การหาครรชนีทางชีวภาพในหอยแมลงภู่เพื่อวัคการปนเปื้อนของสารปรอท บริเวณแท่นผลิตปีโตรเลียมในอ่าวไทย

นายชาตรี ฤทธิ์ทอง

ศูนย์วิทยุทรัพยากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาการจัดการสิ่งแวคล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IDENTIFICATION OF BIOMARKERS IN GREEN MUSSEL Perna viridis FOR MERCURY CONTAMINATION AT PETROLEUM PROCESSING PLATFORMS IN THE GULF OF THAILAND

Mr. Chatree Ritthong

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Environmental Management (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2009 Copyright of Chulalongkorn University

Thesis Title	IDENTIFICATION OF BIOMARKERS IN GREEN MUSSEL
	Perna viridis FOR MERCURY CONTAMINATION AT
	PETROLEUM PROCESSING PLATFORMS
	IN THE GULF OF THAILAND
Ву	Mr. Chatree Ritthong
Field of Study	Environmental Management
Thesis Advisor	Professor Piamsak Menasveta, Ph.D.
Thesis Co-advisor	Narongsak Puanglarp, Ph.D.
	Associate Professor Somkiat Piyatiratitivorakul, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

.....Dean of the Graduate School (Associate Professor Pornpote Piumsomboon, Ph.D.)

THESIS COMMITTEE

.....Chairman (Assistant Professor Manaskorn Rachakornkij, Ph.D.) (Professor Piamsak Menasveta, Ph.D.)Thesis Co-advisor (Narongsak Puanglarp,Thesis Co-advisor (Associate Professor Somkiat Piyatiratitivorakul, Ph.D.)Examiner (Assistant Professor Ekawan Luepromchai, Ph.D.) (Assistant Professor Somporn Kamolsiripichaiporn, Ph.D.) Voram't Chu____External Examiner

(Associate Professor Voravit Cheevaporn, Ph.D.)

ชาตรี ฤทธิ์ทอง: การหาดรรชนีทางชีวภาพในหอยแมลงภู่เพื่อวัดการปนเปื้อนของสาร ปรอทบริเวณแท่นผลิตปีโตรเลียมในอ่าวไทย (IDENTIFICATION OF BIOMARKERS IN GREEN MUSSEL Perna viridis FOR MERCURY CONTAMINATION AT PETROLEUM PROCESSING PLATFORMS IN THE GULF OF THAILAND) อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. คร. เปี่ยมศักดิ์ เมนะเศวต, อาจารย์ที่ปรึกษาวิทยานิพนธ์ ร่วม: คร. ณรงก์ศักดิ์ พ่วงลาภ และ รศ. คร. สมเกียรติ ปียะธีรธิติวรกล, 252 หน้า.

การปนเปื้อนของสารปรอท (Hg) จากกระบวนการผลิตเชื้อเพลิงปิโตรเลียมส่งผลกระทบต่อความปลอดภัยของสัตว์ที่อาศัยอยู่รอบๆ พื้นที่ผลิต นอกจากวิธีการตรวจสอบการปนเปื้อนของปรอทในระบบนิเวศที่ใช้อยู่ทั่วไปแล้ว การนำวิธีการตรวจสอบที่เน้นผลของสารปรอทใน ระดับต่ำ (sub lethal) ช่วยเสริมกับการติดตามฤทธิ์ของปรอทซึ่งวิธีปกติอาจไม่สามารถตรวจสอบได้นั้นจึงมีความสำคัญอย่างมากต่อการพัฒนา โปรแกรมการติดตามผลของปรอท ในการศึกษานี้ได้นำวิธีทางด้านชีวโมเลกุล มาใช้ในการตรวจสอบและติดตามการเปลี่ยนแปลงของสาร ปรอทที่เกี่ยวข้องกับการตอบสนองในระดับโมเลกุลในหอยแมลงภู่ *Perna viridis* ในพื้นที่รอบแท่นผลิตเชื้อเพลิงปิโตรเลียมในอ่าวไทย โดยยืน ที่มีการตอบสนองและสัมพันธ์กับสารปรอท ได้แก่ยืนเมทัลโลไซโอนีน (MT) และ ซับยูนิตของยืนเมทัลโลไซโอนีนจำนวน 6 ฟอร์ม ยืนฮีทช็อก โปรตีน (HSP) และ Cytochrome P450 family 4 โดยการศึกษาครั้งนี้ได้มีการออกแบบไพรเมอร์จำเพาะ และนำไปวิเคราะห์ด้วยวิธี semi quantitative RT - PCR เพื่อวัดระดับของ mRNA ในยืนเป้าหมายในหอยแมลงภู่ที่นำมาทดสอบ

การคำเนินการทดลองเริ่มจากเลี้ยงหอยแมลงภู่ในห้องปฏิบัติการ และเติมสารปรอทในถังเลี้ยงที่ความเข้มข้นค่ำ 0.1, 0.2, 0.5, และ 1.0 ไมโครกรัมต่อลิตร เป็นเวลา 8 สัปคาห์ ผลการวิเคราะห์พบว่าความเข้มข้นของสารปรอทในน้ำและในเนื้อเยื่อหอยแมลงภู่เพิ่มขึ้น สัมพันธ์ กับปริมาณสารปรอทที่มีการเติมลงในถังเลี้ยง และพบว่าระดับของสารปรอทที่วัดได้ในเนื้อเยื่อหอยแมลงภู่มีความเข้มข้นสูงกว่าปริมาณสาร ปรอทที่ตรวจพบได้ในน้ำเป็นพันเท่า ภายในช่วงเวลาทดสอบ 8 สัปดาห์และได้มีการทดสอบระดับการแสดงออกของยืนเป้าหมายในตัวอย่าง เดียวกัน

ผลการศึกษาพบว่าซับขูนิต pvMT07 ของยืนเมทัลโลไรโอนึน มีการตอบสนองไปในทิศทางเดียวกัน กับระดับความเข้มข้นของสาร ปรอทที่เพิ่มขึ้นในเนื้อเยื่อ (p<0.05) โดยพบความแตกต่างของการแสดงของของยืนในหอยแมลงภู่ในถังเลี้ยงที่ระดับความเข้มข้นของสารปรอท 0.2 ไมโครกรัมต่อลิตร และไม่พบความแตกต่างของการแสดงออกของยืนอื่นในหอยแมลงภู่ในถังเลี้ยงที่ระดับความเข้มข้นของสารปรอทใน ระคับเดียวกัน จากนั้นได้มีการตรวจสอบยืนยันผลการศึกษาในสิ่งแวดล้อมจริง โดยนำหอยแมลงภู่ในถังเลี้ยงที่ระดับความเข้มข้นของสารปรอทใน แขวนเลี้ยงไว้ในพื้นที่รอบแท่นผลิตปิโตรเลียม เป็นเวลา 3 เดือน ผลที่ได้พบว่าการแสดงออกของยืน pvMT07 มีความสัมพันธ์กับระดับปริมาณ สารปรอทที่เพิ่มขึ้นเช่นเดียวกัน ผลการศึกษาทั้งในห้องปฏิบัติการและในสิ่งแวดล้อมจริงยืนยันผลการศึกษาว่าการแสดงออกของยืน pvMT07 สามารถใช้เป็นครรชนีทางชีวภาพ สำหรับการี่วัดการปนเบื้อนของสารปรอทในระดับที่ในสิ่งแวดล้อมได้

การทดสอบความเป็นพิษในระดับขึ้น ของสารปรอท ด้วยเทคนิค (single cell gel electrophoresis หรือ comet assay) ในหลอด ทดลองโดยทดสอบกับเม็คเลือดและอสุจิของหอยแมลงภู่ ที่ได้สัมผัสกับสารปรอทในความเข้มข้นแตกต่างกัน (0.001 - 10.0 ไมโครกรัม ต่อ ลิตร) ที่เวลา 10, 30, และ 60 นาที ผลการวิเคราะห์ Tail length และ Tail moment พบว่าความเสียหายของ DNA เพิ่มขึ้นในระดับที่สอดคล้องกับ การเพิ่มขึ้นของสารปรอท และพบความเสียหายของ DNAในระดับค่ำสุดที่ความเข้มข้นของสารปรอท 0.001 ไมโครกรัม ต่อลิตรที่เวลา 10 นาที โดยอสุจิของหอย มีแนวโน้มที่จะมีความไวต่อการเปลี่ยนแปลงของสารปรอทมากกว่าเม็ดเลือด

เทคนิคในการตรวจสอบปริมาณสารปรอท และความรู้ที่ได้จากการศึกษาครั้งนี้จะให้ข้อมูลที่มีประโยชน์สำหรับการพัฒนาการ ตรวจสอบสารปรอทในอนาคตและการตรวจเฝ้าระวังการปนเปื้อนสารปรอทในระบบนิเวศน์ทางทะเลได้

สาขาวิชาการจัดการสิ่งแวดล้อม.....ลายมือชื่อนิสิต.....บ้างไลกไลกรั้งเว ปีการศึกษา......2552.....ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์หลัก..... ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์ร่วม (ปภาญญา ลายมือ ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์ร่วม.

4889704820 : MAJOR ENVIRONMENTAL MANAGEMENT KEYWORDS: PERNA VIRIDIS/ MERCURY/ BIOMARKER/ METALLOTHIONEIN CHATREE RITTHONG: IDENTIFICATION OF BIOMARKERS IN GREEN MUSSEL Perna viridis FOR MERCURY CONTAMINATION AT PETROLEUM PROCESSING PLATFORMS IN THE GULF OF THAILAND. THESIS ADVISOR: PROFESSOR PIAMSAK MENASVETA, Ph.D., THESIS CO-ADVISOR: NARONGSAK PUANGLARP, Ph.D., ASSOCIATE PROFESSOR SOMKIAT PIYATIRATITIVORAKUL., Ph.D., 252 pp.

Contamination of mercury (Hg) from the production processes of natural gas production in the off-shore area is a major concern on the welfare of animals inhabited in the surrounding areas. In addition to the chemical methods commonly used for monitoring Hg contamination in the sea, sensitive techniques emphasized on determining the sublethal effects of Hg on living organisms is crucial for the monitoring program. In this study, bioassay for monitoring the change of Hg contamination in relation to molecular response of Green mussel, *Perna viridis*, in the surrounding areas of petroleum production platforms in the Gulf of Thailand was studied. Hg responsive genes including MT and 6 of its variants, HSP, and CYP4 genes were obtained and used for designing specific primers which were then used in semi-quantitative RT-PCR for determining mRNA levels of the target genes in tested mussels.

The experiment was initially conducted by exposing mussels to Hg as HgCl₂ at 0.1, 0.2, 0.5, and 1.0 μ g/L under laboratory condition for 8 weeks. During the experiment, Hg concentrations in water and mussel tissues were analyzed. The result showed increasing level of Hg in both water and tissue coincide with the increase of applied doses. The Hg level in tissue was found to be thousand folds higher than that in water within 8 weeks of experiment. Expression levels of target genes were determined in the same samples. The result revealed that pvMT07, one of MT variants, was correlatively responded to the increasing level of Hg. Significant difference was detected at the concentration as low as 0.2 μ g/L of Hg (P<0.05). The expression level of the other genes showed no significant difference within the range of applied concentrations. Field validation of the obtained bioassay was carried out by transplanting mussels to the surrounding areas of petroleum production platforms for 3 months. The result showed the correlation of pvMT07 expression with Hg level. These results confirmed that the expression of pvMT07 can be used as biomarker of Hg exposure at low level.

Genotoxicity of Hg was investigated using single cell gel electrophoresis technique. Haemocytes and sperms of mussel were exposed *in vitro* with various doses of Hg as HgCl₂ (0.001 to 10.0 μ g/L) at 10, 30, and 60 min. The result of tail length and the tail moment of the assay showed that DNA damage was increased in corresponding to the increasing level of Hg. DNA damage was detectable after exposing to Hg level as low as 0.001 μ g/L for 10 min. Sperm appeared to be more sensitive to Hg exposure than haemocyte.

