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Being able to predict a pattern of a reg{;]m continued fraction is not only in-
teresting in its own right but it sometimes yields more informations about that regular
continued fraction. In the real-number field-and in thefield of formal series over any base
field, it is well-known that thesterminalion of a regular eentinued fraction can be used to
characterize rationality and ‘1‘§‘,als‘6 own that any periodic regular continued fraction cor-
responds exactly to a quadraticarragional element. There are a number of researches about
transcendental criteria via Atinued actions.

The major part of this ;elfsis is devoted to the establishing of explicit formulae
for continued fractions. Fi i i€
cluding palindromic patterns,

these identities, explicit conti
by certain series are obtained

R

using a transcendental criterion Ad,amczewskl a:ndeugeaud in 2007, it can be concluded
that the real numbers represented by these exphc.ilac‘bntlnued fractions are transcendental.
Besides explicit formulae for continued fractions, J-'bmmgiedness of the partial quotients of a
continued fraction is of interest and is considered as the secofd main part in this thesis.
In this part, a criterion of bou : aitia ' of the regular continued
fraction representing a linéar fractlonal transformatlon of a formal series is given. Also, a
fascinating example of rational numbers represented by regular continued fractions which
their partial quotients are bounded by 5 is provided by proving a famous conjecture at-
tributed to Zaremba for integers. being of the form 2°-3' where s,t are non-negative
integers.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction 2

It is generally difficult te'explicitly obtain a regular continued fraction representing

\
a quantity expressed in ethegdformn gee e.g., [28], [18] and [9]. However, being able to
predict a pattern in a rggulaf gonfinued fraction of a quatity is not only interesting

in its own right but it sometimes enableus to derive more informations about that

Lad 44

quantity from its regular continued ,fraction; In the real number field and in the field
add v ol

F((z!)) of formal series, over @-base ﬁclc@;ﬂ:which is the completion of the field

of rational functions with respeet to the déé’féé‘valuatiop, it is well-known that the

termination of a regi%léi;r continued fraction can be use(_;}' to characterize rationality
and is also known that jc_my periodie regular Continue(l‘%raction corresponds exactly
to a quadratic irrational €lement. Varioustesearches, for examples [5], [1], [2], [3],
[4], [6] and [12], 'gavefransceiidence-criterialdepending on spécial patterns in regular
continued. fractions.

The main objectives of this thesis are to establish explicit formulae of continued
fractions. It is well-known that the theory of continued fractions for formal series goes
parallel with that for real numbers; for detail see [24]. The work in this thesis centers
around continued fractions both in the real number field and in the field F((z71)).

However, it is useful to define continued fractions over a general field K and some

results in this work are widely provided for any field K.



In chapter II, boundedness of partial quotients of regular continued fractions rep-
resenting some certain quantities is mentioned as the second objectives in this work.
We say that any irrational number has bounded partial quotients if the supremum
of all its partial quotients is finite. Lagarias and Shallit [17] proved, using the so-
called Lagrange constant through a result of Cusick and Mendes France [11], that if
a irrational number has bounded partial quotients, so does its linear fractional trans-
formation. We show here that this is also’thc.ease in F((z~')). Also, a bound of
the partial quotients of a regular contif;ued fraction representing a linear fractional
tranformation of a ratiomal clements in F((z~ ")) is ebtained. Next, a fascinating
example of rational numbers represepte(f%: by regular continued fractions whose their
partial quotients are boetinded by, a Smal?ll" i{l_teger is provided by proving a famous
conjecture attributed to Zargmba. | This c'i)_njrecture of Zaremba, see e.g., [20], states
that for a positive integerim > 2: ’p%lere eX1Jst4s an integer 1 < a < m, coprime to m

such that all of the partial quotiéits in the -fég:f:ﬂar continued fraction of % are less

than or equal to 5. This conjecture has et Vetifieds for m.being a power of 2, 3 and

5 by Niederreiter [20]"2 Ei,nd for m being a power of 6 by ‘ii:c_i;iphotong and Laohakosol
[30]. In 2005, this conjeg-ture was verified by Komatsu, Il6], for m being the ¢ - 2"-th
power of 7 where n > 0 andsc is an odd number less than or equal to 11. In this
thesis, evidence ‘of Zdavemba’§ conjdeture fof'm being the form 2° - 3' where s,t are
non-negative. integers, is presented.

A group of researchers [25], [26], [28], [29], [15], [22] and [23] have found contin-
ued fractions for numbers or formal series expressed by certain types of series. An
important tool used in these results is the so-called Folding lemma, an identity, first
appears in [19], for continued fractions which has folding symmetry in their partial
quotients. In Chapter III, we attach significance to identities for continued fractions

with some interesting patterns. Many identities for continued fractions with some



patterns in their partial quotients were tied together as a single phenomenon in the
work of Clemens, Merrill and Roeder in 1995, see [9]. They worked in the real num-
ber field. This phenonmenon is generalized to continued fractions over a general field
K and then many identities for continued fractions with some interesting patterns

are realized. One of these results is an identity for continued fractions whose their

!V

partial quotients have palindromi

is is of particular interest since this

palindromic property leads t hich is useful for finding explicit
.‘

W ohn in 1996, [10], which general-

of the r continued fractions whose

igated using a modification

continued fractions. Next, si

ized the Folding lemma,

their partial quotients

of a technique due to

where £(T) < ZIT], o) < and [ U (7)), ana
FO(Fye T(T +2)(T £2)50(T) +17 -2,
ARdIayiaNgins,

oo QARG T RN T e e o

tinued frac?ions for two classes of real numbers 6(T; f()) and 6(T; f?))/T expressed

by the following series

. —= N (_1)m
0T f) = g:o Jo(D) [1(T) ... f(T)’

where f(T') € Z[T], fo(T)="T and for all i > 1, fi(T) = f(fi-1(T)), and



fINT) = T(T + 2)(T = 2)g(T) = T* + 2,

fO(T) =TT +2)(T — 2)g*(T) — T? + 2,

with suitable ¢®)(T"), ¢@(T) € Z[T] and T € N are given. An identity for continued
fractions with palindromic property is used as a guideline to produce these formulae.

We found that partial quotients of these explicit regular continued fractions begin

in arbitrarily long palidromes v endental criterion given by Adam-
czewski and Bugeaud in [3]4 g’he numbers in these classes are
- ——

transcendental. Analog e also established for formal

series. In the formal se f it onti ctions also have a beautiful

Definition 1.2.1. A valuation on a ﬁeld is a real-valued function a — |a| defined

o 1wl £ § WBINS
va@ﬁﬂﬁﬁ)ﬁ"ﬁ”’?ﬂjﬂﬂ NYIRE

(ii) Ya,bE K, |ab| = |al B
(1ii) Ya,be K, |a+0b| <|a|+ |b].

A valuation on K is called non-Archimedean if the condition (7i7), called the triangle
inequality, is replaced by a stronger condition: Va,b € K, |a+b| < max{|al|,|b|},

called the strong triangle inequality. Any other valuation on K is called Archimedean.



An important consequence of the strong triangle inequality is if | - | is a non-

Archimedean valuation on a field K, then
Va,y € K, |zf # |y| implies |z + y[ = max{|z], [y[}. (1.1)

V; absolute value | - | is an Archimedean

Examples 1) For K = Q, the

valuation on K.

2) Consider the field F(x

Define the degree Valuatioy

0.
Then | - | is a non-Ar
Let K be an arbitrary fi h a valuation | - |. We adjoin to K an
' ’ ~
element, called infinity, and denote 0. The set K U {oo} will be denoted by K

s involving oo are defined

!

and will be called th

i
for all a,b € K with 8400088 follows ')

I 1
“'wﬁﬁvﬁaﬁ%’wmﬁ
— A SRy

large n,

r, € K and lim |z, —z| = 0.
n—oo

A continued fraction over K is defined formally to be an ordered pair

(({an}, {0n})  {m})

where aj,as,... € K {0}, bg,b,... € K and {v,} is a sequence in K given by



’Vn:Sn(O); n:0,1,2,3,...,

where S, : K — K is defined depending on s,, : K — K as follows

So(w) = so(w), Sp(w) = Sp—1(sp(w)), n=123,...,
So(w) = by + w, Sp(w) = el n=123,....

sequences, then (({a,}, finite or non-terminating contin-

ued fraction. It is called nued fraction if {a,} and {b,}
have only a finite numbe

..,

It can be seen that th

It is more conveniefit |

E [bo,a1,b1,a2,b2,._

donote a contmﬂiu&? il EJM FHYUINT + oratns 1w

$ Gy, byl

T AR QNN TANIANNAY
[bo; b, b2, oy by ] = b0 1,05 1, bos o5 1, b
in this case b, by, ba, . .. are called partial quotients of [by; by, ba, ... by, .. .].

Corresponding to each continued fraction [bg; ay, by; as, be; . . .|, two sequences {p, }



and {g,} are defined by the system of second order linear difference equations

po1 =1, Po = bo, q-1 =0, g =1;

Pn = bnpn—l + anPn—2 and Gn = ann—l + anQn—2 (TI, > 1)7 (1-2)

these p,, g, are called the n'” nd denominator, respectively, and the

fraction 2= is called the n"
. . J . .

Some important properties these ur@ denominators of continued

fractions are presented i wing le ma iose proof is straightforward by

induction.

Lemma 1.2.2. For a ;s ag,by;...] be a continued

fraction over K and o

1, weK), (1.3)
(1.4)
(n>1), (1.5)
ll qn il
[bo,al,bl, S, b 1Al (1.6)

pﬁ_ﬁmm mfm_l
e LA m;u uma ZKLEJ ’l@ o N

of Pringsheim in 1899, for detail see [14]:

Theorem 1.2.3. Let K be arbitrary field together with a prescribed valuation. The

continued fraction [bo;ay,bi;as,be;. .. ;a,,by;...] converges to an element in K if

bn] > |an| + 1, for alln > 1.



Definition 1.2.4. An infinite continued fraction [by; a1, bi;ag,bo;...] is said to be

periodic if there exist positive integers k, N such that
ap =anir and b, =by,  forall n> N,

and is denoted by

[bo;a'hbl; s an

,ﬁy/  aN+k—1, by -1 |-

Definition 1.2.5. A conti bo; (n > 1) is said to be palin-

by (1.4) and (1.5) we h

Definition 1.2.7. For any fraction [bo; b1,...,b,] (n>0), n

is said to be the length of [bo;by

sented as a continued fraction

i
ﬂumﬁ%%’wmm

where by € Z, b € N (i > 1). This continued gectlon is calle@ reqular or simple

conmetbifil NTIIEL NN VIVIE TR E

The constructlon of a regular continued fraction for £ € R~ {0} runs as follows:

In R, it is known ""f,

of the form m

Define £ = [£] + (§), where [¢] denote the greatest integer less than or equals { and
(€) ==& —[£]. We call [¢] and (&) the head and tail parts of £, respectively. Clearly,
the head and tail parts of ¢ are uniquely determined. Let by = [¢] € Z.

If (£) = 0, then the process stops.



If (£) # 0, then write & = by + &1, where &1 = (€) with & > 1. Next we write
& = [&] + (&) Let by = [G] €N

If (&) = 0, then the process stops.

If (&) # 0, then write & = by + &1, where &1 = (&) with & > 1. Next we write
& = [&] + (&). Let by =[] €N

Again, if (&) = 0, then the process s If (&) # 0, then we continue in the

same manner. By doing so, we obtain i resentation

where by € Z, b; e N (i ' referred to as the complete quotient of €.

If (&,) = 0 for somg hénfe = T o), i.e., its regular continued
fraction to & is terminating or fin: Ot | se, (&,) # 0 for all n and the regular
continued fraction is infinige and thi he case »\ 1terest from now on. In order

to establish convergence, we make. use of owing properties which are easily

verified by using Lemma 1.2.2 and (1 2) /&

Lemma 1.2.8. For i ¥ rrespondmg to the above

Do, by, ... by. Then m @
0 o FEHIRBNTNEINT
" ARTRINIUNRIININY

Gn 2.4
(iii) € — Bt —1)"

n dn(Entidntan—1)

Using Lemma 1.2.8 (7ii), we get the approximation

1
= — 0 asn— oo,
Qn(§n+1Qn + qn—l)

-x
an
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since the integer ¢, are increasing with n, by Lemma 1.2.8 (ii), and &, is positive.
This immediately implies that 22 — ¢, and enable us to write { = [bo; b1, b, . . ]
The regular continued fraction is unique for an irrational number, but for rational

numbers, we have the following characterization; for details, see e.g., [21, Chapter 7].

