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CHAPTER 1

INTRODUCTION

At the beginning ofstwenticth century, statistical mechanics was developed
to explain many phenomena that invllblved many particles such as gas systems.
It is able to establish the relatiorishipL between the macroscopic properties and
microscopic propertics in the classical Eegime. [n the mean time, quantum me-
chanics was also developed in _.or_der tdf-gxp_lain the phenomena that cannot be
explained with classical mechaniqé. Cori_ié_i_r}ing quantum mechanics with statisti-
cal mechanics, the phenomena such as bl'é(’;'ll{}body radiation [1], magnetism and

phase transition can be explained |2, 3]. Thg problem is that the systems in sta-

tistical mechanics are stochastic systems in which the randomness is involved in

the development of ‘the future states of the system. fi“classical mechanics, most
of the systems are deterministic that is no randomitéss is involved in the devel-
opment of future states; of-the system So-the deterministie.system can be solved
by using analytic method to predict ‘the evolution with time. In the system with
many particles, it will become stochastic_becatise the degrees‘ef freedom lead to
the chaotic. In the stochasti@systen the evolution' of system ‘¢anmnot be predicted
precisely by analytic method since the system involves the randomness of some
degrees of freedom. However the stochastic system can be simulated with the
modern computer by using random number generator to generate the stochastic
process. The important point is that the random number generator must be a
true random number generator otherwise the numbers will repeat again and the
process will not become stochastic process. The evolution of the system will be
controlled by transition probability which can be calculated from statistical me-
chanics.

One of the model that is used to describe magnetic systems is the Ising



model which was named after the physicist Ernst Ising. In his 1925 Ph.D. thesis
[2], Ising solved the model for the 1 dimensional lattice where the solution shows
that there is no phase transition. In the 2 dimensional lattice, however the solu-
tion shows the phase transition between ferromagnetic phase and paramagnetic

phase [3]. Another model for describing magnetic systems is the spin glass model

'k’-/t be occurred in 2 dimensional Ising

phases that can occur in the

[4] which exhibits the new pha:
model.

In this thesis, we
modified random-bon een proposed based on the
assumption that addin ari d v the system to be distorted.

By using computer sim phase diagram and important parameters can

he fundamental idea on sta-
which the modified random-

bond Ising model is base 0..-'}?-9 sed. Then in Chapter 4, the main

-~ et

discussion is the results from computer. ation and the phase diagram. The
o h | )
conclusion is on Chap
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CHAPTER 2

STATISTICAL MECHANICS

This chapter is dewotedsexclusively to the basic idea of statistical mechan-
ics. The discussion is m#inly #/show how the algorithm has been designed and

implemented.

2.1 Canonical ensemble
3 F"
222244
Canonical ensemble is approprlato for descrlbe systems not in an isolation, but in

thermal equ111br1um with a reservoir. The bas1c postulate in canonical ensemble
is start with the system that is in contact with a larger system. The large system
has constant temperafure. Consider an isolated composite system made up of
two subsystems whose¢Hamiltonians arey Hy(p1,z1) and Hy(pe,z2) the number
of particles in subsystems. is written as N, and N,, tespectively. Both N; and
N, are macroscopically large and- satisfies the condition Ny, > N;. Consider
a micrecanonical ‘ensemble of the compgosite system with total energy between
E and E + AFE, the energy E; and FEs of the subsystems can have any values
satisfying
E < (Ey+ E;) < E+ AE.

Although this includes a wide range of values for £; and FEs, only one set of values,
namely E, B, is important. Assume that E; > E, let I';(E,) be the volume
occupied by system 2 in its own I' space. The probability of finding system 1 in a
state within dp;dz; of (p1, z1), regardless of the state of system 2, is proportional

to I'y(Es)dp1dxy, where Fy = E — FE;. Therefore up to a proportionality constant



the density in I' space for system 1 is

p(p1, 1) oc Ty (E — Ey).

Since only the values near E; = E; are expected to be important, and F; < E,
the expansion can be performed as

0S(E2)

KlogDy(E — By) = )—El[ o ]E i
2 2=

E

where T' is the temp

2 (2.1)

The first factor is indepen 1 constant as far as the small

subsystem is concerned he ensemble density for the small
subsystem can be written

(2.2)

where the subscript Hlabeéling the subsysten lias hee ( itted. Since the temper-

ature of the larger s@};s em s ¢ be&ves like heat reservoir and

it keeps the total tempgrgure of the sysécgm at constant. The ensemble defined

by (2.2) appﬂnﬁﬂ)@ %t%j ‘iﬁlo% Wl%jﬂrﬂﬁetermined through a

contact with a‘heat reservoir, is C%‘lled the canomcal ensemble

AR TRGTT IR R T TNR oBicomne v
the volume in I' space occuple§Pb g(;camomgensefél

Zn(V,T) = / e—BHW)% (2.3)

where 3 = 1/kT, and the constant h has the dimension of momentem x distance
to make Zydimensionless. The factor 1/N! appears, in accordance with the rule
of correct Boltzmann counting. These constants are of no importance for the
equation of the state.

The canonical ensemble is mathematically equivalent to the microcanonical
ensemble in the sense that although the canonical ensemble contains system of all

energies, the overwhelming majority of them have the same energy. To do this,



the mean square fluctuation of energy must be calculated in canonical ensemble.

The average energy is

[ He P dpdx
—< H>=<4_ 7" 2.4
U=<H> TP pds (2.4)
Hence
lw W =HE) dpdy = 0,
S % /@
- —T = 2.

where A(V,T) is the

Therefore the mean

(2.7)

\

for a macroscopic syst .7) is normal fluctuation.

As N — oo, almost |i‘ the energy (H), which is

the internal energy. jmrefore the canonlcal ensemba]ﬁls equivalent to the micro-

canonical ens

In the m%gnms?ﬂrglﬁlﬂ ?m I' space according
to the ti a éﬁ in energy is
obtalna ﬁ:jnaﬁlﬁiﬁnmﬂ ﬁ:’j)n nﬂﬁﬁ Ele peak in the

distribution of the system energy occurs with this reason. The sharpness of the
peak is due to the rapidly increasing of the area of the energy surface as E in-
crease. For an N-body system this area increases like e”, where F o< N.

From a physical point of view, a microcanonical ensemble must be equivalent
to a canonical ensemble. A microcanonical substance has the extensive property.
Any part of the substance must be in equilibrium with the rest of the substance,
which serves as a heat reservoir that defines a temperature for the part which has
been focused. Therefore the whole substance must have a well-defined tempera-

ture.



2.2 Phase transition

A phase transition is signaled by a singularity in a thermodynamic potential such
as the free energy. If there is a finite discontinuity in one or more of the first

derivatives of the appropriate thermodynamic potential, the transition is termed

first-order. For a magnetic syste j holtz free energy A(V,T) is the ap-

ity agnetization showing that the

| ‘iv@ontinuous but second deriva-

as higher order, continuous

1ds te a divergent of susceptibility, an
-

infinite correlation length ower:] - correlation.

tives are discontinuous,

or critical. This type

i |
1
W

AULINENINYINT
PAIATUAMINYAE



CHAPTER 3

THE MODELS

This chapter is deyotéd exclusively to the basic idea of Ising model, random-
bond Ising model, spin glass moclel andvllmodiﬁed random-bond Ising model. Mainly,
the discussion is about kbw £hé modelhas been formulated from physical systems
and the properties 6f each model V\/‘ﬂi‘.; be explored. Before we start with the
random-bond and spin glass mpd_el, théjlpagic idea of Ising model in which both

models are based on must be reyigmfed ﬁgst

3.1 The Ising model

The Ising model, is naﬁled after the physicist Ernst Ising after he solved the model
for the 1 dimension maghetic system in his 1925 Ph.D. thesis [2]. The Ising model
is defined on a'disarete collection of spins. In the Ising model. the system consists of
an array of NV fixed points called lattice that form an n-dimensional periodic lattice.
The geemetrical structure ofi the lattice may be cubig-or hexagonal. Associated
with each lattice site is a spin variable S; which is a number that is either +1 or
—1. If S; = 41, the ith site is said to have a spin up, and if S; = —1, it is said
to have a spin down. A given set of number {S;} specifies a configuration of the
system. The Hamiltonian of the system in the configuration specified by {S;} is
defined as

(i5)

where the symbol (ij) denotes a nearest-neighbor pair of spins. There is no dis-
tinction between (ij) and (ji). Thus the sum over (ij) contains yN/2 terms, where

v is the number of nearest neighbors of any given site. The magnetic interaction



J is constant. Magnetic interaction tries to align all spins on the lattice in the
optimal direction hence the ordered phase, while thermal energy tries to break the
order. For each pair, if the interaction is positive, the spins try to align in the
same direction. If the interaction is negative, the spins try to align in the opposite
direction. In one dimension, the solution admits no phase transition. The Ising
model undergoes a phase transition between an ordered and disordered phase in

2 dimensions or more.