Hg monitoring techniques and knowledge obtained from this study will provide valuable information for the development of future Hg monitoring program in the marine ecosystem.

Field of Study: Environmental Management.	Student's Signature Shitin Rithing
Academic Year:2009	. Advisor's Signature
	Co-Advisor Signature
	Co-Advisor Signature.

ACKNOWLEDGEMENTS

I would like to express my gratitude to, Professor Dr. Piamsak Menasveta my advisor and Dr. Narongsak Puanglarp and Associate Professor Dr. Somkiat Piyatiratitivorakul my co-advisors for their guidance, encouragement, valuable suggestion and supports through out my study.

My gratitude is also extended to Assistant Professor Dr. Manaskorn Rachakornkij, Assistant Professor Dr. Ekawan Leupromchai, Assistant Professor Dr. Somporn Kamolsiripichaiporn, and Associate Professor Dr. Voravit Cheevaporn for serving as thesis committee, for their recommendations and also useful suggestions.

This work is co-funded by National Center of Excellence for Environmental and Hazardous Waste Management, Center of Excellence for Marine Biotechnology Chulalongkorn University, THE 90th ANNIVERSARY OF CHULALONGKORN UNIVERSITY FUND (Ratchadaphiseksomphot Endowment Fund), and Department of Mineral Fuel, Ministry of Energy, Thailand.

Finally, I would like to express my deepest gratitude to my family for their love, care, and encouragement throughout my study.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

Page

THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
CHAPTER LINTRODUCTION	1
1 1 Statement of Problems	1
1 2 Objectives	2
1.3 Scope of Study	$\frac{1}{2}$
1 4 Hypotheses	3
CHAPTER II LITERATURE REVIEW	4
2 1 Mercury	4
2.2 Toxicity of mercury and molecular responses for the mercury	•
exposure	5
2.21 A cute toxicity	6
2 2 2 Neurotovicity	7
2.2.2 Renotovicity	8
2.3 Biomarkers	0
2.3 Distingtion and elassification	9
2.3.1 Definition and classification	9 10
2.4 Detential biomarkars for maraury exposure	10
2.4 Potential biomarkers for mercury exposure	11
2.4.1 Metallothionein	11
2.4.2 Cytochrome P450	12
2.4.3 Heat Snock Protein	13
2.5 Use of biomarkers in field studies.	13
2.6 Techniques used for examination of mercury exposure and toxicity	16
2.6.1 Toxicity test for identification of acute toxicity	16
2.6.2 Single cell gel electrophoresis for examination of genotoxicity.	1/
2.6.3 RT-PCR (Reverse Transcription PCR) and Semi-quantitative	10
RI-PCR for determination of gene expression	18
2.7 Green mussel	19
2.7.1 Growth and Reproduction.	19
2.7.2 Feeding	20
2.7.3 Habitat	20
CHAPTER III MATERIAL AND METHODS	21
3.1 Test organisms	21
3.2 Mercuric Chloride	21
3.3 Mercury analysis in mussel tissue	21
3.4 Experimental set up	22
3.4.1 Laboratory test	22
3.4.2 Field study	23
3.5 Basic techniques for molecular study	27
3.5.1 Nucleic acid extraction	27
3.5.1.1 Genomic DNA extraction	27
3.5.1.2 RNA extraction	27

	Page
3.5.2 Determination of Nucleic acid	28
3.5.2.1 Spectrophotometry	28
3.5.2.2 Agarose gel electrophoresis	28
3.5.3 First strand cDNA synthesis using Reverse Transcription	
Polymerase Chain Reaction	29
3.5.3.1 PCR	29
3.5.4 RACE-PCR	29
3.5.4.1 Primer design	29
3.5.4.2 First strand cDNA synthesis	30
3.5.4.3 Rapid Amplification of cDNA Ends (RACE)	30
3.5.5 SSCP (Single-Strand Conformation Polymorphism)	30
3.5.6 Cloning and Sequencing	31
3.6 Cloning and Characterization of mercury inducible genes in	01
<i>P.viridis</i>	32
3 6 1 Primer design	33
3.6.2 PCR amplification	33
3.7 Expression analysis of the gene in mussel exposed to mercury	34
3.7 1 Expression analysis of the gene in mussel exposed to increary	34
3.7.2 Semi-quantitative analysis	35
3.7.2.1 Primer design	35
3.7.2.2 Optimization of PCR condition	35
3.7.2.3 Semi-quantitative RT_PCR	35
3.8 Determination of the correlation between Hg levels and expression	55
levels of candidate genes	36
3.0 Single cell gel electrophoragis analysis (Comet assay)	36
2.0.1 Haemoeute	27
3.0.2 Sperm	38
2 10 Statistic Analysis	28
CHADTER IV RESULTS	30
A 1 Cloping and characterization	20
4.1 Clothing and characterization	20
4.1.1 Degenerate PCR amplification	39 41
4.1.2 Specific FCK amplification	41
4.2 Laboratory study	43
4.2.1 Mercury concentration in mussel ussue	43
4.2.2 Mercury concentration in experiment water	44
4.2.3 water quanty	45
4.5 Fleta study	4/
4.3.1 Mercury concentration in mussel tissue	4/
4.3.2 Plankton composition.	51
4.3.3 Survival rate of mussel	52
4.3.4 Growth rate of transplanted mussels	53
4.4 Determination of M1, HSP/1, and CYP4 gene expression in Hg	50
exposed mussels.	53
4.4.1 Optimization of PCR condition	53
4.4.1.1 Metallothionein gene and its variants	54
4.4.1.2 HSP/1 gene	62

