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CHAPTER 1

INTRODUCTION

At the beginning of twentieth century, statistical mechanics was developed

to explain many phenomena that involved many particles such as gas systems.

It is able to establish the relationship between the macroscopic properties and

microscopic properties in the classical regime. In the mean time, quantum me-

chanics was also developed in order to explain the phenomena that cannot be

explained with classical mechanics. Combining quantum mechanics with statisti-

cal mechanics, the phenomena such as black body radiation [1], magnetism and

phase transition can be explained [2, 3]. The problem is that the systems in sta-

tistical mechanics are stochastic systems in which the randomness is involved in

the development of the future states of the system. In classical mechanics, most

of the systems are deterministic that is no randomness is involved in the devel-

opment of future states of the system. So the deterministic system can be solved

by using analytic method to predict the evolution with time. In the system with

many particles, it will become stochastic because the degrees of freedom lead to

the chaotic. In the stochastic system, the evolution of system can not be predicted

precisely by analytic method since the system involves the randomness of some

degrees of freedom. However the stochastic system can be simulated with the

modern computer by using random number generator to generate the stochastic

process. The important point is that the random number generator must be a

true random number generator otherwise the numbers will repeat again and the

process will not become stochastic process. The evolution of the system will be

controlled by transition probability which can be calculated from statistical me-

chanics.

One of the model that is used to describe magnetic systems is the Ising
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model which was named after the physicist Ernst Ising. In his 1925 Ph.D. thesis

[2], Ising solved the model for the 1 dimensional lattice where the solution shows

that there is no phase transition. In the 2 dimensional lattice, however the solu-

tion shows the phase transition between ferromagnetic phase and paramagnetic

phase [3]. Another model for describing magnetic systems is the spin glass model

[4] which exhibits the new phase which can not be occurred in 2 dimensional Ising

model.

In this thesis, we will investigate the magnetic phases that can occur in the

modified random-bond Ising model. This model has been proposed based on the

assumption that adding another material will cause the system to be distorted.

By using computer simulation, the phase diagram and important parameters can

be obtained.

In Chapter 2, the main discussions are focus on the fundamental idea on sta-

tistical mechanics. In Chapter 3, the basic model in which the modified random-

bond Ising model is based on will be discussed. Then in Chapter 4, the main

discussion is the results from computer simulation and the phase diagram. The

conclusion is on Chapter 5.



CHAPTER 2

STATISTICAL MECHANICS

This chapter is devoted exclusively to the basic idea of statistical mechan-

ics. The discussion is mainly to show how the algorithm has been designed and

implemented.

2.1 Canonical ensemble

Canonical ensemble is appropriate for describe systems not in an isolation, but in

thermal equilibrium with a reservoir. The basic postulate in canonical ensemble

is start with the system that is in contact with a larger system. The large system

has constant temperature. Consider an isolated composite system made up of

two subsystems whose Hamiltonians are H1(p1, x1) and H2(p2, x2) the number

of particles in subsystems is written as N1 and N2, respectively. Both N1 and

N2 are macroscopically large and satisfies the condition N2 ≫ N1. Consider

a microcanonical ensemble of the composite system with total energy between

E and E + ∆E, the energy E1 and E2 of the subsystems can have any values

satisfying

E < (E1 + E2) < E + ∆E.

Although this includes a wide range of values for E1 and E2, only one set of values,

namely Ē1, Ē2 is important. Assume that Ē2 ≫ Ē1, let Γ2(E2) be the volume

occupied by system 2 in its own Γ space. The probability of finding system 1 in a

state within dp1dx1 of (p1, x1), regardless of the state of system 2, is proportional

to Γ2(E2)dp1dx1, where E2 = E −E1. Therefore up to a proportionality constant
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the density in Γ space for system 1 is

ρ(p1, x1) ∝ Γ2(E − E1).

Since only the values near E1 = Ē1 are expected to be important, and Ē1 ≪ E,

the expansion can be performed as

KlogΓ2(E − E1) = S2(E − E1) = S2(E)− E1

[∂S2(E2)

∂E2

]

E2=E
+ . . .

≈ S2(E)− E1

T
,

where T is the temperature and S is an entropy, hence

Γ2(E −E1) ≈ exp
[1

k
S2(E)

]

exp
(

− E1

kT

)

. (2.1)

The first factor is independent of E1 and is thus a constant as far as the small

subsystem is concerned. Since E1 = H1(p1, x1), the ensemble density for the small

subsystem can be written as

ρ(p, x) = e−H(p,x)/kT (2.2)

where the subscript 1 labeling the subsystem has been omitted. Since the temper-

ature of the larger subsystem is at constant T , it behaves like heat reservoir and

it keeps the total temperature of the system at constant. The ensemble defined

by (2.2), appropriate for a system whose temperature is determined through a

contact with a heat reservoir, is called the canonical ensemble.

The partition function of the system can be calculated by integrating over

the volume in Γ space occupied by the canonical ensemble:

ZN(V, T ) ≡
∫

e−βH(p,x)d
3Npd3Nx

N !h3N
(2.3)

where β = 1/kT , and the constant h has the dimension of momentem× distance

to make ZNdimensionless. The factor 1/N ! appears, in accordance with the rule

of correct Boltzmann counting. These constants are of no importance for the

equation of the state.

The canonical ensemble is mathematically equivalent to the microcanonical

ensemble in the sense that although the canonical ensemble contains system of all

energies, the overwhelming majority of them have the same energy. To do this,
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the mean square fluctuation of energy must be calculated in canonical ensemble.

The average energy is

U =< H >=

∫

He−βHdpdx
∫

e−βHdpdx
. (2.4)

Hence

∫

[U −H(p, x)]eβ(A(V,T )−H(p,x))dpdx = 0,

∂U

∂β
+

∫

eβ(A−H)(A−H)
(

A−H − T
∂A

∂T

)

= 0, (2.5)

where A(V, T ) is the Helmholtz free energy. This can be rewritten in the form

∂U

∂β
+

〈

(U −H)2
〉

= 0. (2.6)

Therefore the mean square fluctuation of the energy is

〈H2〉 − 〈H〉2 =
〈

(U −H)2
〉

= −∂U

∂β
= kT 2∂U

∂T

or

〈H2〉 − 〈H〉2 = kT 2CV , (2.7)

for a macroscopic system 〈H〉 ∝ N and CV ∝ N , hence (2.7) is normal fluctuation.

As N → ∞, almost all systems in the ensemble have the energy 〈H〉, which is

the internal energy. Therefore the canonical ensemble is equivalent to the micro-

canonical ensemble in thermodynamic limit.

In the canonical ensemble, the systems are distributed in Γ space according

to the density function ρ(p, x) = exp[−βH(p, x)]. The distribution in energy is

obtained by counting the number of points on energy surfaces. The peak in the

distribution of the system energy occurs with this reason. The sharpness of the

peak is due to the rapidly increasing of the area of the energy surface as E in-

crease. For an N -body system this area increases like eE , where E ∝ N .

From a physical point of view, a microcanonical ensemble must be equivalent

to a canonical ensemble. A microcanonical substance has the extensive property.

Any part of the substance must be in equilibrium with the rest of the substance,

which serves as a heat reservoir that defines a temperature for the part which has

been focused. Therefore the whole substance must have a well-defined tempera-

ture.
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2.2 Phase transition

A phase transition is signaled by a singularity in a thermodynamic potential such

as the free energy. If there is a finite discontinuity in one or more of the first

derivatives of the appropriate thermodynamic potential, the transition is termed

first-order. For a magnetic system the Helmholtz free energy A(V, T ) is the ap-

propriate potential with a discontinuity in the magnetization showing that the

transition is first-order. If the first derivatives are continuous but second deriva-

tives are discontinuous, the transition will be described as higher order, continuous

or critical. This type of transition corresponds to a divergent of susceptibility, an

infinite correlation length and a power law decay of correlation.



CHAPTER 3

THE MODELS

This chapter is devoted exclusively to the basic idea of Ising model, random-

bond Ising model, spin glass model and modified random-bond Ising model. Mainly,

the discussion is about how the model has been formulated from physical systems

and the properties of each model will be explored. Before we start with the

random-bond and spin glass model, the basic idea of Ising model in which both

models are based on must be reviewed first.

3.1 The Ising model

The Ising model, is named after the physicist Ernst Ising after he solved the model

for the 1 dimension magnetic system in his 1925 Ph.D. thesis [2]. The Ising model

is defined on a discrete collection of spins. In the Ising model, the system consists of

an array of N fixed points called lattice that form an n-dimensional periodic lattice.

