cannot locate a design solution, the stability of the nominal (linear) system

(ẽ < ∞ and ũ < ∞) is not enough to ensure the stability of the original nonlinear system. (It

should be noted that finding a controller satisfying (3.29) is in general a non-convex problem.

Consequently, the algorithm might be caught in a computational trap in the space of design

parameters.) In such a case, it is desirable for designers to stabilize the original nonlinear system,

in other words, to obtain a stability point of this system. Recall that a stability point of the

nonlinear system is a point of design parameters p satisfying (1.8), that is,

ê(p) < ∞ and û(p) < ∞. (3.32)

For the nonlinear system considered in the chapter, the problem can be solved by using the

results developed in Chapter 2 where the nonlinearity is a sector-bounded function.

Note, in addition, that the points p satisfying that ê(p) = ∞ or û(p) = ∞ form a

connected region. Obviously, this region does not contain any solution of (3.2), and hence

that of (3.29). As a result, this region should be excluded from the search-space of design

parameters. From the computational point of view, this helps to narrow down the search-space,

and thus facilitate the progress of the search algorithm. Therefore, from the above discussion, it
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follows that in finding a design solution of (3.2) by solving (3.29), a numerical algorithm needs

to perform the search in the space of design parameters p̃ satisfying both (3.31) and (3.32).

Let g denote the impulse response of the composite transfer function

G(s) � Gc(s,p)Gp(s). (3.33)

Assumption 3.3. The impulse responses gp, gc and g satisfies conditions that gp, gc, ġ ∈ A
and there exists α > 0 such that ∫ ∞

0
e2αtg2(t)dt < ∞. (3.34)

The boundedness of the responses e and u can be guaranteed by using the following

theorem.

Theorem 3.5. Consider the system in Figure 3.1 and let Assumption (3.3) hold. The responses

e and u are bounded for any f ∈ P and for any ψ ∈ sector [0, k0] if there exist q ∈ R and

β ∈ R such that

Re [(1 + qjω)G (jω)] +
1

k0
≥ β > 0, ∀ω ≥ 0. (3.35)

Proof. By noting that P ⊂ P∞, the proof immediately follows from Proposition 2.3 in Chap-

ter 2.

Also, from the stability results in Chapter 2, it should be noted that condition (3.35) is

satisfied if the following holds:

φ0(p) ≤ −γ, φ0(p) � k0 − kmax(p), (3.36)

where γ is a small positive number and kmax is the supremal value of the allowable sector bound

obtained from the Popov test. Clearly, φ0(p) can readily be computed in practice and (3.36) is

in accordance with the method of inequalities [3]. As a consequence, condition (3.36) provides

a useful inequality for obtaining stability points by numerical methods.

It should be noted further that the satisfaction of Popov criterion (3.35) implies that the

Nyquist diagram of G(s) does not encircle point (−1/k0, 0). See [30] for the detail on this. As

a consequence, the Nyquist diagram of G(s) also does not encircle any point (−1/k, 0) with

k ∈ [0, kmax) since kmax is the supremal value of the allowable sector bound. Thus, from the

theory of the Nyquist criterion [42–44] (see also [28]), it can be shown that the linear system

shown in Figure 3.5 is BIBO stable for any K ∈ [0, kmax). Accordingly, the following result is

obvious.

Corollary 3.1. If Assumption 3.3 and the Popov condition are satisfied by G(s), then the system

in Figure 3.5 is BIBO stable for any K ∈ [0, kmax).

Corollary 3.1 reveals that, during the search, if 0 ≤ K < kmax, then a stability point p

of the nonlinear system together with the value K form a stability point of the nominal linear

system.



28

3.5 Controller Design for a Hydraulic System

In this section, a nonlinear hydraulic system [45] (see also [13]) is used to demonstrate the

usefulness of the developed method where the plant is a hydraulic actuator equipped with a

low-cost closed-center four-way proportional valve. The plant transfer function Gp(s) is given

by

Gp(s) =
1.1411× 1010

(s+ 0.0248)(s+ 28.57)(s2 + 35.14s+ 25190)
. (3.37)

The nonlinearity ψ is the dead-zone function shown in Figure 3.6, where U0 = 0.1, U1 = 0.08

and z0 = 0.02.

0

ψ

u

z0

−z0

U0

U1

−U0

Figure 3.6: The dead-zone characteristic in the hydraulic actuator.

The design objective is to keep the tracking error and the control voltage within ±65 N

and ±0.1 V, respectively, for all time and for any reference force f belonging to a possible set

P where

M = 1000 N and D = 1000 N/s. (3.38)

Consequently, the design criteria are expressed as

ê ≤ 65 N and û ≤ 0.1 V. (3.39)

It may be noted, in passing, that the error bound in (3.39) is smaller than that used in [13].

3.5.1 Linear System Design

Suppose that the dead-zone characteristic is neglected and replaced with a constant gain K = 1.

As a result, the peak outputs ê and û can be computed by using numerical algorithms developed

for linear time-invariant systems.

The structure of the controller Gc is chosen as

Gc(s,p) =
p4s

2 + p5s+ p6
(s+ p1)(s2 + p2s+ p3)

, (3.40)

where p = [p1, p2, p3, p4, p5, p6]
T ∈ R

6 denotes the vector of design parameters. It should

be noted that, of all the possible controllers satisfying the design criteria, the one with simple

structure is usually preferred. That is to say, designers should start searching a design solution
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from a simple controller first. After many attempts with controllers of different orders, the

structure in (3.40) is arrived at.

Throughout this work, inequalities (3.39) are solved by using the MBP algorithm [3].

Alternatively, other algorithms for solving a set of inequalities may be used (see, for example, [2]

and the references cited therein). After a number of iterations, a design solution p is located,

where

p = [4.0622× 10−4, 5.2633× 102, 4.3564× 103, 0.8252, 4.8476, 0.3817]T (3.41)

and the corresponding performance measures are

ê(p) = 64.9975 N and û(p) = 0.0961 V. (3.42)

To verify the performance of the obtained controller, a test input f̂ is generated such that

its magnitude and slope are bounded by 1000 N and 1000 N/s, respectively. The waveform of f̂

and the responses of the nonlinear system are given in Figures 3.7 and 3.8, respectively.
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Figure 3.7: A test input f̂ ∈ P characterized by (3.38).

The simulation results show that the performance of the system using the controller ob-

tained by neglecting the nonlinearity does not satisfy the design criteria (3.39). Specifically, in

response to the input f̂ , the control signal u slightly violates the bound Umax and the maximal

magnitude of e is 79.31 N, which exceeds the bound Emax by 22.02%.
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Figure 3.8: Responses of the nonlinear system to the input f̂ using design solution (3.41).

3.5.2 Nonlinear System Design

Now the dead-zone element is taken into account in the design. A controller is obtained by

solving the design criteria given by

φ0(p̃) ≤ −10−6,
φ1(p̃) ≤ 65 N,
φ2(p̃) ≤ 0.1 V.

(3.43)

The nonlinearity ψ ∈ sector [0, 1] and is decomposed using (3.6). Accordingly, the rela-

tion between disturbance φ and control input u is given in Figure 3.9 and the bound

N = max {|Kz0|, |KU0 + z0 − U0|} .

The structure of the controller Gc(s) is chosen as in (3.40) where p̃ = [pT ,K]T ∈ R
7.

By using the MBP algorithm, a design solution

p̃ = [0.0110, 2.6954× 102, 1.7476× 104, 0.9097, 23.8560, 0.7325, 0.9680]T (3.44)

is found and the corresponding performance measures are

φ0(p̃) = −2.75,
φ1(p̃) = 62.67 N,
φ2(p̃) = 0.099 V.

(3.45)
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Figure 3.9: The relation between φ and u.

To verify the design, the simulation is performed with the test input f̂ . The responses of

the closed-loop system are given in Figure 3.10. It is shown that the simulation results agree

well with the results obtained by the design. Specifically, the maximal magnitudes of e and u in

response to f̂ are 61.82 N and 0.0846 V, respectively. Clearly, (3.43) and (3.39) are satisfied.
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Figure 3.10: Responses of the nonlinear system to the input f̂ using design solution (3.44).

From this example, it is seen that the design obtained by neglecting the nonlinearity ψ

can fail to satisfy the design objective (3.2). This is critical in cases where any violation of (3.2)

or (3.2) is unacceptable. Hence, the value of the method developed here is evident.
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3.6 Conclusions and Discussion

This chapter has developed a practical method for designing a controller for the system (3.4)

so as to ensure that the error e and the controller output u stay within the specified ranges

±Emax and ±Umax for all time and for all possible inputs f ∈ P . In connection with Zakian’s

framework, the method can be seen as an adjunct to the principle of matching [1, 2].

Theorem 3.2 provides an essential basis for developing the surrogate design criteria (3.29),

which are used to obtain a solution of the original design problem (3.2) by numerical methods.

Because the system (3.4) uses the convolution representation, the developed method is applica-

ble to both lumped- and distributed-parameter systems as long as Assumption 3.2 is satisfied.

The decomposition (3.6) is simple and useful. The nonlinearity is replaced with a fixed

gain and an equivalent bounded disturbance. As a result, the nominal system used during the

design becomes linear time-invariant so that the associated performance measures (which are

φef , φed, φuf and φud) are readily obtainable by known methods.

It is interesting to note further that the proposed method is also applicable to the case

in which the set P is characterized by the bounds on the two-norms of inputs and their slope.

See Chapter 6 for further details on this. Moreover, in connection with the results in [14], the

method is also applicable to the case of the set P characterized by using more than two bounding

conditions in order to eliminate fictitious inputs (that is, inputs that cannot happen in practice)

and thus yields a better design.



CHAPTER IV

DESIGN OF FEEDBACK SYSTEMS WITH OUTPUT

NONLINEARITY

This chapter deals with the design of feedback control systems where the plant is linear time-

invariant and has a static memoryless nonlinearity in its output channel. The design problem is

to determine a controller ensuring that the error function and the controller output stay within

respective bounds for all time and for all inputs in a possible set P . To this end, we extend the

results developed in Chapter 3 in a straightforward manner, and demonstrate the usefulness of

the method by a design example in which the plant is infinite-dimensional.