4.4.1.3 CYP4 gene.64.4.1.4 β -actin gene64.4.2 Semi-quantitative RT-PCR of MTs, HSP71, and CYP4genes.genes.64.4.2.1 Laboratory study.64.4.2.1 Laboratory study.64.4.2.1.2 Expression level of total MT gene in Hg6exposed mussels.64.4.2.1.3 Expression level of pvMT01 in Hg exposed mussel64.4.2.1.4 Expression level of pvMT02 in Hg exposed mussel64.4.2.1.5 Expression level of pvMT03 in Hg exposed mussel74.4.2.1.6 Expression level of pvMT08 in Hg exposed mussel74.4.2.1.7 Expression level of pvMT01 in Hg exposed mussel74.4.2.1.9 Expression level of pvMT01 in transplanted mussel74.4.2.1.9 Expression level of fvMT01 in transplanted mussel84.4.2.2 Field study.74.4.2.3 Expression level of pvMT01 in transplanted mussel84.4.2.4 Expression level of pvMT03 in transplanted mussel84.4.2.5 Expression level of pvMT03 in transplanted mussel84.4.2.6 Expression level of pvMT07 in transplanted mussel94.4.2.7 Expression level of pvMT07 in transplanted mussel94.4.2.8 Expression level of pvMT07 in transplanted mussel94.4.3.1 orrelation between gene expression level and mercury concentration in mussel94.4.3.1 pvMT01 gene.14.4.3.1.4 pvMT03 gene.14.4.3.1.4 pvMT03 gene.14.4.3.1.4 pvMT03 gene.14.4.3.1.4 pvMT03 gene.14.4.3.1.4 pvMT03 gene.14.4.3.3 Correl		Pag
4.4.1.4 β-actin gene. 6 4.4.2 Semi-quantitative RT-PCR of MTs, HSP71, and CYP4 6 genes. 6 4.4.2.1 Laboratory study. 6 4.4.2.1.1 Expression level of total MT gene in Hg 6 exposed mussels. 6 4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussel 6 4.4.2.1.3 Expression level of pvMT03 in Hg exposed mussel 6 4.4.2.1.4 Expression level of pvMT07 in Hg exposed mussel 7 4.4.2.1.5 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.8 Expression level of pvMT01 in transplanted mussel 7 4.4.2.1 Supression level of pvMT01 in transplanted mussel 8 4.4.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.3 Expression level of pvMT07 in transplanted mussel 8 4.4.2.4 Expression level of PvMT08 in transplanted mussel 9 4.4.2.5 Expression level of PvMT08 in transplanted mussel 9 4.4.2.6 Expression level of CYP4 in transplanted mussel 9 4.4.2.7 Expression level of CYP4 in transplanted mussel 9 4.4.2.8	4.4.1.3 CYP4 gene	63
4.4.2 Semi-quantitative RT-PCR of MTs, HSP71, and CYP4 genes	4.4.1.4 β-actin gene	64
genes	4.4.2 Semi-quantitative RT-PCR of MTs, HSP71, and CYP4	
4.4.2.1 Laboratory study	genes	65
4.4.2.1.1 Expression level of total MT gene in Hg 6 4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussel 6 4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussel 6 4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussel 7 4.4.2.1.5 Expression level of pvMT08 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT10 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.9 Expression level of total MT in transplanted mussel 7 4.4.2.1 Field study. 7 4.4.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.6 Expression level of PvMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of PvMT08 in transplanted mussel 9 4.4.2.2.6 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of PVMT01 in transplanted mussel 9 <td>4.4.2.1 Laboratory study</td> <td>65</td>	4.4.2.1 Laboratory study	65
exposed mussels 6 4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussel 6 4.4.2.1.3 Expression level of pvMT03 in Hg exposed mussel 6 4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussel 7 4.4.2.1.5 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.7 Expression level of PVMT01 in Hg exposed mussel 7 4.4.2.1.8 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.1 Expression level of pvMT01 in transplanted mussel 7 4.4.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.9 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue <t< td=""><td>4.4.2.1.1 Expression level of total MT gene in Hg</td><td></td></t<>	4.4.2.1.1 Expression level of total MT gene in Hg	
4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussel 6 4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussel 6 4.4.2.1.4 Expression level of pvMT07 in Hg exposed mussel 7 4.4.2.1.5 Expression level of pvMT07 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.8 Expression level of FVP1 in Hg exposed mussel 7 4.4.2.1.9 Expression level of fvMT01 in transplanted mussel 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT03 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.9 Expression level of PVM108 in transplanted mussel 9 4.4.3.10 pvMT03 gene 1 1 4.4.3.1 Correlation between MT gene and Hg concentratio	exposed mussels	65
4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussel 6 4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussel 7 4.4.2.1.5 Expression level of pvMT08 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.8 Expression level of PVMT11 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.1 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT03 in transplanted mussel 8 4.4.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT03 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue 9 4.4.3.1.4 pvMT03 gene 1 4.4.3.1.5 pvMT07 gene	4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussel	66
4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussel 6 4.4.2.1.5 Expression level of pvMT08 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.8 Expression level of VMT11 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.1 Expression level of total MT in transplanted mussel 8 4.4.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT03 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of PVMT03 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 OvrtP03 gene 1 4.4.3.1.4 pvMT03 gene 1 <t< td=""><td>4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussel</td><td>67</td></t<>	4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussel	67
4.4.2.1.5 Expression level of pvMT07 in Hg exposed mussel 7 4.4.2.1.6 Expression level of pvMT08 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT01 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.19 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2 Field study. 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 7 4.4.2.2.2 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1.2 pvMT01 gene 1 4.4.3.1.2 pvMT03 gene 1 4.4.3.1.4 pvMT03 gene 1 4.4.3.1.4 pvMT03 gene 1 4.4.3.1.6 pvMT08	4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussel	69
4.4.2.1.6 Expression level of pvMT08 in Hg exposed mussel 7 4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.8 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.1 P Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2 Field study. 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene.	4.4.2.1.5 Expression level of pvMT07 in Hg exposed mussel	70
4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel 7 4.4.2.1.8 Expression level of HSP71 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2.1 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2.1 Expression level of total MT in transplanted mussel 7 4.4.2.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of pvMT01 in transplanted mussel 9 4.4.2.9 Expression level of fVP41 in transplanted mussel 9 4.4.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue 9 4.4.3.1 Correlation between MT gene and Hg concentration 1 in mussel tissue 1 4.4.3.1 pvMT02 gene 1 4.4.3.2 correlation between HSP71 gene and Hg concentration 1 4.4.3.1.6 pvMT08 gene 1 4.4.3.2 Correlation between CYP4 g	4.4.2.1.6 Expression level of pvMT08 in Hg exposed mussel	73
4.4.2.1.8 Expression level of HSP71 in Hg exposed mussel 7 4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2 Field study. 7 4.4.2.2.1 Expression level of total MT in transplanted mussel 7 4.4.2.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 DyMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.2 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration i	4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussel	74
4.4.2.19 Expression level of CYP4 in Hg exposed mussel 7 4.4.2.2 Field study. 7 4.4.2.2 Expression level of total MT in transplanted mussel 7 4.4.2.2.1 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT07 in transplanted mussel 9 4.4.2.2.7 Expression level of fvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in m	4.4.2.1.8 Expression level of HSP71 in Hg exposed mussel	76
4.4.2.2 Field study	4.4.2.1.9 Expression level of CYP4 in Hg exposed mussel	77
4.4.2.2.1 Expression level of total MT in transplanted mussel 7 4.4.2.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT06 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of PVMT01 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.2 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis	4.4.2.2 Field study	79
4.4.2.2.2 Expression level of pvMT01 in transplanted mussel 8 4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT01 in transplanted mussel 9 4.4.2.2.8 Expression level of fVP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1	4.4.2.2.1 Expression level of total MT in transplanted mussel	79
4.4.2.2.3 Expression level of pvMT02 in transplanted mussel 8 4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.8 Expression level of fSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 CHAPTER V DISCUSSION	4.4.2.2.2 Expression level of pvMT01 in transplanted mussel	83
4.4.2.2.4 Expression level of pvMT03 in transplanted mussel 8 4.4.2.2.5 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.6 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.8 Expression level of MSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.1 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1 opvMT01 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation in mussel tissue. 1 4.4.3.4 correlation in mussel tissue. 1	4.4.2.2.3 Expression level of pvMT02 in transplanted mussel	85
4.4.2.2.5 Expression level of pvMT07 in transplanted mussel 8 4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.8 Expression level of HSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.1 Total MT gene. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene and Hg 1 concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 <	4.4.2.2.4 Expression level of pvMT03 in transplanted mussel	87
4.4.2.2.6 Expression level of pvMT08 in transplanted mussel 9 4.4.2.2.7 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.8 Expression level of HSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3.1 Correlation between gene expression level and mercury 9 concentration in mussel 9 4.4.3.1 Correlation between MT gene and Hg concentration 9 4.4.3.1 Total MT gene 9 4.4.3.1.2 pvMT01 gene 1 4.4.3.1.3 pvMT02 gene 1 4.4.3.1.4 pvMT03 gene 1 4.4.3.1.5 pvMT07 gene 1 4.4.3.1.6 pvMT08 gene 1 4.4.3.1.7 pvMT11 gene 1 4.4.3.1.6 pvMT08 gene 1 4.4.3.1.7 pvMT11 gene 1 4.4.3.2 Correlation between HSP71 gene and Hg 1 concentration in mussel tissue 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 <	4.4.2.2.5 Expression level of pvMT07 in transplanted mussel	89
4.4.2.2.7 Expression level of pvMT11 in transplanted mussel 9 4.4.2.2.8 Expression level of HSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.3 pvMT02 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.2 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3	4.4.2.2.6 Expression level of pvMT08 in transplanted mussel	91
4.4.2.2.8 Expression level of HSP71 in transplanted mussel 9 4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.1 Total MT gene. 9 4.4.3.1.2 pvMT01 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.2 Display the expression between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.2 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.4.2.2.7 Expression level of pvMT11 in transplanted mussel	93
4.4.2.2.9 Expression level of CYP4 in transplanted mussel 9 4.4.3 Correlation between gene expression level and mercury concentration in mussel. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.2 pvMT01 gene. 9 4.4.3.1.3 pvMT02 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg 1 concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 S1 Use of mussel as model animal for Hg bio-monitoring. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.4.2.2.8 Expression level of HSP71 in transplanted mussel	95
4.4.3 Correlation between gene expression level and mercury concentration in mussel 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue. 9 4.4.3.1.1 Total MT gene. 9 4.4.3.1.2 pvMT01 gene. 9 4.4.3.1.3 pvMT02 gene. 1 4.4.3.1.4 pvMT03 gene. 1 4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue. 1 4.4.3.2 Correlation between CYP4 gene and Hg 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.4.2.2.9 Expression level of CYP4 in transplanted mussel	97
concentration in mussel94.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue94.4.3.1.1 Total MT gene94.4.3.1.2 pvMT01 gene14.4.3.1.3 pvMT02 gene14.4.3.1.4 pvMT03 gene14.4.3.1.5 pvMT07 gene14.4.3.1.6 pvMT08 gene14.4.3.1.7 pvMT11 gene14.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue14.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue14.5 Single cell gel electrophoresis analysis (Comet assay)15.1 Use of mussel as model animal for Hg bio-monitoring15.3 Bioaccumulation of mercury in tested mussel1	4.4.3 Correlation between gene expression level and mercury	
4.4.3.1 Correlation between MT gene and Hg concentration in mussel tissue	concentration in mussel	99
in mussel tissue	4.4.3.1 Correlation between MT gene and Hg concentration	
4.4.3.1.1 Total MT gene	in mussel tissue	99
4.4.3.1.2 pvMT01 gene14.4.3.1.3 pvMT02 gene14.4.3.1.4 pvMT03 gene14.4.3.1.5 pvMT07 gene14.4.3.1.6 pvMT08 gene14.4.3.1.7 pvMT11 gene14.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue14.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue14.5 Single cell gel electrophoresis analysis (Comet assay)15.1 Use of mussel as model animal for Hg bio-monitoring15.3 Bioaccumulation of mercury in tested mussel1	4.4.3.1.1 Total MT gene	99
4.4.3.1.3 pvMT02 gene.14.4.3.1.4 pvMT03 gene.14.4.3.1.5 pvMT07 gene.14.4.3.1.5 pvMT07 gene.14.4.3.1.6 pvMT08 gene.14.4.3.1.7 pvMT11 gene.14.4.3.2 Correlation between HSP71 gene and Hg1concentration in mussel tissue.14.4.3.3 Correlation between CYP4 gene and Hg1concentration in mussel tissue.14.5 Single cell gel electrophoresis analysis (Comet assay)15.1 Use of mussel as model animal for Hg bio-monitoring.15.2 Mercury concentration in water and mussel.15.3 Bioaccumulation of mercury in tested mussel.1	4.4.3.1.2 pvMT01 gene	100
4.4.3.1.4 pvMT03 gene.14.4.3.1.5 pvMT07 gene.14.4.3.1.6 pvMT08 gene.14.4.3.1.7 pvMT11 gene.14.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue.14.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue.14.5 Single cell gel electrophoresis analysis (Comet assay)15.1 Use of mussel as model animal for Hg bio-monitoring.15.3 Bioaccumulation of mercury in tested mussel.1	4.4.3.1.3 pvMT02 gene	101
4.4.3.1.5 pvMT07 gene. 1 4.4.3.1.6 pvMT08 gene. 1 4.4.3.1.7 pvMT11 gene. 1 4.4.3.2 Correlation between HSP71 gene and Hg 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.4.3.1.4 pvMT03 gene	102
4.4.3.1.6 pvMT08 gene.14.4.3.1.7 pvMT11 gene.14.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue.14.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue.14.5 Single cell gel electrophoresis analysis (Comet assay)1CHAPTER V DISCUSSION.15.1 Use of mussel as model animal for Hg bio-monitoring.15.2 Mercury concentration in water and mussel.15.3 Bioaccumulation of mercury in tested mussel.1	4.4.3.1.5 pvMT07 gene	103
4.4.3.1.7 pvMT11 gene.14.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue.14.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue.14.5 Single cell gel electrophoresis analysis (Comet assay)1CHAPTER V DISCUSSION.15.1 Use of mussel as model animal for Hg bio-monitoring.15.2 Mercury concentration in water and mussel.15.3 Bioaccumulation of mercury in tested mussel.1	4.4.3.1.6 pvMT08 gene	104
4.4.3.2 Correlation between HSP71 gene and Hg 1 concentration in mussel tissue. 1 4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue. 1 4.5 Single cell gel electrophoresis analysis (Comet assay) 1 CHAPTER V DISCUSSION. 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.4.3.1.7 pvMT11 gene	105
concentration in mussel tissue	4.4.3.2 Correlation between HSP71 gene and Hg	
4.4.3.3 Correlation between CYP4 gene and Hg 1 concentration in mussel tissue	concentration in mussel tissue	108
concentration in mussel tissue	4.4.3.3 Correlation between CYP4 gene and Hg	
4.5 Single cell gel electrophoresis analysis (Comet assay)1CHAPTER V DISCUSSION15.1 Use of mussel as model animal for Hg bio-monitoring15.2 Mercury concentration in water and mussel15.3 Bioaccumulation of mercury in tested mussel1	concentration in mussel tissue	109
CHAPTER V DISCUSSION. 1 5.1 Use of mussel as model animal for Hg bio-monitoring. 1 5.2 Mercury concentration in water and mussel. 1 5.3 Bioaccumulation of mercury in tested mussel. 1	4.5 Single cell gel electrophoresis analysis (Comet assay)	110
5.1 Use of mussel as model animal for Hg bio-monitoring.15.2 Mercury concentration in water and mussel.15.3 Bioaccumulation of mercury in tested mussel.1	CHAPTER V DISCUSSION.	119
5.2 Mercury concentration in water and mussel	5.1 Use of mussel as model animal for Hg bio-monitoring	119
5.3 Bioaccumulation of mercury in tested mussel	5.2 Mercury concentration in water and mussel	120
J	5.3 Bioaccumulation of mercury in tested mussel	124

	Page
5.4 Expression analysis of Hg responding genes in mussels exposed to	-
very low level of Hg	125
5.4.1 Laboratory study	126
5.4.2 Field validation	129
5.5 Genotoxicity of Hg on haemocytes and sperms of mussels	130
5.6 Application and future prospects	132
CHAPTER VI CONCLUSION	137
REFERENCES	140
APPENDICES	155
APPENDIX A	156
APPENDIX B	161
APPENDIX C	239
BIOGRAPHY	252