The geometrical structure of the lattice may be cubic or hexagonal. Associated

with each lattice site is a spin variable Si which is a number that is either +1 or

−1. If Si = +1, the ith site is said to have a spin up, and if Si = −1, it is said

to have a spin down. A given set of number {Si} specifies a configuration of the

system. The Hamiltonian of the system in the configuration specified by {Si} is

defined as

H = −
∑

〈ij〉

JSiSj , (3.1)

where the symbol 〈ij〉 denotes a nearest-neighbor pair of spins. There is no dis-

tinction between 〈ij〉 and 〈ji〉. Thus the sum over 〈ij〉 contains γN/2 terms, where

γ is the number of nearest neighbors of any given site. The magnetic interaction
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J is constant. Magnetic interaction tries to align all spins on the lattice in the

optimal direction hence the ordered phase, while thermal energy tries to break the

order. For each pair, if the interaction is positive, the spins try to align in the

same direction. If the interaction is negative, the spins try to align in the opposite

direction. In one dimension, the solution admits no phase transition. The Ising

model undergoes a phase transition between an ordered and disordered phase in

2 dimensions or more.

3.1.1 The Onsager solution

The partition function of the Ising model in two dimensions on a square lattice

can be mapped into a 2 dimensional of free fermions (S = ±1) [3]. Consider a

square lattice of N = n2, the lattice consists of n rows and n columns of spins. Let

the lattice be enlarged by one row and one column with the requirement that the

configuration of the (n+1) row and (n+1) column will be identical to that of the

first row and the first column respectively. This boundary condition endows the

lattice with the topology of a torus. Let µα (α = 1, . . . , n) denotes the collection

of all the spin coordinates of the α row:

µα ≡ {S1, S2, . . . , Sn}α. (3.2)

A configuration of the entire lattice is then specified by {µ1, . . . , µn}. By assump-

tion, the α row interacts only the (α − 1) and the (α + 1) row. Let E(µα, µα+1)

be the interaction energy between the α and α + 1 row:

E(µ, µ′) = −J

n
∑

k=1

SkS
′
k. (3.3)

Let E(µα) be the interaction energy of the spins within the α row:

E(µ) = −J
n

∑

k=1

SkSk+1. (3.4)

The µ and µ′ respectively denote the collection of spin coordinates in two neigh-

boring rows. The total energy of the lattice for the configuration {µ1, . . . , µn} is

given by

E{µ1, . . . , µn} =

n
∑

α=1

[E(µα, µα+1) + E(µα)].



9

The partition function is

Z(T ) =
∑

µ1

· · ·
∑

µn

exp{−β
n

∑

α=1

[E(µα, µα+1) + E(µα)]}. (3.5)

Let the matrix element of 2n × 2n matrix P be defined as

〈µ|P |µ′〉 ≡ e−β[E(µ,µ′)+E(µ)]. (3.6)

Then

Z(T ) =
∑

µ1

· · ·
∑

µn

〈µ1|P |µ2〉〈µ2|P |µs〉 · · · 〈µn|P |µ1〉

=
∑

µ1

〈µ1|P n|µ1〉 = TrP n. (3.7)

The matrix elements of P can be obtained in another form

〈S1, . . . , Sn|P |S1, . . . , S
′
m〉 =

n
∏

k=1

eβJSkSk+1eβJSkS′
k . (3.8)

Define two 2n × 2n ,matrices V ′
1 and V2 whose matrix elements are respectively

given by

〈S1, . . . , Sn|V ′
1 |S1, . . . , S

′
m〉 ≡

n
∏

k=1

eβJSkS′
k , (3.9)

〈S1, . . . , Sn|V2|S1, . . . , S
′
m〉 ≡ δS1S′

1
. . . δSnS′

n

n
∏

k=1

eβJSkSk+1. (3.10)

It can be verified that

P = V2V
′
1 . (3.11)

The V ′
1 is the product of n 2× 2 identical matrices

V ′
1 = a× a× · · · × a (3.12)

where

〈S|a|S ′〉 = eβJSS′

.

Therefore

a =





eβJ e−βJ

e−βJ eβJ



 = eβJ + e−βJX (3.13)

where X is the 2× 2 Pauli spin matrices :

X ≡





0 1

1 0



 , Y ≡





0 −i

i 0



 , Z ≡





1 0

0 −1



 . (3.14)
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By using the mathematic identity, the matrix a can be rewritten as

a =
√

2 sinh(2βJ)eθX (3.15)

where

tanh θ ≡ e−2βJ .

Hence

V ′
1 = [2 sinh(2βJ)]n/2eθX × eθX × · · · × eθX .

= [2 sinh(2βJ)]n/2V1 (3.16)

where

V1 =
n

∏

α=1

eθX ,

tanh θ ≡ e−2βJ .

A calculation of matrix elements shows that

V2 =
n

∏

α=1

eβJZαZα−1. (3.17)

Therefore

P = [2 sinh(2βJ)]n/2V2V1. (3.18)

This lead to the following:

lim
N→∞

1

N
log Z(T ) =

1

2
log[2 sinh(2βJ)] + lim

n→∞

1

n
log Λ (3.19)

where Λ is the largest value of V and

V = V1V2. (3.20)

This formula are valid if all eigenvalues of V are positive and if limn→∞ n−1 log Λ

exist. The largest value of V can be calculated as

Λ = e1/2(γ1+γ3+γ5+···+γ2n−1) (3.21)

where

cosh γk = z cosh 2φ cosh 2θ − cos
πk

n
sinh 2π sinh 2θ

k = 0, 1, . . . , 2n− 1
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and

φ = βJ.

The Helmholtz free energy per spin can be obtained as

a(T ) = − 1

β
log(2 cosh 2βJ)− 1

2πβ

∫ π

0

log
1

2
(1 +

√

1− (
2

cosh 2φ coth 2φ
)2 sin2 φ)

(3.22)

and the internal energy per spin can be obtained as

u(T ) =
d

dβ
[βa(T )]

= −J coth 2βJ [1 +
2

π
κ′K1(κ)] (3.23)

where K1(κ) is a tabulated function, the complete elliptic integral of the first kind:

K1(κ) ≡
∫ π/2

0

dφ
√

1− κ2 sin2 φ
(3.24)

and

κ ≡ 2 sinh 2βJ

cosh2 2βJ

κ′ ≡ 2 tanh2 2βJ − 2

κ2 + κ′2 = 1.

The specific heat c(T ) is shown to be

c(T ) =
2k

π
(βJ coth 2βJ)2{2K1(κ)− 2E1(κ)− 1(1− κ′)[

π

2
+ κ′K1(κ)]} (3.25)

where E1(κ) is a tabulated function, the complete elliptic integral of the second

kind:

E1(κ) ≡
∫ π/2

0

√

1− κ sin2 φdφ. (3.26)

The elliptic integral K1(κ) has a singularity at κ = 1 (or κ′ = 0),

K1(κ) ≈ log
4

κ′
,
dK1(κ)

dκ
≈ π

2
(3.27)

E1(κ) ≈ 1. (3.28)

Thus all thermodynamic functions have a singularity of some kind at T = Tc,

where Tc is such that

2 tanh2 2J

kTc

= 1

kTc = (2.269185)J. (3.29)
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Other relations satisfied by Tc are

e−J/kTc =
√

2− 1,

cosh
2J

kTc

=
√

2,

sinh
2J

kTc

= 1.

Thus near T = Tc

c(T ) ≈ 2k

π
(

2J

kTc
)2[− log |1− T

Tc
|+ log(

kTc

2J
)− (1 +

π

4
)]. (3.30)

It approaches infinity logarithmically as |T − TC | → 0.The internal energy is

continuous at T = Tc. Thus the phase transition at T = Tc involves no latent

heat.

To justify calling the phenomenon at T = Tc a phase transition, the long

range-order i.e., the spontaneous magnetization must be examined. To calculate

the spontaneous magnetization, the derivative of the free energy with respect

to H at H = 0 has to be calculated. The result shows that the spontaneous

magnetization per spin is

m(T ) =







0 (T > Tc)

{1− [sinh(2βJ)]−4} 1
8 (T < Tc).

(3.31)

3.2 Spin glass

The spin glasses model was proposed by S. F. Edwards and P. W. Anderson in

1975 [4]. The expression spin glass was originally coined to describe some mag-

netic alloys in which there was observed non-periodic freezing of the orientation

of the magnetic moment or spin, coupled with slow response and linear low tem-

perature heat capacity characteristic of conventional glasses [5, 6]. The attempt

to understand the cooperative physics of such alloys has exposed many previously

unknown and unanticipated fundamental concepts and led to the devising of new

analytical, experimental and computer simulation techniques. Spin glass model

has been one of the interesting problems of complex systems. Such problems are

ubiquitous, not only through out the breadth of condensed matter physics but
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also biology, evolution, organizational dynamics, hard-optimization, and environ-

mental and social structures. In consequence the expression spin glass has now

taken on a wider interpretation to refer to complex glassy behavior arising from

a combination of quenched disorder and competitive interactions or constraints,

and to systems exhibiting such behavior. Spin glass behavior requires two essen-

tial ingredients. These are quenched disorder and frustration.

Quenched disorder refers to constrained disorder in the interactions between

the spins and/or their locations. The spin orientations themselves are variables,

governed by the interactions, external fields and thermal fluctuations. These spins

are free to order or not as their dynamics or thermodynamics tell them. The spin

glass phase is an example of spontaneous operatic freezing or order of the spin

orientations in the presence of the constrained disorder of the interactions or spin

locations.