3.1.1 The Onsager solution

)

The partition function of the Ising model in two dimensions on a square lattice

can be mapped into@ 2 dimensional o_f free fermions (S = +1) [3]. Consider a
: )

square lattice of N = p?, the lattice consists of 12 rows and n columns of spins. Let

the lattice be enlarged hy one i"bv{r and onp column with the requirement that the

ald o 1

configuration of the (n+ 1) row and (n + 1) ¢olumn will be identical to that of the
first row and the first column _reélpectiveﬁ.T_h_is boundary condition endows the

lattice with the topb}ogy of a torus. Let p, (e =1,. ._r'f , 1) denotes the collection

of all the spin coord;ﬁates of the o row: s

o = {S1,5, ..., Sn}tar (3.2)

A configuration of ghe entire lattice is then specified by {uy . . ., i, }. By assump-
tion, the a row interacts only thes(aw — 1) and.the (o + 1) row. Let E(q, tlat1)

be thefinteraction energy between thel o and a + 1 row:
E(u, ') = =J ) SkS;. (3.3)
k=1
Let E(uq) be the interaction energy of the spins within the « row:

The 1 and i respectively denote the collection of spin coordinates in two neigh-
boring rows. The total energy of the lattice for the configuration {1, ..., p,} is
given by

E{Nla s nun} = Z[E(MOM/'LO#H) + E(Ma)]



The partition function is

=y - Zexp{ ﬂZ (ftar that1) + E(pta)]}- (3.5)
M1
Let the matrix element of 2" x 2™ matrix P be defined as
<N|p| "\ =2 g AW )FEW)] (3.6)
Then
Z(T) (pa| P11
(3.7)
The matrix elements of o n 1 another. form
(S, M shpfs., 578 [0 5k5k11 8IS, (3.8)
Define two 2" x 2" matrig Land V. ¢ matrix elements are respectively
given by
(Sl,... , (3.9)
(Sy,.. .ﬂw 1 — (... 08, HeﬁJSkSk+1. (3.10)
k=1
e Ve“ﬁd% mn EJf{l ’a’ﬂ enN3
(3.11)
Y W"lﬂ@f’l‘iﬂiﬂ%"lﬁ% 18
Vi=axax- (3.12)
where
(SlalS') = P75,
Therefore
el emht
a= = 4 e X (3.13)
e B B
where X is the 2 x 2 Pauli spin matrices
0 —2 1 0
X = Y = L= (3.14)
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By using the mathematic identity, the matrix a can be rewritten as

2sinh(24.J)e’* (3.15)

where
Hence

(3.16)
where
A calculation of matrix el

(3.17)
Therefore

(3.18)

This lead to the followﬁ

qumwnpm m RS
v FRSHIDANINYA

V=w. (3.20)
This formula are valid if all eigenvalues of V' are positive and if lim"~*>n~!log A
exist. The largest value of V' can be calculated as
A = /2 +stystAa2n-1) (3.21)
where

k
coshy, =2z cosh 2¢cosh20—cos7r—sinh 27 sinh 26
n
k= 0,1,....2n—1



11

and
¢ =pJ
The Helmholtz free energy per spin can be obtained as
a(T) = ——lo (2cosh283J) — ! 7rlo 1(l—i-\/l— ( 2 )2sin? ¢)
I5] & 27rﬁ 0 & 2 cosh 2¢ coth 2¢
\ (3.22)
and the internal energy per
’ 1(%)] (3.23)
where K (k) is a ta : i ,“thie gc ipletelelliptic integral of the first kind:
(3.24)

and

The specific hem ) is shown to be @

RGN e o

where Fi(k 1sq'!1 tabulated functien, the com@te elhptlc 1ntegral of the second

kmd’QW'lmﬂ‘iflJ/ll N

1 — ksin? ¢do. (3.26)

The elliptic integral K;(x) has a singularity at kK =1 (or &' = 0),

4 dK s
Ki(k) =~ log—, dlé )wg (3.27)

Eir) ~ 1. (3.28)

Thus all thermodynamic functions have a singularity of some kind at T' = T,
where T, is such that

2J
2 tanh? W =1

KT, = (2.269185)J. (3.29)
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Other relations satisfied by T, are

o /KT Va1,
cosh 137{0 = V2,
2J
inh — = 1.
S1n kv
Thus near T' = T, @////
2 T. T
oT) ~ — - )= (1+ ) (3.30)

It approaches inﬁni&/

continuous at T =

0.The internal energy is

= T, involves no latent

heat.

To justify callin phase transition, the long
range-order i.e., the spouta ust be examined. To calculate
the spontaneous magneti ve of fhe free energy with respect
to H at H = 0 has to be caleu result shows that the spontaneous

(3.31)

w2 soB UEANENTNEINS
e A FARADIUUR NG AAY svscens

1975 [4]. The expression spin glass was originally coined to describe some mag-
netic alloys in which there was observed non-periodic freezing of the orientation
of the magnetic moment or spin, coupled with slow response and linear low tem-
perature heat capacity characteristic of conventional glasses [5, 6]. The attempt
to understand the cooperative physics of such alloys has exposed many previously
unknown and unanticipated fundamental concepts and led to the devising of new
analytical, experimental and computer simulation techniques. Spin glass model
has been one of the interesting problems of complex systems. Such problems are

ubiquitous, not only through out the breadth of condensed matter physics but
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also biology, evolution, organizational dynamics, hard-optimization, and environ-
mental and social structures. In consequence the expression spin glass has now
taken on a wider interpretation to refer to complex glassy behavior arising from
a combination of quenched disorder and competitive interactions or constraints,
and to systems exhibiting such behavior. Spin glass behavior requires two essen-
tial ingredients. These are quenched disorder and frustration.

Quenched disorder refers to constrained disorder in the interactions between
the spins and/or their leeations. The spin-orientations themselves are variables,
governed by the interactionssexternal fields and thermal fluctuations. These spins
are free to order or not ag'their dynarﬁlics or thermodynamics tell them. The spin
glass phase is an examplé of spontanépus operatic freezing or order of the spin
orientations in the présence of the Eonsf‘fajned disorder of the interactions or spin

: },

locations. {d

L

Frustration refers to the Cbnﬂicts b-g;tfyve'en interactions, or other spin-ordering
ald tdda
forces, such that not all can be abeyed simultaneously.
These features are readily igisualizeﬁlﬁnl a simple model of Hamiltonian ap-

propriate to an ide_zﬂ;ization of magnetic interactions b‘b‘gween atoms with defined

local moment A ~d

H== "J;S5S;, = (3.32)
(i)

where the J;janeasures the ‘inagnetic éxchange interaction between the pair of
spins (zj). Théjvariables are the {S;}, while the {J;;} are quenched/constrained.
Pairs of\spinis get«different erdering dnstructionsthrough thesrarious paths which
link ¢ and 7, either directly or via intermediate spins and then gives rise to the
frustration. The form of interactions distribution P(.J;;) can be Gaussian, uniform
or bimodal distribution such as the Figures 3.1 and 3.2 while the average of the
interactions distribution equal to zero.

The most studied models of spin glass are

e The Edwards Anderson (EA) model [4]: The spins belong to a finite di-

mensional lattice of dimension D: Only nearest neighbor interactions are

different from zero and their variance is D~/2,

e The Bethe lattice model [7, 8, 9]: The spins are on a random lattice and
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Figure 3.2: Uniform distribution interaction of spin glass.
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1/2

only Nz/2 J’s are different from zero: They have variance z~'/?. The coor-

dination number is z.

e The Sherrington-Kirkpatrick (SK) model [10]: All J’s are random and dif-
ferent from zero, with a Gaussian or a bimodal distribution with variance
N~Y2_ The coordination numbex is N — 1 and it goes to infinity with N
(11, 12].