4.1 Introduction

+

_

f e u v y
ψ(·)Gp(s)Gc(s,p)

Figure 4.1: A feedback control system with an output nonlinearity.

Consider a feedback control system with an output nonlinearity as shown in Figure 4.1,

where, as usual, ψ : R → R is a continuous, time-invariant and memoryless nonlinear function,

Gp(s) and Gc(s,p) are the transfer functions of the plant and the controller with the design

parameter p ∈ R
n, respectively.

The system is also assumed to be at rest for t ≤ 0. Furthermore, as in Chapter 3, the input

f is known only to the extent that it belongs to the possible set P described by (3.1), that is,

P �
{
f ∈ L∞ | ‖f‖∞ ≤ M, ˙‖f‖∞ ≤ D

}
. (4.1)

As mentioned previously, the design problem considered in the chapter is to determine a

controller transfer function Gc(s,p) such that the design objectives (1.7) are satisfied, that is

ê ≤ Emax

û ≤ Umax
(4.2)

where ê and û are the peak values of e and u defined in (1.7), and the bounds Emax and Umax

are given.

This chapter has two main objectives. First and foremost, by extending the results de-

veloped in previous chapters, we develop a practical method for designing the feedback system
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shown in Figure 4.1 so that the design criteria (4.2) are satisfied, where Gp(s) can represent

a lumped- or distributed-parameter system. To this end, we derive sufficient conditions of the

form
ẽ ≤ Emax

ũ ≤ Umax
(4.3)

for ensuring the satisfaction of (4.2), where ẽ and ũ are computable upper bounds of ê and

û, respectively. Accordingly, the design criteria (4.3) are suitable for solution by numerical

methods [36]. The key idea is to replace the nonlinearity with a constant gain and a bounded

disturbance. Sufficient conditions for the satisfaction of the original design criteria are derived

from a nominal linear system, and thus, provide surrogate design criteria that are more compu-

tationally tractable. Second, we demonstrate the usefulness of the method proposed by applying

it to the design of a feedback system in which the plant is governed by a heat equation with an

output nonlinearity.

The organization of this chapter is as follows. Section 4.2 derives sufficient conditions

for ensuring the satisfaction of the original design criteria (4.2), where the main theoretical

result is stated in Theorem 4.1. Practical sufficient conditions for (4.2) are then developed in

the form of inequalities that are in keeping with the method of inequalities [3]. Section 4.3

presents a stability condition which essentially guarantees the boundedness of the nonlinear

system outputs. The developed method is illustrated by a design example of a heat conduction

process in Section 4.4. Finally, conclusions and discussion are given in Section 4.5.

4.2 Main Results

This section derives the main theoretical result of the chapter by making use of the technique

due to [15, 24, 25], in which the nonlinearity is replaced with a constant gain and an equivalent

bounded disturbance. The principal result is introduced in Theorem 4.1, providing sufficient

conditions for the satisfaction of the design criteria (4.2). The conditions will be used subse-

quently to develop practical design inequalities that can be used for determining a controller

Gc(s) satisfying the original design criteria (4.2).

Assumption 4.1. For every input f ∈ P , there exist unique e : R+ → R, u : R+ → R and

v : R+ → R that satisfy
v = gp ∗ u
u = gc ∗ e
e = f − ψ(v)

(4.4)

where gp and gc are the impulse responses of Gp and Gc, respectively.

In the following, the decomposition technique used in Chapter 3 will be recapitulated.

For a given value K ∈ R, define a function φ : R → R such that

φ(x) � ψ(x)−Kx, x ∈ R. (4.5)
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ψ(v)v

φ(·)

K

Figure 4.2: Decomposition of the nonlinearity ψ.

It readily follows that the nonlinearity ψ can be represented as in Figure 4.2.

Now consider another system described in Figure 4.3, where f ∈ P and w ∈ V , defined

by

V � {w ∈ L∞ | ‖w‖∞ ≤ Vmax} (4.6)

with an appropriate bound Vmax.

+

_ +
+f e′ u′ v′ y′

w

Gp(s)Gc(s)

φ(·)

K

Figure 4.3: Auxiliary nonlinear system.

The system in Figure 4.3 is described by

v′ = gp ∗ u′

u′ = gc ∗ e′

e′ = f −Kv′ − φ(w)

(4.7)

where f ∈ P and w ∈ V .

In the following, we will show that the design objectives of the original nonlinear system

can be ensured if the system in Figure 4.3 satisfies certain conditions. The result is stated and

proved by using the technique in Chapter 3, which is essentially an application of the Schauder

fixed point theorem (see, for example, [26, 27]).

Assumption 4.2. The impulse response h of the transfer function

H(s) � Gp(s)Gc(s)

1 +KGp(s)Gc(s)
(4.8)

satisfies conditions that h, ḣ ∈ A.
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Theorem 4.1. Let Assumptions 4.1 and 4.2 be satisfied. If

ê′ ≤ Emax, ê′ � sup
f∈P, w∈U

‖e′‖∞

û′ ≤ Umax, û′ � sup
f∈P, w∈U

‖u′‖∞

v̂′ ≤ Vmax, v̂′ � sup
f∈P, w∈U

‖v′‖∞

. (4.9)

then the criteria (4.2) are satisfied.

Proof. The theorem can be proved by employing the method used in Chapter 3. The details of

the proof are given, for the sake of completeness, in the following.

Consider the system in Figure 4.3 with f ∈ P and w ∈ V . From (4.7), we have

v′ = h ∗ f − h ∗ φ(w), (4.10)

where h is the impulse responses of H(s) which satisfies Assumption 4.2.

Now, define
E � {x ∈ L∞ | ‖x‖∞ ≤ Emax} ,

U � {x ∈ L∞ | ‖x‖∞ ≤ Umax} .
(4.11)

Let (4.9) hold. Consequently, it follows that e′ ∈ E , u′ ∈ U and v′ ∈ V for all f ∈ P and all

w ∈ V . Thus, for any T ∈ [0, ∞) and for each f ∈ PT , equation (4.10) defines an operator

Φ : VT → VT such that

v′T = Φ(wT ). (4.12)

Note that VT is a bounded, closed and convex subset of the Banach space LT for any T ∈
[0, ∞).

Furthermore, it can be seen from (4.5) that φ is a continuous function on R. Consequently,

by virtue of Lemma D.1 (see Appendix D), it can be shown that if h, ḣ ∈ A, then the operator

Φ is compact over VT . In view of Schauder theorem, it follows that for any T ∈ [0, ∞) and for

each f ∈ PT , there exists v† ∈ VT such that

v† = Φ(v†). (4.13)

Let e† ∈ ET and u† ∈ UT denote the associated error function and controller output of the

system (4.7). Hence,
v† = gp∗u†

u† = gc∗e†

e† = f −Kv† − φ(v†).

(4.14)

Equivalently,
v† = gp∗u†

u† = gc∗e†

e† = f − ψ(v†).

(4.15)

It readily follows from Assumption 4.1 that e†, u† and v† are also the responses of system (4.4)

for any T > 0. As a result, conditions e† ∈ ET , u† ∈ UT and v† ∈ VT imply that the

criteria (4.2) are satisfied for any T , and therefore the proof is completed.
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Theorem 4.1 has a noteworthy consequence that the control problem of the nonlinear sys-

tem (4.4) can be replaced by that of the system (4.7). Specifically, it is shown that, provided

that the gain K and the bound Vmax are chosen, the satisfaction of (4.9) implies that of original

design criteria (4.2). This is the key result of this section, providing an important step in devel-

oping more tractable design inequalities. In the following, the derivation of such inequalities is

presented.

It is important to note that the system (4.7) with two inputs f and φ(w) is linear. Now

define

Dw � {d ∈ L∞ | d = φ(w), w ∈ V} (4.16)

and consider the system in Figure 4.4 where f ∈ P and d ∈ Dw.

+

_ +
+f e′ u′ v′ y′

d

Gp(s)Gc(s) K

Figure 4.4: Nominal linear system of nonlinear system (4.1).

Evidently, it follows from the definition in (4.16) that the systems in Figures 4.3 and 4.4

are equivalent. Thus, the peak values ê′ and û′ can be computed as follows

ê′ = sup
f∈P, d∈Dw

‖e′‖∞

û′ = sup
f∈P, d∈Dw

‖u′‖∞

v̂′ = sup
f∈P, d∈Dw

‖v′‖∞

. (4.17)

Apparently, the set Dw cannot be readily employed in the design since every d in Dw depends

on w. However, it should be noted that d is always bounded for any w ∈ V , or more specifically,

sup
w∈V

‖φ(w)‖∞ ≤ N, with N � sup
|x|≤Vmax

|ψ(x)−Kx|. (4.18)

Thus, by defining

D � {d ∈ L∞ | ‖d‖∞ ≤ N} , (4.19)

it is readily follows that Dw ⊆ D, and hence

ê′ ≤ ẽ, ẽ � sup
f∈P, d∈D

‖e′‖∞

û′ ≤ ũ, ũ � sup
f∈P, d∈D

‖u′‖∞

v̂′ ≤ ṽ, ṽ � sup
f∈P, d∈D

‖v′‖∞

. (4.20)

As an immediate consequence, we have the following result.
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Theorem 4.2. Let Assumptions 4.1 and 4.2 be satisfied. The design criteria (4.2) are satisfied if

ẽ ≤ Emax

ũ ≤ Umax

ṽ ≤ Vmax.

(4.21)

Proof. The proof readily follows from the above discussion.