Frustration refers to the conflicts between interactions, or other spin-ordering

forces, such that not all can be obeyed simultaneously.

These features are readily visualized in a simple model of Hamiltonian ap-

propriate to an idealization of magnetic interactions between atoms with defined

local moment

H = −
∑

〈ij〉

JijSiSj , (3.32)

where the Jij measures the magnetic exchange interaction between the pair of

spins (ij). The variables are the {Si}, while the {Jij} are quenched/constrained.

Pairs of spins get different ordering instructions through the various paths which

link i and j, either directly or via intermediate spins and then gives rise to the

frustration. The form of interactions distribution P (Jij) can be Gaussian, uniform

or bimodal distribution such as the Figures 3.1 and 3.2 while the average of the

interactions distribution equal to zero.

The most studied models of spin glass are

• The Edwards Anderson (EA) model [4]: The spins belong to a finite di-

mensional lattice of dimension D: Only nearest neighbor interactions are

different from zero and their variance is D−1/2.

• The Bethe lattice model [7, 8, 9]: The spins are on a random lattice and
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Figure 3.1: Gaussian distribution interaction of spin glass.
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Figure 3.2: Uniform distribution interaction of spin glass.



15

only Nz/2 J ’s are different from zero: They have variance z−1/2. The coor-

dination number is z.

• The Sherrington-Kirkpatrick (SK) model [10]: All J ’s are random and dif-

ferent from zero, with a Gaussian or a bimodal distribution with variance

N−1/2. The coordination number is N − 1 and it goes to infinity with N

[11, 12].

The SK model is the special case of the EA model when the dimension goes to

infinity. As far as the free energy is concerned , the following rigorous results can

be obtained:

lim
z→∞

Bethe(z) = SK,

lim
D→∞

Edwards Anderson (D) = SK,

lim
R→∞

finite range EA(R) = SK.

A natural corollary of this recognition of the key ingredients is experimen-

tally the behavior should not be restricted to metallic systems, provided one has

disorder and frustration, and indeed the effects have now been seen in several

insulating alloys. The canonical insulating example is EuxSr1−xS in which only

Eu is magnetic material and for which the nearest-neighbor interactions are fer-

romagnetic, next-nearest interactions are antiferromagnetic. Another example is

Rb2CuxCo1−xF4 which exhibits the spin glass properties.

Consider the SK model that N Ising spins interact through an infinite-ranged

exchange interactions which are independently distributed with a Gaussian prob-

ability density [10], the Jij distributed according to

p(Jij) =
1

(2π)1/2J
exp[−(Jij − J0)

2/2J2], (3.33)

where J0 and J scaled by

J0 = J̃0/N, J = J̃/N1/2. (3.34)

The averaged Helmholtz free energy may be expressed as

A = −kT lim
n→0

n−1{
∫

∏

(ij)

[p(Jij)dJij]Trn exp(
∑

α=1,...,n

∑

i6=j

JijS
α
i Sα

j /2kT )− 1}

= −kT lim
n→0

n−1{Trn exp(
∑

i6=j

[
∑

α

Sα
i Sα

j J0/2kT +
∑

α,β

Sα
i Sα

j Sβ
i Sβ

j J2/4(kT )2])− 1},
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where α and β label n dummy replicas. Reordering and dropping terms which

vanish in the thermodynamics limit yields

A = −kT lim
n→0

n−1{exp[J2N2n/4(kT )2]

×Trn exp[
∑

αβ

(
∑

i

Sα
i Sβ

i )2J2/2(kT )2 +
∑

α

(
∑

i

Sα
i )2J0/2kT ]− 1}(3.35)

where (αβ) refers to combinations of α and β with α 6= β. The Helmholtz free

energy can be calculated as

A = NkT{−J̃2(1− q)2/(2kT )2 + J̃0m
2/2kT

−(2π)−1/2

∫

exp(−z2/2) ln[2 cosh(J̃q1/2z/kT + J̃0m/kT )]dz}.(3.36)

Parameters q and m satisfy the simultaneous equations

q = 1− (2π)−1/2

∫

exp(−z2/2)cosh−2[J̃q1/2/kT + J̃0m/kT ]dz, (3.37)

m = (2π)−1/2

∫

exp(−z2/2) tanh[(J̃q1/2/kT )z + J̃0m/kT ]. (3.38)

To show the physical significance of m and q, the thermal average of the spin at

site i, 〈Si〉, and its square may be written as

〈Si〉 =
∂

∂h
lnTr exp(

∑

i6=j

Sα
i Sα

j /2kT + hSα
i )h=0, (3.39)

〈Si〉2 =
∂

∂h′
ln Tr exp(

∑

i6=j

Jij(S
α
i Sα

j + Sβ
i Sβ

j )/2kT + h′Sα
i Sβ

i )h′=0. (3.40)

Parameters α 6= β are dummy labels. Average over the Jij distribution, which de-

note by [. . .], the [〈Si〉] and [〈Si〉2] are given by taking the n→ 0 limit respectively

of 〈Sα
i 〉 and 〈Sα

i ×Sβ
i 〉α6=β evaluated for the system characterized by the J-averaged

n-ensemble partition function. This result is valid for finite-ranged interactions as

well as infinite-ranged ones. Thus [13]

m ≡ [〈Si〉], (3.41)

q ≡ [〈Si〉2] (3.42)

independent of i. The notable point is that a reentrant spin glass transition occurs

at the phase boundary between the ferromagnetic phase and the spin glass phase.

In Sherrington and Kirkpatrick’s paper, these phases can be distinguished by
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the average magnetization m and mean-square disorder average local moment q.

Hence non-zero q implies a cooperatively frozen magnetic state while non-zero m

implies that that frozen state has a ferromagnetic component. These phases can

be categorized [10, 13] as

1. paramagnetic if both m and q are zero.

2. ferromagnetic if both m and q are non-zero.

3. spin glass if q is non-zero but m is zero.

The average magnetization m and mean-square disorder average local moment q

are defined by

m = [〈Si〉], q = [〈Si〉2].

3.3 Random-bond Ising model (RBIM)

If a typical antiferromagnet like FeCl2 is mixed with an isostructural nonmagnetic

material like CoCl2 or NiCl2, diluted antiferromagnets can be obtained. Within

a uniform external field, a large degree of frustration is induced and a completely

new universality class emerges. The random-bond Ising model is defined as

H = −
∑

〈ij〉

JijSiSj (3.43)

with Jij ≥ 0 is ferromagnetic interactions strengths between neighboring spins.

These are random quenched variables, which mean that they are distributed ac-

cording to some probability distribution and fixes right from the beginning. In

the RBIM, the interactions are in the form of probability distribution [14], e.g.,

Gaussian [15], uniform [14], bimodal [16], etc. The example of the interaction

distribution is shown in Figure 3.3.

Since the interaction are all ferromagnetic, the ground state is simply given

by Si = +1 for all sites Si or Si = −1 for all sites Si. This induces an interface
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Figure 3.3: Uniform distribution interaction of random-bond Ising model.

through the sample where bonds have to be broken. If all bonds have the same

strength Jij = J , the system would become a pure Ising model. Because of the

randomness of the Jij , it is energetically more favorable to break weak bonds: the

interface becomes distorted and its shape is rough. This model has also been used

to describe fractures in materials where the Jij represents the local force needed

to break the material and it is assumed that the fracture occurs along the surface

of minimum total rupture force.

3.4 Reentrant spin glass transition

A reentrant spin glass (RSG) transition occurs at the phase boundary between the

ferromagnetic and the spin glass phase. That is, as the temperature is decreased

from a high temperature, the magnetization that grows in the ferromagnetic phase

vanishes at the phase boundary. The spin glass phase realized at lower temper-

atures is characterized by ferromagnetic cluster. It is believed that the phase di-

agram arises from the competition between ferromagnetic and antiferromagnetic

interactions. Nevertheless, these phase diagrams have not yet been understood

theoretically. Several models have been proposed for explaining the RSG transi-

tion. One of the earliest models to explain the reentrant spin glass transition is

the Sherrington-Kirkpatrick spin glass model. The model exhibits the reentrant

spin glass transition but does not fit well with the experimental data.
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There are many experimental data showing that the reentrant spin glass

transition exists in the phase diagram of some composite alloys [5], [17]. By

varying the ratio of each ingredient and temperature, the material exhibits the

ferromagnetic phase, paramagnetic phase and spin glass phase. When an Ising

system is rapidly quenched from a high temperature to a temperature below Tc,

it condenses into a non-equilibrium configuration built up of a great number of

domains. In the subsequent evolution towards equilibrium, larger domains tend

to grow at the expense of smaller ones. The driving force of this process is the

lowering of the surface energy associated with the domain walls. In the system

with randomly added impurities that do not destroy the ordered phase, the situa-

tion is substantially more complicated. The impurities, acting as pinning sites for

domain walls, severely slow down the ordering dynamics.