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Table		Page
3.1	Sequence, length and the melting temperature of primers designed	-
	for MT genes and some of its isoforms from <i>P. viridis</i>	33
3.2	Details on template and annealing temperature used for gene	
	amplification	34
3.3	Optimal condition for Semi – quantitative RT – PCR of gene in gill	
	and digestive tract of mercury exposed mussel	36
4.1	Degenerated primers designed for amplifying target genes in mussel	40
4.2	BLAST results of PCR products amplified from first strand cDNA	
	template of mussel tissue using degenerate primers designed from	
	HSP70, HSP90, and CYP450 gene of closet species	41
4.3	Specific primers design from HSP71 and CYP4 genes of <i>P.viridis</i>	42
4.4	BLAST results of PCR products amplified from first strand cDNA	
	template of mussel tissue using specific primers designed from	
	HSP71 and CYP4 genes of <i>P.viridis</i>	42
4.5	Mercury concentration in tissue of experiment mussels	44
4.6	Mercury concentration in water of experiment mussel tank	45
4.7	Mercury concentration in mussel tissue	50
4.8	Summary of optimal condition for semi-quantitative RT-PCR of	
	gene in gill of mercury exposed mussel	64
4.9	Relative expression level of MT gene	66
4.10	Relative expression level of pvMT01 gene	67
4.11	Relative expression level of pvMT02 gene	69
4.12	Relative expression level of pvMT03 gene	70
4.13	Relative expression level of pvMT07 gene	72
4.14	Relative expression level of pvMT08 gene	74
4.15	Relative expression level of pvMT11 gene	75
4.16	Relative expression level of HSP71 gene	77
4.17	Relative expression level of CYP4 gene	78
4.18a	Relative expression level of total MT gene in gill of mussel	
	transplanted at 4 studied site	81
4.18b	Relative expression level of total MT gene in digestive tract of	
	mussels transplanted at 4 studies sites	82
4.19	Relative expression level of pvMT01 in gill of transplanted mussels	85
4.20	Relative expression level of pvMT02 in gill of transplanted mussels	87
4.21	Relative expression level of pvMT03 in gill of transplanted mussels	89
4.22	Relative expression level of pvMT07 in gill of transplanted mussels	91
4.23	Relative expression level of pvMT08 in gill of transplanted mussels	93
4.24	Relative expression level of pvMT11 in gill of transplanted mussels	95
4.25	Relative expression level of HSP71 in gill of transplanted mussels	97
4.26	Relative expression level of CYP4 in gill of transplanted mussels	99
4.27	DNA tail length from haemocyte after 10, 30, and 60 min of $HgCl_2$	
	exposure	112

	Page
DNA tail length from sperms after 10, 30, and 60 min of $HgCl_2$	_
exposure	113
DNA tail moment from haemocyte representing DNA damage after	
10, 30, and 60 min $HgCl_2$ exposure	114
DNA tail moment from haemocyte representing DNA damage after	
10, 30, and 60 min $HgCl_2$ exposure	115
Ratio of tail length of mussel haemocyte and sperms compare with	
control	117
Ratio of tail moment of mussel haemocyte and sperms compare with	
control	118
Average Hg concentration in experiment water (mussel tank) during	
8 weeks of experiment	121
Average Hg concentration in experiment mussel during 8 weeks of	
experiment	121
Concentrations of dissolved total mercury in oceanic and coastal	
water of the world based on recent determinations.	121
Mercury concentrations in the Gulf of Thailand	122
Range of Hg concentrations in mussel or whole soft tissues of	
marine organism from throughout the world	123
Summary for mass balance of Hg in mussel water tank after 8 weeks	
of experiment (Laboratory study)	124
Assessment of DNA damage by comet assays after in vitro exposure	
of aquatic animal cells to genotoxicants.	131
	DNA tail length from sperms after 10, 30, and 60 min of HgCl ₂ exposure DNA tail moment from haemocyte representing DNA damage after 10, 30, and 60 min HgCl ₂ exposure DNA tail moment from haemocyte representing DNA damage after 10, 30, and 60 min HgCl ₂ exposure Ratio of tail length of mussel haemocyte and sperms compare with control Ratio of tail moment of mussel haemocyte and sperms compare with control Average Hg concentration in experiment water (mussel tank) during 8 weeks of experiment Average Hg concentration in experiment mussel during 8 weeks of experiment Concentrations of dissolved total mercury in oceanic and coastal water of the world based on recent determinations. Mercury concentrations in the Gulf of Thailand Range of Hg concentrations in mussel or whole soft tissues of marine organism from throughout the world Summary for mass balance of Hg in mussel water tank after 8 weeks of experiment (Laboratory study) Assessment of DNA damage by comet assays after in vitro exposure of aquatic animal cells to genotoxicants.

LIST OF FIGURES

Figur	e		Page
2.1		Diagram of typical comet showing distribution of DNA in tail and	•
		head	18
2.2		Green mussel, Perna viridis	20
3.1		Green mussel tanks maintained in Laboratory	23
3.2		Experimental sites in the Gulf of Thailand.	24
3.3		Transplantation of mussel at experimental sites	25
3.4		Plankton sampling at experimental sites	26
3.5		Mussel specimens and preparation	26
4.1		PCR products of HSP70, HSP90, CYP1A	39
42		Nucleotide sequence of 400 bp fragment	40
43		Nucleotide sequence of 180 bp fragment	40
44		Nucleotide sequence of 250 bp fragment	40
4 5		PCR products of HSP71_CYP4_B-actin gene	41
4.6		Nucleotide sequence of HSP71	42
47		Nucleotide sequence of CYP4	42
4 8		Mercury concentrations in mussel tissue	43
49		Mercury concentrations in the mussel rearing water	44
4 10		Experiment tank containing green mussels and bioreactor	45
4 11		Water qualities of the experiment tanks	46
4 1 2		Hg concentration in mussel tissue from st A to D at 5 m denth	47
л.12 Л 13		Hg concentration in mussel tissue according to time	/ /18
ч.15 Л 1Л		Hg concentration in mussel tissue according to denth of exposure	40 70
л.1т Л 15		Plankton compositions from Petroleum Production Platforms	
л.15 Л 16		Survival rate of mussel from Petroleum Production Platforms	53
4.10		Shell lengths of transplanted mussel from Petroleum Production	55
т. 17		Platform	53
4 18		PCR products of MT variants of <i>P viridis</i>	54
4 19		Optimization of PCR condition for MT gene	55
4 20		Optimization of PCR condition for pyMT01 gene	56
4.20		Optimization of PCR condition for pvMT01 gene	57
ч.21 Л 22		Optimization of PCR condition for pvMT02 gene	58
1 22		Optimization of PCR condition for pvMT05 gene	50
ч.23 Л 2Л		Optimization of PCR condition for pvMT07 gene	60
т.2т Л 25		Optimization of PCR condition for pvMT108 gene	61
4.25		Optimization of PCP condition for USP71 gone	62
4.20		Optimization of PCP condition for CVP4 gene	63
4.27		Optimization of PCP condition for β patin gapa	64
4.20		Palative expression level of MT gone in experiment mussel	65
4.29		Relative expression level of WT gene in experiment mussel	66
4.50		Relative expression level of pvW101 gene in experiment mussel	60
4.31		Relative expression level of pv/vi102 gene in experiment mussel	00 60
4.32		Relative expression level of pyly105 gene in experiment mussel	09 71
4.33		Average expression level of pvivi 10/ gene in experiment mussel	/1 72
4.54		Average expression level of pvivi 10/ at week 1 and average 8 week.	12
4.55		Relative expression level of pvivi 108 gene in experiment mussel	13
4.30		Relative expression level of pvivi i i gene in experiment mussel	/4

Figure		Pag
4.37	Relative expression level of HSP71 gene in experiment mussel	76
4.38	Relative expression level of CYP4 gene in experiment mussel	77
4.39a	Relative expression level of total MT gene in gill of mussels	
	transplanted at 4 studies sites	79
4.39b	Relative expression level of total MT gene in digestive tract of	
	mussels transplanted at 4 studies sites	80
4 40	Ratio of MT expression in mussels at 5 m depth	82
4 41	Ratio of MT expression in mussel during times of experiment	83
4.41 4.42	Relative expression level of nvMT01 in gill of transplanted mussels	84
т.т <i>2</i> Л Л З	Relative expression level of pvMT01 in gill of transplanted mussels	86
т. т . Л ЛЛ	Relative expression level of pvMT02 in gill of transplanted mussels	88
4.44	Relative expression level of pvMT05 in gill of transplanted mussels	00
4.43	Relative expression level of pvWT07 in gill of transplanted mussels	90
4.40	Relative expression level of pvivi 108 in gift of transplanted mussels	92
4.4/	Relative expression level of pVM1111 in gill of transplanted mussels	94
4.48	Relative expression level of HSP/1 in gill of transplanted mussels	96
4.49	Relative expression level of CYP4 in gill of transplanted mussels	98
4.50	Analysis of correlation between MT gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	100
4.51	Analysis of correlation between MT gene expression and Hg	
	concentration in mussel tissue (Field study)	100
4.52	Analysis of correlation between pvMT01 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	101
4.53	Analysis of correlation between pvMT01 gene expression and Hg	
	concentration in mussel tissue (Field study)	101
4.54	Analysis of correlation between pvMT02 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	102
4.55	Analysis of correlation between pvMT02 gene expression and Hg	
	concentration in mussel tissue (Field study)	102
4.56	Analysis of correlation between pvMT03 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	103
4 57	Analysis of correlation between pvMT03 gene expression and Hg	
	concentration in mussel tissue (Field study)	103
4 58	Analysis of correlation between $nvMT07$ gene expression and Hg	100
1.20	concentration in mussel tissue (Laboratory study)	104
4 59	Analysis of correlation between nyMT07 gene expression and Hg	101
ч.57	concentration in mussel tissue (Field study)	10/
4.60	Analysis of correlation between pyMT08 gone expression and Hg	104
4.00	Analysis of conclution between pvivilos gene expression and fig	105
4.61	Analysis of completion hetween myMT08 come symposism and He	103
4.01	Analysis of correlation between pvivi 108 gene expression and Hg	107
	concentration in mussel tissue (Field study)	105
4.62	Analysis of correlation between pvM111 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	106
4.63	Analysis of correlation between pvMT11 gene expression and Hg	
	concentration in mussel tissue (Field study)	106
4.64	Correlation between the expression levels of 6 MT subunit including	
	total MT in the same tissue of <i>P. viridis</i> exposed to various	106
	concentration of mercury	

Figure		Page
4.65	Analysis of correlation between HSP71 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	108
4.66	Analysis of correlation between HSP71 gene expression and Hg	
	concentration in mussel tissue (Field study)	108
4.67	Analysis of correlation between CYP4 gene expression and Hg	
	concentration in mussel tissue (Laboratory study)	109
4.68	Analysis of correlation between CYP4 gene expression and Hg	
	concentration in mussel tissue (Field study)	110
4.69	Mussel haemocytes visualized by microscope	111
4.70	Mussel sperm visualized by microscope	111
4.71	Comet Tail length in haemocyte and sperm of mussel	112
4.72	Tail moment in mussel haemocyte and sperm of mussel	114
4.73	Comet result of mussel haemocytes exposed to Hg	115
4.74	Comet result of mussel sperms exposed to Hg	116
4.75	Ratio of tail length of mussel haemocyte and sperm compare with	
	control	117
4.76	Ratio of tail moment of mussel haemocyte and sperm compare with	
	control	118
5.1	Diagram of classification of variant metallothionein gene from gill	
	and digestive tract of <i>P.viridis</i>	126

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

1.1 Statement of Problems

Heavy metals discharged to the environment are of great concern all over the world. Heavy metals can accumulate in marine organisms and are toxic when present at high concentrations. Among them, mercury (Hg) is the most serious global pollutant. Many of its derivations are highly toxic and readily released into the environment because of their high volatility and mobility. On a molar basis, Hg is far more toxic to marine organisms than any heavy metals. Low level of Hg still has chronic effects to living organisms (Langston, 1990; Boening, 2000).

Traditional monitoring of Hg in the marine environment involves determining and comparing the metal concentrations in water, sediment and biota but each method presents its own problems and limitations. The low concentration of Hg in ambient water makes analysis difficult as contamination problems become significant and preconcentration is required. The typical large temporal variations in the metal concentrations in water often warrant frequent sampling and analyses, which are not cost-effective. The majority of the studies associated with Hg have been designed from a toxicological approach, including the measurement of the concentrations of Hg in various tissues and organs. Obtaining an increased knowledge of biological indicators of Hg exposure would prove to be the key to understand and determine the toxic mechanisms of this metal at the cellular level (Narbonne, 2000; Lynn et al., 2001; Wiener et al., 2002).