Theorem 1.2.9. Any finite reqular continued fraction represents a rational num-

ber. Conversely, any rational ) essed as a finite reqular continued

fraction. and in exactly tw

.-’- bn - 17 1]7
where b, > 2.
A well-known theorem 1 , - racterizing riodic regular continued frac-
tions, whose proof can be ) 1O ‘ \\ states that:

. I T I . .. .
Theorem 1.2.10. A period rfxr ontin action is a quadratic irrational num-

LT T

ber, and conversely. -

- )
Next, continued V f formal series over a field F

are mentioned. It is well-known, see e.g., 7, Chapté 1], that every element & €

e 0 S HHINBNTNGIN
RINNIWEATINYINY

where r € Z, and the coefficients w_; € F (i > r) with w_, # 0. The degree valuation

€| in F((x~1)) is defined by putting
€l

0l =0, [¢lo=27" if &€= w_z™" withw_, #0.
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Definition 1.2.11. Let £ = wa_ix_i € F((x™')). The head part, [£], and the tail

part, (§), of £ are defined by

0
Zw_ix_i if r <0,

[§] = q i=r and (&) =& — €]

0 other i ”

In F((z™')), there is a

ithm similar to the case of real
numbers. Each element he regular continued fraction

of the form

where by € Flz] and b; €
The construction of the m for & € F((z7)) ~ {0} runs
as follows:
Consider & = [¢] + (§). Let by = =
If () = 0, then the-process

<

v,
If (&) # 0, then writ Mth |€1],, > 1. Next we write

= [&] + (&)- Let bl L&LE Flz] \F.

H&—Mﬁ%ﬂ%ﬂ%ﬂﬁﬂﬂﬂﬂi

If (&) # 0, then write & = by 44, ', where &' = (&) withd&|,, > 1. Next we

wie & el GV PR VI VIE TR E

Again, 1f (&) = 0, then the process stops. If (&) # 0, then we continue in the
same manner. By doing so, we obtain the unique representation
é- = [b07 bl; b27 R bn—la 611]7

where by € Flz] and b; € Fla] \F (i > 1) and &, is referred to as the n'* complete

quotient of &.
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If (&) = 0 for some n, then & = [bg; by, ba, . . ., by, i.e., its regular continued fraction
to £ is terminating or finite. Otherwise, (§,) # 0 for all n and the regular continued
fraction is infinite and this is the case of interest from now on. The following lemma
collects basic properties of regular continued fractions whose proof is easily verified

by using Lemma 1.2.2 and (1.2).

Lemma 1.2.12. Forn > 1, let ‘ vergent corresponding to the above

(ZZ) ’q’”«_lloo > |q”—2|oo7

Since |§n11| = [0nr1} c;-:-m_‘::..,ﬁm:::;.:-' e

]

|Qn é.n#lqn + qn— 1 ‘bn-i-ll > 22n+1

- -
ﬂUB?ﬂHﬂﬁWHWﬂi

awwag_fpgg APANeaY

which immediately implies that ’;—: — &, and enable us to write £ = [bg; by, b, . . .].
As in the classical case, the following characterization of rational elements in

F((z™')) via their regular continued fractions is well-known, see e.g., [24].
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Theorem 1.2.13. Let £ € F((z71)). Then & is rational if and only if its reqular

continued fraction is finite.

Specific properties of periodic regular continued fractions for formal series are

stated as in Theorem 1.2.14 and 1.2.15, whose proofs can be found in [8].

AU INENTNEINS
ARIANTAUNININGIAE



CHAPTER 11

CONTINUED FRACTIONS WITH BOUNDED PARTIAL

In this chapter, the bK of regular continued fractions
representing linear fracti ons nts in the field F((z™!)) of
2 \ t section, we verify a famous

conjecture involving a bo E egular continued fractions for

2.1 Linear fractional t ansfo mations of bounded continued

fractions -' . —
_,— — \J

Definition 2.1.1. Letmbe an irrational element in ﬂ?ﬂr_ 1)) whose infinite regular

continued fractlﬁ eﬂ&ﬂ ﬁsﬁ“ﬂﬁ ﬂfweg]e,] ﬂ {j

e MRS

Clearly, Ko (0) < K(6) and K(0) is finite if and only if K (6) is finite.

The main result reads:

a b
Theorem 2.1.2. Let M = , where a,b,c,d € F|x] be such that det M # 0.

c d

If the regular continued fraction of an irrational element 6 € F((x™')) has bounded
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partial quotients, then

1 at) +b
_ < < .
ot Me Ky(0) < Ky (cH—i—d) < |det M| Kuo(0), (2.1)
ab + b
and K D d < max {|det M| K(0), |c(ch + d)|so} - (2.2)

d
in [21] for the real case. / | ‘
Lemma 2.1.3. Let 0§ / 1l ¢ , 1)) whose regular continued

fraction expansion is \ 0 satisfy, for somen > 0,

(2.3)
then [v|os 2 |gni1]oo-
Proof. Suppose that .
s — 2
Consider the system olgnear equatlons (in y, 2) Llj
ﬂ'LlEJ’J Vlyﬁl%ﬂzgﬂﬂ’lﬂi s
quﬂ@ﬂ'ﬁﬁﬂﬂm'ﬁﬂﬁﬂa&l 26
By (1.7), det R (—=1)", and so
Prn Pn+1
y (=1)"prar (=1)"gnga | [v
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implying that y and z are in F[z].

We claim that neither y nor z is zero. If y = 0, then 0 # v = 2¢,41, and so
[U|oo = |@n+1]oo, Which contradicts (2.4). Then y # 0. If z = 0, then u = yp,
and v = yq,. Since |yl > 1, we have |v0 — u| = [Y(¢0 — Pn)loo = |Gn0 — Dnloo,

contradicting (2.3).

Next, we show that

(2.7)
Suppose [y(g.f — Pn)loo v ' B ma 1.2.12 (i) and (iv), we
have
|¢:0 — p; : ' (i>0),
and S0 |YGni2leo = |2¢n 2|Oo, (1.1) and (2.5) yield

e s
|2¢n+1lo0 = |V|o implying that e This contradicts (2.4). Thus, (2.7)

holds.

Finally, consider 'hi— y(gnt — =  Pni1)|oe- Using (2.7), (1.1)
and y € F[z] \ {0}, WGEVG m

ﬁmm NUNINEUINT.
awwmﬁ’?mﬁﬁﬁmﬂaa

which contradlcts (2.3), and the lemma follows. O

Remark 2.1.4. The best approximation property presented in the above lemma
also holds the convergents of finite regular continued fractions. Namely, for a rational
element 6 € F((z™!)) whose finite regular continued fraction is [bo; by, . .., b,], if u,v €

[Flz] with v # 0 satisfy, for some 0 < ¢ < n, [v0—u|x < |¢0—pi|so, then [v]oo > [Git1]co-
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Definition 2.1.5. For £ € F((z™!)), the distance to the head part ||£|| of £ is defined

as [|€]l = € = [€]lo

Hence for an irrational element 6 € F((z~!)) whose regular continued fraction
expansion is 6 = [by; by, bo,...], by Lemma 1.2.12 (v), we have ||¢g.0| = |¢.0 — pnl,

and so Lemma 1.2.12 (i7) and (iv) together yield

2.8
= |bn+1|oo ( )

where 0,11 = [by11; bn+/ e otient of [bg; by, ba, . . .].
Definition 2.1.6. For“an i lement 0 € 1 )), define its type and its

L(9) = sup (lql& [d0Il) *2andid Loo (@) =Timsup (|q|o llg6) ™

|Q|ooz]- 7 e - I‘I|c<>21

To determine the type an a_:-'?gg A ',.e stant, it suffices to use the partial

denominators as we ~$?: ‘

m F((ml)) whose reqular continued

HUAneningIns
Q%"\%'d“ﬁ‘j“ ‘dﬁoi]fjlﬁﬁai A cﬁn)— 29

Proof. Let q € Flz] ~ {0}. Since the regular continued fraction of any irrational is

Lemma 2.1.7. Let 0 Ean mrrationa

fraction is [bo;

infinite, there exists m € Ny := NU{0} such that |¢mn|c < |¢loo < [¢mr1]oo- By Lemma

2.1.3,
1 1 1

< < ;
|9l 119011 laloo llgmbll ~ lgmloo llgmfl

and the result follows. O
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Corollary 2.1.8. A) For an irrational element 6 € F((z71)), we have
K(0) = L(0) and K. (0) = Loo(6). (2.10)

B) Let ¢ = [do;dy,dy,...], v = [eo;e1,ea,...] be two irrational elements in F((z71)).

F esz+i|00 (Z > 0); then

If there exist sy, s € Ny such that ;;gv

Proof. Part A) follows i 1

and Lemma 2.1.7. Par /& ‘ \- nition of K, Lemma 2.1.7
and (2.10). O
The next lemma is p dityir . 0 s S of Theorems 172 and 175 of

[13] in the real to the for

Lemma 2.1.9. Let [by; by, by, ..~ “be-the continued fraction for an irrational

element 0 € F((z™1)) with (0] > 1, ind I¢ ax: re a,b,c,d € Flz] be such

that |ad — be|oo = 1. 40 X

A) If |¢)oo > |d|oe > 0 ‘then b/d and a/c equal two consecutive convergents of the

reqular coﬂnu Ej ’} wrﬂ mbw ﬂ?’}cﬂg I the (n —1)™ and n®

convergentsq'!)f the regular confinued fmctuﬂ for 1, respeqj)ely, we have that
wcdh WA SRR R AR VAR L o

B) If the regular continued fraction for 1) is [co; c1, Ca, . . .|, then there exist k,n € Ny

such that

|bkriloo = |Cnriloo  for alli > 0.
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Proof. Denote the regular continued fraction expansion of a/c by [co;c1, ..., c,] and
let p,/q, be its n'® (last) convergent. Since |ad —bc|o = 1, we have, by Lemma 1.2.12
(1), ged(a,c) =1 = ged(pn,qs) and hence a = yp,, ¢ = g, for some v € F ~ {0}.

Thus,

|pnd - an|oo = |ad - bc|oo =1= |pnqn—1 - pn—lqn|oo7

yielding p,d — g,b = &' (Pugn_1 — D, ) , onie o' € F ~ {0}, and so

(2.11)
Since ged(pn, ¢,) = 1,
(2.12)

From |¢n|eo = |€]oo > |d|oo > - 0, we get |[d— 6" qn—1]00 < |Gn]oo,

which is consistent with (2.1 =0, i.e, whend = q,_1, b=

0'pn—1. Consequently G;;'-‘"E:'-'::‘m—-’-‘ ne-0-&di g0 and so by (1.6),

— ;J
Tf we develop 66 ﬁaﬂrﬂﬁ Wﬂﬂaﬁ’w ir Cﬂﬁm, ] with [enpa s >

1. Hence ¢ a Cly -+ Cny Cnt1; Cpt2, - -
. "
T° pﬁ R Fﬁ‘ﬁlf"ﬁmhﬁﬂqq ngaay
Pe—10k + pr—2
0 =lby;b1,...,bp_1,0,] = ——————,
lboi b1 -1, 04 Qr—10k + qr—2
which implies
_ Po.+ R

QO+ S’
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where
P =aA_1 +bgr—1, R=apy_o+bgi—z, Q = cAy_1 +dgy—1 and S = cpp_s + dgi—

are in F[z| with |PS — QR|w = |(ad — bc)(pr—19k—2 — Pk—2Gk-1)|cc = 1. From Lemma

1.2.12 (iv), we have |6 — < 21| for all i > 0, and so

bi| o= 1
qi 1 1qi (0i+19i+qi—1)]oo @ oo

= Oqp— 2+&

pr—1 = 0q
: drk—2

ave |Qloo > S| > 0 for all

€ F . {0} such that 66, = 1,

for some n, i.e., |bpriloo = O
Lemma 2.1.9 and Coro
‘f_ a b
Lemma 2.1.10. Let #ll ( )), M = , where
= c d

af+b et =1, then

a,b,c,d € Flz] (ﬁiﬁl(ﬁi%e ﬂ?’! w ’]ﬂ‘j’
o QAR TG

Lemma 2.1.11. Let 0 be an irrational element in F((xz™1)) ; h, di, d3 € Fla] ~ {0}

and dy € Flx]. Then

Loo(h0) < [BlooLool(6) (2.13)

and I <d19 d+ dQ) < |dids|n Loo(0). (2.14)
3
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Proof. 1t 6 has unbounded partial quotients, i.e., Lo (0) = oo, both inequalities are

trivial. Now assume 6 has bounded partial quotients. For h € F[z] \ {0}, k € Ny,

clearly,
sup (|ghlo 9h0])) ™ < sup (Jglo [lg0])) ™
deg g>k degg>k
and
lim sup (|ghs (gl N0~ -
[qloo>1 .
Consequently,

which proves (2.13).

To verify (2.14), from C Arv2:1.8 F 2:13), we have

ﬂ U ﬁﬁﬂﬁﬁﬂ%ﬂ?ﬁﬂlﬂlﬁm%m
wwawmmwﬁwmé’a :

Now we are ready to prove our main theorem.

Proof of Theorem 2.1.2. By Corollary 2.1.8, it suffices to prove the two results for

L., L in place of K., K, respectively. Let 1) := Zgj:s = M(6).
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We start by showing that there exists My € GLo(F [z]) such that

a 3
|det Ms|oo = 1, MoM = € GLy(F [z]), |ay|oo = | det M| .
0 ~

E F
Write My = . To fulfil t
G H

If a =0, then ¢ # 0 an

juality, it is required that Ga+ Hc = 0.