3.5 The modified Random-Bond Ising model

The random-bond Ising model and Edwards-Anderson spin glass model both are

based on 2 dimensional Ising model but using the difference set of interaction

distribution. In the experiments [5],[17], there are phase transitions between fer-

romagnetic, paramagnetic and spin glass which is called reentrant spin glass tran-

sition. In spin glass model, the interactions are distributed in the form of Gaussian

distribution, the interactions of random-bond Ising model are however difference.

In order to explain this transition, the model has been modified with the hypothe-

sis that adding another material will cause the system to become distorted. In our

assumption the distortion corresponds to the width of the magnetic interaction.

The width of the interaction become wider with the increasing of the distortion

and the transition between different phases is expected. The Hamiltonian of the

system can be written as

H = −
∑

〈ij〉

JijSiSj , (3.44)

while the interactions Jij are distributed according to

p(Jij) = [(2π)1/2J ]−1exp[−(Jij − J0)
2/2J2], (3.45)
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Figure 3.4: Gaussian distribution interaction with high disorder.
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Figure 3.5: Gaussian distribution interaction with low disorder.

and the interactions are accounted only the nearest neighbor sites. Parameter J

indicates the width of interactions’ distribution as shown in the Figures 3.4 and

3.5. This value also indicates the degree of disorder of the system. J0 is the center

of distribution which can be set to match with the experiments.

3.6 Important parameters

In statistical mechanics, there are many important parameters. Each parameter

has different physical meaning.
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3.6.1 Heat capacity(CV )

The heat capacity CV represents the amount of energy required to increase the

temperature of an object by a certain temperature interval. Heat capacity is an

extensive property because its value is proportional to the amount of material in

the system. The heat capacity can be defined as

CV =
∂[〈E〉]

∂T
. (3.46)

The heat capacity is related to specific heat capacity cv by

cV =
CV

V
. (3.47)

The average energy of the system can be calculated from

[〈E〉] =

∑

He−H/kT

Z

=
kT 2

Z

∂Z

∂T
(3.48)

and

[〈E2〉] =

∑

H2e−H/kT

Z

=
kT 4

Z

∂2Z

∂T 2
. (3.49)

By using the equation above, the heat capacity can be reformulated as

CV = kT 2 ∂

∂T

( 1

Z

∂Z

∂T

)

=
kT 2

Z

∂2Z

∂T 2
− kT 2

Z2
(
∂Z

∂T
)2

=
[〈E2〉]− [〈E〉]2

T 2
. (3.50)

The equation states that the heat capacity can be measured from the fluctuations

in the energy.

3.6.2 Average magnetization(m)

The average magnetization indicates the magnetic phase of the system in the

macroscopic scale. The average magnetization is

m = [〈Si〉]. (3.51)
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If most of the spins are align in the same direction, the average magnetization will

not be zero. This means that the system has finite magnetization. In other hand,

if the spins in the system align in up and down direction equally or randomly, the

average magnetization will be zero. In this situation, system has no magnetization.

3.6.3 Magnetic susceptibility(χ)

The magnetic susceptibility χ represents the degree of magnetization of a material

in response to an applied magnetic field. It can be defined as

χ =
∂[〈m〉]
∂H

. (3.52)

If the Hamiltonian H({Si}, H) depends on spin configuration {Si} and magnetic

field H , the partition function of the system can be written as

Z(H, T ) =
∑

e−
H({Si},H)

kT . (3.53)

The average magnetization of the system can be calculated from

[〈m〉] =

∑

me−
H({Si},H)

kT

Z(H, T )

=
kT

Z(H, T )

∂Z(H, T )

∂H
(3.54)

and

[〈m2〉] =

∑

m2e−
H({Si},H)

kT

Z(H, T )

=
(kT )2

Z(H, T )

∂2Z(H, T )

∂H2
. (3.55)

By using the equation above, the magnetic susceptibility can be reformulated as

χ = kT
∂

∂H

( 1

Z(H, T )

∂Z(H, T )

∂H

)

=
kT

Z(H, T )

∂2Z(H, T )

∂H2
− kT

Z2(H, T )
(
∂Z(H, T )

∂H
)2

=
[〈m2〉]− [〈m〉]2

kT
. (3.56)

This is the equation which states that the magnetic susceptibility can be measured

from the fluctuations in the magnetization.
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3.6.4 Mean-square disorder average local moment(q)

The mean-square disorder average local moment indicates the magnetic order of

the system. It is also called spin glass magnetization. The mean-square disorder

average local moment can be calculated from

q ≡ [〈Si〉2], (3.57)

which is the overlap between two independent equilibrated configurations {Sα
i }

and {Sβ
i } of the same disorder realization [10]. If the systems are construct from

same set of interactions (Jij), the shape of domains should be very similar. For

example, let the systems be the Ising model below critical temperature. The

systems are ferromagnetic phase which the average magnetization can be up or

down. The average magnetization of the systems can be difference but the domain

wall should be very similar. In this case the mean-square disorder average local

moment should not be zero. In other hand, if the temperature of the system is

above the critical temperature, the systems are in paramagnetic phase which the

zero average magnetizations and there is no domain wall. So the mean-square

disorder average local moment should be zero. By using mean-square disorder

average local moment, the similarity of systems can be calculated.

3.6.5 Binder cumulants(U , g)

The Binder cumulant was introduced by Kurt Binder [18] to overcome the finite

size effect. It is a quantity that is supposed to be invariant of the system sizes at

criticality. The magnetization Binder cumulant [18] is defined by

U = 1− [〈m4〉]
3[〈m2〉]2 . (3.58)

The spin glass Binder cumulant [19, 20] is defined by

g =
1

2
(3− [〈q4〉]

[〈q2〉]2 ). (3.59)

By varying the size of the simulated model and away from critical point, the Binder

cumulant from the difference system size are difference. However the Binder cu-

mulants corresponding to different system sizes intersect at approximately certain
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temperature, which is the critical temperature. This provides us a convenient and

precise tool to estimate the value of the critical temperature.



CHAPTER 4

SIMULATION PROCESS

The simulation processes and important parameters calculation are pre-

sented in this chapter.

4.1 State transition and Metropolis algorithm

This algorithm was proposed by Nicholas Metropolis in 1953 [21]. From canonical

ensemble, the probability that the system can be in a particular state can be

calculated from equations (2.2) and (2.3) as

ρ =
e−βH(x,p)

ZN(V, T )
. (4.1)

The system transits from one state to other state in the phase space but it is

limited by transition probability. The transition probability can be calculated

from the state density of initial state and final state as

P (x→ x′) =
ρ(x′)

ρ(x)
(4.2)

=
e−βX′H(X′)

e−βXH(X)
.

In Metropolis algorithm [21], the temperature in the initial state and final state

are the same. The transition probability can be written as

P (x→ x′) =
e−βH(X′)

e−βH(X)

= e−β(H(X′)−H(X))

=







1 if H(X ′)−H(X) < 0

e−β(H(X′)−H(X)) if H(X ′)−H(X) > 0.
(4.3)
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As the common of nature, the system always seeks for the lowest energy state if

possible. This equation shows that if the future state has the energy lower than

the initial state, the system always transits to the future state. But if the future

state has the energy higher than the initial state, the probability of the transition

is limited by equation (4.3). For a given temperature, there are the equilibrium

states that the transition probability of transit to the higher energy and transit

to the lower energy are equal. From this basic idea of the state transition, the

Markov process can be constructed as follows.

1. Select a spin, either randomly or sequentially.

2. Calculate the transition probability P .

3. Compare P to a random number 0 < z < 1.

4. Flip the spin if P > z, or use the initial state if P < z.

5. Use the final state to generate the value of any thermodynamic quantity to

be averaged. Store this value.

It is important to be aware that any bias in the random number generator will

introduce systematic errors into the results.

4.2 Simulation process

To simplify this model, the values of J0 in the equation have been set to

J0 = 1.

And the degree of disorder, the value of J , is start from 0 to 2 with a increment

0.05, while β are chosen from difference temperatures.

To minimize the finite-size effect, the number of lattice site is set to be

100× 100. The simulation process can be constructed as follows.

1. Setup the spin and interaction that have no disorder, J = 0.
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2. Setup the magnetic interaction for each pair of the spin according to the

distribution law.

3. Start metropolis algorithm to let the system achieve the equilibrium state

by using 100000 MCS.

4. At the equilibrium state, collect the important data from every 10 MCS and

calculate the average for 100 times.

5. Repeat step 2 and average the value over different set of magnetic interaction,

using 100 sets of magnetic interaction.

6. Increase the width of the interaction and repeat the process until it reaches

the target value.

7. Change the temperature and simulate again.

For a better speed, the simulation is run in cluster computer. The important

parameters which can be calculated and collected in each temperature and disorder

during the simulation process are energy, heat capacity, average magnetization,

mean-square disorder average local moment and magnetic susceptibility.