Various numbers of mollusks including mussels are proposed as the most suitable marine organisms for monitoring the contamination levels of heavy metals in coastal water areas because of their high accumulation of many heavy metals, relatively long life span, large size of individuals enabling the analysis of individual specimens, tolerance of large temperature and salinity ranges, as well as their wide geographical distribution. *Mytilus edulis* are common mussel species widely used as a surveillance organism (Andersen, 1996). Moreover, *M. edulis* are able to synthesis the metal-binding protein, metallothionein, for metal detoxification. Green mussel, *Perna*

viridis, a close member of *M. edulis*, is a native mussel of Thailand and this mussel is widely distributed inside and around the Gulf of Thailand and it is one of suitable model species commonly used for determining heavy metal contamination. Therefore, the research designed to assess the cellular and molecular responses of living organisms such as green mussels following exposure to Hg would provide valuable information for developing techniques to determine the adverse effects of Hg to marine environment (Amiard, 2000; Lawson and Mason, 2002; NIMPIS, 2002; Nicholson and Szefer, 2003).

1.2 Objectives

This study aims to investigate the expression of Hg specific metallothionein (MT) gene and some candidate genes that are responsive to Hg exposure at low levels in both laboratory and field trails. Specific objectives of this study are:

- 1. To determine the expression level of Hg specific MT isoforms in *P.viridis*,
- 2. To clone and characterize stress responsive genes which might contain Hg specific properties in *P.viridis*, and
- 3. To obtain some candidate genes for the potential use as biomarkers for determining Hg contamination in water and use for monitoring petroleum activity in the gulf of Thailand.

1.3 Scope of Study

- 1. Determination of Hg concentration in mussel, *P.viridis*, tissue at study site (petroleum areas) and reference site (Mussel farm, Trad province) in the Gulf of Thailand.
- 2. Cloning and characterization of at least 2 Hg responsive genes (CYP and HSPs) in *P.viridis*
- 3. Determination of the expression level of Hg specific Metallothionein isoforms in *P.viridis*.
- 4. Evaluation of the correlation between Hg level and expression level of Hg specific genes (MT, CYP and HSPs) in *P.viridis*

5. Determination of genotoxicity of Hg on P.viridis

1.4 Hypotheses

Hg responsive metallothionein, cytochrome P450, and heat shock protein genes in this study can respond to the low levels of Hg contamination and can be used as biomarkers for determining Hg contamination in the Gulf of Thailand

CHAPTER II

LITERATURE REVIEW

2.1 Mercury

Mercury (Hg) is a heavy metal used in thermometers, barometers, vapor lamps, and batteries, and in the preparation of chemical pesticides. Hg is a silverywhite poisonous metallic element, liquid at room temperature. Its atomic number is 80 and atomic weight is 200.59. Melting and boiling points are -38.87 and 356.58°C, respectively. Specific gravity is 13.546 (at 20°C). Hg may occur in 3 valency states in seawater and marine sediments: zero (elemental mercury), +1 (mercurous compounds), and +2 (mercuric compound). The +2 valency state is the most common in well-oxygenated water and sediments. The major species of inorganic Hg in seawater are the chloride, HgCl₂ and other chloro complexes. Inorganic Hg is more abundant than organic Hg in sea-water and sediments; organic Hg usually is more abundant than inorganic Hg in air and tissues of marine organisms (Lynn et al., 2001; Neff, 2002).

Hg can accumulate in living organisms and surrounding environment in many forms and cycles in the environment as a result of natural and human (anthropogenic) activities. The amount of Hg mobilized and released into the biosphere has increased since the beginning of the industrial age. In aquatic environments, Hg cycle pathways are very complex. The various forms of Hg can be converted from one to the next. The most important form is the conversion to methyl mercury (MeHg) which is highly toxic, soluble, and can get into food chain. Ultimately, Hg ends up in the sediments, fish and wildlife, or evades back to the atmosphere by volatilization. Dietary uptake is the dominant pathway for MeHg accumulation in aquatic organisms. The bioavailability of MeHg is controlled by digestive processes rather than by constrained transfer across the gills, skin or intestinal epithelium (Neff, 2002). Fish have been estimated to assimilate from 65 to 80% of the MeHg present in the food they eat. Hg is distributed throughout the tissues and organs of the fish, but a large portion of the MeHg eventually relocates to skeletal muscle where it becomes bound to the muscle protein of a contaminated fish. There is no way to clean or cook the fish to remove or even reduce the amount of Hg presented (Wiener, et al. 2002).

Petroleum Production Process is one of human activities that release Hg to the ocean. Thailand's first gas production started in 1981 from Erawan Gas Field which located in the Gulf of Thailand and operated by Unocal Thailand Ltd. At present, total of 37 fields are produced, 21 fields in the Gulf and 16 are onshore. In the petroleum production process, the discharged water contains high concentration of Hg and oil which must be treated before releasing to the environment or re-injected to the well head. Presently, the produced water discharged directly to the sea is reduced. However, in long-term effect, Hg that is already released from previous production process and newly discharges can still be accumulated in the sediment surrounding the production areas and can affect the environment and human. Therefore, monitoring of Hg contamination and its effect is necessary (Veil, et al. 2004; DMF, 2007).

2.2 Toxicity of mercury and molecular responses for the mercury exposure

A large number of documents clearly provide evidences that Hg is cytotoxic. Its biochemical damage at the cellular level includes DNA damage and inhibition of DNA and RNA synthesis (Khera, 1990) Hg also causes alterations in protein structure, alterations in calcium transport, along with the inhibition of glucose transport and enzyme function (O'Halloran, 1993; Goyer, 1995). It also interferes with essential nutrients by the replacement of essential minerals such as zinc at sites in enzymes. This is a part of the toxic effect of Hg that disables the enzymatic process. An inhibition of cellular enzymatic processes by binding with the hydroxyl radical (SH) in amino acids appears to be a major part of allergic/immune reactive conditions (Bagenstose et al., 1999). The effects of Hg binding with proteins also include the blockage of sulfur oxidation processes (McFadden, 1996), enzymatic processes of vitamins B6 and B12 (Srikantarah, and Radjakushnan, 1970), effects on cytochrome-c energy processes (Veltman, 1986), along with Hg's adverse effect on the cellular mineral levels of calcium, magnesium, zinc, and lithium (Danielson, 1984). Hg probably affects the inherent protein structure, which may interfere with functions relating to protein production. Hg has a strong affinity for sulfhydryl, amine phosphoryl, and carboxyl groups, and inactivates a wide range of enzyme systems,

as well as causing injury to cell membranes. Hg may also interfere with some functions of selenium, and can be an immunosuppressant.

2.2.1 Acute toxicity

The organic forms of Hg are generally more toxic to aquatic organisms than the inorganic forms. Aquatic plants are affected by Hg in the water at concentrations approaching 1 mg/L for inorganic Hg but at much lower concentrations of organic Hg (Boening, 2000). Aquatic invertebrates vary greatly in their susceptibility to Hg. Generally, larval stages are more sensitive than adults. The 96-h LC50s vary between 33 and 400 μ g/L for freshwater fish and are higher for sea-water fish (WHO, 1989). Toxicity is affected by temperature, salinity, dissolved oxygen, and water hardness. A wide variety of physiological and biochemical abnormalities has been reported after fish have been exposed to sub lethal concentrations of Hg, although the environmental significance of these effects is difficult to assess (WHO, 1989). Reproduction is also affected adversely by Hg.

Hg as the reactive, free inorganic ion, and as various organomercury compounds in solution is one of the most toxic metals to marine organisms. Acutely lethal concentrations of inorganic Hg in solution to marine invertebrates are in the range of 1.0 to 10,000 μ g/L (WHO, 1989). Marine and fresh water fish are somewhat more tolerant, with acutely lethal concentration in the range of 4 to 23,000 μ g/L. Birds are considered quite sensitive, with acutely lethal concentrations in the diet ranging from 1 to about 5,000 mg/kg body weight (Boening, 2000).

Marine phytoplankton produced metal-chelating ligands that are capable of complexing with reactive metals, particularly Hg, in seawater, rendering them less bioavailable and toxic (Langston, 1990; Bryan and Langston, 1992). Nevertheless marine phytoplankton are among the most sensitive marine organisms to inorganic Hg. Concentrations in the range of 0.8 to 1.0 μ g/L are capable of inhibiting photosynthesis and reducing growth rate of some species of marine micro algae. The species composition of natural assemblages of phytoplankton may be altered by chronic exposure to 1 to 5 μ g/L dissolved inorganic Hg. Growth of sporlings of the brown macroalga, *Laminaria saccharina*, was inhibited by dissolved Hg concentration as low as 0.5 μ g/L (Langston, 1990). Exposure to inorganic Hg at

concentration as low as 0.1 μ g/L inhibited the enzyme glutathione-S-transferase in different foliar tissues of the seagrass, *Posidonia oceanica* (Ranvier et al., 2000). Enzyme inhibition is greater in grasses from a Hg-contaminated environment than from a relatively uncontaminated environment in the Mediterranean Sea. Marine invertebrate larvae also are sensitive to inorganic Hg. Shell growth in larval mussels, *Mytilus edulis*, was reduced by dissolved Hg concentration as low as 0.3 μ g/L (Langston, 1990). Zebra fish embryos were sensitive to Hg at relatively low concentrations as measured by hatching and survival time. It was shown that 32 μ g/L of HgCl₂ completely inhibited hatching when administered to embryos at blastula stage (Dave and Xiu, 1991)

MeHg at concentrations of 15 to 30 μ g/L caused a variety of teratogenic effects, including skeletal defects, cardiovascular abnormalities, and craniofacial defects in developing embryo to marine and freshwater minnows (Sharp and Neff, 1982; Gorge, 1990; Samson and Shenker, 2000). The 4 to 8 cell stages of minnow embryos were the most sensitive to effects of MeHg. Minnows *Fundulus heteroclitus* fed MeHg-contaminated food bioaccumulate Hg in their body tissues and eggs (Matta et al., 2001). Females containing 1.1 to 1.2 μ g/g wet weights MeHg produced eggs containing 0.01 to 0.63 μ g/g of MeHg that decreased fertilization success and the surviving offspring altered sex ratio and reduced reproductive success (Matta et al., 2001).

2.2.2 Neurotoxicity

Hg has also been found to cause additional neurological immune system effects through immune/autoimmune reactions (Kubicka-Murranyi, 1996)

Generally, neurotoxicity of Hg studies in vertebrate and human. Hg is toxic to the renal, reproductive and nervous system in rat that treats with HgCl₂ 0.5 and 2.0 mgHg/kg. In the spontaneous cortical and hippocampal activity, altered distribution of the frequency bands was seen after 5 weeks after treatment but not at the end of the post-treatment period. Hippocampal population spikes in the treated animals were depressed and showed less potentiation, which effect was still present 19 weeks after finishing the treatment. The duration of the sensory cortical evoked potentials was shorter than in the controls (Vezer et al., 2005). Kamakshi (2003) studied the effects of Hg on the nervous system of the mouse. It was found that 10 μ M of HgCl₂ caused neuronal cell death on 14 day old mouse embryos. In human, Hg caused a variety of neurological and behavioral effects including central hearing loss, vestibular dysfunction, autism, mental detioration, speech difficulty, impaired vision, weakness of the extremities and ataxia, and in some cases has proven to be fetal (Chang, 1997).

Hg may enter the body as organic salt, inorganic salt or as elemental Hg. There are clinical and experimental evidences that each of these forms produces a variety of neurologic deficits, with MeHg being the most dangerous and common source of Hg toxicity. In the brain, MeHg is converted to inorganic Hg most likely by in situ demethylation. Humans and monkeys exposed chronically to MeHg have shown a high percentage of inorganic Hg in the brain. Submicromolar concentration of HgCl₂, an inorganic Hg compound, is shown to inhibit a variety of metabolic events in the brain by potentiating secondary neurotoxic events. Organic and inorganic Hg was reported to disrupt ion channel functions and, in turn, affect processes such as synaptic transmission and growth cone elongation. (Sirosis and Atchison, 1996). Shafer et al., (2002) observed that prolonged exposure to MeHg in low concentration reduced both Na⁺ and Ca⁺ ion currents in the membrane channels of cultured cells.