Choose FeF~{0}, G=1/F
and arbitrary E € F[z] .
If ¢ =0, then a # 0% v s talke\( seEE]F\{O},H=1/E

and arbitrary F' € F[z

, Le.m.( ac)

\ and H = —

—I— H = 1. Setting £ = v and

If both a # 0 and . Since

ged(G, H) = 1, there a

After we obtain such My, we S emma 2.1.10 to get

a9+ﬁ)
ry )

and the second mequahtyl'(ﬂQ 1) now follews from the inequality (2.14) of Lemma

1L ﬂﬁﬂ?ﬂﬂﬂ'ﬁ“ﬁﬂﬂi
To plafe ‘i& séneqlﬁl%of (9.1 i] cons%r the adﬁma me

M’ = adj (M) = :

which has M'M = (det M)I,, and so

M) = M'(M(6)) = M'M(6) = 6.
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Applying the second inequality of (2.1) to v, we have
Loo(0) = Loo(M'(¢)) < [det M'|ooLoo(¢0) = | det Moo Loo(¥),

and the first inequality of (2.1) follows.

We turn now to the second assertion of the theorem. For each ¢ € F[z] \ {0}, let

B B ‘ l ' at + b
Tq = |qloo [lg¥]| = K : {q <09+d>]> ‘

yielding

which is the first term in th

If ¢ # 0, then

| V— qb)|oo, (2.15)

Since # has bou Maﬂﬁﬁy %’ﬂﬁ- are finite. The result
of the first par en (@/J) Corollary 2.1.8
@

o R AT A NG T

approximations

a0 = ¢ [|a 0|

such that

< L(y) foralli>0. (2.16)
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By taking a suitable subsequence, we may reduce to the case where either all of the
approximations have ¢®”a — p@¢ = 0 or all of them have ¢®Pa — p@¢ # 0.
We first treat the subcase ¢®a—p®ec = 0 for all i > 0. Since ad—be = det M # 0,

we have pd — ¢Wb € F[z] \ {0} and so (2.15) gives

e+ d|os 00 = ¢V [pPd — ¢Db|oe > 1
q

Consequently,
Ly) — L o < lclerd)s. for all i > 0.
Letting ¢ — oo, we get t jorm_in the 3 ;- % d expression of (2.2).
Finally, we consider t At B 0 for all « > 0. From (2.15),
we have

|cf + d| ‘ 0 pPe)0 — (pPd — ¢Vb)|
p(’)c)HH > ﬁ (2.17)
Using the first inequ 1t *‘ll 1 ; ;I ), we get
“Augnendie iy

¢Wa — p®
PP IO | i

awwmmm WFANg8Y

Using the strong triangle inequality, we have

N (a ; a[ad+0b N (a () al +b ;
@ <l (22) - 0 o (320) 1)

g9 det (M)|oo 24w
= : . 2.19
max{ le(cf + d)|oo 7 ¢ oo ( )

(2.18)
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Combining (2.18) and (2.19) gives

1 T, (3)
L(Y) — = < L(f) max < |det M|, |c(cl +d oo‘.’—}.
(0) = g < 10 max et M, (e84 i

Using the first inequality in (2.16), i.e., 2,0 < we deduce that

1
L(y)—1/20

, using the first term in the

‘-.\-\ — o0 in (

If L(§) > L(1), then thes

right hand expression. 2.20), the ratio

L(0)

L(y)-1/2" -

becomes < 11in t
Next, the boundedness \ ar continued fractions repre-

senting linear fractional elements in F((z71)) is investi-

Lcl,

gated.

Definition 2.1.12. .Lct ¢ be an element in F(z) s Kzl whose regular continued

fraction expansion is ﬂ?l, biso-

Lemma 2.1.13. Let ¢ befamelement in F(@) F[x] whose reqular continued fraction

o ) WE] 2] JNTNEANS
ama@ﬂwwm}mﬁf 7}

Proof. From Lemma 1.2.12 (v), we have for 0 < i < n, ||¢¢| = |g:¢ — pi|, and so

Lemma 1.2.12(i7) and (iv) together yield

1 B 1
|Piv1 + Gim1/ ¢l |bi—|—1|'

¢l llaioll =

This implies the first desired equality. The second desired equality follows immedi-
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ately from the best approximation property of regular continued fraction convergents

according to Remark 2.1.4. O

Proposition 2.1.14. Let ¢ be an element in F(x) \F[z] with |¢|« > 1 whose regular

continued fraction expansion is [by; by, ..., b,] and let

where a,b, c,d € Flz] be su : c=1, lcdo > |d|l >0 and cp+d#0.

Assume that ¢ € F(x)

A) b/d and a/c equ m — 1) and m™ conver-

gents, respectivel on for v and we have that the

(m + 1) complet some § € F~ {0}.

B) R(¢) = max{|bg|oo, R

Proof. Denote the regular contiti nsion of a/c by [cp; 1, ..., cn] and
let Py /qm be its mt G —T‘_ﬁi_1;' 1, we have, by Lemma

1.2.12 (i), ged(a,c) B: ged(p, /Dims %: V¢ for some v € F ~ {0}.

mmamwptmm
ﬂa“ﬁﬂ mmm %W}% Y& ﬂ{ﬁ -

pm(d - 5IQm—1) = Qm(b -4 m—l)- (221)
Since ged(pm, ¢m) = 1, the relation (2.21) gives

G |(d — &' qm—1). (2.22)
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From |¢m|eo = |¢loo > |d|oe > 0, and |gm|oo > |@m-1]cc = 0, we get |d — ' Gm_1]00 <
|¢m|oo, Which is consistent with (2.22) only when d — §¢,,—1 = 0, i.e., when d =

8 ¢m-1, b =08p,m_1. Consequently, 1) = % for some § € F ~\ {0}, and so

W =1lco;C1y- -, Cmy 0.

3 : . Q db,]  if mis odd,
[co; Clﬁ, ..___o.\: if n is even.

Since |biloo = [0bi]00 =

This immediately yields

as desired. 0

Theorem 2.1.15. Let ¢ be c| whose regqular continued fraction

expansion is [by; by, . .., b,] and letp. ast) convergent and let

X
]
‘a W
where a,b, c,d Eﬁﬂa&]—% % Wﬁ% %}fs}mﬂe@at Y € F(x) \Flx]. If
aluc # [V, theh

AMINIUYM NN Y

Proof. Let [lN)O; by, bo, ..., 55] be the regular continued fraction of ¥ and denote its i*"

convergent by p;/G;. Choose a k' denominator, gy, of ¢ such that

1
OSk<S and R(w):m
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From Lemma 1.2.12 (iv),

(=D*

G —pp = ———————,
Vi1Gr + Qr—1

so that we can write

for some [ € F(z) such that
Case 1. p; # 0. =
Hence [prloo > 1 > |f] Bloo = Pkloo > |8loo. We
get |qra — Prcloo = |G (@™ 1€) By the assumption [afo, # [c|, so we have
|Gra — P Giclo s0odg 1WGkClos s \ DkCloo > |5¢) s

Then by (1.1)

|Gra — Prcloo = | RS GicH =Gea — Yicle # 0.
Thus

4

elseldk] oo G k¢||

)_

ﬂum wﬁ%ﬁkﬂ'fﬁw

C¢ + d—‘oo|qw - ka ||Qk¢||

lad — be|og—

¢+

= [Gra — Prcloo|(Gua — Prc)P — (Prd — Gib)|o- (2.23)

Subcase 1.1. |Gra — Prcloo < [qn]oo-
Since |ad — be|oo R(1) # 0, |(Gra — pre)d — (Prd — @ib)| # 0. Hence by the definition

of the distance
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[(Gra — Pre)d — (Prd — Gib)|oo > |[(Gra — pre)oll,

and then Lemma 2.1.13 together with (2.23) yield

1 1
d—>b SRS YIRY > |gra —p o) k0 — D Z YN
|a’ C| R(¢) = |qka pkc| ”(QkCL pkc)¢|l R(Qb)
Subcase 1.2. [Gra — prcle > g,

E \ |
Write ¢ = Vil where £ € Elz PG ged(E, F) € F~ {0}. Then by
(2.23)

lad — bc| oo — (prd — qkb)‘

[e.9]

0 — (ped — Gib) F|

We have by Lemma 1.2.12 loo = |F'|oo, and so com-

bines with the facts that |g.a=p |(@ra — pre)E — (prd — Grb) F| > 1

we get /&
e A e e— e —— 1
1575 TR(0)

J

Case 2. pp =0.
‘o

By the construﬁ Elj w \{ wmﬂaﬁ b € Flz] \ T, for all

1<i<s, then By (1.2), |pileo > 1 oralll<z<sItfollowsthatk—O Thus

ARIAY) TUNNINYAE

bilo =
R = aeTaoon ~ P =

Therefore,

R() < max {‘%‘ Jad - bc|ooR(¢)} |

[e.9]
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2.2 Zaremba’s conjecture for 2° - 3!

A famous conjecture attributed to Zaremba, see e.g., [20], states that for a positive

integer m > 2 there exists a reduced fraction a/m such that

max{by,...,b,} <5,

where [bo; b1, . .., b,] is the regular e ntinde tion with b, > 1 of a/m.
In this section, Zaremba’s m = 2°-3" where s,t are non-

negative integers verifie 0 as the Folding lemma similar

to [30].

For an arbitrary fi
(2.24)

Lemma 2.2.1. (Folding ler , n>0 and fl’—: be the last

convergent of a continued fraction over R. Then

pn N ( 1)n B '!i S1 "! ; Zf n = 0,
qn ].qn

bo,ﬁa,bn,Sl 1bn 1y--- ; ’Lf ’I’LZ].

AUEINENINETNT

Proof. We have By (1.6) and (1.7) th(”Lt

ARAINTUANANEINY

bO)b17" bn781 I 1:| =

n (31 e l)qn+qn 1
-1\
e, O
qn Squn,

Hence the computations

$1 = Gn-1/Gn =51 — 1+ (¢n — Gn-1)/n
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@/ (Gn = @n-1) = 1+ Gn-1/(qn — @n-1)

(@ — Gn-1)/Gn-1 = =1+ @n/qn—1

allow us to rewrite

n -1)" -
p——i—%:[bo;bla--wbmsl_1’1’_1’(] 1].
Adn 5145, ; &

yws from the definition of ¢_; and

AN 2.24). O

form m = 25 - 3", where s,t

are non-negative integers, i 5ts o Fedu a/m such that

where [0; by, ..., by,] is the act ith b, > 1 of a/m.
Proof. Starting from the following fraction:
L [0 _ 53 = (05 1,5];
L = [0;4 2, | 25 =10:3,2,1,2];
3= ,,1,2,#; 3 ﬂas_[042242]
%_oﬂuﬂquiﬁwﬁjq ‘52%3 [0;2,5,2];
7

‘fﬁﬁa%ﬂ FaliIny TRy

and the p oof is then completed by showing the stronger statement that for any

positive integer k > 2 and any positive integer m > 2 of the forms
m=2F.3 or m=2.3 (0<j<k),
there exists a reduced fraction a/m such that

1<by,b,<5b and b, <5 forall 2<i:<n-—1,
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where [0; by, ..., by] is the regular continued fraction with b, > 1 of a/m.

We will prove this stronger statement by using induction on k. By the above
fractions, the stronger statement holds for £ = 2, 3. Now assume that the stronger
statement holds for 2 <i<k (k>3). Let 0<j<k+1.

If both k£ + 1 and j are even, then by the hypothesis there exist reduced fractions

b/(2"% - 3%) and ¢/(2%-3"%
1 <ep,ep <5

. |
t smzsuh—l; (2.25)
< did / N \ <i<r-1, (2.26)

where [0;¢q,...,cp] and J0; 4d,] are, the resular continued fractions with the

last partial quotient > 1 - :~ )¥.a : ' > %__1), respectively. Applying

and

ﬂquwﬂﬂ§Waﬂﬂi

st = Qi 01 de = Ldpy o di]

aﬁﬁmmmwmmm 8],

It is clear that

k41 i

ged(b- (27 - 33) + (1), 26+ . 37) =1,

and ged(c- (25 -3 4 (—1)7, 27 - 3¢+1) = 1.