Notice that in contrast to Dw, any input in D does not depend on w. Therefore, ẽ, ũ and

ṽ can be computed numerically by using available methods developed for linear systems. In

particular,

ẽ = φ1 � sup
f∈P, d=0

‖e′‖∞ +N

∫ ∞

0
|e′d(δ, t)|dt,

ũ = φ2 � sup
f∈P, d=0

‖u′‖∞ +N

∫ ∞

0
|u′d(δ, t)|dt,

ṽ = φ3 � sup
f∈P, d=0

‖v′‖∞ +N

∫ ∞

0
|v′d(δ, t)|dt,

(4.22)

where e′d(δ, t), u
′
d(δ, t) and v′d(δ, t) are the values of e′, u′ and v′ at time t, respectively, with

f = 0 and d = δ(t). See Section 3.3 for more details on the computations of φ1, φ2 and φ3.

Note further that the numbers φ1, φ2 and φ3 depend on the gain K. Thus, in order to

achieve a better design, K can be allowed to be an additional design parameter. To this end,

define the augmented design parameter vector p̃ as in (3.30), that is, p̃ � [pT , K]T . As a

consequence, (4.21) are equivalent to

φ1(p̃) ≤ Emax,
φ2(p̃) ≤ Umax,
φ3(p̃) ≤ Vmax.

(4.23)

Accordingly, (4.21), and hence (4.23) become computationally tractable design inequali-

ties.

4.3 Stability Condition

The necessity of the stability requirement in this chapter is as that discussed in Section 3.4 of

Chapter 3. In the following, only the stability condition is introduced.

Let g denote the impulse response of the composite transfer function

G(s) � Gc(s,p)Gp(s). (4.24)

Assumption 4.3. The impulse responses g0, gc and g satisfy conditions that g0, gc, ġ ∈ A and

there exists α > 0 such that
∫∞
0 e2αtg2(t)dt < ∞.

The boundedness of the responses e and u can be guaranteed by using the following

theorem.
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Theorem 4.3. Consider system (4.4) and let Assumption 4.3 hold. The responses e, u and v are

bounded for any f ∈ P and for any ψ ∈ sector [0, k0] if there exist q ∈ R and β ∈ R such that

Re [(1 + qjω)G (jω)] +
1

k0
≥ β > 0, ∀ω ≥ 0. (4.25)

Proof. By noting that P ⊂ P∞, the proof follows from Theorem 2.2.

Following the results in Chapter 2, the Popov condition (4.25) can be replaced by a more

tractable inequality

φ0(p) ≤ −γ, φ0(p) � k0 − kmax(p), (4.26)

where γ is a small positive number and kmax denotes the maximum value of the allowable sector

bound obtained from the Popov test.

By making use of appropriate loop transformations, it is easy to see that Theorem 4.3 is

also applicable to the case that G(s) has one pole at the origin. For details on this, see Chapter 2.

4.4 Numerical Example

This section considers a design of the heat-conduction process that was previously introduced

in Chapter 2. The transfer function of the plant given by

Gp(s) =
20√

s sinh
√
s
. (4.27)

Assume that the nonlinearity ψ is the output sensor and is described in Figure 4.5, where z0 =

0.2, k1 = 0.5 and k2 = 1. Obviously, ψ ∈ sector [k1, k2].

0

ψ

u

z0

−z0
k1

k2

Figure 4.5: The output nonlinearity ψ of the heat-conduction system.

Suppose that the control objective is to keep the responses e and u stay within ±Emax =

±0.3 and ±Umax = ±0.25 for all time and for all inputs in the set P characterized by

M = 1 and D = 0.5. (4.28)

Consequently, the criteria (4.2) become

ê ≤ 0.3 and û ≤ 0.25. (4.29)

In connection with the surrogate design criteria (4.23), let Vmax = 1.2.
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The design problem is to find a controller satisfying inequalities (4.26) and (4.23). To this

end, assume that the controller transfer function takes the form

Gc(s,p) =
p1(s+ p2)

s2 + p3s+ p4
, p = [p1, p2, p3, p4]

T ∈ R
4. (4.30)

Notice that, for Gp in (4.27), Assumption 4.2 is always satisfied since H(s) is strictly

proper whenever so is Gc and since the finiteness of φi in (4.23) implies that h, ḣ ∈ A. (See [14]

for the details on the connection between the stability issue and the finiteness of φi for linear

problems). Moreover, it readily follows from Section 4.3 and from (2.34) that Assumption 4.3

is also fulfilled. That is to say, Theorem 4.3 is applicable.

For convenience, the nonrational transfer function Gp is approximated by a truncated

eigenfunction expansion of order 20. When a higher order approximation is used, no significant

difference in the computed results is found. Note, in passing, that one may avoid this approxi-

mation by employing the method developed in [11] for the design of retarded fractional delay

differential systems.

By using the MBP algorithm to solve inequalities (4.26) and (4.23), a design solution

p̃ = [173.99, 8.59, 150.67, 5637.90, 0.95]T (4.31)

is located and the corresponding performance measures are

φ0(p) = −72.79, φ1(p̃) = 0.28, φ2(p̃) = 0.20, φ3(p̃) = 1.15. (4.32)

To verify the performance of the obtained controller, a test input f̂ ∈ P is generated such

that its magnitude and slope are bounded by M and D, respectively. See Figure 4.6.
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Figure 4.6: A test input f̂ ∈ P characterized by (4.28).
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The responses of the system given in Figure 4.7. The simulation results show that the

performances of the system by using the so-obtained controller satisfy the design criteria (4.29),

thereby clearly illustrating the usefulness of the method.
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Figure 4.7: Responses of the nonlinear system to input f̂ using design solution (4.31).

4.5 Conclusions and Discussion

This chapter has developed a practical method for designing a controller for the system with an

output nonlinearity, as shown in Figure 4.1, so as to ensure that e and u stay within the pre-

scribed ranges ±Emax and ±Umax for all time and for all inputs f ∈ P . Specifically, by using

the decomposition (4.2), the nonlinearity is replaced with a constant gain and an bounded dis-

turbance, and hence the original design problem becomes that of a linear time-invariant system

subject to an additional disturbance. As a consequence, Theorem 4.1 provides an essential basis

for developing the surrogate design criteria (4.23), which are used to obtain a solution of the
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original design problem by numerical methods. The simulation results of the heat conduction

process have illustrated the advantage of the proposed method.

It should be noted that the method developed here is also applicable to the cases where

P � {f ∈ L2 | ‖f‖2 ≤ M2, ˙‖f‖2 ≤ D2}, with M2 and D2 being prescribed bounds or P is

characterized by using more than two bounding conditions (see also Chapter 6).



CHAPTER V

DESIGN OF FEEDBACK CONTROL SYSTEMS WITH

UNCERTAIN PLANT AND INPUT NONLINEARITY

This chapter is motivated by the fact that many real systems possess uncertainties. In this con-

nection, the aim of this chapter is to develop a practical method for designing a class of uncertain

nonlinear feedback control systems in such a way that the error function and the controller out-

put are ensured to remain within respective bounds for all time and for all possible inputs in

the presence of uncertainties. The key idea is to make use of the decomposition technique de-

scribed in Chapters 3 and 4 together with Zakian’s method for designing vague systems [1, 2].

Finally, a controller design for a heat-conduction process with uncertainties is carried out and

the numerical results demonstrate the usefulness of the developed method.

5.1 Introduction

_

+f e u us y
Gp(s)ψ(·)Gc(s,p)

Figure 5.1: A feedback control system with uncertain plant and with input nonlinearity.

Consider a feedback control system shown in Figure 5.1, where ψ(·) is a continuous,

time-invariant and memoryless nonlinear function such that ψ(0) = 0, Gp(s) and Gc(s,p)

are the transfer functions of the plant and the controller with the design parameter p ∈ R
n,

respectively. Suppose that Gp(s) is uncertain and known only to the extent that it belongs to a

set Gp. Note, in passing, that if Gp consists of more than one distinct element, then the plant, and

hence the system are said to be vague [1]. The input f is in the set P defined in (3.1). Moreover,

it is also assumed that the system is at rest for t ≤ 0.

Following Zakian’s framework, the design problem is to determine a controller transfer

function Gc(s,p) such that the following design criteria are satisfied:

|e(f, t)| ≤ Emax

|u(f, t)| ≤ Umax

}
∀f ∈ P ∀ t ∈ R+ ∀Gp ∈ Gp, (5.1)

where the bounds Emax and Umax are given. It is easy to see that the criteria (5.1) are equivalent
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to the following conditions
sup

Gp∈Gp

ê ≤ Emax

sup
Gp∈Gp

û ≤ Umax,
(5.2)

where the peak values ê and û are defined as in (1.7) for each Gp ∈ Gp. Evidently, (5.2)

become practical design criteria, provided that the terms on the left hand-side can be computed

in practice. Nevertheless, the problems of computing supGp∈Gp
ê and supGp∈Gp

û are obviously

more difficult than those of ê and û, which are now still open. Therefore, the purpose of this

chapter is to develop a method for designing a controller Gc(s) satisfying the criteria (5.2).

Since (5.2) are computationally intractable, we derive practical sufficient conditions of the form

φ1 ≤ Emax and φ2 ≤ Umax (5.3)

for ensuring them, where φ1 and φ2 are readily computable. Consequently, (5.3) are more

tractable and suitable for solution by numerical methods for a wide range of Gp(s).

The key ideas are as follows. First, applying the decomposition technique presented in

Chapters 3 and 4 to the system in Figure 5.1 results in an uncertain linear system subject to two

inputs. Second, by extending Zakian’s majorants [1, 22, 46], practical design inequalities (5.3)

are obtained. Finally, in searching for a controller satisfying the criteria (5.2) by numerical meth-

ods, a useful condition for guaranteeing the robust stability of the nonlinear system is derived

by using the results presented in Chapter 2. The condition also provides a readily computable

inequality for determining a robust stabilizing controller.

The organization of this chapter is as follows. Section 5.2 presents an extension of Za-

kian’s majorants. Section 5.3 casts the design problem of the uncertain nonlinear system by

using the results developed in Section 5.2 and the design method presented in previous chap-

ters. In Section 5.4, the stability condition of the uncertain nonlinear system is given. A design

of a heat-conduction process with uncertainties is carried out in Section 5.5 to illustrate the

usefulness of the method. Finally, conclusions and discussion are given in Section 5.6.