4.3 Important parameters

4.3.1 Energy(E)

The energy of the system can be calculated from simulation by the summation

over all the interactions between spins. By using the equation

H = −
∑

〈ij〉

JijSiSj , (4.4)

the algorithm for energy calculation can be constructed.
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4.3.2 Heat capacity(CV )

The heat capacity can be calculated after the energy data is completed. The heat

capacity relates to the slope of the graph between energy and temperature. It can

be written as

CV =
∂[〈E〉]

∂T
, (4.5)

or the fluctuation in the energy which can be written as

CV =
[〈E2〉]− [〈E〉]2

T 2
. (4.6)

From the equation 4.5, heat capacity can be calculated by the derivative of energy

respect with temperature. In this algorithm, the energies in nearby temperatures

must be found in order to calculate heat capacity which leads to increase of sim-

ulation time.

The algorithm that used in this thesis is constructed from equation 4.6. Heat

capacity is calculated from the fluctuation in the energy at constant temperature.

This algorithm is faster then the previous one since the simulations in nearby

temperature is not used in the algorithm.

4.3.3 Average magnetization(m)

The average magnetization can be calculated from simulation by sum over all spin

and divided by number of spin sites. By using the equation

m =
1

N

N
∑

i=1

Si, (4.7)

the algorithm of average magnetization can be constructed.

4.3.4 Magnetic susceptibility(χ)

The magnetic susceptibility can be calculated after the average magnetization

data is completed. The magnetic susceptibility relates to the slope of the average

magnetization and applied magnetic field that can be written as

χ =
∂[〈m〉]
∂H

. (4.8)
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It is also related to the fluctuation in the average magnetization which can be

written as

χ =
[〈m2〉]− [〈m〉]2

kT
. (4.9)

From the equation 4.8, magnetic susceptibility can be calculated by the derivative

of average magnetization with respect to external magnetic field. In this algo-

rithm, the average magnetization in nearby external magnetic field must be found

in order to calculate the average magnetization which leads to longer simulation

time.

The algorithm that used in this thesis is constructed from equation 4.9. Mag-

netic susceptibility is calculated from the fluctuation in the average magnetization

at constant temperature.

4.3.5 Mean-square disorder average local moment(q)

The mean-square disorder average local moment can be calculated by[19, 20]

q =
1

N

∑

i

Sα
i Sβ

i , (4.10)

where Sα
i and Sβ

i are independent equilibrated configurations but using the same

set of magnetic interaction. So the mean-square disorder average local moment,

for a given set of magnetic interaction, can be calculated from the equation 4.10

according to the following simulation processes:

1. Setup the replica system.

2. Simulate the replica system independently with the main system.

3. Calculate the mean-square disorder average local moment by using replica

system and the main system according to 4.10.

4.3.6 Binder cumulant(U, g)

The binder cumulant can be calculated by using the equations

U = 1− [〈m4〉]
3[〈m2〉]2 , (4.11)

g =
1

2
(3− [〈q4〉]

[〈q2〉]2 ). (4.12)
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Both binder cumulants must be calculated from difference sizes in order to de-

termine the critical temperatures. In this thesis, the size that be simulated are

10, 20, 30, 40, 50.



CHAPTER 5

RESULTS AND DISCUSSIONS

The results from simulation and discussions are represented in this chapter.

We have used the modified random bound Ising model with Gaussian distribution

of magnetic interaction as described in the last chapter.

5.1 Simulation results

The results from the simulation process are shown in this section. The parameters

that have been varied are temperature and degree of disorder J , after that the

important parameters are calculated accordingly.

5.1.1 Energy(E)

In the Ising model, the average energy depends on the temperature. In the mod-

ified random-bond Ising model, the similar result is expected. The results from

the simulation are shown in Figures 5.1 and 5.2.
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Figure 5.1: Energy as a function of temperature, T , and the width of the interac-

tion distribution J .

Figure 5.2: Contour plot of energy diagram as a function of temperature, T , and

the width of the interaction distribution J .
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It is shown that at J = 0 the system becomes Ising model and the calculated

energy from ours results agree with that of the Ising model. At finite J the energy

is also increase which similar to 2 dimensional Ising model except the T ≤ 1 region.

At this region the energy decrease as the temperature increase until it reaches the

minimum value. It is expected that at T ≤ 1 region the system is trapped in the

local minima that it is not a true ground state. So the results in this region might

not reflect the ground state properties. In other region, as the disorder increases

the energy of the system reduces due to the interaction’s distribution. Since 50%

of the interactions are distributed in Jij ≥ 1 region. The energy should decrease

as the disorder increase.

5.1.2 Heat capacity(CV )

The heat capacity can be calculated after the energy data is completed. From

Figures 5.1 and 5.2, the areas that the energies increase rapidly with temperature

will have the higher heat capacity, while the areas that the energies remain almost

constant will have the lower heat capacity. The results from the simulation are

shown in Figures 5.3 and 5.4.
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Figure 5.3: 3-D diagram of heat capacity CV as a function of temperature, T , and

the width of the interaction distribution J .

Figure 5.4: Contour plot of heat capacity CV as a function of temperature, T , and

the width of the interaction distribution J .
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The areas that have high heat capacity from Figures 5.3 and 5.4 are the area

that have a very steep slope in Figures 5.1 and 5.2 or have a very high fluctuation

in Figure 5.1 and 5.2.

5.1.3 Average magnetization(m)

The average magnetization indicates the magnetic phases of the system in the

macroscopic scale. The average magnetization is calculated by summation of over

all magnetization on every spin sites and then divide by the number of sites. The

results from the simulation are shown in Figures 5.5 and 5.6. Without disorder,

J = 0, the average magnetization is followed that of the 2 dimensional Ising model.

The transition between ferromagnetic and paramagnetic is clearly being seen.
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Figure 5.5: 3-D diagram of average magnetization m as a function of temperature,

T , and the width of the interaction distribution J .

Figure 5.6: Contour plot of average magnetization m as a function of temperature,

T , and the width of the interaction distribution J .



37

The average magnetization depends on the temperature and disorder. With-

out disorder, the system behaves in the same way as the 2 dimensional Ising model.

While the disorder increases, the average magnetization decreases to zero. How-

ever the average magnetization is not enough in determining the spin glass phase

since the spin glass phase and paramagnetic phase both have zero average mag-

netization. Points A, B and C correspond to the transition points obtained from

Binder cumulant of magnetization.

5.1.4 Magnetic susceptibility(χ)

The magnetic susceptibility can be calculated after the average magnetization data

is completed. The magnetic susceptibility is plotted against temperature as can

be seen from Figures 5.5 and 5.6.

The areas that have high magnetic susceptibility from Figures 5.7 and 5.8

are the area that have a very steep slope in Figures 5.5 and 5.6 or have a very

high fluctuation in Figures 5.5 and 5.6.
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Figure 5.7: 3-D diagram of magnetic susceptibility χ as a function of temperature,

T , and the width of the interaction distribution J .

Figure 5.8: Contour plot of magnetic susceptibility χ as a function of temperature,

T , and the width of the interaction distribution J .
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5.1.5 Mean-square disorder average local moment(q)

The results from the simulation are shown in Figures 5.9 and 5.10. This parameter

can be used to define the phase of the system similar to the average magnetization.

It can also be used to measure the magnetization at microscopic scale.
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Figure 5.9: 3-D diagram of Mean-square disorder average local moment (q) as a

function of temperature, T , and the width of the interaction distribution J .

Figure 5.10: Contour plot of Mean-square disorder average local moment (q) as a

function of temperature, T , and the width of the interaction distribution J .
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Figure 5.11: Magnetization Binder cumulant at J = 0.25, J = 0.50, J = 0.75 at

difference system size.

Points D, E, F and G refer to the transition points obtained from Binder

cumulant of the spin glass magnetic moment.

5.1.6 Binder cumulant(U , g)

The Binder cumulants of magnetization and spin glass magnetization at different

degree of disorder are shown in Figures 5.11 and 5.12. In each Figure, the system

size that has be simulated are 10, 20, 30, 40 and 50.
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Figure 5.12: Spin glass Binder cumulant at J = 0.50, J = 1.00, J = 1.50, J = 2.00

at difference system size.



43

From Figures 5.11 and 5.12, the intersection points in Binder cumulants

agree with the result from the phase diagram that determined by m and q. These

results indicate that the phase transition can be determined by Both Binder cu-

mulants and magnetizations.

5.2 Phase diagram

The phase diagram of the modified random-bond Ising model can be determined by

using the average magnetization and mean-square disorder average local moment.

The phases can be categorized as follows.

1. paramagnetic if both m and q are zero.

2. ferromagnetic if both m and q are non-zero.

3. spin glass if q is non-zero but m is zero.
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Figure 5.13: Phase diagram of modified random-bond Ising model.
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The Figures 5.5, 5.6, 5.9, 5.10 and 5.13 show that these phase depends on

temperature and disorder. The phase diagram that obtained from this model is

difference from the one that has been used in [22]. In their results there are mixed

phase between the spin glass phase and ferromagnetic phase which is difference

from the modified random-bond Ising model. When compare with the result from

[10], the phase diagrams are similar, expect that the slope of boundary between

paramagnetic phase and spin glass phase from ours results is shallow than that

of reference [10]. Also the boundary between ferromagnetic and spin glass phase

from ours result depends on the temperature while the result from [10] does not.