Hence the stronger statement is established by (2.25) and (2.26).
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If at least one of k 4+ 1 and j is odd, then we can write
2.3 =y -v?  and 27 3MF =y 03
where wuy,us € {2,3,6}, vy = 2" -3" forsome 2 <mn; <k+1, 0<ny <mny

and vy =2 -3™ for some 2<ny<k+1, 0<ng<mny Then by the hypothesis

there exist reduced fractions b/v; and

v9 such that

1 <cp,ep <bo 1 J {&ll 2<i<h-—1; (2.27)
| < dy,d, <5l < (2.28)

where [0;c1, . .., cn] and'[0; dif, 4 fepjiave: "\ ontinued fractions with the last

partial quotient > 1 of fadd fo /v, Applying Lemma 2.2.1, we have

b
- Ch—1, - 701]7
U1

and
C
- —1 by —1, - 7d1:|
%)

It is clear that

A )
ged(bugvy + (=1)" ulvl) 1 and gcd(ch s+ (1), uge?) = 1.

et %g;glw NG AR T th ctntons o

and us. O

Qﬂﬂﬁ@ﬂ‘iﬂmi’l’]’m&ﬂaﬂ



CHAPTER III

CONTINUED FRACTIONS WITH SOME PATTERNS

In the chapter, we § / n of Theorem 2.3 in [9] which

considered continued fracti to con tions over a general field K.

actions over the field F((z™ 1))
\

N

of formal series over a ,‘ - A \ cresting identities. Next, an

.\ou ty is extended in the last

This generalized theor

identity for continued

section.
. E‘i«_.
3.1 Identities for cont s fre tons with some patterns
._,,.f H:‘e! :
Theorem 3.1.1. -# bbby (n > 0) be a con-

tinued fraction over K.ﬂ" en

ﬂw%ﬂ smw BT
QWﬂﬂ@ﬂﬁ‘ﬁEﬁﬁ’ﬁ%ﬁ 2P Bt

n>1, by 1.6), (1.2) and (1.7), respectively, we have

qn
n < n d—a.,_ )pn—l + Pn—2
|:b0;bla"'7bn—17bn+d 4 :|: o
~ n-1 (bn + d—?;:_1> Gn—1 + qn—2

_ d(bnpn—l + pn—2) - Qn—l(bnpn—l + pn—Q) + nPn—1
d(ann—l + Qn—2) - Qn—l(bnqn—l + Qn—2) + Andn—1
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_ dPn = Gn1Pn + GuPna
dQn — @n—1Gn + Gnln-1

_ P (2D
¢ dgn
as desired. O
Choosing d related to p,, ¢,, and any identities for continued fractions

Corollary 3.1.2. Let [bg; by n > 0)be.a reqular continued fraction over

F((z™1)). Then for an

DPn (_1 Y ‘~ ) Zf n:O’
an (sgn + 200 4\
g (s K byl if n> 1.
Proof. Tt is obvious for n =0, since. 2 bo+ 1 = [bo; s]. Now consider
the case n > 1. Since |Gn—1]es x we have sq, + 2¢,_1 # ¢n_1. By
applying Theorem 3. y__"“‘sr
ll
» ul
— + b07 o n 15 b + :|
Gn—1

,§Wﬂ3ﬂ% -]
Honce Q " ﬂﬂﬂ'ﬁm lm'nﬂﬂ'm 4

P (2D
G (G + 2¢n-1)qn
from (1.5). O

= [bo;bl,...,bn,S,bn...,bl]

The symmetric pattern appearing in the case n > 1 of Corollary 3.1.2 is called 2-

duplicate symmetry, following Cohn [10]. Tt is obvious that a 2-duplicating symmetric
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continued fraction is palindromic.

The next corollary is the Folding lemma for the case of formal series.
Corollary 3.1.3. Let [bg;by,...,b,] (n > 0) be a reqular continued fraction over

F((z™1)). Then for any s € Flx] \ {0}, we have

;o if n=0,

| 5 if n>1

Proof. 1t is obvious fi - = [bo; s]. Now consider the

case n > 1. Since | gn—1. By Theorem 3.1.1, we

have

and hence

1 —1)" ”j
p”ﬂ( ) [bo,bl,.. by S, —bps. ., —b1]

s vequired ﬂuEJ'JVlEmﬁWEﬂﬂ? =
Corollaa:ﬁ-a.l ﬁ \T[ﬂ 8 Oy. ﬁﬂgﬁlﬁﬁwd fraction over

hen for any s €F we have

& N (_1)n [bO;S] 3 Zf n = 0,

_ (3.1)
n S—b n+ n— + n)Un
L [ S S B
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and

Dn (=)™ [bo; ] cif n=0,

Qn ((S + bO)Qn + gn—-1 — pn)Qn

[bo;bl,...,bn,S,—bl...,—bn] 3 Zf TLZl

(3.2)
Proof.  (3.1) and (3.2) are obvi
Po (—1)0 1
— 4+ =bg+ — = |bo; s
g0 ((s—=bo)go+gq-1+ E (o ]
Now consider the case - 50 Gidllso < dnlse <5Gn] and p”j}% is the

fractional part of fl’—:,

|(8_b0)qn+q )QH+Qn—1 _pn’ooa

and so (s — by)qn, + Gn—1 + Pu-l dn—1 — pn are different from ¢, _;.

By applying Theore E"TT_E-‘

'|
ui
b bl;”' n— 17

fTﬁ&TT ﬂé]vaugn il
RN TUIMINAY

P (=" { Gn ]
cL = |bo; b1, ..., bp—1,b, +
An ((3 + bO)Qn + gn—-1 — pn)Qn o ! (8 + bO)Qn — Dn

i

Y

and

Pn—bogn
qn

1
= !bo;b1,~--,bn_1,bn+—] :
S_

We finally reach
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pn (_1)n

+ = lbp;b1,...,bp,8,b1...,b,],
An ((5 - bO)Qn + Gn—1 +pn)Qn [ 0> ! ]
and
Pn (=)™
— + = |bo;b1,...,b,,8,—b1...,—b,
an ((S + bO)Qn + Gn—1 — pn)qn [ 0: 71 ! ]
as desired. O

If we repeatedly apply (3.1) i 1.4 with the same s and with n equals
2 (n of the previous iterati - ) ries expansion for an irrational
element in F((z71)), whichei adra quation with the coefficients are

in Flz] whose regular 18, \[bo; D1sba, - -, by, 8.

3.2 A generali | fnued fractions with 2-duplicate

symmetry

As mentioned in the pr b, S, b, by] is said to be a

2-duplicating symmetric contintue notion is generalized as follows.

Definition 3.2.1. Ltk = 2. n - daty field and by, by, ... by,

,Sp—1 € K. Demte the word bymZ> and use w to denote

B ﬁuﬂqwaﬂﬁwa1ﬂi
W%%Wﬂ“ﬁﬁfﬁinﬁﬁmw

0”11) S1,W, S92, W, S3, W, . Sk—1,W ) k is even,

a k-duplicating symmetric continued fraction and denote dS; := [bo; 1_15]

In order to generalize 2-duplicating symmetric continued fractions in Corollary
3.1.2 to dSk (k > 2), we need a notation for the convergents of a continued fraction

defined by segments of partial quotients from another.
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Definition 3.2.2. Let m > 0, K be an arbitrary field and [by; b1, bs, ..., b,] be a

continued fraction over K. For 0 < u < m, define

Pu,u—l = 17 Qu,u—l = 07 Pu,u = bu7 Qu,u = 17

Pu,v - vau,v—l + Pu,v—2 and Qu,v = vau,v—l + Qu,v—2 (’LL <wv< m) (33)

Analogous to the formal tors and denominators of contin-

ued fractions, we have th

Lemma 3.2.3. Let m > [bo; b1, b, ..., by] be a con-

tinued fraction over K.

Lemma 3.2.4. Let m > 0 d.and [by;by1,ba, ..., by] be a con-

. . b — - — -,
tinued fraction over K e foltowing iden; 0 <u<v<m
(]‘) PvQu — GuPu = E‘l)uu_’_ L —

y
(2)  @Qup—1 — Quua

o uﬁumnﬁﬁ%’wﬂm
et ﬁmﬁﬁﬂﬁmﬂwﬁ@WﬂTﬂ“ﬁhe o0 e

of each is & consequence of the definitions of ), ,—; and F,,_1. Now we consider
each of them for the h > 1 case.

(1) (1.7) and the definition of Qui1441 lead to put1Gu — Quirpu = (—1)* =
(—1)"Qut1,u+1, and hence the equation hold for h = 1. Now assume that the state-
ment holds for all 0 <i<h—1 (2 <h < m—u). By applying (1.2) and the

hypothesis we have
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Putn@u = GurhPu = (butnPuth—1 + Purh—2)u — (DutnGurh—1 + Gurh—2)Pu
= byin(—1)"Quisrutn—1 + (1) Quituth—2 = (—1)"Qut1,uth,
and so the equation is established.
(2) The definitions of Q. and Q.11 and (1.2) lead to qui1Quu— Quut1Gu =

Qur1 — bur1Gu = qu1 = )°Gu_1, and so the equatlon holds for h = 1. Now assume

that the statement holds for all E2 < h <m—u). By applying (1.2),
(3.3) and the hypothe31s r , we h

QU—i-hQu,u—i-h—l Qu u—l—hQu

= (buthQuih—1 +

y \\ H\ —1 + Qu,u+h—2)qu+h—1

= Qu+h—2Qu,u+h— “oGuh—1 Qu 15

and hence the equation i
(3) The definitions of and (1.2) lead to quPut1u+1 +
Qu-1Qut+1,u+1 = Qubut1 + equation hold for h = 1. Now

assume the statement holds for-« (2 < h <m—u). By applying

(3.3), the hypothesis‘a nd (1.2), respectively, we have
y.

QUPu—I—l u+h + Qu— lQu—l—l h — m

u+ ,u+€ﬁ|' Pu+1 u+h—2 wQU u—i—hQu—i—l u+h—1 Qu—l—l u+h— 2)

. B EJML’EW V1 e S
Wﬁa\fﬁ‘immmma&l

and then the equation is established.

Theorem 3.2.5. Letr > 2, n>r—1, K be an arbitrary field and [by; b1, b, . .., by

be a continued fraction over K and let byi1,...,bpr € K. If by_yi9or; = by for
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all 0 <i<r—2, then

Pntr  Pn (— 1)nQn+1,n+r

Qn—l-r B An (Qn—r+1,n—1 + Pn+1,n+r)q¢2L + (_1)7‘_1(]71—1"qn7

where z:i: is the last convergent of [bo; b1,y ..., bny bps1ys .oy bygr).

n+r = r;—r » el V| _I)T_1Qn—r- (36)

(3.7)
D gy (3.8)
Subtracting (3.7) by (3.8), we
QnPn—l—l,n—i-r + dn—1 S";.;’,,,,,,,, ,"',""—""—"‘ﬁz:"_""";-'; + (_1)T_1qn—7’ = qn—l—r-

Hence, by applying (1.2)/t0 g1 and (3.3) 40 Q, 41,41, We get

etrore- BUETNINTHIIRT oo

PMNNIUNRINGNRY
We have by (3.4) that S5 = (b, 1:b, o ..., b,] and by (3.5) that
Qn—r—i—l n—1
—————— = 1[0;by, ..., by_ryal.
Qn—r+1,n [ +2]
Observe that the last denominator of [0;b,,...,b,_r12] equals the last denominator

of [bus1;bn,--.,bn_ri2] and thus by the assumption b, 101 = bpyry (0 <@ <
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r —2) which lead to

Priins
[bn+1; bn7 ey bn—’l‘+2] - [bn+1; bn+2, ceey bn+r] = ﬁ
n+ 7n+'l"

Hence we can conclude that @Q,—r4+1, = Qnt1n+r. Therefore, by putting Qi1 =

Qnt1n+r into (3.9) we get (3.6) as desired. O

as follows:

?\u\\ ary field and by, by, ..., by,

Corollary 3.2.6. Let

S1y...,8k_1 € K. The

ds, =
n s GG
+ Zk: i 1) n+i—1,in+i—1
im (Q(z 2)n+i—2,(i—1)n+i—3 (== 1972+ _' b (i— Ynti—2 + (_1)nQ(i—2)n+i—3Q(i—1)n+i—2

Remark 3.2.7. _o_z

_n 1,2n+1 [J
qn QO n— 1 + Pn+1 2n+1 qn

o g (UM FNENINEDAT ..o
fif,s. ”i WA TR ?Jd '

Qn+1,n+2n+1 = Qn,

hence P,i1nt+2n+1 = S1Gn + @n—1 and by the definition @,—1 = ¢n,—1. Therefore

this speacial case gives Corollary 3.1.2.



CHAPTER IV

EXPLICIT CONTINUED FRACTIONS RELATED TO

W

Explicit formulae f presentlng real numbers ex-

pressed by certain series a n of this chapter. Analogues

of these results are also esgab the latter.

T
L
where f(T') € Z[T {m} fo =T and foralli > 1, fi(T) = f(fi-1(T)) with

ez miin ﬁ I INEIINEART
AR AN ARI T TN S Y

Througqlout this section, we put for any f(T') € Z[T] ~ {0},

n

Ap = A(T) = (1" + > (1™ fou( D) frir (1) - fulT), (n21) 5 Ag=1,

By = Bu(T) = fo(T)i(T) ... fu(T) (n=0).