5.2 Extension of Zakian’s Majorants

This section presents an extension of Zakian’s majorants [1, 2, 22, 46] to the case of linear feed-

back systems with two inputs.

Consider the system in Figure 5.2 where G1(s) and G2(s) are the transfer functions of the

controller and the plant, the input f belongs to a possible set P ⊂ L∞ and the input d belongs

to the set D defined by

D � {d ∈ L∞ | ‖d‖∞ ≤ N} . (5.4)

The system is described by
v2 = v1 ∗ g1
v1 = f − g2 ∗ (d+ v2),

(5.5)
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Figure 5.2: Uncertain linear system with two inputs.

where g1 and g2 are the impulse responses of G1 and G2, respectively.

Suppose that the design problem is to determine the transfer function G1(s) satisfying

sup
f∈P, d∈D

‖v1‖∞ ≤ V1max

sup
f∈P, d∈D

‖v2‖∞ ≤ V2max,
(5.6)

where the bounds V1max and V2max are given. In case it is desirable to replace the transfer

function G2(s) by G∗
2(s) (which is more convenient to use than G2(s)), the system in Figure 5.1

becomes the nominal one that is shown in Figure 5.3 and described by

v∗2 = v∗1 ∗ g1
v∗1 = f − g∗2 ∗ (d+ v∗2).

(5.7)

+ +
+_

f v∗1 v∗2

d

G∗
2(s)G1(s)

Figure 5.3: The nominal system connected with the one in Figure 5.2.

In the following, we will develop sufficient conditions expressed in terms of the nominal

system for ensuring the satisfaction of the design criteria (5.6).

5.2.1 Zakian’s Criterion of Approximation

First, consider the case in which the transfer function G2(s) is fixed. Accordingly, G∗
2(s) can

be seen as an approximant of G2(s). Define

μ1 �
∫ ∞

0
|w1(τ)|dτ and μ2 �

∫ ∞

0
|w2(τ)|dτ, (5.8)

where w1 and w2 are the impulse responses of W1(s) and W2(s) given by

W1(s) �
G2(s)−G∗

2(s)

1 +G1(s)G∗
2(s)

, W2(s) � G1(s)
G2(s)−G∗

2(s)

1 +G1(s)G∗
2(s)

. (5.9)

Let v̂∗1 and v̂∗2 denote the peak values of v∗1 and v∗2 , respectively, defined by

v̂∗1 � sup
f∈P,d∈D

‖v∗1‖∞ and v̂∗2 � sup
f∈P,d∈D

‖v∗2‖∞. (5.10)

Now the main result of this subsection is stated as follows.
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Theorem 5.1. Suppose that the system (5.7) is BIBO stable and that μ1 < ∞ and μ2 < ∞. The

criteria (5.6) for the system (5.5) are satisfied if μ2 < 1 and if the following holds

φ1 ≤ V1max, φ1 �
v̂∗1 + μ1N

1− μ2

φ2 ≤ V2max, φ2 �
v̂∗2 + μ2N

1− μ2
.

(5.11)

Proof. From (5.5), it is easy to verify that

V1(s) = F (s)−D(s)G2(s)−G1(s)G2(s)V1(s)

=
F (s)−D(s)G∗

2(s)

1 +G1(s)G∗
2(s)

− G2(s)−G∗
2(s)

1 +G1(s)G∗
2(s)

D(s)−G1(s)[G2(s)−G∗
2(s)]

1 +G1(s)G∗
2(s)

V1(s).

(5.12)

It follows from (5.7) and (5.9) that

V1(s) = V ∗
1 (s)−W1(s)D(s)−W2(s)V1(s). (5.13)

Consequently,

v1(t) = v∗1(t)−
∫ t

0
w1(t− τ)d(τ)dτ −

∫ t

0
w2(t− τ)v1(τ)dτ (5.14)

and thus, by using (5.8), we have

sup
τ∈[0,t]

|v1(τ)| ≤ sup
τ∈[0,t]

|v∗1(τ)|+ μ1 sup
τ∈[0,t]

|d(τ)|+ μ2 sup
τ∈[0,t]

|v1(τ)|. (5.15)

From (5.15), it is easy to verify that

(1− μ2) sup
τ∈[0,t]

|v1(τ)| ≤ sup
τ∈[0,t]

|v∗1(τ)|+ μ1 sup
τ∈[0,t]

|d(τ)|. (5.16)

Since the system (5.7) is BIBO stable, the values v̂∗1 and v̂∗2 are always finite. As a result,

provided that μ1 < ∞ and that μ2 < 1, it follows from (5.16) that letting t → ∞ yields

‖v1‖∞ ≤ ‖v∗1‖∞ + μ1‖d‖∞
1− μ2

. (5.17)

Furthermore, by multiplying both sides of (5.13) with G1(s) we arrive at

V2(s) = V ∗
2 (s)−G1(s)W1(s)D(s)−W2(s)V2(s). (5.18)

In the same way, by noting that W2(s) = G1(s)W1(s), it can be easily shown that

‖v2‖∞ ≤ ‖v∗2‖∞ + μ2‖d‖∞
1− μ2

. (5.19)

Therefore, inequalities (5.11) are obtained as a consequence of (5.17) and (5.19).
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5.2.2 Zakian’s Majorants for Vague Systems

Now consider the case in which the transfer function G2(s) belongs to a set G2 containing more

than one distinct elements. As will be seen shortly, the result in the previous subsection will be

used and developed further.

By noting that μ1, μ2, and hence φi depend on G2 ∈ G2, the following result is obvious.

Proposition 5.1. Suppose that the system (5.7) is BIBO stable and that μ1 < ∞ and μ2 < 1 for

any G2 ∈ G2. The criteria (5.6) for the system (5.5) are satisfied if the following holds.

v̂∗1 +N sup
G2∈G2

μ1

1− sup
G2∈G2

μ2
≤ Vimax, i = 1, 2. (5.20)

Proof. By virtue of Theorem 5.1, the proof readily follows.

Nevertheless, inequalities (5.20) cannot readily be used in practice for determining G1(s)

by numerical methods, because, for each value of the design parameter p, supremal operations

over G2 are required in the evaluation of supG2∈G2
μi, which is not computationally economical.

In this connection, Zakian [1,46] proposes to replace μi by its upper bounds μ̃i and thus arrives

at

φ̂i ≥ φi, i = 1, 2, (5.21)

where φ̂i is a majorant of φi that is readily computable.

Next, the upper bound of μ2 is derived. Note that

w2(t) = z(0)v∗2(t,1) +

∫ t

0
ż(t− τ)v∗2(τ,1)dτ, (5.22)

where v2(t,1) denotes the value of v∗2 at time t in response to the input f = 1(t) and d = 0,

and

z � g2 − g∗2. (5.23)

Now assume that the nominal system is BIBO stable. As a consequence, the following limits

exist

σ1 � lim
t→∞

v∗1(t,1), σ2 � lim
t→∞

v∗2(t,1). (5.24)

Hence, expression (5.22) is equivalent to

w2(t) = z(0) [v∗2(t,1)− σ2] +

∫ t

0
ż(t− τ) [v∗2(τ,1)− σ2] dτ + σ2z(t). (5.25)

Using a known property of 1-norm of the convolution operator (see, for example, [28, p. 239])

yields

‖w2‖1 ≤ A|σ2|+B‖v∗2(1)− σ2‖1, (5.26)

where

A � sup{‖z‖1 : G2 ∈ G2}, B � sup{|z(0)|+ ‖ż‖1 : G2 ∈ G2}. (5.27)
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It follows from (5.26) that

μ2 ≤ μ̃2, μ̃2 � A|σ2|+B‖v∗2(1)− σ2‖1. (5.28)

Similarly, an upper bound of μ1 can be obtained as

μ1 ≤ μ̃1, μ̃1 � A|σ1|+B‖v∗1(1)− σ1‖1. (5.29)

From the above, it should be noted that the values A and B need to be computed only once.

Therefore, the upper bounds μ̃1 and μ̃2 can readily be used in practice.

Finally, let μ̃2 < 1 and define

φ̂i �
v̂∗i + μ̃iN

1− μ̃2
, i = 1, 2. (5.30)

It is now ready to state the main result of this subsection.

Theorem 5.2. Suppose that the nominal system (5.7) is BIBO stable and let μ̃1 and μ̃2 be finite.

The criteria (5.6) are satisfied for all G2(s) ∈ G2 if μ̃2 < 1 and if the following holds

φ̂1 ≤ V1max

φ̂2 ≤ V2max

(5.31)

Proof. The proof is completed by using Theorem 5.1 and the above discussion (see also [1,

46]).

Since the majorants φ̂i can readily be computed in practice, conditions (5.31) provides

useful design inequalities for determining G1(s) that satisfies the original criteria (5.6) by nu-

merical methods.

5.3 Design of Uncertain Nonlinear Systems

This section casts the design problem of the uncertain nonlinear system shown in Figure 5.1.

The key idea is, by replacing the nonlinearity with a constant gain and a bounded disturbance, to

approximate the original uncertain nonlinear system by an uncertain linear one so that the results

developed in Section 5.2 can be applied. The practical design inequalities are then developed

based on the main results presented in Theorems 5.3 and 5.4.

Assumption 5.1. For every input f ∈ P and every Gp ∈ Gp, there are unique e : R+ → R and

u : R+ → R that satisfy the following equations

u = gc ∗ e,
e = f − us ∗ gp = f − ψ(u) ∗ gp.

(5.32)
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Gp(s)Gc(s) K

Figure 5.4: Auxiliary linear system.

By using the decomposition technique described in Chapters 3 and 4 (see also [15,16,24]),

the auxiliary linear system as shown in Figure 5.4 is obtained, where d belongs to the set D given

in (3.22) with the bound N defined in (3.21).