In Figures 5.3, 5.4, 5.7 and 5.8, the peak in those Figures occur in the same region

which is paramagnetic phase. In 2 dimensional Ising model, these peaks are lo-

cated at the phase transition line between ferromagnetic phase and ferromagnetic

phase. But the result from modified random-bond Ising model shows that these

peak are shifted from the phase boundary.

The transition from ferromagnetic phase to spin glass phase at low tempera-

ture occurs at lower disorder than high temperature. At low temperature and low

disorder, most of the interactions are distributed in positive region. As the result

most of the local spins try to align in same direction, but there are domain walls

that occur when the disorder increase cause the average magnetization become

zero, however the magnetic order is preserved in small scale.



CHAPTER 6

CONCLUSIONS

The main purpose of this work is to study the phase transition in modified

random-bond Ising model. The modified random-bond Ising model is based on

2 dimensional Ising model with the interaction that is distributed according to

the Gaussian distribution. The hypothesis is that adding another material to the

system will cause the system to become distorted, as a result, the width of the

interaction become wider.

From the simulation results, the average energy increases while the temper-

ature increases except at T ≤ 1 region. The result in T ≤ 1 region might not

represent the true properties of the ground state since the system is trapped in

the local minimum. In other region, as the disorder increases the energy of the

system reduces due to the interaction’s distribution. Since 50% of the interactions

are distributed in the Jij ≥ 1 region. The energy should decrease as the disorder

increases.

Phase diagram can be obtained by using the average magnetization (m) and

mean-square disorder average local moment (q) and the Binder cumulants. Phase

diagram obtained from parameters m and q is qualitatively agrees with the tran-

sition point obtained from the binder cumulants.

Peaks in heat capacity and magnetic susceptibility in 2 dimensional Ising

model locate at the phase transition line between ferromagnetic phase and ferro-

magnetic phase. While the result from modified random-bond Ising model shows

that these peaks are shifted from the phase boundary.

Transition from ferromagnetic phase to spin glass phase at low temperature

occurs at lower disorder than high temperature. At low temperature and low disor-

der, most of the interactions are distributed in positive region. As the result most
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of the local spins try to align in the same direction, but there are domain walls

that occur when the disorder increases cause the average magnetization becomes

zero, while there is magnetic order in small scale.
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APPENDIX A

USING MPI

This appendix involves with basic idea of cluster computing and using cluster

computer.

A.1 Basic MPI concept

MPI is a language-independent communications protocol used to program parallel

computers. Both point-to-point and collective communication is supported. MPI

is a message-passing application programmer interface, together with protocol and

semantic specifications for how its features ust behave in any implementation.

MPI’s goal are high performance, scalability and portability. Mpi remains the

dominant model used in high-performance computing today.

A.1.1 Parallel computational models

A computational model is a conceptual view of what types of operations are avail-

able to the program. It does not include the specific syntax of a particular pro-

graming language or library and it is independent of the underlying hardware that

supports it. The effectiveness of such as implementation depends on the gap be-

tween the model and the machine.

Parallel computational models from a complicated structure. They can be

differentiated along multiple axis. The picture is made confusing by the fact that

software can provide an implementation of any computational model on any hard-

ware.

Data parallelism

Although parallelism occurs in many places and at many levels in a modern com-

puter, one of the first places it was made available to the programer was in vector

processors. Indeed, the vector machine begin the current age of supercomputing.
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The vector machine’s notion of operating on an array of similar data item in par-

allel during a single operation has been extended to include the operation of the

whole programs on collections of data structures. The parallelism need not nec-

essarily processed instruction by instruction in lock step for it to be classified as

data parallel. Data parallelism is now more a programming style than a computer

architecture.

Shared memory

Parallelism that is not determined implicitly by data independence but is explicitly

specified by the programmer is control parallelism. One simple model of control

parallelism is the shared-memory model, in which each processor has access to all

of a single, shared address space at the usual level of load and store operations.

Coordination of access to locations manipulated by multiple processes is done by

some form of locking, although high-level language may hide the explicit use of

locks. A variation on the shared-memory model occurs when processes have both

a local memory (accessible only one process) and also share a portion of memory

(accessible by some or all of the other processes).

Message passing

The massage-passing model posits a processes that have only local memory but

are able to communicate with other processes by sending and receiving messages.

It is a defining feature of the message-passing model that data transfer from the

local memory of one process to the local memory of another requires operations

to be performed by both processes.

Remote memory operations

Halfway between the shared-memory model, where processes access memory with-

out knowing whether they are triggering remote communication at the hardware

level and the message-passing model, where both the local and remote processes

must participate, is the remote memory operation model. Active messages are
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often used to facilitate remote memory, which can be thought of as part of the

active-message model. Such remote memory copy operations are exact;y the ”one-

sided” sends and receives unavailable in the message-passing model.

Threads

Early forms of the shared-memory model provided processes with separate address

spaces, which could obtain shared memory through explicit memory operations.

The more common version of the shared-memory now specifies that all memory is

shared. This allows the model to be applied to multi-threaded systems in which a

single process (address space) has associated with it several program counters and

execution stack. Since the model allows fast switching from one thread to another

and requires no explicit memory operations. The difficulty imposed by the thread

model is that any ”state” of the program defined by the value of program variables

is shared by all threads simultaneously.

Combined models

Combinations of the above models are also possible, in which some clusters of

processes share memory with on another but communicate with other cluster

via message passing, or in which processes may by multithreaded yet not share

memory with one another.

A.1.2 Advantages of the Massage-Passing Model

Universality

The massage-passing model fits well on separate processors connect by a commu-

nication network. Thus, it matches the hardware of most of today’s parallel super-

computer, as well as the workstation networks that are beginning to compute with

them. Where the machine supplies extra hardware to support a shared-memory

model, the massage-passing model can take advantage of this hardware to speed

data transfer.
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Expressivity

Massage passing has been found to be a useful and complete model in which to

express parallel algorithms.It provides the control missing from the data-parallel

and compiler-based models. some find its anthropomorphic flavor useful in formu-

lating a parallel algorithm. It is well suited to adaptive, self-scheduling algorithms

and to programs that can be made tolerant of the imbalance in process speeds

found an shared networks.

Ease of debugging

Debugging of parallel programs remains a challenging research area. While de-

buggers for parallel programs are perhaps easier to write for the shared-memory

model, it is arguable that the debugging process itself is easier in the message-

passing paradigm. This is because one of the most common causes of error is

unexpected overwriting of memory. The message-passing model, by controlling

memory reference more explicitly than any of the other models, makes it easier to

locate erroneous memory reads and writes.

Performance

The most compelling reason that message passing will remain a permanent part

of the parallel computing environment is performance. As modern CPUs have

become faster, management of their caches ant the memory hierarchy in general

has become he key to getting the most out of them. Message passing provides a

way for the programmer to explicitly associate specific data with processes and

thus allow the compiler and cache-management hardware to function fully. In-

deed, one advantage distributed-memory computers have over even the largest

single processor machines is that they typically provide more memory and more

cache. Memory-bound applications can exhibit super-linear speedups when ported

to such machines. And evens on shared-memory computers, use of the message-

passing model can improve performance by providing more programmer control

of data locality in the memory hierarchy.
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This analysis explains why message passing has emerged as one of the more

widely used paradigms for expressing parallel algorithms, Although it has short-

comings, message passing comes closer than any other paradigm to being a stan-

dard approach for the implementation of parallel applications.

A.2 Setup the MPI

Before any MPI programs can be executed, the Local Area Multi-computer (LAM)

run-time enviroment must be launched. This is typically called ”booting LAM”.

A successfully boot process creates a an instance of the LAM run-time environ-

ment commonly referred to as the ”LAM universe”.

LAM’s run-time environment can be executed in many different environ-

ments. It can be run interactively on a cluster of workstations even on a single

workstation or LAM can be run in production batch scheduled systems.

When using rsh or ssh to boot LAM, a test file listing hosts on which to

launch the LAM run-time environment is necessary for booting the LAM. For

example:

node1.cluster.example.com user=username

node2.cluster.example.com user=username

node3.cluster.example.com cpu=2 user=username

node4.cluster.example.com cpu=2 user=username

Four nodes are specified in the above example by listing their IP hostnames.

Note also the ”cpu=2” that follows the last two entries. This tells LAM that these

machines each have two CPU’s available for running MPI programs. It is impor-

tant to note that the number of CPU’s specified hereh has no correlation to the

physical number of CPUs in the machine. It is simply a convenience mechanism

telling LAM how many MPI processes will be launch on that node.

A.2.1 The lamboot command

The lamboot command is used to launch the LAM run-time environment. For

each machinae listed in the boot schema, the following condition must be met for

LAM’s run-time environment to be bootes correctly:

• The machine must be reachable and operational.

• The user must be able to non-interactively execute arbitrary commands on
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the machine.

• The LAM executables must be locatable on that machine, using the user’s

shell search path.

• The user must be able to write to the LAM session directory.

• The shell’s start-up scripts must not print anything on standard error.

• All machines must be able to resolve the fully-qualified domain name (FQDN)

of all the machines be booted.