44

Note that for any f(T') € Z[T] ~ {0} and n > 0, A, and B, are the numerator and

denominator of the series 6, (7’ f), respectively, and for n > 1,

A +Z m+1fm fm-l-l( )fn(T)

n—1

= (=1)" + fu(T) 7 (4.1)
A2T) =1 = (1" + S—
— (D), | ““:\ (42)
— (D) 2 §\ 1" A, (T)
— D) () + (1)
— D) (o1 (T) Ano(T) +2(=1)")
(4.3)

Lemma 4.1.1. For f(T) e Z[ <40 0 1> 0,
A,(f(T)) = Anﬂ

for some D(T) € Z[T] ,"

P 1 Obﬂumall Efl Wiﬂ ' N
o f’ﬂ“ﬁ"fﬂtﬂﬂ Toi s ‘J‘?”I@H“’Tﬁzﬂ

An+z( = n_H"‘Z m+1fm fm+1( )fn—H( )
_ n+z+z m+1fm fm+1( )fn—i—z(T)

+ Z mem Va1 (T) oo furi(T).

m=i+1
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Case n,1 are even.

AuiilT) = F(T)fisa(T) . furdT <1+Z 1 () fs (). .fi_1<T>>

+1+Z m+1fm+ Vms14i(T) - fasi(T)

= SO fa (D) S G I I )™ D) fia(7) f—1(T)>
+AMFT)). —
Case n is even, 17 is o/ ‘ \
AniilT) = F(T) )y fre SO (7) fn (T) f_l(T))

Case n is odd, i is eve

ﬂymnqnﬁ‘gwaw1@
q RIRSATAHNAH INBA Y

= fi(1) fiza(T) ... fori(T <1+Z )™ fon(T) frnsa (T) - -fz'—l(T)>
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Case n,1 are odd.

An+i(T) = fi(T)fi+l( ) fn+z (1 + Z m+1fm fm+1( ) . 'fi—l(T)>

1- Z(_l)m+1fm+i(T)fm+l+i(T) cee fn-i—z(T)

m=1
= fi(T) fixa(T) - .. —1)" (D) frnar (T) - - fima( )>
— A, (f:(T)) 7
Therefore, for all n, i /
— Aus = A1) 4+ D(T)F(T),
for some D(T) € Z[T]... v * 7 ‘ O
In this section, two m ) : "{5 ive some classes of real numbers rep-

resented by palindromic regula 3 Cin od ons are proved.

The first main theorem

Theorem 4.1.2. Lel

ufﬁ”i Wﬂ%ﬁwwﬂﬁ »
the smalleq:ﬁegergciﬁg?:fg for a zﬂgj;ﬁ: ) ;1 ;3 be

s an integer, then

and for allm > 0, 9n+1(f; 1) is given recursively by the following regular continued
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fraction

5 0:by, .. b — 1,1, dpsy(T), 1,0 — 1,. .. ] : if nis odd
‘9n+1(T§ f) = (4-5)
[0;b1>~"7bk7dn+l(f‘)7bk7"~;b1] ) Zf n s even,

if the reqular continued fraction whi

he last partial quotient is different from 1 of

0.(T; f) is [0:b1,. ..

>bk]7 th, N

In particular,

0(T; ) = [0; T, dy A A g \ ,dy(T),T,ds(T),...].

To prove Theorem 4.1.2, we finzake us e following Lemma 4.1.3 to Lemma

4.1.7. | IO

WAL). If T (+0) s an
"
i)

Lemma 4.1.3. Let "?’I
.:I

)—1) (n=>0).

o e UBTNBRITHEING
ama&ﬁiﬁfﬂﬁﬁﬁﬁﬁaa

Because 9Ao(T) =1, then by (4.1) we have

integer, then, T | (A%

A(0) = (=)' + f2(0) - Ag(0) = ~1+2-1=1,
As(0) = (=1)2 + fo(0) - A1 (0) = 14 (=2) - 1 = —1,
A3(0) = (1) + f3(0) - Ax(0) = 1+ (=2) - (=1) = 1,

proceed inductively we get
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Hence we obtain for all n > 0,
A%2(T)—1=T-D(T), forsome D(T) € Z[T),

and so the desired result follows. O

Lemma 4.1.4. Let f(T) be the pc U / e form (4.4), and let Ty =Ty (f) > 3

ﬂl integers s >Ty. If T (>T)

is an integer, then B, Gna -15 —1) (n>0).

be the smallest integer such tha

Proof. Tt T (= T1), then il et u N
r \\\ fo(T) < ...

3T < BT #2271 AN

so that
(4.6)
Therefore B ( ) 7é 0. --—:.“—".—-:f“':"'.—":::::::: ------ a-4.L.9, WE get

f;ﬂ? | (A2(fu(T)) — 1) for al n > 0. (4.7)

ﬂ‘UEJ’J'I{LEJVIﬁWEJ’]ﬂi

But we have froni Lemma 4.1.1 that for any non—negatlve 1ntegers n,1,
q mmam UIAR AHAEE

or ALF(T)) = Ao i(T) =2D f(T) Api(T) + D f2(T),

for some D € Z. Thus by (4.7)

£i(T) | (A2, (T)—1)  forall n,i>0.
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More precisely,
T | (A (T) = 1) = (2(T) = 1) 5 i=01,...n. (48)

It remains to prove that

Since for any non-nengati

fi(T)

noticing here, from the

we obtain

gedl;(T),

e MEANENTNYINT
ABN U NNIINYNAY

)
)
) T is even.
(

= ged(£;(T),2) =1 or 2. (4.10)

(1°
(2°
(3°
1°) T is odd, g(T) is even.

Claim that for all i > 1 f;(T') is odd. Since f,(T) = T(T + 2)(T — 2)g(T) — T? + 2,

fi(T) is odd. Assume that f,,(T) (m > 1) is odd. Then g(f,,(T)) is even. Hence

fuit(T) = Fud D) (fin(T) 4+ 2)(fin(T) = 2)9(fin(T)) = f3.(T) +2 is 0dd. Thus we have
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the claim. Therefore, (4.9) follows from (4.8) and (4.10).

For the cases (2°) and (3°), we make use of the following identity for n > 2,

o= Fat) = ol +2) (s = D) = Fiy 2
= faslfaet + Dacs — ()

~ Uneallfaa + D2 =2
= faalfacs + D)o 20
sl (s + 2

fn +2= fn—l(fn—l +

; % A AR ‘
+ 2f2—2(fn—2 + 2)(fn '~ A fr2 J 2)(fn—2 - 2)g(fn—2)
— fna T A4S K :
:fn—l(fn—1+2)(fn-— : : ‘: : ) - )(fn—2_2)><

(fn—z(fn—z +2)(fo-2 9(fa—2) +49(fn2) + fn—z) . (4.11)

Case (2°) T is odd, #—E ¥

Then f(T)=T(T +2 H en. [;] et u be the positive integer

such that 2% | f(T) and % ‘L f(T denote@y 2" || f(T). Hence

ﬂ‘lJEJ’J‘VIEJVI’ﬁWEJ’]ﬂ‘i

H(T)=2 (mod 2“+1) (4.12)

RIAINTN lIWYJV]EI']ﬂ 8

since fo— 2= f(f1)~2= filfi+2)(i —2g(f1) — 2 = F((Fi+2)(fr ~Dg(h) — f)-
By (4.11), we have

f3+2=fol fa+2)(f2 = 2)g(f2) = filfL +2)(f1 —2)%
(filfr +2)(Fi = 2)g*(f1) — 2fP9(f1) + 49(f1) + f)

then, by using (4.12), f3(T) = —2 (mod 2“"?), and so by induction, (4.11) and
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(4.12) we obtain

fu(T) = =2 (mod 2“™Y)  (n >3). (4.13)

Claim that 2“7 | (A2(T)—1) for all n > 0. We prove the claim by induction.

It is clear that 2|0 = A3(T) — 1 andj A2 — 1= (f; — 1)~ 1= fi(fi — 2), and

then 2vt1 | (A%(T) —1).

ZAT=T((f2 — 2)AT + 247 +24))
= Fa(f2 — 28T 200 £ 1)) = B{lFg2) AT +24:(f - 1+1)),
so by (4.12), we obtai F1(AX(T)-1) for all k=

0,1,....n—=1 (n>

(4.14)

ﬂfn 1An2 n—1 n2+2( 1)

since, by (4.2), ) and, by (4.12) and (4.13),
e T*W ‘Wﬂfﬁ‘mﬁ’?
But (4.12) and)( lead to | fof1 herefore (4.9) follows from

o =R AINTUNRINYIA Y

Case (3°) 9T is even.

Let u be the positive integer such that 2% || T. Since fi(T) —2 = T(T — 2)(T +

2)9(T) = T),

fi(T) =2 (mod 2"*1). (4.15)
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By (4.11), we have

(D) +2 = A(D)(A(T) +2)(H(T) = 29(A(T) = T(T +2)(T - 2)x
(T +2)(T = 2g*(T) = 2T29(T) + 49(T) + T),

then by using (4.15), fo(T) = —2 (mod 2“*?), and so by induction, (4.11) and

év (n>9). (1.16)

| Claim that 2%t | . 3
It is clear that 2" |0 AR XN
\

2u+n—1 1& j & 1 —2(T) - ]‘)7

(4.15) we obtain

yrove the claim by induction.

and then 2971 | (A2(T)—1).

Now assume 2u+* | (A2 (n > 2). By the hypothesis

(4.17)

since, by (4.2), lm fn 1A o(fn-1An—2+2(— @1 and, by (4.15) and (4.16),

2| fus. Thus t Jﬂ ﬂzﬂgﬂ wﬁ
But (4.15) an lead to  2%T" || here ore, (4.9) follows from

) a“WWWMﬂ‘iEUNW]'mEﬂﬂEI ’

Lemma 4 1.5. Let f(T) be the polynomial of the form (4.4), and let Ty = T\ (f) >3
be the smallest integer such that 2s—2 < f(s) for all integers s > Ty. If T (> Ty)

s an integer, then
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Proof. It is clear by (4.6) that forall n > 0, B,(T) > 0, then we will show
for all n >0, 6,(T; f) >0 by proving that for all n >0, A,(T) > 0. It is obvious

by the definition that

Assume that  A;_1(7T)

It remains to prove th

Case n is even.

Case n is odd.

ﬂ‘u ’J VIF.JWI?W Eﬂﬂﬁ |

i ol

Q W?};ﬁ @%ﬁ?%%&ﬂﬂ ’}wﬁ%ﬁ&h

Thus, by (4.6)
~ 1 1 1
0.(T;f) = — < =< -, for all n > 0.
fo(T) 3

Therefore, the lemma is established. O
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Lemma 4.1.6. Let f(T) be the polynomial of the form (4.4), and let Ty = T1(f) > 3
be the smallest integer such that 2s—2 < f(s) for all integers s > Ty. If T (>T)

is an integer, then for n >0,

if nis odd

Bn(T) ;

:if nois even.

A2(T)—1) and (4.2) leads to

n

Proof. Let n > 0. Combining Leii

—Z
Fara(T)AL(T) +2( v
) . l‘ EY -

Since A%(T) = D - B,(T) _ Oﬁ; \\ 1ave that

15(T) +2(=1)" A, (T))

ie., e . ! & some FE € Z. (4.18)

J

But we have from Lemmay4.l.

ﬂUEJ’JTﬂE)VI‘ﬁWEJ’]ﬂi

= 20,(

AR AN SR A N &Y

Hence we gbtaln by (4.18) that

E o 1 — fn+1(T) + 2A"(’1?) — ]_ ; lf n iS Odd

frnt1 (T) _ B (T) Bn(T)
E lel(T) -2 B (T) ;. if n is even.
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Lemma 4.1.7. Let f(T) be the polynomial of the form (4.4), and let Ty = T1(f) > 3
be the smallest integer such that 2s—2 < f(s) for all integers s > Ty. If T (>T)

is an integer, then for each n >0, dpi1(T) defined by

fn1(T) . ;
[%@)}—1 ;if nois odd

at =10 5 9 (k> 0).

and then by Lemma 4l B

Since fipo(T) = frial

(46), frr(T) > 4 and faa(T) = 5, 9(fona(D))

) |
(Fon(T) + 2)(@@ Ejzﬁ%@ﬁf%fw RPRTS fea(D) = o),

Hence "1

- AFAFINTUNRINYIAY

- Fort(T) - ((fora(T) + 2)(fk+1(T)~_ 2)9(fr41(T)) = fera(T)) - fera(T)

By (T) Biy1(T)
as desired. O

|

Now by making use of the above lemmas, we are ready to prove Theorem 4.1.2.
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Proof of Theorem 4.1.2 For any non-negative integer r, denoted by k(r) the length

of the regular continued fraction which the last partial quotient is different from 1

Ar(T)

representing 6,(T; f) = BT

The proof will be completed by induction. We have by a direct calculation

0o(T; f) = [0;T] and 6.(T; f) = [0;T,(T — 1,77,

% T+ 2)(T — 2)g(T) — T, and

e for n > 1 that the regular

which, by Lemma 4.1.6, d;
)

continued fraction which ¢ -R- erent from 1 of 6,(T; f) i

hence the statement (4.5

expressed as

_ 0; g, . . cyap] 5 if n-1 is odd
0.(T f) =
0; a1, ... ;if n-1 is even,
if the regular continued fraction he las partial quotient is different from 1 of
0,1 (T; f) is [0; 0, Y _ is 6dd, and we write

= = o

m9 (T; f) = [0;b1, - -, by @1

i i L 14 o} ‘VL&!KL@W b sl prie, o tha
AN AOTTRIMATREN G Y

Since k(n ) is odd, we have by (1.7),

Qr(n) Ph(n)—1 = Pr(n)Tr(n)—1 — 1, (4.19)



and hence by the hypothesis [0; b1, . ..