2.2.3 Genotoxicity

Inorganic Hg compounds were also found to induce the generation of reactive oxygen species and glutathione depletion in cultured mammalian cells. Although different Hg compounds tended to produce qualitatively comparable genetic effects, which suggests the involvement of a common toxic entity, MeHg derivatives and other ionizable organomercury compounds were more active in short-term tests than either non-ionizable Hg compounds (e.g., dimethylmercury) or inorganic Hg salts (e.g., HgCl₂). The results of cytogenetic monitoring in peripheral blood lymphocytes of individuals exposed to elemental Hg or Hg compounds from accidental, occupational or alimentary sources were either negative or borderline or uncertain as to the actual role played by Hg in some positive findings. Both genotoxic and non-genotoxic mechanisms may contribute to the renal carcinogenicity of Hg, which so far

has been convincingly demonstrated only in male rodents treated with HgCl₂ (Flora et al., 1994).

The in vivo exposure of embryos of killfish (*Fundulus heteroclitus*) to MeHg at 1 and 7 days post-fertilization enhanced the frequency of micronuclei and chromosomal abnormalities (chromosome bridges, laggard chromosomes) in embryo cells. The number of mitoses was decreased in groups of embryos exhibiting teratogenic effects (Perry et al., 1988). Exposure of larvae and embryos of the urodele amphibian newt (*Pleurodeles waltl*) to MeHg chloride, at doses similar to HgCl₂, induced micronuclei in red blood cells, and c-mitosis and chromosomal aberrations in embryo cells (Zoll et al., 1988).

2.3 Biomarkers

2.3.1 Definition and classification

Biomarkers are defined as quantitative measures of changes in the biological system that respond to either (or both) exposure to, and/or dose of xenobiotic substance that lead to biological effects. The term biomarker is often used restrictedly to cellular, biochemical, molecular, or physiological changes that are measured in cells, body fluids, tissues, or organ with an organism and are indicative of xenobiotic exposure and/or effect (WHO, 1993).

Biomarkers are categorized into 3 types: biomarker of exposure, effect and susceptibility. Biomarker of exposure measures an exogenous substance of its metabolite and its interaction with a biological molecule. Because a number of factors determine whether a chemical exposure reaches its biological target for a toxic response, the most accurate measurement of dose is the biologically effective dose at the target tissue, which can be more reliably measured by biomarkers of exposure than estimated by measurements of administered or ambient chemical exposure. Biomarkers of effect are measurable biochemical, physiological, behavior, or other alterations within an organism. Biomarker of effect is primarily concerned with adverse effects, although the level of evidence varies for the relationship between a given measured effect and specific, pathological responses, which occur often after a long period and after chronic exposures. There is an overlap between biomarker of exposure and biomarker of effect because the same biomarker can be used for both

measurements. Some of the same biomarkers are also used to measure interindividual differences in response and thus further serve as biomarkers of susceptibility (Barrett et al., 1997; Amiard et al., 2000; Narbonne, 2000).

The advantages of biomarker of exposure are their early response and their specificity of reaction. The latter may also be regarded as disadvantageous since the complex contamination situations are not reflected. Thus biomarkers of exposure are useful for the monitoring of hot spots of pollution or clearly defined point source inputs as well as for the characterizations of chronic unknown chemical input. Biomarkers of effect reflect pathological endpoints and are determined at each level of the biological organization. In contrast to the biomarkers of exposure, these effects mostly cannot be attributed to the impact of single contaminants and therefore serve as integrative markers of complex toxicities. The advantages are the high ecological relevance of biomarkers at high levels of organization (individual, population and community level) and the general picture of the status of environmental deterioration that can be obtained by applying this kind of biomarkers. The disadvantage is that in most of the cases the quality of contamination remains speculative. Therefore, only a combination of both kinds of biomarkers provides sufficient information for the assessment of responses reflecting the quality as well as the quantity of environmental deterioration (Broeg, et al., 2005).

2.3.2 Application of biomarkers

Biomarkers have been used routinely in recent years to assess the health of wildlife in relation to their exposure to contaminants (Peakall, and Burger, 2003). Biomarkers have been applied to various fields. For example, changes in the immune system, which can affect susceptibility to disease, may provide sensitive, early warning signals of the toxic effects of metals (Weeks, 1992; Jewett, and Lawrence, 2007). The response to acute stress, as evaluated by measurements of corticosteroids which are regulators of processes relating to energy metabolism, gland function, and a few more important processes, is another biomarker that may be affected by some trace metals (Hontela et al., 1996).

A wide range of biomarkers had been developed and suggested for use in monitoring programs. Biomarker has been used both *in vivo* and *in vitro* for the evaluation of xenobiotic effects. One of the advantages of biomarkers is that it can indicate biological effects, while chemistry-based surveillance system cannot. It can determine the changes before a real damage has taken place. There is evidence that many biomarker responses are not directly associated with real harmful effects in the target organism (Halander, 2003). In recent years, there has been considerable interest in the use of biomarkers for the early-warning systems. This involves knowledge of their biological function and it is necessary to identify possible interferences that can influence these responses in order to standardize the analytical procedure.

2.4 Potential biomarkers for mercury exposure

There are quite a number of biomarkers commonly used in various kinds of organisms. For example, Ethoxyresorufin o-diethylase (EROD) is known to be specific to polyaromatic hydrocarbon (PAH), Polychlorobiphenyl (PCB) and dioxin contamination (Amiard et al., 2000).

2.4.1 Metallothionein

Metallothionein (MT) is the main biomarker applied for determining heavy metal contamination. MTs are low molecular weight proteins. Their physiological roles are the regulation of essential metals, such as Cu and Zn, sequestration of heavy metals, and free radical scavenging.

On the contrary, cysteinyl residues are present in large amount (about 30% in mammal MTs) (Werner, 2008). A remarkable feature of MTs is their inducibility. It is in fact well known that different factors, and in particular heavy metal cations, can stimulate the synthesis of mRNA encoding for MTs (Viarengo et al., 2001). Owing to this property and due to the high affinity of MTs for heavy metals, these proteins play an important role in regulating the physiological concentration of essential metals, such as Zn and Cu, and in detoxifying noxious metal cations penetrating into the cells (Viarengo et al., 2001; Werner et al., 2008). MT is induced by exposure to many xenobiotics including Hg. Induced MT modulates intracellular Hg concentration or gene expression and protects cells from Hg. MT has many other functions, for example, protection against carcinogenesis.

These functions might also be based on changes in intracellular Hg level or modulation of gene expression. A rapid increase in intracellular Hg concentration is important for cell signaling in mast cells. MT might be involved in a lot of cell signaling systems (Kimura and Itoh, 2008).

2.4.2 Cytochrome P450

Cytochrome P450s or CYPs are enzymes that respond to halogenated hydrocarbon exposure. This usually accompanies and often precedes toxicity in all animals. CYP is a large and ubiquitous group of heme proteins found in fish, mammals, birds, plants, and microorganisms that catalyze the oxidative biotransformation of diverse lipophilic xenobiotic and endogenous compounds. Because CYP enzymes play a critical role in the metabolism bioaccumulation, and potential toxicity of halogenated and nonhalogenated hydrocarbons found in the food chain, levels of individual CYP enzymes are important determinants of susceptibility to environmental contaminant exposure. CYP enzyme induction in fish populations has been suggested as a sensitive biochemical marker of contaminant exposure and by inference of marine ecosystem health (Miller et al., 2003). Induction of the CYP1A subfamily of enzymes can be determined by measurement of associated enzymes activities such as ethoxyreosufin O-diethylase (EROD) and benzo[a]pyrene hydroxylase or by measuring CYP1A protein using immunochemical methods and determining transcriptional levels using quantitative PCR (Miller et al., 2003; Campbell et al., 1996). Induction is an adaptive response that protects cells from toxic xenobiotics by increasing the detoxification activity. Environmental pollutant and many other xenobiotics including heavy metals enhance the metabolism of themselves and of the other co-ingested/inhaled compounds, resulting in a reduction of an increase of toxicity as a result of an increase formation of reactive metabolites (Shaw, et al., 2004). For example in leaping mullet (*Liza saliens*) exposed to 50 μ M Hg²⁺, cytochrome P450 reductase activity was inhibited completely (100%), while at the same concentrations, Cd^{+2} , Cr^{+3} , and Ni^{+2} caused 66%, 65% and 37% inhibition, respectively (Bozcaarmutlu and Arinc, 2007). Bozcaarmutlu and Arinc (2007) and Korashy and El-Kadi (2005) found that CYP1A1 mRNA levels were increased when exposed to 5 μ M Hg²⁺, 25 μ M Pb²⁺ and 10 μ M Cu²⁺ in Murine hepatoma Hepa 1c1c7 cells.

2.4.3 Heat Shock Protein

Heat shock proteins (HSPs) are groups of intracellular proteins that have an unusually high degree of identity at the amino acid level, among diverse organisms. As this family of proteins is induced by stressors other than heat, they are also commonly referred to as stress proteins in the literature. The term stress proteins also may refer to several other groups of proteins that respond to stressors. Stress proteins are among the most abundant intracellular proteins. Prokaryotic and eukaryotic cells react to exposition unfavorable conditions of the outer environment by increased synthesis of the stress proteins. The structure and functions of these proteins are evolutionary highly conserved and they are present in different variations in the cell of all living organisms (Iwama et al., 1998). An expression of HSPs is induced by many environmental stresses including exposure to trace metals or organic pollutants, changes in temperature or osmolarity, hypoxia, anoxia, exposure to ultraviolet radiation and reactive oxygen forms. Although during stress, proteins are expressed as the constitutive proteins, and they play the significant role even in the cells which are not exposed to the stress factor (Harboe and Quayle, 1991; Iwama et al., 1998; Feder and Hofmann, 1999; Kopećek et al., 2001). In Mediterranean mussel (Mytilus galloprovincialis) exposed to 0.75 μ M CH₃Hg⁺ for 6 days, CH₃Hg⁺ inhibited MgHSP70 and induced MgHSC70 expression (Franzellitti and Fabbri, 2005).

2.5 Use of biomarkers in field studies

The use of biomarkers for the determination of xenobiotic contamination has been increasingly adopted as part of the environmental monitoring programs.

Parsont (2003) studied on MT expression in Hg-exposed mussel *P. viridis*. The RT-PCR data showed that there was a significant higher levels of MT mRNA in treated mussels within 2 to 4 weeks of Hg exposure (p<0.05). At concentration of 1 ppb, HgCl₂ induced the MT mRNA levels significantly comparing to control.

Timmermans, et al., (2005) studied on MT expression in springtail (*Orchesella cincta*, insecta) at cadmium contaminated area and reference site in Netherlands. The MT gene in cadmium tolerance of *O. cincta* was studied by means

of quantitative RT-PCR. The constitutive and Cd-induced MT mRNA expression of the laboratory cultures was measured. Results show that the mean constitutive MT mRNA expression of populations from polluted sites was significantly higher than of populations from reference sites.

Zorita, et al., (2007) studied two families of MT Isoforms (MT10 and MT20) in mussels (Mytilus galloprovincialis). Mussels were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metalinduced MT expression. MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles and oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (VvBAS) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells, lysosomes and the VvBAS increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggested that MTs were expressed in a tissue-, cell- and isoform-specific way in response to different metals.