The system in Figure 5.4 is described by

u′ = gc ∗ e′,
e′ = f − gp ∗ (Ku′ + d) .

(5.33)

where Gp ∈ Gp, f ∈ P and d ∈ D.

For each Gp ∈ Gp, let ê′ and û′ denote the peak values of e′ and u′, respectively, given by

ê′ � sup
f∈P, d∈D

‖e′‖∞,

û′ � sup
f∈P, d∈D

‖u′‖∞.
(5.34)

Also, let h be the impulse response of the transfer function

H(s) � Gp(s)Gc(s)

1 +KGp(s)Gc(s)
. (5.35)

Assumption 5.2. The function h satisfies conditions that h ∈ A and ḣ ∈ A for any Gp ∈ Gp.

It should be noted that by virtue of the convolution representation, the plant transfer

function Gp(s) in (5.32) can be lumped or distributed-parameters systems as long as h satisfies

Assumption 5.2. For example, the plant can be a system with time-delays or a heat conduction

process.

In the following, the relation between the design problem of the original system (5.32) and

the auxiliary system (5.33) is stated. (One may notice that this result differs from Theorem 3.3

only to the extent that the system uncertainties are now taken into account).

Theorem 5.3. Let Assumptions 5.1 and 5.2 be satisfied. The criteria (5.2) for the system in

Figure 5.1 are satisfied if the following conditions for the system in Figure 5.4 hold

sup
Gp∈Gp

ê′ ≤ Emax,

sup
Gp∈Gp

û′ ≤ Umax.
(5.36)



50

Proof. The proof can be completed by the same technique used to prove Theorem 3.2 and

Theorem 3.3 in Chapter 3.

According to Theorem 5.3, the design problem of the nonlinear system can be replaced

by that of the auxiliary linear system subject to an additional disturbance d. However, comput-

ing the performances ê′ and û′ given by (5.36), in general, are very difficult due to the plant

uncertainty. Therefore, it is desirable to replace (5.36) with sufficient conditions by using the

result developed in Section 5.2.

Consider the nominal system as shown in Figure 5.5 where f ∈ P , d ∈ D and G∗
p(s)

denote the nominal transfer function of Gp(s) ∈ Gp.

_

+ +

+

f e∗ u∗ u∗s y∗

d

G∗
p(s)Gc(s) K

Figure 5.5: The nominal linear system.

Assume that the nominal system is BIBO stable. As a result, the following limits exist

σ1 � lim
t→∞

e∗(t,1), and σ2 � lim
t→∞

u∗(t,1). (5.37)

where e∗(t,1) and u∗(t,1) are the values of e∗ and u∗ at time t in response to the inputs f(t) =

1(t) and d(t) = 0. Next, define

μ̃1 � A|σ1|+B‖e∗(1)− σ1‖1,
μ̃2 � A|σ2|+B‖u∗(1)− σ2‖1,

(5.38)

where
z � gp − g∗p

A � sup{‖z‖1 : Gp ∈ Gp}
B � sup{|z(0)|+ ‖ż‖1 : Gp ∈ Gp}.

(5.39)

Let ê∗ and û∗ denote the peak values of e∗ and u∗ given by

ê∗ � sup
f∈P, d∈D

‖e∗‖∞,

û∗ � sup
f∈P, d∈D

‖u∗‖∞.
(5.40)

It is now ready to state the sufficient conditions to ensure the satisfaction of inequalities (5.36).

Theorem 5.4. Suppose that the nominal system in Figure 5.5 is BIBO stable and that μ̃1 and

μ̃2 defined in (5.38) are finite. The criteria (5.36) for the system in Figure 5.4 are satisfied if

μ̃2 < 1 and the following inequalities hold

ê∗ + μ̃1N

1− μ̃2
≤ Emax,

Kû∗ + μ̃2N

K(1− μ̃2)
≤ Umax.

(5.41)
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Proof. By virtue of Theorem 5.2, the proof immediately follows.

It should be noted that ê∗ and û∗ are the peak outputs of the nominal linear system without

any uncertainties, and therefore they can be computed numerically by using available methods

(see Section 3.3). As a consequence, conditions (5.41) become useful design inequalities, which

are more tractable than those in (5.36).

Define

φ1 � N

1− μ̃2

(
‖e∗d(δ)‖1 +

φef

N
+ μ̃1

)

φ2 � N

1− μ̃2

(
‖u∗d(δ)‖1 +

φuf

N
+

μ̃2

K

) (5.42)

where e∗d(δ) and u∗d(δ) are the values of e∗ and u∗ at time t, respectively, with f = 0 and

d = δ(t). Evidently, φ1 and φ2 depend on the value of the gain K. Let p̃ � [pT , K]T .

Accordingly, the design problem is now to determine a controller transfer function Gc(s,p)

such that the following surrogate design criteria are satisfied

φ1(p̃) ≤ Emax

φ2(p̃) ≤ Umax.
(5.43)

Notice that φ1(p̃) and φ2(p̃) are readily computable. For further details, see Section 3.3.

5.4 Stability Conditions

The usefulness of the stability condition for ensuring the boundedness of the outputs of the non-

linear system with respect to the possible set P is as explained in Section 3.4. In the following,

only stability conditions are introduced.

For each Gc(s,p), define

G � {G : C → C | G(s) = Gc(s,p)Gp(s), ∀Gp(s) ∈ Gp} . (5.44)

Let g denote the impulse response of the composite transfer function G(s) ∈ G.

Assumption 5.3. The impulse responses g0, gc and g satisfies conditions that g0, gc, ġ ∈ A for

all Gp(s) ∈ Gp and there exists α > 0 satisfying∫ ∞

0
e2αtg2(t)dt < ∞, ∀ G(s) ∈ G. (5.45)

The boundedness of e and u can be guaranteed by using the following theorem.

Theorem 5.5. Let Assumption 5.3 be satisfied. The responses e and u are bounded for any

f ∈ P and for any ψ ∈ sector [0, k0] if there exist q ∈ R and β ∈ R such that the following

condition is satisfied

Re [(1 + qjω)G (jω)] +
1

k0
≥ β > 0, ∀ G(s) ∈ G, ∀ ω ≥ 0. (5.46)
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Proof. The proof is completed by the direct application of Theorem 2.2 in Section 2.2 (see

also [47]).

Following the results in Section 2.3, one can see that condition (5.46) can be checked

graphically by using the Popov plots of all G(s) ∈ G. Now define Ω as the convex hull of all

the plots, (that is, the minimal convex set containing all the plots). Then, the following result is

obtained.

Proposition 5.2. The Popov plots of all G(s) ∈ G lie to the right of the Popov line if and only if

so does Ω.

Proof. Note that if g, ġ ∈ A, then ω �→ Re [G(jω)] and ω �→ ωIm [G(jω)] are continuous and

bounded on R+ (see, for example, [28]). Therefore, all the Popov plots, and hence Ω lie in the

finite plane. The rest of the proof follows Proposition B.1 in Appendix B.

By virtue of this proposition, we can proceed with the Popov test developed in Chapter 2.

Consequently, condition (5.46) is satisfied if the following holds:

φ0(p) ≤ −γ, φ0(p) � k0 − kmax(p), (5.47)

where γ is a small positive number and kmax is the supremal value of the allowable sector bound

obtained from the modified Popov test.

Clearly, once Ω can be obtained in practice, condition (5.47) provides a useful inequality

for determining stability points of the system by numerical methods. Note that the number of

elements in G may be infinite. In such a case, it is desirable to approximate Ω by the convex

hull of the Popov plots for a sufficiently large number of G(s) ∈ G. Thus, designers should use

the number γ as a marginal tolerance for the error caused by this approximation.

Furthermore, by a straightforward extension of Corollary 3.1 in Chapter 3, the following

result is obtained.

Corollary 5.1. If Assumption 5.3 and the Popov condition (5.46) are satisfied by G(s) ∈ G,

then the nominal system in Figure 5.5 is BIBO stable for any K ∈ [0, kmax).

The corollary implies that if p is a stability point of the nonlinear system and if 0 ≤ K <

kmax, then p̃ is a stability point of the nominal linear system.

5.5 Numerical Example

Consider the heat-conduction process considered in Chapter 2. Suppose now that the plant

possesses uncertainties and thus its transfer function is described by

Gp(s) =
a√

λs sinh
√
λs

, a ∈ [18, 21], λ ∈ [0.9, 1.1]. (5.48)
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Note that Gp(s) has one pole at the origin and the others on the negative real axis (see, for

example, [35]). Moreover, the impulse response gp is given by

gp(t) = a+
2a

λ

∞∑
n=1

(−1)ne−
n2π2t

λ , t > 0. (5.49)

Now assume that the nonlinearity ψ is described in Figure 5.6, where z0 = 0.2, k1 = 0.2

and k2 = 1. Obviously, ψ ∈ sector [k1, k2].

0

ψ

u

z0

−z0
k1

k2

Figure 5.6: The input nonlinearity of the heat-conduction process.

Assume that the control objective is to keep the error e and the control input u staying

within ±Emax and ±Umax, respectively, for all time and for all inputs belonging to a possible

set P given by (3.1) where

Emax = 6, Umax = 5, M = 50 and D = 25. (5.50)

Accordingly, the design problem is to determine the controller transfer function Gc(s) so that

the following criteria are fulfilled:

φ0(p) ≤ −0.1,
φ1(p̃) ≤ 6,
φ2(p̃) ≤ 5.