Case n is odd.

By (1.5) we have _

to

o7

, bi(ny] is palindromic we have by Remark 1.2.6

(4.20)

Pk(n) = Qk(n)-1

(dn+1(T) + 2) + AR (n) — 1 bk(n) 1) 7b1]'
Hence by (2.24) and (1.
[O;bl,...,bk(n) — 1,1 a
) — L, bkmy—1, - - -, b1
+ Pk(n)-1

Qk(n) T Qk(n)—1

From Lemma 4.1.6 we
ad Ar'! T 2pk n
—dn+1(T .l ( )_ ()
j" (Jk(n) qk(n)
Thus we get
0. ﬂ Mﬁlﬁl lnﬂm)w Bl
_fa1i(T) 2Pk k()
- q Un n L4
Chi N L, | vd
q Ak(n) dk(n) Ak(n)
and so we obtain by (4.19) and (4.20) that
_ fns1(T) 2P dk(n)—1
( q:(n) Qk(n) QK (n) )pk(n) + Pik(n)-1 fn—i—l( )pk (n) T 1
a1 (D) 2Dk(n) | Gk(m)—1 - .
( Aio(n) Qk(n) Tio(n) ) k() + Ar(n) -1 / +1( )qk( )
n 1 A (T 1 .
_ Prtm) _ AT (T f)
@) forr (D k) Bu(T)  Bupr(T)
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Case n is even.

We have by (1.5) that d, 1 + q’;—;l = [dps1; bk, br—1, - - -, b1]. Hence by (1.6)

) (dn+1(T )+ ’;‘k’?)l) Pi(n) + Pr(n)-1
[0) bl) SR bk(n)7 dn—i—l(T), bk(n)) bk(n)—h SR bl] =

(dn+1(T) + faln= 1) Qi(n) + Q(n)—1

9k (n)

From Lemma 4.1.6 we have

Thus we get

[O; bl, e 7bk(n); dn+1 (T)

and so we obtain by (4.19

(fn+1(f) _ 2pk:(n) dk(n)—1
dk(n) 9k (n) dk(n)
Fra1 (T 2Pk (n Ak(n)—1

( 1 (1) 2Pk(n) -1 o

dk(n) 9dk(n) qk(n)

g g (T,
Qk(ym ‘;;, n+1( 7f)

uaﬁwaw%ﬂaﬂﬂi

s %; b1y brmy = 1y disa (1), 1, iy — by, if nis odd

H"H(TQ: [ ﬁﬂﬁlgmﬂ Mﬂ}m EI f] a E'lif s even

which Lemma 4.1.7 leads to these continued fractions which the last partial quotients

Therefore,

are different from 1 are regular. O

The following theorem is the second main theorem.
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Theorem 4.1.8. Let f(T) be the polynomial of the form

f(T) =T*T +2)(T — 2)g9(T) — T* + 2, (4.21)

g(T) € Z[T], where the leading coefficient of g(T') is positive, and let Ty = To(f) > 3 be

the smallest integer such that 2s—2

for all integers s > Ty. If T (> To(f))

1S an integer, then

and for alln >0, 0,11 e following regular continued

fraction
R b5 if nods odd
it (T3 1)/ T
:if nois even,
(4.22)
if the reqular continuved fraction which the last partial guwotient is different from 1 of

6,(T: f)/T is [0:b1,.. k < i

mif nois even.

RN Y

OT; f))T = [0;T2 ¢y (T),T? = 1,1,¢5(T),1,T% — 1, ¢ (T), 7%, ¢3(T), ... ).

YRIANNT

In particular,

The following Lemma 4.1.9 to Lemma 4.1.13 are built to establish the proof of

Theorem 4.1.8



Lemma 4.1.9. Let f(T) be the polynomial of the form (4.21).

integer, then T2 | (A2(T) —1) (n>0).

Proof. Similar to the proof of Lemma 4.1.3, we obtain

and for all n > 0,

60

If T (#0)is an

(4.23)

Afb(T)i T) _forsome e Z[T).

Hence we will prove this

It is obvious for the case 4 VO s the cases n > 1.

d

(AT~ 1) =

then, to prove (4.24), 1 G

'O—Ci'aand Al 0, forall n>

e 11 @um namw alik)

) ER(A) f.(T)A, (D).

1.

TRFARIN FOMINTING AT =

and so fl( ) = 0. Now assume that f;(0) =0 (k > 1). From the definition of

Je+1, we get

Jiia(T) = 2£(T) fi(T) (fe(T) 4+ 2)(f(T) = 2)g(f1(T))
+ET)(T) + 2)(fu(T) = 2)(g(fi(T)))

+ R(T) (T (fe(T) = 2) + (fu(T) + 2) (1)) g(fi(T) + 2 (T) fi(T).
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Hence the induction hypothesis and (4.23) lead to f;,,(0) = 0. Thus for all n > 1
we have that f/(0) = 0, and so by the mathematical induction, the definition of A,

and (4.1) we also have for allm > 1, A/_,(0) =0. O

Lemma 4.1.10. Let f(T) be the polynomial of the form (4.21), and let Ty = T5(f) >

3 be the smallest integer such that 2s — s) for all integers s > Ty. If T (>

1) is an integer, then TB,( —1) (n>0)

Proof. If T (> Ty), then®

3372/” WD) = 2o (T) < ...,

so that
(4.25)
Therefore T'B,(T) # 0 for all n : - c mma 4.1.9, we get for all n > 0,
(4.26)

But from Lemma 4.1. 1 WE have for any non—negatlve integers n,1,

AU AN T
forsom%'m@ éuﬁ%'mﬂﬁa” 7

fz(T) | (AELH(T) —1) forall n,i>0.

More precisely,

F(T) | (AL a(T) = 1) = (AU(T) 1) ; i=0,1,...n. (4.27)
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Also, we have from Lemma 4.1.9 that

T? | (AX(T)—1) (4.28)

It remains to prove that

(T)—1). (4.29)

Since for any non-nengati

noticing here, from (4.2

we obtain

geddd, (7 i ), 11(1)) = god j<> 2) 4.

We con&der%e“lﬂ’; ll qunﬁw Ejflﬂﬁ
;Ziémé\iﬂwumaﬂmaﬂ
(3%)

30

or 2. (4.30)

T is even.
Case (1°) T is odd, g(T) is even.
Since f(T) = T*(T +2)(T — 2)g(T) = T*>+2, f(T) (i=0,1,2,...) is odd.

Thus (4.29) follows from (4.27), (4.28) and (4.30).



63
For the cases (2°) and (3°), we make use of the following identity for n > 2,
fo=f(fom1) = f?’zl,—l(fn—l +2)(fam1 = 2)g(fr-1) — 3—1 +2

= fv%—l(fn—l + 2)(fn—1 - Q)g(fn—l)

— (fa-al(fn2 +2)(faz = 2)g(fu2) = 1) + 2)2 +92

= £ (e + D (o~ 2l w2+ 2)(famz — 2)g(fas) — 1)?
— 4125 ((fama + 2)(fremm 2l >é‘

——

fat2=fi(fanr wm/""; b fo < '_2+2)(fn_2—2)g(fn_2))2
2615 (Fuma + 2) (L U 2D LSt 2) (-2 — Dg(u2)
~ fiaar —

— (e 42 i e B2) (s — 2

o) +49(fa2) +1). (4.31)

Case (2°) T is odd, g(T) is '7‘-»:,

u be the positive integer

such that 2* | f(T) an

Then f (T) — T2 (T :;::z.‘;m::z_'"_—;:;__—.._._%

U

AU 9 W’Wﬂ’l 79 (432)

e 2 QRA YA RLHAR IR B 200

By (431 f3+2=f3(fa+2)(f2 —2)g(fo) — fR(fi +2)(f1 —2)%
(fE(fi+2)(fr = 2)g*(fr) = 2fF9(fr) +4g(f1) + 1),

then, from (4.32), f3(T) = —2 (mod 22**2), and so by induction, (4.31) and (4.32)



64
we obtain

fu(T) = -2 (mod 22"~ Y)  (n>3). (4.33)

Claim that 2t | (A2(T) — 1) forall n > 0. We prove the claim by the

2
]
I

mathematical induction. It is clear th AX(T) -1 and A2 -1 =

(fi =1 =1= fi(fr —2), and ’-\\\

. From (4.1), we get

= fa((fo — 2)A] 27 ;3, DA +2A,(fL —1+1)),

so by (4.32), we obtai

0,L,....n=1 (n>
2u+n—1 ; )7 77 '. £ it \ "'l —2(T) - 1)’

and so the latter leads to 2
(4.34)

since, by (4.2), lﬂfn 1A o(fn-1An—2+2(— ) and, by (4.32) and (4.33),

2|[ fa—1. Thus t ﬂﬁ ﬂm
But (4.32) lead to 2utnTl erefore (4.29) follows

| ‘Wﬂﬂjﬂ‘ﬂ‘im UAIINIAY

Case (3°)97 is even.
Let u be the positive integer such that 2* || T. Since fi(T) —2 = T?((T — 2)(T +

2)g(T) — 1),

fi(T)=2 (mod 2%). (4.35)
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By (4.31), we have

f(T) +2 = FHT)(F1(T) +2)(fi(T) = 2)g(f1(T)) = THT +2)(T — 2)
(T2(T ) (T — 2)g%(T) — 2T2g(T) + 4g(T) + 1) ,

then, by using (4.35), fo(T) = —2 (mod 22*2), and so by induction, (4.31) and

‘ ’,yé\— (n>2) (436)

We prove the claim by the

(4.35) we obtain

Claim that

—1 and A = fi(f1 —2),

mathematical inducti

then by (4.35) 22ut! —1) forall k =
0,1,....n—1 (n>2
gnent | (45 , (A5 (T) = 1)
#fas
and so the latter leads to 21 A T:g 1
r*i: -
-{‘ b, (4.37)

J
since, by (4.2) , by (4.35) and (4.36),
2|| fue1. Thus the@lalm llowsﬂm mﬁanm tTﬁl
~ QRGN NIN VAE o

(4.27), (4.28) and (4.30). O

Lemma 4.1.11. Let f(T) be the polynomial of the form (4.21), and let Ty = T5(f) >
3 be the smallest integer such that 2s—2 < f(s) for all integers s > Ty. If T (>T5)

1s an integer, then
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Proof. By using (4.25), the proof is same as that of Lemma 4.1.5. O

Lemma 4.1.12. Let f(T) be the polynomial of the form (4.21), and let Ty = T5(f) >
3 be the smallest integer such that 2s—2 < f(s) for all integers s > Ty. If T (> Ty)

s an integer, then for n >0,

;if nois odd

if nis even.

Proof. Let n > 0. CorJ ' ‘?\".‘ \;\"q\‘ A2(T) —1) and (4.2) leads

(D) AT ) ( )" A(T))

Since A%(T) = D - Z .‘:J that
I

o (F) + 2 1)1 AL(T)

ﬂusqwﬂ%%wHWﬂi

fn+1 n+1A7E

"R awm%u RTINS -

But we have from Lemma 4.1.11 that

<1. (4.39)
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Hence we obtain by (4.38) that

= fni1(T) n(T) e
fri1(T) E—1= T];:(T) + 2TB @) -1 ; ifnisodd
TB,(T)|

o E =l o AdD) if n is even.

TBo(T)  “TBu(T) ;
O

Wﬂ‘orm 4.21), and let Ty = To(f) >

—2.< [(s)Jor allintegers s > Ty. If T (>Ty)

Lemma 4.1.13. Let f(T) b
3 be the smallest integer su

s an integer, then for e J/E A KD N T

1S even.

15 @ positive integer.

Proof. From Lemma 4.1.12 and -

.
We proceed by ﬁuu qu iﬁ&]lﬁ\@w Eja’]im < f1(T) lead to

@ﬂ@%&}ﬂﬂ%ﬂin%q NN AR 122

and then by (4.39) we get Tg(g) > 2. Now assume that ;cf;g; >2 (k>0).