The SK model is the special-case ofsthe EA-meodel when the dimension goes to

infinity. As far as the free gnétgy is concerned , the following rigorous results can

\
\

be obtained: \

?vliITﬂJ'Bethe(z) = SK,

—2

[}im Edvwards AncI}er's'on (R) = SK,
lim ﬁnlte Iange EA(R) . = SK.

R0
A natural corollary of thlS recognltlon of the key ingredients is experimen-

tally the behavior should not be restucte_d‘ to metallic systems, provided one has

disorder and frustlamon and mdeed the effects have now been seen in several

insulating alloys. The canonical insulating example 1s_EuxSr1,xS in which only
Fu is magnetic material and for which the nearest-neighbor interactions are fer-
romagnetic, next-nearest dnteractions areiantiferromagnetic. Another example is
RbyCu,Coy_Fy which exhibits the spin glass properties.

Consider the SK model that & Ising spins.interact through an infinite-ranged
exchange wteractions, which are independently distributed with a-Gaussian prob-

ability density [10], the J;; distributed according to

) = iy expl=y = /277 (33

where Jy and J scaled by
Jo=Jo/N,J = J/NY2, (3.34)
The averaged Helmholtz free energy may be expressed as

A = —kTlimn ' / [P dgij)Traexp( > Y 78085 /2kT) — 1}
(27) a=1,...,n i#£j
= —kT lim 0~ {Tr, exp g > 8388 Jo/2kT + Z; S¢8eSPSY T [4(KT)?) — 1},
%] o a,
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where o and 3 label n dummy replicas. Reordering and dropping terms which

vanish in the thermodynamics limit yields

A =—kT lim n’l{exp[JZNZn/él(kT)Z]
xTr, exp Z > SeSIR I 2(kT) + > ( Zsa Jo/2kT] — 1}(3.35)

af i

where (af3) refers to combinations ¢ yy)wﬂ:h a # (. The Helmholtz free

7 = 1—(2 expl~22/2)co J dz, (3.37)
PR ¥
m = (2m)"Y/? (3.38)
To show the physical &gmﬁ.@.&p.e’ﬁﬁ 7 he thermal average of the spin at
site 4, (S;), and it e Wi
0
Si) = 3.39
(5) = o (339)

ﬁ ﬁﬂq ’?’ME%@W mﬂﬁ* WSS w—o. (3.40)
i ??1 ARy m:t;;t:;iz‘;

of (S¢) and (S x S )azp €valuated for the system characterized by the J-averaged

n-ensemble partition function. This result is valid for finite-ranged interactions as

well as infinite-ranged ones. Thus [13]

m = [(Si)], (3.41)
7=[(S:)"] (3.42)
independent of . The notable point is that a reentrant spin glass transition occurs

at the phase boundary between the ferromagnetic phase and the spin glass phase.

In Sherrington and Kirkpatrick’s paper, these phases can be distinguished by
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the average magnetization m and mean-square disorder average local moment g.
Hence non-zero q implies a cooperatively frozen magnetic state while non-zero m
implies that that frozen state has a ferromagnetic component. These phases can

be categorized [10, 13] as

1. paramagnetic if both m and g are zero.

2. ferromagnetic if both e and ¢ are nefl-zero.
-t

3. spin glass if ¢ ismen-zcreo but M is zero.

The average magnetization/m and meJé'Ln—square disorder average local moment ¢
are defined by —

m = [(Saha= (5"
..:'J‘_'d.
222 h4

3.3 Randomi-bond Ising model (RBIM)

If a typical antiferromagnet like FeCl, is mixed with an isostructural nonmagnetic
material like CoCly10r NiClyy diluted rantifertomagnets eati'be obtained. Within
a uniform external field, a large degree of frustration is induced and a completely

new uniyersality class.emerges - The.randem-bond.lIsing medel is.defined as

H=- JijSiS; (3.43)
(i)

with J;; > 0 is ferromagnetic interactions strengths between neighboring spins.
These are random quenched variables, which mean that they are distributed ac-
cording to some probability distribution and fixes right from the beginning. In
the RBIM, the interactions are in the form of probability distribution [14], e.g.,
Gaussian [15], uniform [14], bimodal [16], etc. The example of the interaction
distribution is shown in Figure 3.3.

Since the interaction are all ferromagnetic, the ground state is simply given

by S; = +1 for all sites S; or S; = —1 for all sites S;. This induces an interface
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Figure 3.3: Uniform distribution ifteraction of random-bond Ising model.

4 ¥

through the sample where bOIldb have'fo be broken. If all bonds have the same
strength J;; = J, the system would become a pure Ising model. Because of the

randomness of the J;;

55, 1S energetically;n}ore favorable to break weak bonds: the

ald i
interface becomes distorted and its shapeis ipugh This model has also been used
to describe fractures in materlals where ‘Eﬁe JZ] represents the local force needed

to break the materlal and it is assumed that the fracture occurs along the surface

of minimum total Pup‘pure force. i

3.4 Reentrant spin glass transition

A reentranti§pin glasst(RSG)trandition 0ccursat the phase'bdlimdary between the
ferromagnetic and the spin glass phase. That is, as the temperature is decreased
from a high temperature, the magnetization that grows in the ferromagnetic phase
vanishes at the phase boundary. The spin glass phase realized at lower temper-
atures is characterized by ferromagnetic cluster. It is believed that the phase di-
agram arises from the competition between ferromagnetic and antiferromagnetic
interactions. Nevertheless, these phase diagrams have not yet been understood
theoretically. Several models have been proposed for explaining the RSG transi-
tion. One of the earliest models to explain the reentrant spin glass transition is
the Sherrington-Kirkpatrick spin glass model. The model exhibits the reentrant

spin glass transition but does not fit well with the experimental data.
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There are many experimental data showing that the reentrant spin glass
transition exists in the phase diagram of some composite alloys [5], [17]. By
varying the ratio of each ingredient and temperature, the material exhibits the
ferromagnetic phase, paramagnetic phase and spin glass phase. When an Ising
system is rapidly quenched from a high temperature to a temperature below T,
it condenses into a non-equilibrium configuration built up of a great number of
domains. In the subsequent evolution towards.equilibrium, larger domains tend
to grow at the expensevof-smaller onés. The-driving force of this process is the
lowering of the surface engrgv.associated with the domain walls. In the system
with randomly added imptirigies that ao not destroy the ordered phase, the situa-
tion is substantially morg Complicated.kLThe impurities, acting as pinning sites for
domain walls, severely slow down the o?de;;ring dynamics.

4

i<

L
d

3.5 The modiﬁedRancitijm—Bond Ising model

The random-bond Ising model atid Edwé’fa-szhdersonl. spin glass model both are

based on 2 dimené__iéj;nal Ising model but using the c}iff;erence set of interaction
distribution. In the eéxperiments [5],[17], there are ph.'ase transitions between fer-
romagnetic, paramagrletic and spin glass which is calfed reentrant spin glass tran-
sition. In spinsglass model, the interactions are distributed in the form of Gaussian
distribution, the interactions of random-bond Ising model are however difference.
In ordeérito explaifi this transition, the model has been imodifiédh with the hypothe-
sis that adding another material will cause the system to become distorted. In our
assumption the distortion corresponds to the width of the magnetic interaction.
The width of the interaction become wider with the increasing of the distortion
and the transition between different phases is expected. The Hamiltonian of the

system can be written as

H=—- JijSiSj, (344)
(i)

while the interactions J;; are distributed according to

p(Jig) = [(2m) 2] eapl—(Jyy — Jo)?/277), (3.45)
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3.5. Thi$ value also indicates the degree of disorder of the system. Jj is the center

of distribution which can be set to match with the experiments.

3.6 Important parameters

In statistical mechanics, there are many important parameters. Each parameter

has different physical meaning.
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3.6.1 Heat capacity(Cy)

The heat capacity Cy represents the amount of energy required to increase the
temperature of an object by a certain temperature interval. Heat capacity is an
extensive property because its value is proportional to the amount of material in

the system. The heat capacity ca

(3.46)
The heat capacity is r ¢, by

(3.47)
The average energy of

(3.48)
and

(3.49)
By using the equation doge the heat capacity can be reformulated as

UL HHING
’QW’]Mﬂ‘iWW’L’%ﬂ?&J’]M
(3.50)

The equation states that the heat capacity can be measured from the fluctuations

in the energy.