Choi, et al., (2008) studied HSP90 and MT gene in Pacific Oyster (*Crassostrea gigas*). The expression of HSP90 increased significantly with exposure to 0.01 ppm Cd for 11 days or 0.05 or 0.1 ppm Cd for 7 days. The expression of MT increased significantly with exposure to 0.01, 0.05, or 0.1 ppm Cd for 11 days. Glutamate oxaloacetate and glutamate pyruvate levels increased significantly with exposure to 0.05 or 0.1 ppm Cd for 7 days. These results indicated that HSP90 and MT played important roles in the physiological changes related to metabolism and cell protection that occur in Pacific oysters exposed to Cd.

Brulle, et al., (2007) studied on MT gene in earthworms exposed to 80 mg/kg of Cd in soil. A significant increase of the quantity of mRNA expressed after 14 h (6 fold; p=0.012) was observed compared to the quantity obtained in control animals. mRNA levels were 20, 24, 28, 63 folds higher after 1 day (p=0.0003), 2 days

(p=0.001), 6 days (p=0.026) and 14 days (p=0.035) of exposure respectively. The induction pattern was quite similar in earthworms exposed to 800 mg/kg of Cd in soil, but gene induction started earlier. Significant inductions (3 fold, 28 fold, 35 fold, 85 fold, 76 fold, 80 fold) were registered after 6 h, 14 h, 1 day, 2 days, 6 days and 14 days of exposure respectively.

Baker, et al., (2003) studied CYP isoforms in aspects of human cadmium toxicity. The possible link between non-workplace cadmium (Cd) exposure, cytochrome P450 expression and hypertension was investigated. Results of the investigation into the relationships between liver and kidney Cd burdens and the abundance of the CYP isoform 4A11 were shown. Data showed associations between non-workplace Cd exposure and changes in the abundance of hepatic and renal cortical CYP4A11. In liver, the levels of immunochemically detectable CYP4A11 were positively correlated with tissue Cd content while, in contrast, CYP4A11 abundance was inversely correlated with kidney Cd burden. These differences were most likely related to the different Cd burden of the tissues. These observations suggested the potential for involvement of Cd as a mediator of CYP4A11 expression in kidney cortex and indicated that elevations in kidney Cd content might be involved in hypertension via alteration of the expression of this particular isoform.

Poupardin, et al., (2008) studied on Cytochrome P450 monooxygenases activities in mosquito (*Aedes aegypti*) larvae, exposed to permethrin, fluoranthene and copper. Quantitative RT-PCR on different biological replicates was used to validate the expression pattern of the genes isolated from microarray experiments. The specific inductions of CYP6M6 by fluoranthene and CYP6M11 by copper were confirmed (2.2- and 3.4-fold, respectively). Interestingly, the induction of CYP9M9, CYP9M8, CYP6Z8, CYP6AL1, CYP6N12 and CCEjhe1F by one xenobiotic was confirmed but multiple inductions of these genes by other xenobiotics were also observed.

Faverney, et al., (2000) studied on heavy metals and oxidative stress in fish liver cells by measuring *CYP1A* expression in trout (*Oncorhynchus mykiss*) hepatocytes. 3-methylcholanthrene (3-MC) induced the CYP1A-related EROD activity. This induction was inhibited by concomitant exposure to Cd (II), Cu (II), Pb (II) or Zn (II). *CYP1A* mRNA levels were also reduced. Simultaneous treatment with

3-MC, a heavy metal and TEMPO suppressed both the inhibition of EROD activity and the decrease of *CYP1A* mRNA expression.

Franzellitti and Fabbri, (2005) studied on 2 genes (MgHSP70 and MgHSC70) in Mediterranean mussel (*Mytilus galloprovincialis*) exposed to heavy metals (Hg²⁺ and Cr⁶⁺). Hg²⁺ (150 μ g/L for different time periods) significantly induced MgHSP70 expression that reached maximum levels after 24 h, decreasing thereafter. MgHSC70 expression was inhibited after 1 day and induced after a 6-day exposure to Hg²⁺. A 1-week exposure to Cr⁶⁺ (1, 10, and 50 ng/L) induced and inhibited MgHSC70 and MgHSP70 transcript levels, respectively.

Köhler and Eckwert, (1996) studied HSP70 in laboratory toxicity tests, woodlice (*Oniscus asellus*, Isopoda) exposed to a variety of different combinations of the metals. Cadmium, lead, and zinc exhibited a broad range in intensity of the induction of the 70 kDa stress protein (hsp70, stress-70).

Rios-Arana et al., (1995) studied on HSP60 in the rotifer *Plationus patulus*, exposed to various concentrations of As, Cr, Cu, Ni, Pb, and Zn. Following exposure, total protein was quantified and stress protein 60 (HSP60) was identified using Western blotting. *P. patulus* induced HSP60 as a response to single exposures to low and high heavy metal (As 10 and 50 μ g/l), (Cr 10 and 50 μ g /l), (Cu 10 and 50 μ g/l), (Ni 10 and 50 μ g /l), (Pb 10 and 100 μ g /l) and (Zn 20 and 50 μ g /l). HSP60 expression was increased (2 folds) in rotifers exposed to these single elements at both low and high concentrations as compared to unexposed rotifers. Arsenic exposure resulted in a 2 fold decrease in HSP induction.

2.6 Techniques used for examination of mercury exposure and toxicity

2.6.1 Toxicity test for identification of acute toxicity

Toxicity test is needed in water pollution evaluation due to chemical and physical test alone are not sufficient to assess potential effects on aquatic organisms. To examine acute toxicity, which is a relatively short-term lethal or other effect, usually defined as occurring within 4 d for fish and macro invertebrate, toxicity test has to be done.

Toxicity test can be divided following the method of adding test solutions into 3 types:

1. <u>Static test</u> is the test in which solution and test organisms are placed in test chambers and kept for the duration of the test.

2. <u>Renewal test</u> is the test in which organisms are exposed to solutions of the same composition that are renewed periodically during the test period. This is accomplished by transferring test organisms or replacing test solution.

3. <u>Flow-through test</u> is the test in which solution is placed continuously in test chambers throughout the test duration.

To conduct short-term test, the technique can be static, renewal, or flowthrough test. Exposure period for these tests are 48 h or 96 h. Static or renewal tests are less expensive to perform than flow-through tests. However, the flow-through test is suit for high –BOD or COD system and for the test of unstable of volatile substances (APHA, AWWA, WEF, 1992)

2.6.2 Single cell gel electrophoresis for examination of genotoxicity

To measure DNA strand breaks, the single cell gel electrophoresis or comet assay is a rapid, sensitive and in expensive method. This method has advantage over other DNA damage methods, such as sister chromatid exchange, alkali elution, and micronucleus assay, because of its high sensitivity and the DNA strand breaks are determined in individual cells.

The technique is performed by dispersing and immobilizing cultured cell or isolated cells in an agarose gel coated on appropriate support media, such as microscope slides. The fixed cells are lysed with alkaline lysis solution to disperse cell component and leave the immobilized DNA in the agarose. The DNA is denatured in an alkaline solution. Strand breaks in the denatured cellular DNA result in supercoil relaxation. The more breaks leads to the greater the degree of relaxation. The application of an electric field across the slides creates a motive force by the charged DNA may migrate through the surrounding agarose away from the immobilized nuclear DNA. The DNA in the fixed slides in stained with a fluorescent DNA-specific dye. DNA binding dyes which can be used for comet assay included ethidium bromide, propidium iodide, etc. Stained slides are examined using a fluorescent microscope. Optimal magnification will depend on the quality of DNA in the cells being assessed for DNA damage. The migration of DNA away from the nucleus can be measured by eyes using an ocular micrometer or image analysis software to determine various parameter of the comet, i.e. tail length, percentage of DNA in tail, tail moment (Lee and steinert, 2003) (figure 2.1).

2.6.3 RT-PCR (Reverse Transcription PCR) and Semi-quantitative RT-PCR for determination of gene expression

Reverse transcription polymerase chain reaction (RT-PCR) is a technique for amplifying a defined piece of a ribonucleic acid (RNA) molecule. The RNA strand is firstly reverse transcribed into its complementary DNA (cDNA), followed by amplification of the obtained cDNA using polymerase chain reaction. RT-PCR differs from the conventional PCR by cDNA is used as template rather than genomic DNA. The method has been used to determination of gene expression in mRNA population (Kawasaki et al., 1990)

Semi-quantitative RT-PCR is a quantitative technique used to quantitate the relative amount of mRNA as cDNA from the starting samples. Target cDNA is separately or co-amplified with the internal control gene, such as β - actin, elongation factor 1 alpha, using the same template. Use of internal control gene is under the

criterion that they are transcribed constantly and independently from the environmental stimuli.

2.7 Green Mussel

Green Mussel, *Perna viridis* is a marine mussel in Phylum: Mollusca, Class: Bivalvia, Subclass: Pteriomorphia, Order: Mytiloida, Family: Mytilidae with separate sexes and external fertilization. The life span of *P. viridis* is typically 1-2 years. Growth rates are influenced by environmental factors such as temperature, food availability and water movement.

P. viridis is a large mussel, 80-100 mm in length, occasionally reaching 165 mm. The shell tapers to a sharp, down turned beak and has a smooth surface covered with a periostracum (skin) that can be vivid green to dark brownish-green near the outer edge and olive-green near the attachment point. The ventral margin of the shell is straight or weakly concave. The interior of the shell valves is shiny and pale bluish green. The ridge which supports the ligament connecting the two shell valves is finely pitted. The beak has interlocking teeth: one in the right valve and two in the left. The wavy posterior end of the pallial line and the large kidney-shaped adductor muscle are diagnostic features of this species.

2.7.1 Growth and Reproduction

Sexes in this species are separated and fertilization is external. Spawning generally occurs twice a year between early spring and late autumn. However in the Philippines and Thailand, spawning occurs year round. Fertilized eggs develop into larvae and remain in the water column for two weeks before settling as juveniles. Sexual maturity typically occurs at 15-30 mm shell length (corresponding to 2-3 months of age). First year growth rates vary between locations and range from 49.7 mm/yr in Hong Kong to 120 mm/yr in India. (Rajagopal et al., 1998)

2.7.2 Feeding

This species is an efficient filter feeder, feeding on small zooplankton, phytoplankton and other suspended fine organic materials.

2.7.3 Habitat

P. viridis forms dense populations (up to 35,000 individuals per square meter) on a variety of structures including vessels, wharves, mariculture equipment, buoys and other hard substrata. It is susceptible to overgrowth from other fouling organisms that make it difficult to detect despite its vivid green appearance. It is primarily found in estuarine habitats with salinities ranging from 18-33 ppt and temperatures from 11-32 °C, *P. viridis* has a broad salinity and temperature tolerance (in experimental testing it survived salinities of 1-80 ppt and temperatures of 7-37.5 °C).

Many species of mussels can be used as marine biomonitoring, for example, Zebra mussel, oyster, blue mussel and green mussel, because of the mussel can accumulate the heavy metal including Hg. The tissue of *Mytilus galloprovincialis* accumulate twice as much MeHg during exposure for 35 d to the two forms of Hg in both the food and water (Fowler et al., 1978). Small mussels accumulate slightly more of both types of Hg than large mussels. (Pelletier and Larocque, 1987)

Perna viridis is commonly used as biomonitoring organisms because it is an efficient filter feeder (feeding on small zooplankton, phytoplankton and other suspended fine organic material). It has strong capacity for bioconcentration of xenobiotics. It is a common sessile animal and widely distributed in the Gulf of Thailand, It has relative long life span, large size of individuals can analyzed of individual specimens (Figure 2.2) (Amiard et al., 2000; NIMPIS, 2002).