Since fya(T) = [ (T)(frra(T) + 2) (fira(T) = 2)g(frs1(T)) = f41(T) +2 and, by
(4.25), frsa(T) > 4 and fio(T) > 5, g(frra1(T)) > 1. Then

o.show that

i
iy

Frr1(foe1 (D) +2) (s (T) = 2)g(frsr (T)) = fore1(T) > 1211 (T) = frpr(T) > frora(T).
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Hence

< Jik+1(7?) fk+1(~)
TBk(Ij) fk+1(T) i i i
- Fre1(T) - (fora (D) (fora (T )+2)(fk+1(T)—Q)Q(fk+1(T))—fk+1(T))

T By (T)
_ (D)
T By (T
as required O
Now by making use of the ak v? GNIMas, v > dy to prove Theorem 4.1.8.
Proof of Theorem 4.1.8 Jnegative int o ,denoted by k(r) the length
of the regular continued | i ch the last partial quotient is different from 1

of 0,(T;f))T = m%

The proof will be com et 1 by jinduct e have by a direct calculation

0o(T; )/T = [0;T?) DT 077, (T +2)(T — 2)g(T) — 1,77,

which, by Lemma 4 ‘E_"'_—_W: 4 2)(T —2)g(T) — 1, and

sume for n > 1 that the regular

'l
- J
continued fraction which t}e last partial quot1ent is different from 1 of 6,(T; f)/T is

e AU INENTHYINI
a mﬂﬁﬂ%ﬁj ”qu(WEmﬁﬂ if n-1 is odd

0; 01, - -y (e 1),cn(T) h(n—1), - - -, 1] . if n-1 is even,

hence the statement (4 "’

if the regular continued fraction which the last partial quotient is different from 1 of

0, 1(T; £)/T is [0;0u,...,arm_1]. Then we have k(n) is odd, and we write

Pk(n)

0,(T; £)/T = [0;b1, ..., b)) = —2.
Qk(n)
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By using Lemma 4.1.10 we have A, (T) and B,(T) are relatively prime, so that
An(T) = pk(n) and TBH(T) = qk(n).

Since k(n) is odd, we have by (1.7),

Ok(n)qk(n)—1 — 17 (440)

Qk(n)pk(n)—

(4.41)

Case n is odd.

By (1.5) we have —2)_

mple manipulation leads to
9k(n)—1

_(cn+1(T)+2)+ -1 bk(n) 17~--7b]'

Hence by (2.24) and (1.6)

(051, ..., Do) — 1, 1 Nk b D=1 Do D

g Y
Ly 7c’rL+1(T jﬂ 7bk:(n) - 1, bk(n)—17 C.. )bl]

F”“““@“Wﬂﬁﬂﬂ‘im mﬂﬂﬂﬁﬂﬁﬂ

_ _ fora(T) AnT) _ (T ) 2Pk ),
Cn+1(T) 2=- TBn(T) TBn(T) B Qk(n) Qk(n)

Thus we get

[O; bl, e 7bk(n) — 1, 1, Cn+1(T), 1, bk(n) - 1, bk(n)—b ceey bl]

_fnJrl(T) _ 2pk(n) dk(n)—1
9k (n) dk(n) 9k (n)

o faa (@) 2P Ar(n)—1
Ak (n) Ak (n) 9k (n)

) Dk(n) T Pk(n)—1

)

) Qk(n) + Qi(n)—1
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and so we obtain by (4.40) and (4.41) that

_ fns1(T) 2Pk dk(n)—1
( Ak (n) Qk(n) QK (n) ) DPk(n) T Pk(n)—1 fn—i—l( )pk (n) T 1

_fani (D) 2Pkn) | k()1 - R
( Ti(n) Qe(n) + Th(n) )Qk(n) +q19(n)—1 f +1( )qk‘( )

_ AT !
- TBAT)  TBun(T)

W); bk(n)’ bk(n)—h s ;bl]-

= 9n+l(T; f)/T

Case n is even.

We have by (1.5) that ¢, (T

Hence by (1.6)

q}c(n) 1
dk(n)

) o alnis 1) Qk(n) + Qk(n)—1

) Pk(n) T Pk(n)—1
[07 b17 BRI bk(n); Cn+1(T)

From Lemma 4.1.12 w

- ; "l’ ' Qi Tk (n)
Thus we get - bl oy

(0501, -+, binys st (T, bims

9k(n)—1
Ak (n)

) Dk(n) T Dk(n)—1

~A g : 1) Qk(n) T Qi(n)—1
and so we obtain by (4719) and (4.20) th: i‘"

fn+1(T) ka(n) 9dk(n)

( ) ) + Qk(n) bpk(n T Pr(n)-1 fn—i—l pk(a 1
fn+1(T) _ 2pk(n) Qk(n)—1
==

= 9n+1(%}f)/T

Thereforawwmmmw Y188

06y, ... b — 1,1, cor (T), 1, — 1,...,by] : if nisodd

9n+1(T§ f)/T =
[O;bl,...,bk,an(T),bk,...,bl] ; if n is even,

which Lemma 4.1.13 leads to these continued fractions which the last partial quotients

are different from 1 are regular. 0J
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4.2 Formal series case

Throughout this section, we let F be a field of characteristic zero.
Analogues of Theorems 4.1.2 and 4.1.8 are investigated for continued fractions in
the field of formal series over a field F. We begin with the following analogous setup.

For n > 0, define 0,(T; f) to be the series expressed as follows

7 (4.42)
where /(T) € (F[a]) [T £ \- B 1, (T) = £ (T) with
T € Flz] ~ {0}, and f : & " the limit exists we define

For any f(T)
Ay = Au(T) = (~1)" + 5 ), (=15 Ag=1,

Similar to the classical ﬁe, . \m)} and n > 0, A,, and B,, are

the numerator and denongl tor of the serl (T f) given by (4.42), respectively,

wnd for > 1, ﬂ‘UEJ’J ‘VlEJVIﬁWEJ\']ﬂ‘i
ﬂﬁﬂ'}aﬁﬂﬁ*ﬁu WA MAA Y

n—

= (=1)" + fu(T) <(—1)"_1 + < (_1)m+1fm(T)fm+1(T)"'fn—l(T))>

m=

= (=1)"+ fu(T) - Apr(T), (4.43)
ANT) = 1= ((-D)"+ fu(T)A_(T))* — 1

= Ja(T)(fa(T)AZ_1(T) + 2(=1)"Apa(T)) (4.44)
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Lemma 4.2.1. For any f(T) € (Fz]) [T] ~ {0}, we have for ali n,i > 0,

An(fi(T)) = Apsi(T) + D(T) f(T) or Ap(fi(T)) = —Ani(T) + D(T) fi(T),
for some D(T) € (Fl]) [T].

Proof. 1t is obvious for the case ¢ = 0. If © > 0 and n = 0, then the desired result

follows from the definition of AO ;_ \”‘ /w
O\

AvedT) = (- H-"'f- b

\\ D) . fui(T)
A DD IOAT) . (D).
. \

consider for n,i > 1,

\

(T) - fnyi(T)

e

Case n,1 are even.

Ani(T) = filT )f+1( ).

1+z
ﬁfﬁgw S -

Q‘W?Mﬂ‘i&lﬂﬂﬂ’]’m&ﬂﬁ&l

Case n 181even 7 1s odd.

AuiilT) = F(T)fisa(T) .. fual T (HZ 1 () f (T). .fi_lm)

—-1- Z(_l)m+1fm+i(T)fm+1+i(T) st fn+i(T)

m=1
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= fi(D) fir(T) - frsi(T <1+Z 1™ fn(T) frnia(T) - -fi—l(T)>

Case n is odd, i is even

T) fin(T ‘ém-l— m+1fm ) fn+1(T) . -fz'—l(T))

_@yng IR
ARAINTUURINYEY

Therefore #01“ all n
An(fi(T)) = Ansi(T) + D(T) f(T) or Ap(fi(T)) = —Anti(T) + D(T) (1),

for some D(T') € (F[z]) [T]. O



Lemma 4.2.2. Let f(T) be the polynomial of the form
f(T)=T(T +2)(T = 2)9(T) = T* + 2,

where g(T) € (Flz]) [T]. If T € Flz] ~ {0}, then for all n >0,

Proof. Since f(T) =

Because  Ag(T) =

AX(T) ) =T D( or some D(T) Y € (Flz]) [T),

and so the desnﬁrulgow abl j w I

Lemma 4.2.3. Letédl be the polﬁom lof t

RTINS ﬁwﬂwaﬂ

T(T +2)( —T7+2,
where g(T) € (Flz]) [T]. If T € Flz] \F, then for all n >0,

Bu(T)lse # 0 and By(T) | (AL(T) - 1).

74

O
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Proof. Since f(T)=T(T +2)(T —2)9(T) —T>+2 and T € Flz] \F,

2 < |fo(D)|oo < |A(D)]se < [fo(T)]oe < ... (4.45)

Thus |B,(T)|s # 0 for all n. Now from Lemma 4.2.2, we get

(4.46)
But we have from Lem
AL(f(T
or AL (fil
for some D € F[z]. Th
More precisely,
Y
fi(1) | (A (4.47)

i R j
It remains to prﬁwﬁ,‘j qn qun%’w EJ’] ﬂ i
QRIRMNIURATING WY oo

Since for any non-negative integers j,k such that j <k

fo(T) = foj(f;(T)) = fuy(0) (mod f;(T)),
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noticing here, from the proof of Lemma 4.2.2, that

2 fork=j5+1

fr=3(0) =
—2 fork>j+1,

we obtain

é@) —1. (4.49)

Therefore, (4.48) follows™

Lemma 4.2.4. Let f(T)

where g(T) € (Flz]) [T]. If ""’:___ or all n >0,

Proof. 1t is obvious by :ﬂ e definitio

ﬂusggqﬂmﬂmm
- ARIANATUNMINYAE

2 < fo(D)loo < 1A(D)loo < [fo(Dlos < -

and hence by (1.1)

‘(—1>n+z:1:1<—~1>m+ffm( Jfmir(T) ... fulT)
HDA(T) .. ful )
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ADAED D] 11
Jo(MAT) .. fu(T)] o [fo(De T |
Thus we get for all n >0,
0< A"(:,;) <1,
B.(T) .

since T € Flz] \F.

fn+1 (T ", .“"-.

Next, we will show o -.._\J" by uStg he‘ induction. Since
B o B — m— . . .
A || T + )~ T3+ 3T + 2)(F — 1)g(F) — T
Bo(T) o N 7 T 0o
= |(7+2)( )T =1)g(D)| . |T| )
Z 27
the statement holds for n (k> 0). Since
it (D)loo < | frea (T)]oo fesa (1)) = frrr(T) oo
we obtain by the hypot
< f’““(?) = i.
| Be(T) | et (T) oo Be(T) |
‘a o
_ i)l (0 30 2R B VDT L el
Y [ Bi1(T))o [ Bi1(T)|o

~ABARNIAINNANLI A

Theorem 4.2.5. Let f(T) be the polynomial of the form
f(T)=T(T +2)(T —2)g(T) — T? + 2,

where g(T) € (Flz]) [T]. If T € Flz] \F, then
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and for all n > 0,

9n+1(j:’; f) = [07 b17 s kaa un+1(T)7 bkn SRR bl]? (450)

if [0;by,...,b] is a palindromic continued fraction representing 0,(T; f) and

where 6,, 1s the element i

s the k™ (last) co b
In particular,
0(T f) 0, T, us(T), .. ]
Proof.  For any non-negative int oL oy k(r) the length of a continued

fraction representing 6, (T; partial numerators are 1.

The proof will be completed by inducti e by a direct calculation
N .

'. #—2)g(T) ~ T.T],

U o
which u; (T) = & 133:(25)1 ) 2]‘%0(%) fl(T) — 2 — (T+2)(T —2)g(T) — T, and hence

the statement ( ﬁouoﬁj q %ﬂ%ﬁ;%sﬂo’] ﬁ‘g that
LGN

00(T; f) = [0

THL N gL

if [0;aq, .. s Ok 1) 1s apah I‘OHllC continued fractlon representlng 0, 1(T f) a

We write
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and then k(n) is odd. By using Lemma 4.2.3, we have A, (T) and B,,(T') are relatively

prime, so that there exists ¢, € F ~ {0} such that

Since k(n) is odd, we have by (1.7),

(4.51)
and hence by the hypoW ., b (m)] 18 palindromic we have by Remark 1.2.6
7 (4.52)
Case n is odd.
We have by (1.5) that
—bufurr(T) 240(T) | o
Qk(n) B,(T) Qk(n)
L L . bl]
y_
Hence by (1.6) il
o ﬁﬁﬁﬁ ﬂmwmm
V<[ guc(m Ui ki) pk( F Prn)-1
and so we obtam by (4.51) and (4.52) that
—Onfat1(T)  2Pk(n) Th(n)—1
( ‘Ik(:) ) + ) )pk(n) T Pr(n)-1 _ Dk(n) n 1
—Onfns1(T)  2Pk(n) Ak(n)—1 o " Onfn n
( qk(:) Te(n) + Tty )qk(n) + Qk(n)-1 Qk(n) nf +1( )Qk( )
A, (T 1 -
- (~) + ~_ — 0n+1(T)
Bn(T) B (T)
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Case n is even.

We have by (1.5) that

S fur (T)  2Prn) O 82 fria(T) B 24,(T) OS!
Qk(n) Qk(n) Qk(n) B,(T) B,(T) Qk(n)

= [un41(T); ar(ny, - - -, a1).