Using ssh with LAM

While rsh is the default remote transport agent that LAM uses to spawn the LAM

daemons, it can be changed to other agents such as ssh. ssh is a popular choice

because of the added security. And since ssh can pas AFS tokens , it presents an

attractive, highly secure, yet fully AFS-authenticated method, for invoking LAM.

The remote shell agent that was specified at configure can be override with

the LAMRSH environment variable. Setting this environment variable before

invoking recon, lamboot, or any other LAM executable will force LAM to use that

remote shell program instead. For example, using a Bourne shell or some other

sh derivative:

% LAMRSH=”ssh -x”

% export LAMRSH

Or, using the C shell or some csh derrivatice:

% setenv LAMRSH ”rsh -x”

Making ssh not ask for pasword

Normally, when using ssh to connect to a remote host, it will prompt for a pass-

word. However, in order for lamboot and recon to work properly, remote nodes

are needed to be execute jobs without typing in a passsword. In order to do this,

RSA or DSA authentication will be needed to setup.

The first thing that must be done is generate an DSA key pair use with
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ssh-keygen:

% ssh-keygen -t dsa

Accept the default value for the file in which to store the key ($/HOME/.ssh/id dsa)and

other a pass-phrase for keypair. Next, copy the $HOME/.ssh/id dsa.pub file gen-

erated by ssh-keygen to

%cd $HOME/.ssh

%cp id dsa.pub authorixed keys

In order for DSA authentication to work the $/.ssh directory must be in home di-

rectory in all the machines are running LAM on. If not, the $/.ssh directory must

be copied to home directory on all LAM nodes. However, when ssh to a remote

host, the DSA pass-phrase still be asked. This is where the ssh-agent program

comes in. It allow to type in DSA pass-phrase once and then have all successive

invocations of ssh automatically authenticate against the remote host. To start

up the ssh-agent, type:

% eval ’ssh-agent’

Once the ssh-agent is running, the pass-phrase can be enter by running the ssh-

add command:

% ssh-add $HOME/.ssh/id dsa

At this point, if ssh to a remote host that has the same $HOME/.ssh directory

as local one, a password should not be prompted.

Once all of these condition are met, the lamboot command is used to launch

the LAM runtime environment. For example:

shell$ lamboot -v -ssi boot hostfile

The parameters passed to lamboot in the example above are as follows:

• -v: Make lamboot be slightly verbose.

• -ssi boot rsh: Ensure that LAM use the rsh/ssh boot module to boot the

LAM universe. Typically, LAM chooses the right boot module automatically

and therefore this parameter is typically necessary.

• hostfile: Name of the boot schema file.

Common cause of failure with the lamboot command include (but not limited to):
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• User does not have permission to execute onthe remote node. This typically

involves setting up a $HOME/.rhosts file if using rsh, or poperly configured

ssh keys if using ssh.

• The first time a user uses ssh to execute on a remote node, ssh typically

prints a warning to the standard error. LAM will interpret this as a failure. If

this happens, lamboot will complain that something unexpectedly appeared

on stderr, and abort. One solutionis to manually ssh to each node in the

boot schema once in order to eliminate the stderr warning, and then try

lamboot again. Another is to use the boot rsh ignore stderr SSI parameter.

A.2.2 The lamnodes command

An easy way to see how many nodes and CPUs are in the current LAM universe

is with the lamnodes command. For example, with the LAM universe that was

created from the boot schema in section above, running the lamnodes command

would result in the following output:

shell$ lamnodes

n0 node1.cluster.example.com:1:origin,this node

n1 node2.cluster.example.com:1:

n2 node3.cluster.example.com:2:

n3 node4.cluster.example.com:2:

The ”n” number on the far left is the LAM node number. For example, ”n3”

uniquely refers to node4. Also node the third column, which indicates how many

CPUs are available for running processes on that node. In this example , there

are total of 6 CPUs are available for running processes. This information is from

the ”cpu” key that was used in the hostfile, and is helpful for running parallel

process. The ”origin” notation indicates which node lamnoot was excuted from.

”this node” indicates which node lamnodes is running on.

A.2.3 Compiling MPI programs

Note that it is not necessary to have LAM booted to compile MPI program.

Compiling MPI programs can be a complicated process:

• The same compliers should be used to compile/link user MPI programs as

were used to compile LAM itself.



60

• Depending on the specific installation configuration of LAM, a variety of -I,

-L, -l flag and possibly others may be necessary to compile and/or link user

MPI program.

LAM/MPIprovides ”wrapper” compilers to hide all of this complexity. These

wrapper compilers simply add the correct compiler/linker flags and then invoke

the underlying complier to actually perform the compilation/link. As such, LAM’s

wrapper compilers can be used just like ”real” compilers. The wrapper compilers

are named mpicc (for C programs), mpiCC and mpic++ (for C++ programs) and

mpif77 (for Fortran programs).

A.3 Running the MPI

The mpirun and mpiexec commands are used for lunching parallel MPI programs

and the mpitask comands can be used to provide crude debugging support. The

lamclean command can be used to completely clean up a failed MPI program.

A.3.1 The MPI command

The mpirun command has many different option that can be used t control the

execution of a program in parallel. The simplest way to lunch the program across

all CPUs listed nin the boot schema is:

shell$ mpirun C hello

The C option means ”launch one copy of hello on every CPU that was listed

in the boot schema”. The C notation is therefore convenient shorthand notation

for lunching a set of processes across a group of SMPs.

Another method for running in parallel is:

shell$ mpirun N hello

The N option has a different meaning than C - it mean ”launch one copy of

hello on every node in the LAM universe”. Hence, N disregards the CPU count.

This can be useful for multi-threaded MPI programs.

Finally, to run an absolute number of processes regardless of how many

CPUs or nodes are in the LAM universe:

shell$ mpirun -np 4 hello

This runs 4 copies of hello. LAM will ”schedule” how many copies of hello

will be run in a round-robin fashion on each bode by how many CPUs were listed in
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the boot schema file. For example, on the LAM universe that be shown previously,

the following would be launched:

• 1 hello would be launched on n0 (named node1)

• 1 hello would be launched on n1 (named node2)

• 2 hello would be launched on n2 (named node3)

Note that any number can be used - if a number is used that is greater than

how many CPUs are in the LAM universe, LAM will ”wrap around” and start

scheduling starting with that first node again. For example, using -np 10 would

result in the following schedule:

• 2 hello on n0 (1 from the first pass and then a second from the ”wrap

around”)

• 2 hello on n1 (1 from the first pass and then a second from the ”warp

around”)

• 4 hello on n2 (2 from the first pass and then a second from the ”warp

around”)

• 2 hello on n3

The mpirun(1) man page contains much more information on mpirun and the

option available.

A.3.2 The mpiexec command

The MPI-2 standard recommends the use of mpiexec for portable MPI process

startup. In LAM/MPI, mpiexec is functionally similar to mpirun. Some option

that are available to mpirun are not available to mpiexec and vice-versa. The end

result is topically the same, however both will launch parallel MPI program.

That being said , mpiexec offers more convenient access in three cases:

• Running MPMD programs.

• Running heterogeneous programs.
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• Running ”one-shot” MPI program

The general syntax for mpiexec is:

shell$ mpiexec <global options> <cmd1> : <cmd2> : ...

Running MPMD programs

For example, to run a manager/worker parallel program, where two different exe-

cutables need to be lunched:

shell$ mpiexec -n 1 manager : worker

This run one copy of manager and one copy of worker for every CPU in the LAM

universe.

Running heterogeneous programs

Since LAM is a heterogeneous MPI implementation, it supports running heteroge-

neous MPI programs. Although this can be somewhat complicated to setup, the

mpiexec command can be helpful in actually running the resulting MPI job.

”One-shot” MPI programs

In some case, it seem like extra work to boot a LAM universe, run a single MPI

job, and then shut down the universe. Batch jobs are good examples of this since

only one job is going to be run, mpiexec provides a convenient way to run ”one-

shot” MPI jobs.

shell$ mpiexec -machinefile hostfile hello

This will invoke lamboot with the boot schema named ”hostfile”, run the MPI

program hello on all available CPUs in that resulting universe, and then shut

down the universe with the lamhalt command.

A.3.3 The mpitask command

The mpitask command is analogous to the sequential Unix command ps. It shows

the current status of the MPI programs being executed in LAM universe and

displays primitive information about what MPI function each process is currently
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executing. Note that in normal practice, the mpimsg command only gives an snap-

shot of what messages are flowing between MPI processes and therefore is usually

only accurate at that single point in time. To really debug message passing traffic,

use a tool such as message passing analyzer or parallel debugger. mpitask

can be run from any node in the LAM universe.

A.3.4 The mpiclean command

The lamclean command completely removes all running programs from the LAM

universe. This can be useful if a parallel job crashes and/or leaves state in the

LAM runtime environment. It is usually run with no parameter:

shell$ lamclean

lamclean is typically only necessary when developing/debugging MPI application,

Correct MPI programs should terminate properly, clean up all their massage, etc.