(5.51)

To this end, assume that the controller transfer function takes the form

Gc(s,p) =
p1(s

2 + p2s+ p3)

s2 + p4s+ p5
, (5.52)

where p = [p1, p2, p3, p4, p5]
T ∈ R

5. The nominal model G∗
p(s) of the plant is chosen with

a = 20, λ = 1. (5.53)

Since Gc(0) 
= 0 and G∗
p(0) = ∞, it follows that

σ1 = 0, σ2 = 0. (5.54)

Thus,

μ̃1 = B‖e∗(1)‖1, μ̃2 = B‖u∗(1)‖1. (5.55)
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Note that the computation of B involves an extensive numerical search in R
2. However, B is

required to be computed only once. The search reveals that

B = 4.1032 at a = 21 and λ = 0.9. (5.56)

In this example, inequalities (5.51) are solved by using the MBP algorithm. A design

solution

p̃ = [7.2442, 28.7856, 200.4369, 142.0602, 3785.7, 0.9730]T (5.57)

is located and the corresponding performance measures are

φ0(p) = −2.03,
φ1(p̃) = 5.86,
φ2(p̃) = 4.74.

(5.58)

Figure 5.7 shows the Popov plots of the systems with various pairs of a and λ.
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Figure 5.7: Popov plots of G(s) with a = 18 : 0.5 : 21 and λ = 0.9 : 0.05 : 1.1.

To verify the design, the simulation is carried out with the nonlinear system subject to

a test input f̂ , which is generated such that its magnitude and slope are bounded by M and

D, respectively. See Figure 5.8. The responses of the system are given in Figure 5.9, clearly

illustrating the usefulness of the method.
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Figure 5.8: A test input f̂ ∈ P characterized by (5.50).
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Figure 5.9: Responses e and u of the nonlinear system to input f̂ with a = 18, 19, 20, 21 and

λ = 0.9, 1.0, 1.1.
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5.6 Conclusions and discussion

In this chapter, we have developed a practical method for designing the feedback control system

shown in Figure 5.1. Following Zakian’s principle of matching, the control objective is to ensure

that e and u stay within the specified ranges ±Emax and ±Umax, respectively, for all time and

for all inputs f ∈ P in the presence of uncertainties. The results of this chapter are derived from

those in Chapter 3 and from the extension of Zakian’s majorants, which provides a useful tool to

deal with vague systems. The effectiveness of the developed method is illustrated by the design

example of an uncertain heat-conduction process.

It should be noted that the design method can also be applied to the case of uncertain

systems with an output nonlinearity. This can be seen as an adjunct to the results presented in

Chapter 4.



CHAPTER VI

CONCLUSIONS

In this chapter, we summarize our contributions and discuss some directions for future research.

6.1 Contributions

The contributions of this thesis are as follows.

First, we develop a practical approach for stabilizing Lur’e systems with inputs in the

possible set P2 or P∞. Specifically, input-output stability properties of Lur’e systems, in which

the linear subsystem is allowed to be a nonrational transfer function belonging to a subclass of

A, are revisited by extending some results in [30] and [32]. It is shown that if the magnitudes

of inputs and their slopes are bounded in the sense of two norms or infinity norms, then the

well-known Popov criterion can be used to ensure the boundedness of the system outputs for

any nonlinearity lying in a given sector bound. Based on the obtained results, we develop the

Popov test and devise a practical condition for obtaining stability points of the system that is

readily soluble by numerical methods.

Second, in connection with Zakian’s framework, this thesis also develops a practical

method for designing nonlinear feedback systems where the plant is possibly uncertain and

consists of a linear time-invariant subsystem and a nonlinearity in its input or output channels,

so as to ensure that the error function and the controller output stay within respective bounds

for all time, for all possible inputs and in the presence of plant uncertainties. This is consid-

ered as the most significant contribution of the work in this thesis. A unified and systematic

methodology has been introduced. In particular, the design procedure is as follows.

1. Replacing the nonlinearity ψ with constant gain K and equivalent disturbance φ yields

the equivalent linear systems as shown in Figures 3.4 and 4.3.

2. Using the Schauder fixed point theorem to prove that the design problem of the nonliear

system can be repalced by that of the equivalent linear system (see Theorems 3.2 and 4.1).

3. Replacing the set Dw in (3.19) and (4.16) by a tractable set D defined in (3.22) and (4.19)

results in the nominal linear system used during the design.

4. Using the linearity of the nominal system, sufficient conditions for the satisfaction of

the design criteria of the original nonlinear system can be obtained. If the plant transfer

function Gp(s) is known, these conditions are also surrogate design criteria (see (3.29)

and (4.23)).
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5. If the plant is vague, surrogate design criteria (5.43) is obtained by using the extension of

Zakian’s majorants (see Section 5.2).

6. Surrogate design criteria (3.29), (4.23), and (5.43) are in accordance with the method of

inequalities and suitable for solutions by numerical methods.

It is shown clearly from the stability results and the design procedure that the developed

method can be used for the design of a large class of nonlinear, possibly uncertain and possibly

infinite-dimensional systems. This can be seen as a considerable advantage of the research work

presented in this thesis.

The effectiveness of the method has been demonstrated through some numerical design

examples. In addition, when the system is critical, the value of the method becomes evident.

6.2 Future Works

Possible extensions of this thesis are as follows.

First, the design method can also be applied to the case of systems with inputs in the set

P given by

P � {f ∈ L2 | ‖f‖2 ≤ M2, ˙‖f‖2 ≤ D2}, (6.1)

where M2 and D2 are the given bounds. This is because the method used to compute the peak

outputs of linear systems [14] is applicable to many possible sets of which P described in (3.1)

or in (6.1) is only a special case. In this connection, the possible set P can be characterized

with many (two or more than two) bounding conditions on the two- and/or infinity-norms of the

inputs and their slopes. See [14] for further details. Moreover, it can be seen obviously from

the results in Chapter 2 that the stability conditions with respect to the set P∞ are stricter than

those with respect to P2. Therefore, for the set P given in (6.1), the design method can be used

in a straightforward manner.

Second, from the decomposition technique (see Chapters 3, 4) and stability conditions in

Chapter 2, it follows that the nonlinearity ψ in the system is allowed to be uncertain as long as

it lies in a given sector bound and the bound N on the magnitude of the equivalent disturbance

can be obtained. Consider, for example, the nonlinearity ψ : R × R
m → R is a continuous

function of its first argument and is parameterized by θ ∈ Θ with

Θ � {θ ∈ R
m | θi ∈ [θimin, θimax], ∀i = 1, . . . ,m} , (6.2)

where the values θimin, θimax are given. In this case, the decomposition of the nonlinearity is

as in Figure 6.1.

Assume that the condition that ‖u‖∞ ≤ Umax is part of the design. Then,

φ(u, θ) ≤ N, (6.3)
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+

+

ψ(u, θ)u

φ(·, θ) φ(u, θ)

K

Figure 6.1: Decomposition of the nonlinearity ψ(·, θ).

where

N � sup
θ∈Θ

sup
|x|≤Umax

|ψ(x, θ)−Kx| . (6.4)

Note that, in general, this optimization problem is not easy to solve. However, if the number

of parameters m is small and ψ has a simple structure, then the bound N is obtainable. Fur-

thermore, N needs to be computed only once before the design process, provided that K is

fixed.
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APPENDIX A

Lemma A.1. In the proof of Theorem 2.1, q can be assumed to be nonnegative.

Proof. Assume that Theorem 2.1 has been proved for q ≥ 0. Now let condition (2.5) be satisfied

by the given G(s), k, for some β > 0 and q < 0. Note that the given system is equivalent to the

one shown in Figure A.1.

+
+

+
_

__
_+ G(s)

H(s)

ψ(·)

ψ′(·)

f1

−f2 − kf1

e us u y

kk

Figure A.1: Equivalent Lur’e system.

Define
ψ′(e) � ke− ψ(e)

H(s) � − G(s)

1 + kG(s)

. (A.1)

First, it is easy to see that f ′
2 � −f2 − kf1 ∈ P2 and that ψ ∈ sector [0, k] implies ψ′ ∈

sector [0, k].

Second, we show that the impulse response h of H(s) satisfies the same conditions im-

posed on g. Note that the Popov condition (2.5) implies that the Nyquist plot of G(s) does not

encircle or go through the point (−1/k, 0). Therefore, it follows from the results in [42], (also

in [28, p. 85] and [29, p. 311]) that h belongs to A. Moreover,

h = −g − k(h ∗ g)

ḣ = −ġ − kg(0)h− k(h ∗ ġ).
(A.2)

Since each term of the right-hand side of the last equation is in A, hence so is ḣ.
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Finally, for all ω, we have

Re

[
(1− qjω)H(jω) +

1

k

]
= Re

[
(−1 + qjω)

G(jω)

1 + kG(jω)
+

1

k

]
= Re

qjωG(jω) + 1
k

1 + kG(jω)

=
1

|1 + kG(jω)|2
Re

[(
qjωG(jω) +

1

k

)(
1 + kḠ(jω)

)]

=
1

|1 + kG(jω)|2
Re

[
Ḡ(jω) + qjω|G(jω)|2 + qjωG(jω) +

1

k

]

=
1

|1 + kG(jω)|2
Re

[
(1 + qjω)G(jω) +

1

k

]

≥ β

|1 + kG(jω)|2
� β1 > 0.

(A.3)

From the above and note that −q > 0, it readily follows that Theorem 2.1 is applicable to

the equivalent system in Figure A.1. That is to say, the system responses are in L∞, implying

that the responses e, us, u and y in the system in Figure 2.1 are also in L∞. This completes the

proof of the lemma.

Lemma A.2. In the proof of Theorem 2.2, q can be assumed to be nonnegative.

Proof. By using the same method in Lemma A.1, the proof is completed by showing that there

exists a number γ > 0 such that ∫ ∞

0
e2γth2(t)dt < ∞. (A.4)

First we show that if g, ġ ∈ A and if there exists a α > 0 such that (2.19) is satisfied,

then g decays to zero exponentially. Since g ∈ A and ġ ∈ A, it follows that g does not contain

any impulse, limt→∞ g(t) = 0 and
∫∞
0 |ġ(t)| dt < ∞. Thus,

|g(t)− g(0)| =
∣∣∣∣
∫ t

0
ġ(t)dt

∣∣∣∣ ≤
∫ t

0
|ġ(t)| dt < ∞. (A.5)

It is easy to see that |g(0)| < ∞. Then (A.5) implies that |g(t)| < ∞, ∀t > 0. Furthermore, for

any γ ∈ (0, α), by using Cauchy–Schwarz inequality, we have∫ ∞

0
|eγtg(t)|dt =

∫ ∞

0
|eαtg(t)| |e(γ−α)t|dt

≤
{∫ ∞

0
|eαtg(t)|2dt

∫ ∞

0
e−2(α−γ)tdt

}1/2

=

{
1

2(α− γ)

∫ ∞

0
e2αtg2(t)dt

}1/2

.