Hence by (1.6)

[O; bl, ey bk(n); un+1(T), bk(

)

and so we obtain by (4.5

(5nfn+1(T) _ 2P

9k(n) 9dk(n) +
( v (T) - 2pk(") 5nfn+1 (T) Qk(n)
Ak (n) Ak (n) Gk(
-1 -
=~ — 9n+1 (T) .
Bn+1 (T)
Therefore, the theoreniis X O

Remark 4.2.6. Differ(;mt from the case of real numbe@, we cannot assure that the

continued fractiﬁsﬂoéc% mtﬁ ﬂ%ﬂ?‘ﬂ’ﬁﬁﬁlm Because for each

n >0, Upsi, that we added into a ‘glven palmdromlc contmued fraction of 6, to

s QTGS T B VNI B RS 21 o

is proven 11 the following lemma.
Lemma 4.2.7. Let f(T) be the polynomial of the form
F(T) = T(T +2)(T — 2)g(T) — T* + 2,

where g(T) € (Flz]) [T]. Let T € Flz] ~F. Then for n >0, un1(T), defined as in

Theorem 4.2.5, s in F[z] if and only if ¢, = £1.
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Proof. Let n be a non-negative integer. From Lemma 4.2.3 and (4.44), we have

Fart(DANT) +2(=1)" " A(T) _ furr(D) (furn(D)AX(T) +2(=1)" A, (T))

Bn(T) Bn+1 (T)
A2 (D)-1
Bn+1 (T)

€ Flz] (4.53)

T
ie., f;“( y r some E € Flz]. (4.54)

We have by Lemma 4.2.4 th

?J

I oy

ul ﬂummmwmm

oLLE! Aisg s np s
050 :

From the above lemma, if there exist n > 0 such that d,, # 41, then continued
fractions produced by Theorem 4.2.5 are not regular. In this case, it is natural to

worry about the convergence of [0; T, uy(T), T, us(T), T, us (T), T, us(T), .. ].
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This problem is treated by using a classical theorem of Pringsheim:
For each i > 1, denoted by a; and b; the i*" partial numerator and denominator of
[0; T, uy (T), T, un(T), T, us (T), T, us(T), .. ], respectively. By using Lemma 4.2.4 we

have that

|ai|oo :1

teed by Theorem 1.2.3.
Next, the following 1 v ared to organize an analogue of Theorem

4.1.8.

Lemma 4.2.8. Let f(

g(T) € (Flz]) [T~ {0}. If themifor all n >0,

Proof. Similar to the

AUSINgnEREAnT oo
= QRIRINTUNNIIN QY
A2(T)=1=T-D(T)  for some D(T) € (F[z])[T]. (4.57)

Hence we will prove this lemma by showing that

diT(Ai(T) —1)=0 at T=0, foralln>0. (4.58)
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It is obvious for the case n = 0. Now we consider the cases n > 1. By (4.44), we have

d

7 (ALT) = 1) = 2fu(T) [ (T) A5 _o(T) + 2[5 (T) Aur (T) A1 (T)

+2(=1)"fo(T)Ana (T) + 2(=1)" fu(T) A7, 1 (T),
then, to prove (4.58), it suffices to show that

f1(0)=0 and 0, forall n>1.

Since f1(T) = T*(T + 2)(T

FU(T) = — 2)g(T)) — 2T,

+ R () AT Y221 g W) 9U(T) + 20T (D).
Hence the induction hypothesis 4 i . 0. f] 41 0) = 0. Thus for all n > 1,

we have that f/(0) ‘; ———————————————————— pical in ’[ tion, the definition of A

0) = 0. m
e 20 Ff“’amw BNTNEING

— T2(T 4 2)(T — 2)g(T) — T> + 2,
necbh ﬁﬂﬂf‘lﬁlﬁ A INEE

[TBu(T)loo #0 and TB,(T) | (A(T) - 1).

and (4.43) we also hav%)r a O

Proof. Since f(T)=T*(T +2)(T —2)g(T) —T>+2 and T € Flz] \F,

2 < |fo(Dloe < IAD)so < 1fo(T)loo < -
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Thus |TB,(T)|s # 0 for all n. Now from Lemma (4.57), we get for all n > 0,

Fa(T) | (AR(fu(T)) = 1). (4.59)

But from Lemma 4.2.1, we have for any non-negative integers n, i,

or A2(f(T)) <

... (4.60)

Also, we have from Lemma 4.2.8 that -

(4.61)

p
o BB ANUNTNYING
PRANTHUNTIRD NG oo

Since for any non-nengative integers j,k such that j < k

fu(T) = o (f;(T)) = fuy(0) (mod f;(T)),
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noticing here, from (4.56), that

2 fork=j5+1

fr—3(0) =
-2 fork>j+1,

we obtain

| @2) =1. (4.63)

\\”“ % + 2,

where g(T) = w, T+ ...+ \t w; € Flz] (0<i<m), wy,#0

and |wp, | > |w|  for all 0 T € Flz] \F, then for all n >0,

AN UNNYINg
QW’]NT’W TRITEN e

The deﬁmtlons of f(T), g(T) and T lead to

2 < oMo < IAMD)so < 1fo(T)loo < ...

Then we obtain, by (1.1), for n > 1,



AT |0 S GO D fia(T) ()
TB,(D)|_ Th(DAT) . fu(T) .
B P 1CY ICURESS F1C0 N S S
THOAT) D], Dl 7 |

Thus we get for all n >0,

Hence
) — T2+ 2
> 2,
and so the statement hﬁis Or N ¢ |1 g) ‘ >2 (k>0).
Since

ot |m<.ﬂummmmﬂ’m§fm
= QRNREATI NN INYAE

Nan®] @l Dl
= |TB(D)| T ea DB

- | froer (D) oo fros1 (T) (froia (T )+2)(fk+1( [) = 2)g(fis1(T)) = fre1 (D)o
1 TBi1(T)]oo

Dl
7B ()]
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Theorem 4.2.11. Let f(T) be the polynomial of the form
F(T) =TT +2)(T —2)g(T) —T? + 2,

where g(T) = w, T+ ... 4w T +wy with m >0, w; € Flz] (0<i<m), wy, #0

and |wy| > |wil, forall 0<i<m—1. If T €Flx]\TF, then

_§’W

en-l—l

b, (4.64)

if [05by,...,bk] is ap ¢ finued fraction senting 0,(T; f))T and

vided B is the k'™ omucrgent of OnlLsf)/ T rcs = bi,. .., byl

ﬁﬂ’?ﬁ%ﬁfﬂ* Ay

Proof.  For anyQOn—negatlve integer 7, denoted by k(r) the length of a continued
¢ a (¥

i QR A TH A

The prgof will be completed by induction. We have by a direct calculation

In particular,

Oo(Ts )/T = [0;T°) and 6u(T; £)/T = [0; T, (T + 2)(T — 2)g(T) — 1,17,

which v (T) = & 2;2(’;})@) ;‘2‘;((?) flT(QT) i = (T4 2)(T —2)g(T) — 1, and hence

the statement (4.64) holds for n = 0. Now suppose for n > 1 that

en(Ta f)/T = [07 A, ... Og(n—-1), vn(T)7 O(n—1)y -+ al]a
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if [0;a1,...,akmp-1] is a palindromic continued fraction representing 0,1(T; f))T
and
- n T An— r
Un(T) :( 1)n—1 T2L_1 ~f( )~ 1( ~)
TB, 1(T) TB, 1(T)
We write
Pk(n)

and then k(n) is odd. B e have A,(T) and TB,(T) are

(4.65)
and hence by the hypothesis'|0; B ' Y. lindromic, we have by Remark 1.2.6
..‘: J (4.66)

{l

Case n is odd.

We have by (1 ﬂhutjq Vl EJW]?W Ejf]ﬂi
iﬂgl!T éﬁﬁ

Hence by (1.6)

[0; bl, e 7bk(n); vn+1(T), bk(n); e ,bl]

_5nfn+1(’f) _ 2pk('n.) 9k(n)—1

. 9k (n) dk(n) 9k (n)
—Onfni1(T)  2Pk(n) Qi (n)—1
dk(n) 9k (n) dk(n)

Gk(n)—1
qk(n)

= [Un+1(T); bk(n)> cee bl]

) Dk(n) T Pk(n)—1

Y

) Qk(n) T Qk(n)—1
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and so we obtain by (4.65) and (4.66) that

—Onfni1(T)  2Pk(n) Tro(n)—1
( Th(n) Qi (n) + Th(n) >pk(”) T Pr(n)-1 _ DPr(n) 4 1
—Onfuti(T)  2Pn) Qr(n)—1 o " "
( T (n) Tk(n) + ) ) Q(n) T k(n)—1 Gm)  Onforn (T )q’“( )
AT 1 -

7B,0) | TB@ @I

Case n is even.

We have by (1.5) that

6nfn+1 (T) -
dk(n)

Hence by (1.6)

Pk (n) Tk(n)—1

Gim) G )pk(n) + Dk(n)—1

[0§b17-~-,bk(n)7vn+1( )bk( ,.,

Y

[ 2Pk(n) | De(n)—1
Qr(n) Ti(n)

) Gk(n) + Qk(n)—1

E‘ RO ]
AR &

"“Fl?:":u

and so we obtain by {4564 -and (402 ) thate -
y y 7-‘.'

(5nfn+1 (1) _ 2Pk E

Qk(n) Qio(n) + Ak(n )pk( ) T Pr(n)-1 pk(n)

e mem3 Wﬂ'fﬂ‘f
awmﬁmmumq%mﬁ%

Therefore,qche theorem is established. O

Similar to Theorem 4.2.5, the continued fractions produced by Theorem 4.2.11
may not be regular described by the following lemma. The problem about the conver-
gence of [0;72,v1(T), T? vy(T), T? vy (T), T?,v5(T), .. .] is handled by using Lemma

4.2.10 and then Theorem 1.2.3.
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Lemma 4.2.12. Let f(T) be the polynomial of the form
F(T) =TT +2)(T —2)g(T) —T? + 2,

where g(T) = w, T+ ... 4w T +wy with m >0, w; € Flz] (0<i<m), wy, #0
and |wy,| > |lwil, forall 0<i<m—1. Let T e Flz] N\ F. Then forn >0,
Uns1(T), defined as in Theorem, 4.2.1 in_ Flz] if and only if §, = £1.

Proof. Let n bea non—nr eger. &ma 4.2.9 and (4.44), we have

——

Fur (F)AR(T) +2(— J @ D) A2(T) +2(=1)"1 (1))
By (T)

(4.67)

some D € Fx].

Then from (4.67), we have

L~ -
-

S om ' X

Ay = [

= futInenineIns
waRandaRat Inedy o

We have by Lemma 4.2.10 that

<1. (4.69)
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Hence the lemma is established by combining

- (_1)n5121fn+1 (T) . 2An(T)

vent) =50 ) TB,(T)
e [(Fan(D) | 2=0)MALT) | 2052 — DALT)
=% (TBn<T>+ T5.(7) )* TB.(T)

with (4.68) and (4.69).

Using the same proof as ancl. Theorem 4.2.11, analogues of The-
orem 1 and Theorem 2 an also \ ablished in Theorem 4.2.13 and
Theorem 4.2.14, respe

For n > 0, define 1 as follows

where f(T') € (Flz]) [T] ~{0};. alli > 1, fi(T) = f(fi-1(T)) with

T € Flx] ~ {0}, andd L—"m:=:=n;"'ﬁﬁmi' e limit exists we define

7 e
| i nineIng

A, = A, ?ﬂ Sy (D) s kT - (T (0> 1) 5 A 1,

a BAASN AN ABINYIAE

Theorem 4.2.13. Let f(T) be the polynomial of the form

Y

() =T(T +2)(T —2)g(T) + T? — 2,

where g(T) € (Flz]) [T]. If T € Flz] \F, then
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and for all n > 0,

én—i—l(T; f) = [Oa b17 o :bkayn-i-l(T)abka .- '7b1]7

if [0;01,...,bk] is a palindromic continued fraction representing én(f’; f) and

where g(T) = w, T™+. ..+ 'r ith > 0, w; € Flz] (0<i<m), wy,#0

and |wp | > Jwi [ € Flz] < F, then

— _______

and for all n > 0, m

AUBANBNTHEAN T
ey ﬁﬁmﬁ’ﬁm;mﬁ%gﬁ Ny

an =
(T)

where 8, is the element in F~ {0} such that A,(T) = 0,pr and TB,(T) = 6nqi pro-

vided "= s the k™ convergent of 0, (T f)/T respect to [0;by, ..., by).

In particular,

O(T; f)/T = [0; T2, 2,(T), T2, 25(T), T2, 2, (T), T2, 3(T), .. .
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Remark 4.2.15. Similar to Theorem 4.2.5 and Theorem 4.2.11, the continued frac-
tions produced by Theorem 4.2.13 and Theorem 4.2.14 are regular if and only if

0, = £1 and we can guarantee convergences for infinite continued fractions.

AUEINENINEINS
ARIAIN TN INNAY
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