A.4 Shutting down the LAM universe

When finished with the LAM universe, it should be shut down with lamhalt com-

mand:

shell$ lamhalt

In most cases, this is sufficient to kill all running MPI processes and shut down

the LAM universe.

However, in some rare condition, lamhalt may fail. For example, if any

if the nodes in the LAM universe crashed before running lamhalt, lamhalt will

likely timeout and potentially not kill the entire LAM universe. In this case, the

lamwipe command will be needed to use to guarantee that the LAM universe has

shut down properly:

shell$ lamwipe -v hostfile

where hostfile is the dame boot schema that was used to boot LAM. lamwipe will

forcibly kill all LAM/MPI processes and terminate the LAM universe. This is a

slower process than lamhalt and is typically not necessary.
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APPENDIX B

PARALLEL TEMPERING

The complex systems generally have numerous local minima which are separated

from each others by energy barriers. The characteristic time in which the system

can escape from a local minimum increases rapidly as temperature decreases.

To overcome this problem, the algorithm is designed by Koji Hukushima and

Koji Nemoto in 1996 [23]. Parallel tempering treats a compound system which

consists of M replicas of the system. The temperature attributed to each replica

is distributed in a range including both high and low temperature phases. The

m-th replica, described by common hamiltonian H(X), is associated with inverse

temperature βm (for convenience βm < βm+1). A state of this extended ensemble

is specified by {X} = {X,X2, · · · , XM}.

Z =

M
∏

m=1

Z(βm),

where Z(β) is the one for the original system. For a set of temperature {β} given,

the probability distribution of finding {X} becomes

P ({X, β}) =
M
∏

m

Peq(Xm, βm),

where

Peq(X, β) =
e−βH(X)

Z(β)
(B.1)

In constructing a Markov process for parallel tempering, a transition matrix

W (X, βm|X ′, βn) which is a probability of exchange configurations of the n -th and

m-th replicas must be introduced. In order to keep the system remains at equi-

librium. it is sufficient to impose the detailed balance condition on the transition

matrix:

P (· · · ; X, βm; · · · ; X ′, βn; · · ·)W (X, βm|X ′, βn)

= P (· · · ; X ′, βm; · · · ; X, βn; · · ·)W (X ′, βm|X, βn).
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From (B.1) it can be written as

W (X, βm|X ′, βn)

W (X ′, βm|X, βn)
= exp(−∆),

where

∆ = (βn − βm)(H(X)−H(X ′)).

Therefore the repica-exchange part of transition probability can be expressed as

W (X, βm|X ′, βn) =







1 if ∆ < 0

e−∆ if ∆ > 0

if the metropolis method have been adopted.

For the actual Monte Carlo procedure, the following two steps are performed

alternately:

1. Each replica is simulated simultaneously and independently as canonical

ensemble for a few Monte Carlo steps by using a standard Monte Carlo

method.

2. Exchange of two configurations Xm and Xn, is tried and accepted with the

probability W (Xm, βm|Xn, βn).

The canonical expectation value of a physical quantity A is measured as follows:

〈A〉m =
1

Nmcs

mcs
∑

t=1

A(Xm(t)).

Another expression can be obtained when the exchange procedure mentioned

above is regarded as for temperature instead of configurations, of a pair of replicas

are to be exchanged. The the above quantity is expressed as

〈A〉β =
1

Nmcs

Nmcs
∑

t=1

M
∑

m=1

A(X̃m(t))δβ,βm(t),

where the time-dependent inverse temperature βm(t) and the configuration X̃m

are introduced in this temperature-exchange scheme. Note that both schemes are

completely equivalent to one another. The two schemes can be chosen in actual

implementation of the present method.
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B.1 Feedback-optimized temperature

In parallel tempering, M non-interacting replicas of the system are simultaneously

set at a range of temperatures {T1, T2, . . . , TM}. In order to maximize the number

of statistically independent visits at low temperatures, the number of round-trips

between the lowest and the highest temperature, T1 and TM respectively, must be

maximized for each replicas. The rate of round-trips of a replica strongly depends

on the simulated statistical ensemble, that is the choice of temperature points

{T1, T2, . . . , TM} in the parallel tempering simulation. Helmut G. Katzgraber,

Simon Trebst, David A. Huse and Matthias Troyer propose an algorithm that

systematically optimizes the simulated temperature set to maximize the number of

round-trips between the two extremal temperature for each replica [24]. By using

geometric progression, the intermediate temperatures between the temperature

range {T1, TM} can be computed via

Tk = T1

k−1
∏

i=1

Ri, Ri = M−1

√

TM

T1
.

The geometric progression peaks the number of temperatures around temperature

T1 where a slower relaxation is assumed. For a given temperature set, the diffusion

of a replica can be measured through temperature space by adding a label ”up”

or ”down” to the replica that indicates which of the two extremal temperatures,

T1 or TM respectively, the replica has visited most recently. The label of a replica

changes only when the replica visits the opposite extreme. For instance, the la-

bel of a replica with label ”up” remains unchanged if the replica returns to the

lowest temperature T1, but change to ”down” upon its first visit to TM . For each

temperature point in the temperature {Ti}, two histograms nup(Ti) and ndown(Ti)

must be recorded. If a replica has not yet visited either of the two extremal tem-

perature, neither of the histograms must be incremented. This allow to evaluate

for each temperature point the fraction of replica which have visited one of the

two extremal temperature most recently as

f(Ti) =
nup(Ti)

nup(Ti) + ndown(Ti)
. (B.2)

The labeled replicas define a steady-state current j from T1 to TM that is inde-

pendent of the temperature. Assume that T is a continuous variable, independent
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of the temperature points in the current temperature set. The current j can be

determined to first order in the derivative as

j = D(T )η(T )
df

dT
, (B.3)

where D(T ) is the local diffusivity at temperature T and the derivative df/dT is

estimated by a linear regression based on the measurements in (B.2); η(T ) is a

density distribution indicating the probability for a replica to reside at temperature

T . η(T ) can be approximated with a step-function η(T ) = C/∆T , where ∆T =

Ti+1 − Ti is the length of the temperature interval around temperature Ti < T <

Ti+1 for the current temperature set. The normalization constant C is chosen such

that
∫ TM

T1

η(T )dT = C

∫ TM

T1

dT

∆T
= 1. (B.4)

Rearranging (B.3) gives a simple measure of the local diffusivity D(T ) of a replica

at temperature T

D(T ) ∼ ∆T

df/dT
,

where the normalization constant C has been dropped and the current j which is

constant for any specific choice of temperature set.

To increase the efficiency of the algorithm, the current j in temperature

space is maximized by varying the simulated temperature set {Ti} and thus vary-

ing the probability distribution η(T ) between the two extremal temperatures, T1

and TM , which are not changed. In [25] it has been shown that the optimal prob-

ability distribution ηopt(T ) is inversely proportional to the square root of the local

diffusivity D(T ):

ηopt(T ) ∝ 1

D(T )
.

For the optimal distribution of temperature points the fraction f opt(T ) then decays

as
df opt

dT
= ηopt(T ) ∝ 1

∆T opt
,

which implies that for any given temperature interval ∆T = Ti+1 − Ti of the

optimal temperature set the fraction has a constant decay

∆f opt = f opt(Ti)− f opt(Ti+1) = 1/(M − 1),
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where M is the number of replicas.

After measuring the diffusion of replicas for given temperature set an im-

proved probability distrebutionη′(T ) is found as

η′(T ) =
C ′

δT ′
= C ′

√

1

∆T

df

dT
,

where the normalization constant C ′ is again chosen so that the normalization

condition in (B.4) is met. The step-function η′(T ) is still defined for the original

temperature set point in {Ti}. The optimized temperature set {T ′
i} is then found

by choosing the k-th temperature point T ′
k such that

∫ T ′
k

T ′
1

η′(T )dT =
k

M
,

where 1 < k < M and the two extremal temperatures T ′
1 = T1 and T ′

M = TM

remain fixed.

The feedback algorithm can be summarize by the following sequence of steps

1. Start with a trial temperature set {Ti}.

2. Repeat

(a) Reset the histograms nup(T ) = ndown(T ) = 0.

(b) For the current temperature set perform a parallel tempering simulation

with NSW swap moves. After each sequence of swap moves, update the

labels of all replicas. Record histograms nup(T ) and ndown(T ).

(c) For the given temperature set as estimate an optimized probability

distribution η′(T ) via

η′(T ) = C ′

√

1

∆T

df

dT
.

(d) Obtain the optimized temperatures {T ′
i} via

∫ T ′
k

T1

η′(T )dT =
k

M
.

(e) Increase the number of swaps NSW ← 2NSW .

3. Stop once the temperature set {Ti} has converged.
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The initial number of swaps NSW should be chosen large enough such that a few

of round-trips are recorded, thereby ensuring that steady-state date for nup(T )

and ndown(T ) are measured. The derivative df/dT can be determined by a linear

regression, where the number of regression points is flexible. Initial batches with

the limited statistics of only a few round trips may require a large number of

regression points than subsequent batches with smaller round-trip times and better

statistics.
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