3.6.2 Average magnetization(m)

The average magnetization indicates the magnetic phase of the system in the

macroscopic scale. The average magnetization is

m=[(S)] (351)
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If most of the spins are align in the same direction, the average magnetization will
not be zero. This means that the system has finite magnetization. In other hand,
if the spins in the system align in up and down direction equally or randomly, the

average magnetization will be zero. In this situation, system has no magnetization.

The magnetic susceptibi ’ f magnetization of a material

in response to an applie eld. t-ca defined as
(3.52)

If the Hamiltonian £

guration {S;} and magnetic

field H, the partition ritten as

(3.53)
(3.54)
und ﬂﬂﬂ’)'ﬂﬂﬂ'ﬁ“ﬂﬂﬂ'ﬁ
2e— "5 o
ama\ﬂfﬁm VIR
, (3.55)

Z(H,T) 0H?

By using the equation above, the magnetic susceptibility can be reformulated as

d 1 0Z(H,T)
X kTa—H( Z(H,T) 0H >
KT 9*Z(H,T) KT 0Z(H,T) ,
~ Z(H,T) OH? _Z2(H,T)( on )
[(m?)] — [(m)]?
= _- . (3.56)

This is the equation which states that the magnetic susceptibility can be measured

from the fluctuations in the magnetization.
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3.6.4 Mean-square disorder average local moment(q)

The mean-square disorder average local moment indicates the magnetic order of
the system. It is also called spin glass magnetization. The mean-square disorder

average local moment can be calculated from
g = 1807, (3.57)

which is the overlap between two independent equilibrated configurations {57}
and {S”} of the same disordcirealization [10]. T the systems are construct from
same set of interactions (Jg) fhe shaxf)e of domains should be very similar. For
example, let the syst€ms bostha Ising model below eritical temperature. The

systems are ferromaguetic/phase whichsthe average magnetization can be up or
\ &

down. The average magnetizatioﬁ of théf systems can be difference but the domain

wall should be very similar. - Ti this ca:sfé‘»-‘thé mean-square disorder average local
- < 4
moment should not be zero. In-other hand, if the temperature of the system is
, il

above the critical temperaturé,r the systeﬁr_&*iire in paramagnetic phase which the

o

. . -t ot A .
zero average magnetizations and there is no domain avall. So the mean-square

disorder average local moment should be zero. By uSing mean-square disorder

average local moment,‘_ the similarity of systems can be calculated.

3.6.5 Bindericumulants(U, g)

The Binder: camukant “was introduced by 'Kurt’ Binder [18] to-dvercome the finite
size effe@t. It is a quantity that is supposed to be invariant of the system sizes at

criticality. The magnetization Binder cumulant [18] is defined by

_ g lmY)]
U=1-30mp (3.58)

The spin glass Binder cumulant [19, 20] is defined by

g= %(3 _ ld) ). (3.59)

By varying the size of the simulated model and away from critical point, the Binder
cumulant from the difference system size are difference. However the Binder cu-

mulants corresponding to different system sizes intersect at approximately certain
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temperature, which is the critical temperature. This provides us a convenient and

precise tool to estimate the value of the critical temperature.

AULINENINYINT
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CHAPTER 4

ensemble, the probability th
calculated from eqklylons (2 2) gnd;-

(4.1)

The system transits frémmone state to d@ther state in the phase space but it is

fmited by (ke ro R PE) Wb otk Dhpdity can be caleulated

from the state qcfensmy of initial state and final state as
ammn;mwﬁmﬂaﬂ »

—ﬁX/H(X’)
e~ BxH(X) *
In Metropolis algorithm [21], the temperature in the initial state and final state
are the same. The transition probability can be written as
, e_IBH(XI)
Ple=a) = ey
e BHX")—H(X))
1 it HX')—H(X)<0
e AHEXN=HX) if H(X') — H(X) > 0.
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As the common of nature, the system always seeks for the lowest energy state if
possible. This equation shows that if the future state has the energy lower than
the initial state, the system always transits to the future state. But if the future
state has the energy higher than the initial state, the probability of the transition

is limited by equation (4.3). For a given temperature, there are the equilibrium

states that the transition prob it to the higher energy and transit

to the lower energy are e idea of the state transition, the

Markov process can bw
1. Select a spin, e/
2. Calculate the tra
3. Compare P to a

4. Flip the spin if P

5. Use the final state to gene
'—|'-j.g"‘$!}

of any thermodynamic quantity to
be averaged. ‘Sore this vaTue Y/

It is important to bﬁw

introduce systematic errors into the results

HUB?WHW§W8Wﬂi
4.2 Si ulatlon
aﬁﬁaﬂﬂ%mumwmaﬂ

To simp 1fy this model, the values of Jy in the equation have been set to

raﬁiom number generator will

Jop = 1.

And the degree of disorder, the value of J, is start from 0 to 2 with a increment
0.05, while 8 are chosen from difference temperatures.
To minimize the finite-size effect, the number of lattice site is set to be

100 x 100. The simulation process can be constructed as follows.

1. Setup the spin and interaction that have no disorder, J = 0.
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2. Setup the magnetic interaction for each pair of the spin according to the

distribution law.

3. Start metropolis algorithm to let the system achieve the equilibrium state

by using 100000 MCS.

..a* YN
For a better speed, the ation. is v ‘ cluster computer. The important

parameters which can be cal Eﬁﬂ and e od in each temperature and disorder

e

during the simulatio ,-'E-!w!»@!m;g»g!g!ugmgmwE} average magnetization,

mean-square disorder av enetic susceptibility.

4.3 Im&u@@waﬂa@wmm
1319 WAKIN I UR TN Y

The energy of the system can be calculated from simulation by the summation

over all the interactions between spins. By using the equation
= JiiS:iS;, (4.4)

the algorithm for energy calculation can be constructed.
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4.3.2 Heat capacity(Cy)

The heat capacity can be calculated after the energy data is completed. The heat
capacity relates to the slope of the graph between energy and temperature. It can

be written as

(4.5)
or the fluctuation in the e

(4.6)
From the equation 4.5, car ted by the derivative of energy

respect with temper
must be found in or ‘ latet oA 1ty which leads to increase of sim-

ulation time.

4.3.3 Averagel
The average &LI‘M&Q %]bglanﬁ Y sihfideigh by sum over all spin

and divided by number of spin sites. By using the equation

QW’]Mﬂ‘ﬁmﬁJﬁ@’mﬂ’m&

the algorithm of average magnetization can be constructed.

agnetization (m)

(4.7)

4.3.4 Magnetic susceptibility(y)

The magnetic susceptibility can be calculated after the average magnetization
data is completed. The magnetic susceptibility relates to the slope of the average

magnetization and applied magnetic field that can be written as

_ 9l(m)]
X="5p (4.8)
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It is also related to the fluctuation in the average magnetization which can be

written as

[(m*)] — [(m)]?
kT '
From the equation 4.8, magnetic susceptibility can be calculated by the derivative

X = (4.9)

of average magnetization with respect to external magnetic field. In this algo-

rithm, the average magnetizati

. ’ izatichM ‘*’f external magnetic field must be found
in order to calculate the avera, thh leads to longer simulation

netic susceptibility is c : , : in n the average magnetization

at constant temperatur

4.3.5 Mean-squa ord Tocal moment(q)

The mean-square disorder > Jocal mom, an be calculated by|[19, 20]
" ‘
(4.10)
where S and Sﬁ o7 lent equilibrated figurations but using the same
set of magnetic interaction. So the mea e dis@der average local moment,

for a given set of magnetic interaction, can be calculated from the equation 4.10

wording o ) L) 9?%}% IR ‘i
1. Setu ﬁhe re lica s stem
2. Slqm ate the re 1ca system n pﬁdgt:;vmzhle main system

3. Calculate the mean-square disorder average local moment by using replica

system and the main system according to 4.10.

4.3.6 Binder cumulant(U, g)

The binder cumulant can be calculated by using the equations

I (UL)
U =1 3[<m23]2, (4.11)
g = %(3—[[(%)]]2). (4.12)
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Both binder cumulants must be calculated from difference sizes in order to de-
termine the critical temperatures. In this thesis, the size that be simulated are

10, 20, 30, 40, 50.