(A.6)

It follows from (2.19) and (A.6) that∫ ∞

0
|eγtg(t)|dt < ∞. (A.7)
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As a result, eγtg(t) → 0 as t → ∞. Since g is bounded and eγt is a continuous function, it

follows that |eγtg(t)| is finite for any t ∈ [0, ∞]. That is to say, there exists a number C > 0

such that

|eγtg(t)| ≤ C, ∀t ≥ 0 (A.8)

⇒ |g(t)| ≤ Ce−γt, ∀t ≥ 0. (A.9)

Second, we prove that |eγth(t)| is also finite for any t ∈ [0, ∞]. From (A.1) we have

−h = g + kg ∗ h. (A.10)

By defining
hγ(t) � eγth(t)

gγ(t) � eγtg(t)
, (A.11)

we arrive at

−hγ = gγ + kgγ ∗ hγ . (A.12)

Thus,

|hγ(t)| ≤ |gγ(t)|+ k

∣∣∣∣
∫ t

0
gγ(t− τ)hγ(τ)dτ

∣∣∣∣
≤ C + k

∫ t

0
|gγ(t− τ)| |hγ(τ)| dτ , ∀t > 0.

(A.13)

By applying Bellman-Gronwall lemma (see, for example, [28]) for the above inequality and

using (A.7), we have

|hγ(t)| ≤ C ek
∫ t
0 |gγ(t−τ)|dτ < C ek ‖gγ‖1 < ∞. (A.14)

That is to say, |eγth(t)| is finite for all t ≥ 0. Hence, it is easy to see that h decays to zero

exponentially and satisfies condition (A.4).

Lemma A.3. [28] If f : R+ → R satisfies the condition that f, ḟ ∈ L2, then f ∈ L∞.

Proof. Let v � fḟ . Using the Hölder’s inequality gives∫ ∞

0
|v(t)| dt =

∫ ∞

0

∣∣∣f(t)ḟ(t)∣∣∣ dt ≤ ‖f‖2 ˙‖f‖2. (A.15)

Since f, ḟ ∈ L2, ‖f‖2 and ˙‖f‖2 are finite. Thus, v ∈ L1.

Moreover, f ∈ L2 implies that f2 → 0 as t → ∞. Accordingly,

f∞ � lim
t→∞

f(t) = 0, (A.16)

1

2
‖v‖1 ≥

1

2

∣∣∣∣
∫ ∞

0
f(t)ḟ(t)dt

∣∣∣∣ = ∣∣f2
∞ − f2(0)

∣∣ . (A.17)

Hence, f2(0) < ∞. As a result, for any t > 0

1

2

∫ t

0

∣∣∣f(τ)ḟ(τ)∣∣∣ dτ ≥ 1

2

∣∣∣∣
∫ t

0
f(τ)ḟ(τ)dτ

∣∣∣∣ = ∣∣f2(t)− f2(0)
∣∣ . (A.18)
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Therefore,

f2(t) < ∞ ∀t ≥ 0. (A.19)

That is to say, f ∈ L∞. Moreover, f(t) → 0 as t → ∞.

Lemma A.4. [31] If the three real functions f1(t), f2(t) and f3(t) belong to L2 and if their

Fourier transforms are related by the equation

F1(jω) = F2(jω) +H(jω)F3(jω), (A.20)

where ReH(jω) ≥ δ > 0, ∀ω ≥ 0, then∫ ∞

0
f1(t)f3(t)dt+

1

4δ

∫ ∞

0
f2
2 (t)dt ≥ 0. (A.21)

Proof. Let I =

∫ ∞

0
f1(t)f3(t)dt. Using Parseval formula yields

I =
1

2π

∫ +∞

−∞
F̄1(jω)F3(jω)dω

=
1

2π

∫ +∞

−∞

[
F̄2(jω) + H̄(jω)F̄3(jω)

]
F3(jω)dω

=
1

2π

∫ +∞

−∞

[
ReH(jω) |F3(jω)|2 +

1

2
F̄2(jω)F3(jω) +

1

2
F2(jω)F̄3(jω)

]
dω

=
1

2π

∫ +∞

−∞

∣∣∣∣∣[ReH(jω)]1/2 F3(jω) +
F2(jω)

2 [ReH(jω)]1/2

∣∣∣∣∣
2

dω − 1

8π

∫ +∞

−∞

|F2(jω)|2

ReH(jω)
dω

≥ − 1

8π

∫ +∞

−∞

|F2(jω)|2

ReH(jω)
dω

≥ − 1

4δ

∫ ∞

0
f2
2 (t)dt.

(A.22)

This completes the proof of Lemma A.4.

Lemma A.5. [32] Consider the system from the input f to the output ys in Figure 2.3. Let

Assumptions 2.1 and 2.2 be satisfied. If f ∈ P∞, g, ġ ∈ A and if there exist q ∈ R, β ∈ R and

sufficiently small α > 0 such that (2.5) and (2.19) are satisfied, then the following inequality

holds∫ t

0
e2ατu2s(τ)dτ ≤

∫ t

0

e2ατ

β2

[
f(τ) + qḟ(τ)

]2
dτ +

2q

β

∫ e(0)

0
ψ(e)de, ∀t ≥ 0. (A.23)

Proof. From equation (2.20), we have

ė(t) = ḟ(t)−
∫ t

0
ġ(t− τ)us(τ)dτ − g(0)us(t). (A.24)
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Let fT , ḟT and usT be the truncations at T of f, ḟ and us respectively. Then

eT (t) = fT (t)−
∫ t

0
g(t− τ)usT (τ)dτ (A.25)

ėT (t) = ḟT (t)−
∫ t

0
ġ(t− τ)usT (τ)dτ − g(0)usT (t). (A.26)

It turns out that

−eT (t)− qėT (t) = −
[
fT (t) + qḟT (t)

]
+ g(0)usT (t)

+

∫ t

0
[g(t− τ) + qġ(t− τ)]usT (τ)dτ . (A.27)

By adding (1/k − σ)usT (t) with σ ∈ (0, β), to both sides and multiplying by eαt with suffi-

ciently small α > 0, we obtain

f1(t) = f2(t) +

(
1

k
− σ

)
eαtusT (t) + qg(0)eαtusT (t)

+

∫ t

0
eα(t−τ) [g(t− τ) + qġ(t− τ)]eατusT (τ)dτ

(A.28)

where

f1(t) �
[
−eT (t)− qėT (t) +

(
1

k
− σ

)
usT (t)

]
eαt

f2(t) � −
[
fT (t) + qḟT (t)

]
eαt

. (A.29)

Note that all terms in (A.28) belong to L2 due to the truncation at T . Thus, Fourier-transforming

this equation yields

F1(jω) = F2(jω) +
{
[1 + q(jω − α)]G(jω − α) +

1

k
− σ

}
UsT (jω − α). (A.30)

From (2.5), there always exists a sufficiently small α > 0 such that

Re {[1 + q(jω − α)]G (jω − α)}+ 1

k
− σ ≥ β − σ > 0. (A.31)

Hence, in view of Lemma A.4 with δ = β − σ, one obtains

−
∫ ∞

0
f1(t)usT (t)e

αtdt ≤ 1

4δ

∫ ∞

0
f2
2 (t)dt. (A.32)

Let J denote the left-hand side of (A.32). It follows from (A.29) that

J =

∫ T

0

(
e− us

k

)
use

2αtdt+ q

∫ T

0
ėuse

2αtdt+ σ

∫ T

0
u2se

2αtdt

=

∫ T

0

[
e− ψ(e)

k

]
ψ(e)e2αtdt+ σ

∫ T

0
u2s(t)e

2αtdt

−2qα

∫ T

0
e2αt

[∫ e(t)

0
ψ(e)de

]
dt+ qe2αT

∫ e(T )

0
ψ(e)de− q

∫ e(0)

0
ψ(e)de.

(A.33)
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Since ψ(e) ∈ sector [ε, k − ε], ε > 0 arbitrarily small, we have

∫ e(t)

0
ψ(e)de ≤ k

2
e2(t)

[
e− ψ(e)

k

]
ψ(e) ≥ ε2

k
e2(t).

(A.34)

Accordingly,
J

σ
≥ 1

σ

∫ T

0

(
ε2

k
− kqα

)
e2e2αtdt

+

∫ T

0
u2s(t)e

2αtdt− q

σ

∫ e(0)

0
ψ(e)de.

(A.35)

For any ε > 0, q < ∞, k < ∞, there always exists a sufficiently small α > 0 such that

ε2 − k2qα ≥ 0. Hence

J

σ
≥

∫ T

0
u2s(t)e

2αtdt− q

σ

∫ e(0)

0
ψ(e)de, ∀ T ≥ 0. (A.36)

On the other hand,

J

σ
≤ 1

4σ(β − σ)

∫ T

0

(
f + qḟ

)2
e2αtdt, ∀ T ≥ 0. (A.37)

Since σ ∈ (0, β) is arbitrary, σ = β/2 minimizes the right-hand side of (A.37). Substituting

this value of σ and comparing the right-hand side terms of (A.36) and (A.37) will complete the

proof.
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Proposition B.1. Let P ⊂ R
2 be a bounded set. Define Ω as the convex hull of P . Let L be a

straight line in R
2. Then, it follows that P lies to the right of L if and only if so does Ω.

Proof. (⇐) This can be seen easily by noting that P ⊂ Ω.