AULINENINYINT
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CHAPTER 5

important parame n'i‘( re

3
11 e ANgNSweng

In the Ising mggel, the average energy depends.on the temperature. In the mod-

o0 PRSPV I E LSRG S0 e reits rom

the simulation are shown in Figures 5.1 and 5.2.
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4

Figure 5.2: Contour plot of energy diagram as a function of temperature, 7', and

the width of the interaction distribution J.
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It is shown that at J = 0 the system becomes Ising model and the calculated
energy from ours results agree with that of the Ising model. At finite J the energy
is also increase which similar to 2 dimensional Ising model except the T" < 1 region.
At this region the energy decrease as the temperature increase until it reaches the

minimum value. It is expected that at 7" < 1 region the system is trapped in the

So the results in this region might
reglon as the disorder increases

&)n s distribution. Since 50%

\ The energy should decrease

The heat capacity can k ' -affer the energy data is completed. From

Figures 5.1 and 5.2, the ar€as| that the et s increase rapidly with temperature

will have the higher heat cap pacif ﬂ"' " ‘.:—, eas that the energies remain almost

constant will have t ;._.--.-.._........_-.-..-.-....-..,.__---__..-,.,,_.", the simulation are

]

shown in Figures

2
ﬂ‘lJEIT’J'ﬂWﬁWEI’]ﬂ‘i

’QW'WMﬂ‘iEU UAIINYAY



34

5000

et Capa(nt"y‘;'C"/ as a function of temperature, 7', and
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Figure 5.3: 3-D diagram of
the width of the interactio
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4

Figure 5.4: Contour plot of heat capacity C'y as a function of temperature, 7', and

the width of the interaction distribution J.
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The areas that have high heat capacity from Figures 5.3 and 5.4 are the area
that have a very steep slope in Figures 5.1 and 5.2 or have a very high fluctuation

in Figure 5.1 and 5.2.

The average magnetization indicates t! tic phases of the system in the
macroscopic scale. The average magiietization is'ealculated by summation of over
all magnetization on eve divide by the number of sites. The
results from the simulati 5 \;\ and 5.6. Without disorder,
J =0, the average mag e 2 dimensional Ising model.

The transition betwet agnetic is clearly being seen.

ﬂuﬂ’mﬂ‘ﬂﬂ’\lﬂ’]ﬂ‘i
QW’]ﬂ\i\ﬂiﬂJMﬁﬂ’mmﬂB
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Figure 5.5: 3-D diagram of avefégje magi;i:ea'icigation m as a function of temperature,
ala tdda
T, and the width of the inferaction distribution J.

A

Figure 5.6: Contour plot of average magnetization m as a function of temperature,

T, and the width of the interaction distribution .J.
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The average magnetization depends on the temperature and disorder. With-
out disorder, the system behaves in the same way as the 2 dimensional Ising model.
While the disorder increases, the average magnetization decreases to zero. How-
ever the average magnetization is not enough in determining the spin glass phase

since the spin glass phase and paramagnetic phase both have zero average mag-

The areas that h .r" r eptibility from Figures 5.7 and 5.8

are the area that have a /istecp sloy gures 5.5 and 5.6 or have a very

= X

] §
AULINENINYINT
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/ / o g J 2.0
F r i id

Figure 5.7: 3-D diagram, pf 1nagnet1c susg jptlblllty X as a function of temperature,

T, and the width of the 1nteract10n dlstrlbut}»on o

Figure 5.8: Contour plot of magnetic susceptibility x as a function of temperature,

T, and the width of the interaction distribution .J.
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5.1.5 Mean-square disorder average local moment(q)

The results from the simulation are shown in Figures 5.9 and 5.10. This parameter
can be used to define the phase of the system similar to the average magnetization.

It can also be used to measure the magnetization at microscopic scale.

¥
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Figure 5.9: 3-D diagramiof Mean-square disorder average local moment (q) as a
: i
i
function of temperature, 7% and the xvidtl}..Qf,Jthe interaction distribution J.

e e ]

T2

0.0 0.5 1.0 15 2.0

Figure 5.10: Contour plot of Mean-square disorder average local moment (g) as a

function of temperature, T, and the width of the interaction distribution J.
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cumulanit of the spin glass magnetic moment.

5.1.6 Binder cumulant(U, g)

The Binder cumulants of magnetization and spin glass magnetization at different
degree of disorder are shown in Figures 5.11 and 5.12. In each Figure, the system

size that has be simulated are 10, 20, 30,40 and 50.
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J=0.50

AT I
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Figure 5.12: Spin glass Binder cumulant at J = 0.50, J = 1.00, J = 1.50, J = 2.00

at difference system size.
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From Figures 5.11 and 5.12, the intersection points in Binder cumulants
agree with the result from the phase diagram that determined by m and g. These
results indicate that the phase transition can be determined by Both Binder cu-

mulants and magnetizations.

Z

doni=bonaisis s> model can be determined by
] ' '..

The phase diagram of th

using the average mag der average local moment.

The phases can be cate

X

1
1l
i¥ |
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Figure 5.13: Phase diagram of modified random-bond Ising model.
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The Figures 5.5, 5.6, 5.9, 5.10 and 5.13 show that these phase depends on
temperature and disorder. The phase diagram that obtained from this model is
difference from the one that has been used in [22]. In their results there are mixed
phase between the spin glass phase and ferromagnetic phase which is difference

from the modified random-bond Ising model. When compare with the result from

hat the slope of boundary between

paramagnetic phase and s in glass urs results is shallow than that
of reference [10]. Also ¢ de ryjetwegmﬁs!unagnetlc and spin glass phase
from ours result depends g \e result from [10] does not

The transition from ferrg ragnetic phase pin glass phase at low tempera-

ture occurs at lower disorder tﬁ | emperature. At low temperature and low

most of the local spins try to ali

that occur when thellsorder Increase cause the av@age magnetization become

zero, however ﬁe ma rﬁﬂb order is %es&ied in small scale.

BYIINE N

/
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CHAPTER 6

CONCLUSIONS

The main purpose of this work is to study the phase transition in modified
random-bond Ising model. Ahe modillﬁed random-bond Ising model is based on
2 dimensional Ising maodel wigh the interaction that is distributed according to
the Gaussian distribution. The h-ypothé;sis; is that adding another material to the
system will cause the'Sysgeni to becom‘fe_*_-”dils'.torted, as a result, the width of the
interaction become wider. I Jw_‘

From the simulation results; the averagg energy increases while the temper-

ature increases except at 7. .g_.l':t'egion.f;ﬁ':lfhe result in 7' < 1 region might not

represent the true .pifoperties of the ground state sinc"g) the system is trapped in

the local minimum,“dn other region, as the disorder ificreases the energy of the
system reduces due to'the interaction’s distribution. Since 50% of the interactions
are distributedsinsthes/;; = L regions, T'he energy should decrease as the disorder
increases.

Phase diagram can be obtained by using the average magnetization (m) and
mean-sdquare disotder ‘average local nement (g)@nd the.Bindér cumulants. Phase
diagram obtained from parameters m and ¢ is qualitatively agrees with the tran-
sition point obtained from the binder cumulants.

Peaks in heat capacity and magnetic susceptibility in 2 dimensional Ising
model locate at the phase transition line between ferromagnetic phase and ferro-
magnetic phase. While the result from modified random-bond Ising model shows
that these peaks are shifted from the phase boundary.

Transition from ferromagnetic phase to spin glass phase at low temperature
occurs at lower disorder than high temperature. At low temperature and low disor-

der, most of the interactions are distributed in positive region. As the result most
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of the local spins try to align in the same direction, but there are domain walls
that occur when the disorder increases cause the average magnetization becomes

zero, while there is magnetic order in small scale.
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APPENDIX A

USING MPI

This appendix involves with basicidea of cluster computing and using cluster

computer.
-t

A.1 Basic MPIconcept

MPT is a language-independent conmunications protecol used to program parallel
computers. Both poiat=topomtsand collective communication is supported. MPI

is a message-passing application pro,gra;:mmer interface, together with protocol and

semantic specifications for thow "its: features ust behave in any implementation.

<

MPT’s goal are high performance, scalabili‘ty and portability. Mpi remains the

’ 44
dominant model used in high—pe'rforman'c_’_e':cqmputing today.

#esi b4
—

A.1.1 Parallel co__f;r_l_p_utatio.]f;gl._ models

A computational mbdel 18 a conceptual view of whatitypes of operations are avail-

able to the programj"' It does not include the speciﬁc;yntax of a particular pro-
graming language or library and it is independent of the underlying hardware that
supports it. The effectivetiess of such as fimplementation depends on the gap be-
tween the model and the maching,

Parallel computational models from a complicated strueture. They can be
differefitiated along multiple.axis.. The picture is made confusing by the fact that
software ‘can provide an implementation of any computational model on any hard-

ware.

Data parallelism

Although parallelism occurs in many places and at many levels in a modern com-
puter, one of the first places it was made available to the programer was in vector

processors. Indeed, the vector machine begin the current age of supercomputing.
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The vector machine’s notion of operating on an array of similar data item in par-
allel during a single operation has been extended to include the operation of the
whole programs on collections of data structures. The parallelism need not nec-
essarily processed instruction by instruction in lock step for it to be classified as
data parallel. Data parallelism is now more a programming style than a computer

architecture.

Shared memory

Parallelism that is not determined imp]licitly by data independence but is explicitly
specified by the programueriis cqntl"ollparallelism. One simple model of control
parallelism is the shared—memory. modeT;‘ 111 which each processor has access to all
of a single, shared address spacé at thé;iuéual level of load and store operations.
Coordination of access t@ locat'foﬂs marﬁﬁiﬂéted by multiple processes is done by
some form of locking, although hlgh level language may hide the explicit use of

locks. A variation on the shared—memory“model occurs when processes have both

a local memory (a( ceq81b1e only one process) and also share a portion of memory

(accessible by some.ot all of the other processes).

Message passing

The massage-passing model posits, a processes that have only local memory but
are able to commulicate with otherprocesses by sending ‘and-receiving messages.
It is a defining feature of the message-passing model that data transfer from the
local memory of one process to the local memory of another requires operations

to be performed by both processes.

Remote memory operations

Halfway between the shared-memory model, where processes access memory with-
out knowing whether they are triggering remote communication at the hardware
level and the message-passing model, where both the local and remote processes

must participate, is the remote memory operation model. Active messages are
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often used to facilitate remote memory, which can be thought of as part of the
active-message model. Such remote memory copy operations are exact;y the ”one-

sided” sends and receives unavailable in the message-passing model.

Threads

Early forms of the shared-memory modelprovided processes with separate address
spaces, which could obtain shared memory through explicit memory operations.
The more common version of.theshared-memory now specifies that all memory is
shared. This allows the medclto be afiplied to multi-threaded systems in which a
single process (address space ) has _assoéiqted with it several program counters and

execution stack. Sincgfthemmodel allows fast switching {rom one thread to another

| #

and requires no explicif; memory'operatfgn's. The difficulty imposed by the thread
model is that any "state”fof thé"pf(;)grarrija'eﬁned by the value of program variables

is shared by all threads Simultaﬂ_éausly. "

Combined models; - §

Combinations of the above models are also possible, in which some clusters of
processes share membry with on another but communicate with other cluster
via message passing, ‘or in which' processes may. by multithreaded yet not share

memory with one another.

A.1.2 Advantages of the Massage-Passing Model

Universality

The massage-passing model fits well on separate processors connect by a commu-
nication network. Thus, it matches the hardware of most of today’s parallel super-
computer, as well as the workstation networks that are beginning to compute with
them. Where the machine supplies extra hardware to support a shared-memory
model, the massage-passing model can take advantage of this hardware to speed

data transfer.
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Expressivity

Massage passing has been found to be a useful and complete model in which to
express parallel algorithms.It provides the control missing from the data-parallel
and compiler-based models. some find its anthropomorphic flavor useful in formu-
lating a parallel algorithm. It is well suited to adaptive, self-scheduling algorithms
and to programs that can be made tolerant.of the imbalance in process speeds

found an shared networks. 2

Ease of debugging |

Debugging of parallel programs rémaiﬁ,sl a challenging research area. While de-
buggers for parallel programs are perllz:i?pé;easier to write for the shared-memory
model, it is arguable that the de},)l,lggillf:g.' process itself is easier in the message-
passing paradigm. This iy becatse onéfﬂéf.tlhe most common causes of error is
unexpected overwriting of méhlo-ry'. The;hgéésage—passing model, by controlling

memory reference more explii:l‘tly-:than aity of the other.models, makes it easier to

locate erroneous mewiory reads and writess

Performance

The most compelling reason that message passing will remain a permanent part
of the parvallel~computing, envirenmentpis, performange.; As modern CPUs have
become faster, management ‘of‘their caches ant“the memory *hierarchy in general
has become he key to getting the most out of them. Message passing provides a
way for the programmer to explicitly associate specific data with processes and
thus allow the compiler and cache-management hardware to function fully. In-
deed, one advantage distributed-memory computers have over even the largest
single processor machines is that they typically provide more memory and more
cache. Memory-bound applications can exhibit super-linear speedups when ported
to such machines. And evens on shared-memory computers, use of the message-
passing model can improve performance by providing more programmer control

of data locality in the memory hierarchy.
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This analysis explains why message passing has emerged as one of the more
widely used paradigms for expressing parallel algorithms, Although it has short-
comings, message passing comes closer than any other paradigm to being a stan-

dard approach for the implementation of parallel applications.

A.2 Setup the MPI
Before any MPI programs can be executadythe Local Area Multi-computer (LAM)

run-time enviroment must be launched. “Phis*is typically called "booting LAM”.
A successfully boot process creates aJan instance of the LAM run-time environ-
ment commonly referred«to as the ” LéM universe”.

LAM’s run-time envisonment Célin be executed in many different environ-
ments. It can be run interactivelS; on éf'lcluster of workstations even on a single
workstation or LAM canbe/run in ‘pro@uction bateh scheduled systems.

When using rsh”or 8s/u to boot LAM, a test file listing hosts on which to
launch the LAM run-tithe envirgiment: 8, necessary for booting the LAM. For

example: s =

nodel.cluster.example-€oni user—username

nodeQ.cluster-.qW _

node3.cluster-.-é;(ample.com cpu=2 user=userna1'r"fé‘l

node4.cluster.example.com cpu=2 user=usernaiie

Four nodes are gpecified in ghegahove examplehydisting their IP hostnames.
Note also the "g¢pu=2""that follows the last two entries. This tells LAM that these
machines each.haye two .CPU’s.available for.runihing MPLprograms. It is impor-
tant to note'that“the number 6f €PU's specifiéd hereh-has no cerrelation to the

physical number of CPUs in the machine. It is simply a convenience mechanism

telling LAM how many MPI processes will be launch on that node.

A.2.1 The lamboot command
The lamboot command is used to launch the LAM run-time environment. For
each machinae listed in the boot schema, the following condition must be met for

LAM’s run-time environment to be bootes correctly:

e The machine must be reachable and operational.

e The user must be able to non-interactively execute arbitrary commands on
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the machine.

e The LAM executables must be locatable on that machine, using the user’s

shell search path.
e The user must be able to write to the LAM session directory.

e The shell’s start-up sm@“ /%k)t anything on standard error.

e All machines mus resolve the filly-gqualified domain name (FQDN)
of all the machi V ' '

Using ssh with L

daemons, it can be changed fo/othier agents ssh. ssh is a popular choice
»

because of the added secutity. / 58h.ca pds AFS tokens , it presents an
| ll‘\ § Fy
attractive, highly secure, yet ﬁﬂ@ﬂ? ticated method, for invoking LAM.
___p j,.qu.* -J - ) =
The remote Sﬂﬂ agent that - Wa§ spe i nﬁgure can be override with

ronment variable before

cutabﬁ will force LAM to use that

the LAMRSH env
invoking recon, lamb@t, or
remote shell program 1gsgad For exami)j: using a Bourne shell or some other

shdem&tlveﬂ‘iJEJ’JVIEJ‘V]‘i‘WEﬂﬂi

% LAMRSH="ssh -x”

PRIREAIN UM TN 2

Or, using the C shell or some csh derrivatice:

% setenv LAMRSH ”"rsh -x”

Making ssh not ask for pasword

Normally, when using ssh to connect to a remote host, it will prompt for a pass-
word. However, in order for lamboot and recon to work properly, remote nodes
are needed to be execute jobs without typing in a passsword. In order to do this,
RSA or DSA authentication will be needed to setup.