(⇒) We prove by contradiction. Assume that the line L lies to the left of P but not Ω. It

is easy to see that L intersects Ω. Let L be represented by

L � {x = (x1, x2) ∈ R
2 | ax1 + bx2 = c},

where a, b and c are real numbers. Accordingly, Ω can be decomposed as

Ω = Ω1 ∪ Ω2,

where
Ω1 � {x(x1, x2) ∈ Ω | ax1 + bx2 ≤ c}
Ω2 � {x(x1, x2) ∈ Ω | ax1 + bx2 > c}

Obviously, Ω1 and Ω2 are non-empty and convex. Furthermore, Ω1∩Ω2 = {}, where {} denotes

the empty set. Since P lies to the right of L, it readily follows that P ∈ Ω2. That is to say, Ω

is not the minimal convex set containing P . This contradicts the definition of Ω, and therefore,

the above assumption must be false. This completes the proof.
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Definition C.1. Let Â denote the set of all functions G : C+ → C that are Laplace transforms

of elements of A.

Lemma C.1 ( [28, 29]). Suppose G(s) ∈ Â; then G−1(s) ∈ Â if and only if

inf
Re s≥0

|G(s)| > 0. (C.1)

Proposition C.1. Consider the system shown in Figure C.1, where the impulse responses k, g of

the transfer functions K(s), G(s) satisfy the following conditions: (i) g(t) = c+ g1(t), ∀t ≥ 0

with g1, ġ1 ∈ A, (ii) k ∗ g(t) = r + h1(t), ∀t ≥ 0 with 0 < r < ∞ and k, h1 ∈ A.

+
_

f e y
G(s)

εK(s)

Figure C.1: Linear feedback system

Then, the impulse response h of H(s) = G(s)[1 + εK(s)G(s)]−1 satisfies conditions

that h ∈ A and ḣ ∈ A for a sufficiently small ε > 0.

Proof. We have

1

1 + εK(s)G(s)
=

1

1 + ε
[
r
s +H1(s)

]
=

s

s+ εr + εsH1(s)

=
s

s+ εr

[
1 +

εs

s+ εr
H1(s)

]−1

.

(C.2)

First, by defining

N(s) � 1 +
εs

s+ εr
H1(s), (C.3)

we prove that N−1(s) ∈ Â for a sufficiently small ε > 0. By using the triangular inequality, we

have

|N(s)| ≥ 1− ε

∣∣∣∣ s

s+ εr

∣∣∣∣ |H1(s)|. (C.4)

It can be shown (see, for example, [28]) that if H1(s) ∈ Â then there exists M > 0 such that

sup
Re s≥0

|H1(s)| ≤ M. (C.5)
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In addition, it is easy to see that

sup
Re s≥0

∣∣∣∣ s

s+ εr

∣∣∣∣ ≤ 2. (C.6)

Hence

inf
Re s≥0

|N(s)| ≥ 1− 2εM. (C.7)

Thus, for a sufficiently small ε > 0,

inf
Re s≥0

|N(s)| > 0. (C.8)

Since N ∈ Â, it follows from Lemma C.1 that (C.8) is equivalent to N−1(s) ∈ Â.

Next, we have

H(s) =
s

s+ εr
G(s)N−1(s)

=
s

s+ εr

[c
s
+G1(s)

]
N−1(s)

=

[
c

s+ εr
+

s

s+ εr
G1(s)

]
N−1(s).

(C.9)

Since G1(s), N(s), c
s+εr and s

s+εr ∈ Â, it follows immediately that H(s) ∈ Â. That is to say,

h ∈ A.

Moreover, by differentiating both sides of the following equation

h = g − εh ∗ k ∗ g, (C.10)

we arrive at

ḣ = ġ − εh ∗ k ∗ ġ. (C.11)

Since k, h ∈ A and ġ = cδ(t) + ġ1 ∈ A, then it follows that ḣ ∈ A.

Loop Transformations for Systems Having One Integrator

Gp Contains One Integrator

Consider the system in Figure 2.5. Assume that ψ ∈ sector [ε, k + ε] for a sufficiently small

ε > 0, that gp(t) = c+ gp1, ∀t ≥ 0 with gp1, ġp1 ∈ A, and that gc ∗ gp(t) = r + h1(t), ∀t ≥ 0

with 0 < r < ∞ and gc, h1 ∈ A. Then, by using the following loop transformation,

ψ′(u) � ψ(u)− εu

G′(s) � Gp(s)Gc(s)

1 + εGp(s)(s)Gc(s)

(C.12)

the given system is equivalent to the one in Figure C.2.

Clearly,

ψ′ ∈ sector [0, k]. (C.13)
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+

f1
Gc(s)

f u
ψ′

y
Gc(s) Gp(s)

ε

f2 + εf

G′(s)

Figure C.2: The loop transformation when Gp contains one integrator.

and, provided that f1, f2 ∈ Pn (n = 2,∞),

f = f1 ∗ gc ∈ Pn, f2 + εf ∈ Pn. (C.14)

Let g′ denote the impulse response of G′(s). Then, it follows from Proposition C.1 that g′, ġ′ ∈
A for a sufficiently small ε > 0. Therefore, Theorems 2.1 and 2.2 can be applied to the system

in Figure C.2.

Gc Contains One Integrator

Consider the system in Figure 2.5. Assume that ψ ∈ sector [ε, k + ε] for a sufficiently small

ε > 0, that gc(t) = c+ gc1, ∀t ≥ 0 with gc1, ġc1 ∈ A, and that gc ∗ gp(t) = r + h1(t), ∀t ≥ 0

with 0 < r < ∞ and gp, h1 ∈ A. Then, by using the following loop transformation,

ψ′(u) � ψ(u)− εu

G′(s) � Gc(s)

1 + εGp(s)(s)Gc(s)

(C.15)

the given system is equivalent to the one in Figure C.3.

+

_

+

_

+
+

f1
Gc(s)

e u

G′(s)

ψ′

f2

Gp(s)

εGp(s)

Figure C.3: The loop transformation when Gc contains one integrator.

Clearly,

ψ′ ∈ sector [0, k]. (C.16)
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Let g′ denote the impulse response of G′(s). Then, it follows from Proposition C.1 that g′, ġ′ ∈
A for a sufficiently small ε > 0. Therefore, Proposition 2.3 can be applied to the system in

Figure C.3.



APPENDIX D

Definition D.1 ( [38, p. 336]). Let F be a set of functions defined and finite-valued on a set E.

The functions of F are called equicontinuous if, for every ε > 0, there is a δ > 0 such that

‖x1 − x2‖ < δ, ∀x1, x2 ∈ E =⇒ |f(x1)− f(x2)| < ε, ∀f ∈ F . (D.1)

The functions of F are said to be uniformly bounded if there exists a finite M such that

|f(x)| ≤ M, ∀f ∈ F , ∀x ∈ E. (D.2)

Theorem D.1 (Ascoli’s Theorem [38, p. 336]). If F is a set of functions defined, equicontinu-

ous and uniformly bounded on a bounded closed set, then from every sequence {fn} ∈ F it is

possible to select a uniformly convergent subsequence.

Theorem D.2 (Compactness Criterion [39, p. 407]). Let X and Y be normed spaces and

H : X → Y be a linear operator. Then H is compact if and only if it maps every bounded

sequence {xn} in X onto a sequence {Hxn} in Y which has a convergent subsequence.

Lemma D.1. Define X � {x ∈ L∞ | ‖x‖∞ ≤ C} where C is a finite number. For a fixed

T > 0, let H denote the convolution operator over XT , given by

Hx(t) =

∫ T

0
h(t− τ)x(τ)dτ. (D.3)

If h ∈ A and if ḣ ∈ A, then H is compact.

Proof. Assume that h, ḣ ∈ A. Let {xn} be any sequence in XT and let {yn} be defined by

yn(t) = Hxn(t). (D.4)

First we show that {yn} is uniformly bounded. For every x ∈ XT , we have∣∣∣∣
∫ T

0
h(t− τ)x(τ)dτ

∣∣∣∣ ≤
∫ T

0
|h(t− τ)| |x(τ)| dτ

≤ C

∫ ∞

0
|h(τ)| dτ. (D.5)

Since h ∈ A, it follows that there exists M0 < ∞ such that
∫∞
0 |h(τ)| dτ < M0. Thus,

‖y‖∞ = sup
t≥0

∣∣∣∣
∫ T

0
h(t− τ)x(τ)dτ

∣∣∣∣ ≤ M0C. (D.6)

Therefore, {yn} is uniformly bounded on [0, T ] for any T > 0.
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Next, we show that {yn} is equicontinuous. For any t1, t2 ∈ [0, T ] and any k > 0, we

have

|yk(t1)− yk(t2)| =

∣∣∣∣
∫ T

0
{h(t1 − τ)− h(t2 − τ)}xk(τ)dτ

∣∣∣∣
≤

∫ T

0
|h(t1 − τ)− h(t2 − τ)| |xk(τ)| dτ

≤ C |Δt|
∫ T

0

∣∣∣∣Δh

Δt

∣∣∣∣ dτ ,
(D.7)

where Δt = t1 − t2 and Δh = h(t1 − τ)− h(t2 − τ). Since ḣ ∈ A by assumption, it follows

that there exists M1 < ∞ such that
∫∞
0 |ḣ(τ)|dτ < M1. Thus,

lim
Δt→0

∫ T

0

∣∣∣∣Δh

Δt

∣∣∣∣ dτ ≤
∫ ∞

0

∣∣∣ḣ(τ)∣∣∣ dτ < M1. (D.8)

From (D.7) and (D.8), it follows that |yk(t1)− yk(t2)| → 0 as Δt → 0 for any k > 0. There-

fore, yn is equicontinuous by definition.

Note that [0, T ] is a bounded and closed set. Thus, in view of Theorem D.1, {yn} has

a convergent subsequence. Since {xn} is an arbitrary sequence in XT and yn = Hxn, the

compactness of H follows immediately from Theorem D.2.
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