The first thing that must be done is generate an DSA key pair use with
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ssh-keygen:

% ssh-keygen -t dsa
Accept the default value for the file in which to store the key ($/HOME/.ssh/id_dsa)and
other a pass-phrase for keypair. Next, copy the $HOME/.ssh/id_dsa.pub file gen-
erated by ssh-keygen to

%cd $SHOME/ .ssh

%cp id_dsa.pub autherixed keys
In order for DSA authentieation to werk the$/:ssh directory must be in home di-
rectory in all the machineg.are stinning LAM on. If not, the $/.ssh directory must
be copied to home directory ou all LAM nodes. However, when ssh to a remote
host, the DSA pass-phrase gtill be aslged This is where the ssh-agent program
comes in. It allow totype in DSA ’pexsé,?pl}rase once and then have all successive
invocations of ssh autématically autheiypicate against the remote host. To start

up the ssh-agent, type: " (f
% eval ’ssh-agent’ it 7

ot ]

Once the ssh-agent is runni_n_g,_,the pass—p,‘lﬁ‘—_h_ra;sle_ can be enter by running the ssh-

add command:

% ssh-add $HOME/.ssh /id_dsa
At this point, if ssh-t6 a remote host that has the same $HOME/ .ssh directory
as local one, a password sheuld not be prompted.

Once all of these.condition are met tthe lamboot command is used to launch
the LAM runtime environment. Fér example:

shell§ lamboot sy =ssi boot hostfile

The parameters passed to lamboot in the example above are as follows:

e -v: Make lamboot be slightly verbose.

e -ssi boot rsh: Ensure that LAM use the rsh/ssh boot module to boot the
LAM universe. Typically, LAM chooses the right boot module automatically

and therefore this parameter is typically necessary.

e hostfile: Name of the boot schema file.

Common cause of failure with the lamboot command include (but not limited to):
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e User does not have permission to execute onthe remote node. This typically
involves setting up a SHOME/ .rhosts file if using rsh, or poperly configured
ssh keys if using ssh.

e The first time a user uses ssh to execute on a remote node, ssh typically
prints a warning to the standard exror. LAM will interpret this as a failure. If
this happens, lamboot will complainsthat something unexpectedly appeared

on stderr, and abort. Omne solutionis6 manually ssh to each node in the
J

boot schema once in.erder to eliminate the stderr warning, and then try

lamboot again. Am6ther 1s'to use the boot_rshiignore_stderr SSI parameter.
\

)
A.2.2 The lamnodes_cofnmand
An easy way to see how many nodeq and CPUb are in the current LAM universe
is with the lamnodes gommand. For ez‘f{ample with the LAM universe that was
created from the boot sgheuta 1nlsect101.1, 9b0ve, running the lamnodes command
would result in the following guﬁpdut: ==
shell$ lamnodes --

o g

n0 nodel. Cluster example com:1: orlgln thls node

nl nodeQ.clusteI.example.com:l: et
n2 node3.clusteriexample.com:2:
n3 node4.cluster.éxample.com:2:
The "n” number on the far left is the LAM node number. For example, "n3”
uniquely refers to node4. Also node the third column, which indicates how many
CPUs are available for running progesses on that node. In this example ;| there
are total' of 6 CPUs are available for running processes. This information is from
the "cpu” key that was used in the hostfile, and is helpful for running parallel
process. The ”origin” notation indicates which node lamnoot was excuted from.

"this_node” indicates which node lamnodes is running on.

A.2.3 Compiling MPI programs
Note that it is not necessary to have LAM booted to compile MPI program.

Compiling MPI programs can be a complicated process:

e The same compliers should be used to compile/link user MPI programs as

were used to compile LAM itself.
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e Depending on the specific installation configuration of LAM, a variety of -1,
-L, -1 flag and possibly others may be necessary to compile and/or link user

MPI program.

LAM/MPIprovides ”wrapper” compilers to hide all of this complexity. These
wrapper compilers simply add the corre¢t compiler/linker flags and then invoke
the underlying complier to actually perforn’the compilation/link. As such, LAM’s
wrapper compilers can be used just like "real” compilers. The wrapper compilers
are named mpicc (for @'progeatus), mpiCC and mpie++ (for C++ programs) and

mpif77 (for Fortran programms). 1

A.3 Running the MPL _°

_—

The mpirun and mpiexeg command‘s artg used for lunching parallel MPI programs
and the mpitask comandsican be tsed tb provide crude debugging support. The

lamclean command candbe @sed tocompletely clean up a failed MPI program.

A.3.1 The MPI cbirrimand;-’?

The mpirun command has many’ differeijl.‘g"%“ﬁﬁon that can be used t control the

execution of a progranrnl—paraﬁei—?lre—snnpiest—way—to Tiunch the program across

all CPUs listed nin %hé boot schema is: 1
shell$ mpirun C{-hello _

The C aoption means 7launch one copy of hello orievery CPU that was listed
in the boot schema”. The C notation is therefore convenient shorthand notation
for lunching a Setrdf processes daréss a group, of SNIPs:

Another method for running in parallel is:

shell$ mpirun N hello

The N option has a different meaning than C - it mean ”launch one copy of
hello on every node in the LAM universe”. Hence, N disregards the CPU count.
This can be useful for multi-threaded MPI programs.

Finally, to run an absolute number of processes regardless of how many
CPUs or nodes are in the LAM universe:

shell$ mpirun -np 4 hello

This runs 4 copies of hello. LAM will ”schedule” how many copies of hello

will be run in a round-robin fashion on each bode by how many CPUs were listed in
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the boot schema file. For example, on the LAM universe that be shown previously,

the following would be launched:

e 1 hello would be launched on n0 (named nodel)

e 1 hello would be launched on nl named node2)

node3)
L
‘ ——

ed - if er is used that is greater than

e 2 hello would be launc

Note that any number C
how many CPUs are i ill "wrap around” and start
scheduling starting wi ample, using -np 10 would

result in the following

e 2 hello on n0 a second from the ”wrap

around”)

R

e 2 hello on nl (1 from the and then a second from the ”warp

a second from the ”warp

around”)

' “e”“ﬂ“lw? NYNITNYINT
The m 1r1ﬁbjman age contaiffs much morésinformation &' mpirun and the
il ONT1 ST ATV TN ES
A.3.2 The mpiexec command
The MPI-2 standard recommends the use of mpiexec for portable MPI process
startup. In LAM/MPI, mpiexec is functionally similar to mpirun. Some option
that are available to mpirun are not available to mpiexec and vice-versa. The end

result is topically the same, however both will launch parallel MPI program.

That being said , mpiexec offers more convenient access in three cases:

e Running MPMD programs.

e Running heterogeneous programs.
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e Running ”one-shot” MPI program

The general syntax for mpiexec is:

shell$ mpiexec <global options> <cmdl> : <cmd2> : ...

Running MPMD programs

For example, to run a manager/worker parallelprogram, where two different exe-
cutables need to be lunched:

shell$ mpiexec =01 ménager : worker
This run one copy ofaanager’and one copy of worker for every CPU in the LAM

universe. =

Running heterogeneous programs =

“
o 1

Since LAM is a heterogencous MPI impleri_iieﬁfation, it supports running heteroge-
neous MPI programs. Although this caﬁiié‘éb‘mewhat_ complicated to setup, the

mpiexec command can-be-helpful-in-actualiy-running thé resulting MPT job.

”One-shot” MPI pi"ograms

In some case, it;seem like extra work to boot a LAM universe, run a single MPI
job, and then shut.down.the.uniyerse. Batch, jobs are good examples of this since
only oné job'is going to'be run, nipiexee¢ provides ‘a'‘convenient way to run ”one-
shot” MPI jobs.

shell$ mpiexec -machinefile hostfile hello
This will invoke lamboot with the boot schema named ”hostfile”, run the MPI
program hello on all available CPUs in that resulting universe, and then shut

down the universe with the lamhalt command.

A.3.3 The mpitask command
The mpitask command is analogous to the sequential Unix command ps. It shows
the current status of the MPI programs being executed in LAM universe and

displays primitive information about what MPI function each process is currently
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executing. Note that in normal practice, the mpimsg command only gives an snap-
shot of what messages are flowing between MPI processes and therefore is usually
only accurate at that single point in time. To really debug message passing traffic,
use a tool such as message passing analyzer or parallel debugger. mpitask

can be run from any node in the LAM universe.

A.3.4 The mpiclean command
The lamclean command completely removes«all running programs from the LAM
universe. This can be usefulaf a pa;allel job-crashes and/or leaves state in the
LAM runtime environment. it is usuallly run with o parameter:

shell$ lamclean 1
lamclean is typically ondy necessarif_{?vhéi‘i: developing/debugging MPI application,

Correct MPI programs should te'rmhinat_"(_; properly, clean up all their massage, etc.
A.4 Shutting down the LAM universe
-_“ £ 4
When finished with the LAM uaiverse, i't“_r_'s_hopld be shut down with lamhalt com-
I - - _,IJ
mand: - —

shell$ lamhalt: \

I..
4

In most cases, thlbl:s sufficient to kill all running MI%;_:i)rocesses and shut down
the LAM universe. :

However, in some rare condition, lamhalt may fail. For example, if any
if the nodes i the LAM universe crashed before running lamhalt, lamhalt will
likely timeout and potentially not kill the entire LAM universe. In this case, the
lamwipe commani, will be needed to use to  guarantee that the! LAM universe has
shut down properly:

shell$ lamwipe -v hostfile
where hostfile is the dame boot schema that was used to boot LAM. lamwipe will

forcibly kill all LAM/MPT processes and terminate the LAM universe. This is a

slower process than lamhalt and is typically not necessary.
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APPENDIX B

PARALLEL TEMPERING

The complex systems generally have numerous local minima which are separated
from each others by energy barriers. The charagteristic time in which the system
can escape from a local.minimum increases-tapidly as temperature decreases.
To overcome this probleny,the algorithm is designed by Koji Hukushima and
Koji Nemoto in 1996 [23)¢" Parallel témpering treats a compound system which
consists of M replicas of #heSystem. The temperature attributed to each replica
is distributed in a ramige including™both high and low temperature phases. The
m-th replica, describedtby €ommon haréj_ltronian H(X), is associated with inverse
temperature (3, (for congeniente :ﬁm < ﬂnﬁl) A state of this extended ensemble

add vl
is specified by {X} = {X Xy, X 1 7,

where Z([3) is the one-for the original system. For a set, of temperature {3} given,

the probability distribution of finding {X} becomes

M
P({X7 ﬁ}) — Hpeq(Xmaﬁm)a
where
o BHIX)

Z(B)

In constructing a Markov process for parallel tempering, a transition matrix

Peq(Xa 5) = (B-l)

W (X, G| X', B,) which is a probability of exchange configurations of the n -th and
m-th replicas must be introduced. In order to keep the system remains at equi-
librium. it is sufficient to impose the detailed balance condition on the transition

matrix:
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From (B.1) it can be written as

W(X, Bl X", Bn)

WX 0%, ) PR
where
A= (Bn = B) (H(X) = H(X)).
Therefore the repica-exchange ‘ . i probability can be expressed as

B

For the actual g two steps are performed
alternately
1. Each replica is si nd independently as canonical
ensemble for a few using a standard Monte Carlo
method
2. Exchange of tw d and accepted with the
probability

The canonlcalﬁ(ﬁtatfo&/alue of %ﬁ ical quantlty A is measured as follows:

(Abm =7 — Xm(t))~

st el ST U BEN AL menione

above is regarded as for temperature instead of configurations, of a pair of replicas
are to be exchanged. The the above quantity is expressed as

chs M

Z > A(Xn (138,60

t=1 m=1

(A)s =

mcs

where the time-dependent inverse temperature 3,,(t) and the configuration X,
are introduced in this temperature-exchange scheme. Note that both schemes are
completely equivalent to one another. The two schemes can be chosen in actual

implementation of the present method.
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B.1 Feedback-optimized temperature
In parallel tempering, M non-interacting replicas of the system are simultaneously
set at a range of temperatures {T1,Ts, ..., Ty }. In order to maximize the number
of statistically independent visits at low temperatures, the number of round-trips
between the lowest and the highest temperature, 77 and T}, respectively, must be
maximized for each replicas. The rafe of round-trips of a replica strongly depends
on the simulated statistical ensemble, thaeis t#he choice of temperature points
{T1, T3, ..., Ty} in thewparallel tempering simulation. Helmut G. Katzgraber,
Simon Trebst, David A. Huscsand Matthias Troyer propose an algorithm that
systematically optimizes ghe simulatedlltemperature set to maximize the number of
round-trips between the gwosextuemal temperature for each replica [24]. By using
geometric progression, the inter,r_ne’diaffé temperatures between the temperature

range {77, Ty} can befcomputed via

L
d

i - £t /D
il A

The geometric progression peaks the nurﬁﬂ’éf—bf‘tempergtures around temperature

T} where a slower re].é : mperature set, the diffusion
of a replica can be--r-;leasured through temperature sp';;ée by adding a label "up”
or "down” to the repﬁca that indicates which of the two extremal temperatures,
Ty or Ty respectiVelyjitheé teplicarhas visited ihaest récenitly=The label of a replica
changes only when the replica visits the opposite extreme. For instance, the la-
bel of ,areplica, with label up”sremains unchanged, if; theyreplica returns to the
lowest temperature T}, but change to”down” upon itsfirst visit to T),. For each
temperature point in the temperature {7;}, two histograms n,,(7;) and 14w (1})
must be recorded. If a replica has not yet visited either of the two extremal tem-
perature, neither of the histograms must be incremented. This allow to evaluate
for each temperature point the fraction of replica which have visited one of the
two extremal temperature most recently as

B nup(Ti>
f(TZ) - nup(Tz) + ndown(Ti)'

(B.2)

The labeled replicas define a steady-state current j from T; to Ty, that is inde-

pendent of the temperature. Assume that 7' is a continuous variable, independent
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of the temperature points in the current temperature set. The current j can be

determined to first order in the derivative as

j = D(T)n(T) (B.3)

aT’
where D(T) is the local diffusivity at temperature T and the derivative df /dT is
estimated by a linear regres@%’i/ e measurements in (B.2); n(7T) is a
density distribution indicati& oba a replica to reside at temperature
th #ste

T. n(T) can be appro@

T;+1 — T; is the length o

n(T) = C/AT, where AT =
around temperature T; < T' <
T; 11 for the current te tion constant C' is chosen such
that

1. (B.4)

Rearranging (B.3) gi > mea the local diffusivity D(T') of a replica

at temperature T’

7. ¢

C l{a(ggrnd the current j which is

_..p;j

where the normahzﬂlon constant

constant for any spcai
To increase th&ﬂ:]me m, t@ current j in temperature
space is maximized by yarying the simulated temperature set {7;} and thus vary-

ing the prob itui%}'@t% %j”% % wtg ﬂ)ﬂtﬁmal temperatures, T}

and Ty, which are not changed. Ig [25] it has been shown that the optimal prob-

ablth qu ﬂ ﬁm%%@@%y@ﬁﬂm of the local

diffusivity D(T

(T o W
For the optimal distribution of temperature points the fraction f°P*(T") then decays
as
dfert ot 1
— noPt(T
dT ,’7 ( ) X ATopt’

which implies that for any given temperature interval AT = T;.; — T; of the

optimal temperature set the fraction has a constant decay

Afr = fPUT) = [P (Tin) = 1/ (M = 1),
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where M is the number of replicas.
After measuring the diffusion of replicas for given temperature set an im-
proved probability distrebutionrn’(T") is found as

, C’ 1@
(1) =5 = ATdT

where the normalization constant chosen so that the normalization
is still defined for the original

temperature set point it {7}]. erature set {T} is then found

where 1 < k < M an res 171 =Ty and Ty, = Ty

remain fixed.

4' \
The feedback alg ca.n%%/s § r he following sequence of steps

}*‘ ‘a“"

1. Start with a trial tempé "‘H:’ ‘mL.» I;

2. Repeat Vi - \.‘

) Reset the mstograms Nup(1') = ndown T) ﬂ)

ﬁ]’(ﬁnﬂ% mpw TTTempermg simulation
wit SW Swap moves. A ter eac sequence Ol swap moves update the

For the given temperature set as estlmate an optlmlzed probability

. L df
(1) =C\ S ar

(d) Obtain the optimized temperatures {77} via

distribution 7/(T") via

Té'TdT K
| Fawar =4

T

(e) Increase the number of swaps Ngw < 2Ngyy .

3. Stop once the temperature set {7;} has converged.
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The initial number of swaps Ngy, should be chosen large enough such that a few
of round-trips are recorded, thereby ensuring that steady-state date for n,,(T)
and Ngewn(T') are measured. The derivative df /dT can be determined by a linear
regression, where the number of regression points is flexible. Initial batches with

the limited statistics of only a few round trips may require a large number of

regression points than subsequent b \ '3 smaller round-trip times and better

statistics.
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