Figure 2.2 Green mussel, Perna Viridis

CHAPTER III

MATERIALS AND METHODS

3.1 Test organisms

Green mussels, *P. viridis*, length 8–10 cm were collected from unpolluted-Hg area of Trad Bay at Trad Province, Thailand. This area is less polluted because of the absence of any industrial activities. Mussels were transported to the laboratory (Center of Excellence for Marine Biotechnology (CEMB), Faculty of Science, Chulalongkorn University Bangkok, Thailand) in the polystyrene foam boxes. Fouling organisms were removed from the external part of the shells. In the laboratory, mussels were acclimated for 4 weeks in seawater at the 30‰ salinity, pH 8.0 and temperature ranged from 23 to 25 °C. Mussels were fed with unicellular algal species (*Chaetoceros* sp.) (Figure 3.1 C and D) and Brine shrimp (*Artemia* sp.) 1 time daily during acclimation and exposure periods. To avoid the accumulation of nitrite and nitrate, water was exchanged 10% daily and aeration was provided by continuous air-bubbling system.

3.2 Mercuric Chloride

Mercuric Chloride used in the experiment was obtained from local supplier while laboratory grade Hg was purchased from Ajax Finechem, Inc. (Australia). The stock solutions were prepared by diluting mercuric chloride in distilled water to give stock concentration.

3.3 Mercury analysis in mussel tissue

Total Hg concentration was determined in the mussel samples. Approximately 0.1-0.2 g of lyophilized and homogenized tissue was weighed and placed into Teflon digestion vessel. After addition of 5 ml of conc. HNO₃ (ultra pure) and 0.040 g of V₂O₅, the vessel was closed and the mixture was left to react at room temperature for 1 h. Digestion was finished by heating in microwave for 5-10 min After the digestion, samples were left in room temperature until it cooled down, then 3 ml of K₂Cr₂O₇ was added and diluted to 40 ml. by Mili-Q water. Total Hg concentrations in tissue and
water sample were determined by CVAAS and CVAFS the method was modified from the method of U.S. EPA (1997), Odžak (2000) and Gašpić (2006).

3.4 Experimental set up

3.4.1 Laboratory test

The experiment was conducted in five 800 L tanks. Each tank contained approximately 200 mussels put in mussel bag (15-20 mussel per 1 bag) (Figure 3.1A) with aerated seawater and bioreactor (Figure 3.1 E and F). Mercuric chloride (HgCl₂) was applied to each tank making up the concentration of 0.0, 0.1, 0.2, 0.5 and 1.0 μ g/l, respectively. Water quality was monitored every 2 days for ammonia, nitrite, and nitrate. The water was exchanged for 10 % every day and HgCl₂ was applied with the new water in the ratio to maintain the same calculate concentration in every tank. Mussels were maintained in this condition for 2 months.

Sampling was performed for the period of 8 weeks. At each sampling time, 10 specimens were sampled. Gills and digestive tracts of the mussels were dissected and snap frozen in liquid nitrogen and then stored in -80 °C freezer. Shell length and weight of each individual specimen was measured. The collected samples were subjected to RNA extraction and remain tissue samples were kept in sealed plastic bags at -20 °C freezer for Hg analysis.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.1 Green Mussel tanks maintained in Laboratory. mussel bag (A), worker (B), plankton culture tank (C and D), mussel tank show bioreactor (E), enlarge bioreactor (F)

3.4.2 Field study

Green mussels collected from the same area for laboratory test were transplanted and maintained in petroleum production platform at sites specific in figure 3.2 for 90 days. Mussels were put in net bag, each contained 15-20 specimens and tied to the rope at 5, 20 (upper thermocline), and 40 m below the sea level (below thermocline) (Yanagi, 2001). The end of the rope was weighed with heavy concrete to maintain position (Figure 3.3). Sampling was performed monthly in the period of 3 months. At each sampling time, the content of one net bag with 10 specimens was sampled. Shell length of each individual specimen was measured. Gills and digestive

tracts were dissected and mixed with RNA *later*® solution. Specimens were kept in 4 °C cooler when transported from experiment site to laboratory and then stored in -80 °C freezer (Figure 3.5). Remain tissue samples for Hg analyses were stored in sealed plastic bags at -20 °C freezer for total RNA extraction, cDNA preparation, and analysis of expression level of candidate genes using the same method with lab test.

Plankton was collected every time of mussel sampling using 20 micron mesh size, 50 cm diameter and 150 cm long. Plankton was sampled vertically in a water column of 40 m. depth from the sea water surface and preserved in 3% neutral formaldehyde, stored at room temperature and transported from experiment site to laboratory (Figure 3.4)

Figure 3.2 Experimental sites in the Gulf of Thailand. Station A (N7 54.765, E102 733.154), B (N9 15.633, E101 76.635), and C (N11 09.216, E101 51.367) are the locations of petroleum production platforms where the field study was carried out. Station D (N12 23.265, E101 15.0879) is the reference site near Trad Province. The map is modified from http://commons.wikimedia.org/wiki/File:Gulf_of_Thailand.svg

Figure 3.3 Transplantation of mussels at experimental sites. Diagram of the transplanted mussels is shown in A. Pictures of petroleum production platform, mussel transplanting process, and mussel bags attached to the string are shown in B, C, and D, respectively.

Figure 3.4 Plankton sampling at experimental sites. Planktons were collected using 20 micron mesh (A, B, and C). Collected planktons were preserved in plastic bottle containing 3% neutral formaldehyde (D and E).

Figure 3.5 Mussel specimens and sample preparation. Mussels were collected and shell length was measured (A), tissues were dissected (B), gills and digestive tracts were preserved in RNA later (C, E), and the remaining tissues were in plastic bag and kept in -20° C (D).

3.5 Basic techniques for molecular study

3.5.1 Nucleic acid extraction

3.5.1.1 Genomic DNA extraction

Genomic DNA was extracted from a piece of target tissue using a phenolchloroform-proteinase K method. A piece of frozen or fresh tissue was placed in microcentrifuge tube containing 500 µl of the extraction buffer (100 mM Tris-HCl, 100 mM EDTA, 200 mM NaCl, pH 8). The tissue was briefly homogenized and added with SDS (10%) and RNase A (10 mg/ml) solutions to a final concentration of 1 % (w/v) and 100 µg/ml, respectively. The mixture was incubated at 37 °C for 1 h. Proteinase K solution was added (300 µg/ml) and further incubated at 55 °C for 3-4 h. An equal volume of buffer-equilibrated phenol: chloroform: isoamylalcohol (25:24:1) was added and gently mixed for 10 min. The solution was centrifuged at 10,000 rpm for 10 min at room temperature. The aqueous phase was transferred into a new microcentrifuge tube. The solvent exchange process was repeated once with phenol: chloroform: isoamylalcohol (25:24:1) and once with chloroform: isoamylalcohol (24:1). The aqueous phase was transferred into a new microcentrifuge tube. One-tenth volume of 3 M sodium acetate, pH 5.2 was added to the aqueous solution. Two volume of chilled absolute ethanol was added and gently mixed to precipitate genomic DNA. DNA pellet was recovered by centrifugation at 12,000 rpm for 10 min at room temperature, washed twice with 1 ml of 70% ethanol, air-dried, and resuspended in 50-80 µl of TE buffer (10 mM Tris-HCl, pH 8.0 and 0.1 mM EDTA). The DNA solution was incubated at 37 °C for 1-2 h and kept at 4 °C until use.

3.5.1.2 RNA extraction

Tissue samples were dissected and immediately homogenized in liquid nitrogen. Ground samples were mixed with TRI REAGENT (Molecular Research Center, Inc, USA) (50-100 mg. or tissue per 1 ml of Tri reagent) and maintained for 5 min at room temperature to permit the complete dissociation of nucleoprotein complex. The mixture was then centrifuged at 12,000 g for 10 min the aqueous phase (upper phase) was transferred to a fresh tube and extracted with 0.2 ml of Chloroform per 1 ml of TRI REAGENT. The mixture was left a room temperature for 2-15 min

then centrifuged at 12,000 g for 15 min at 4 °C. The colorless upper aqueous phase containing RNA was transferred to a fresh tube. RNA was then precipitated by the addition of isopropanol (0.5 ml of isopropanol per 1 ml of Tri reagent originally used). The mixture was kept a room temperature for 5-10 min before centrifugation at 12,000 g for 8 min at 4 °C. The supernatant was discarded and RNA pellet was washed with 75% ethanol followed by centrifugation at 7,000 g for 15 min at 4 °C. The pellet containing total RNA was air-dried for 3-5 min, dissolved in DEPC-treated distilled water and kept at -80 °C until further used.

3.5.2 Determination of Nucleic acid

3.5.2.1 Spectrophotometry

DNA and RNA can be quantified by measuring the absorbance at the wavelength of 260 nm (A₂₆₀). One A₂₆₀ unit for double strand DNA, single strand RNA, and oligonucleotide equals to 50, 40, and 33 μ g/ml, respectively. The concentration of nucleic acid was calculated using the following equation:

Nucleic acid concentration $(\mu g/ml) = A_{260} x$ absorbability coefficient x Dilution factor

The quality of nucleic acid was estimated by the ratio of A_{260}/A_{280} . The isolated DNA that was free from RNA and protein, the acceptable A_{260}/A_{280} ratio must be higher than 1.7.

3.5.2.2 Agarose gel electrophoresis

DNA and RNA were determined by agarose gel electrophoresis using 1.2 to 2.0 % agarose gel. Generally, agarose gel was prepared by adding agarose powder into 1x TBE buffer (89 mM Tris-Hcl, 8.9 mM boric acid, and 2.0 mM EDTA), melt in microwave oven until completely dissolved, and then poured into the gel mould with an appropriate comb. The gel was left to solidify for at least 30 min at room temperature. The comb was gently removed and the gel was transferred into the electrophoretic chamber, TBE (1x) was added to cover the gel. Five μ l of PCR products was thoroughly mixed with one-tenth volume of 10x loading dye (0.25% bromophenol blue and 25% ficoll) and care fully applied into the gel slot. Two hundred μ g of 100 bp DNA ladder was used as standard DNA marker.

Electrophoresis was carried out at constant voltage of 100 volts until tracking dye reach about 1 cm from the lower edge of the gel. After electrophoresis, the gel was stained with ethidium bromide (0.5 μ g/ml) for 3 min and destained to remove unbound ethidium bromide by submerging in water for 10 min. The DNA fragments were visualized under the UV light using UV transiluminator. The visible bands of DNA on the stained gel were photographed using camera Pentax K1000 (Asahi Opt. Co, Ltd).

3.5.3 First strand cDNA synthesis using Reverse Transcription Polymerase Chain Reaction

Total RNA isolation from tissue of mussel was subjected to single stranded cDNA synthesis by the reverse transcriptions of mRNA to cDNA using oligodT₁₅ primer. The reverse transcription reaction was performed in the final volume of 20 μ l, at 42°C, for 90 min using Improm II TM reverse transcription kit. The condition includes 1 U of Improm II TM, 2 μ l of 1 x Improm II TM reactive buffer, 2.5 mM MgCl₂, 0.5 mM dNTP mix, 0.5 μ g Oligo dT, and 2.0 U of recombinant RNasin[®] Ribonocluose Inhibitor. The obtained first strand cDNA template was kept at -20 °C until use.

3.5.3.1 PCR

The target cDNA is amplified from single stranded cDNA template by PCR using degenerated primers designed from conserved sequences of genes. The reaction mixture of PCR contains 1X PCR buffer (10 mMTris-Hcl pH 8.8, 50mM KCl, 0.1%TritonX-100), 0.4 mM dNTPs, 1.5 mM MgCl₂, 1U of Taq DNA polymerase, 100 ng of cDNA template and 0.5 μ M of forward and reverse primers. The reaction mixture was carried out in thermal cycler.

3.5.4 RACE-PCR

3.5.4.1 Primer design

Gene specific primers (GSPs), including Metallothionein, Cytochrome P450, and Heat Shock Protein are designed from the obtained nucleotide sequence resulting from cloning and sequencing analysis.

3.5.4.2 First strand cDNA synthesis

Total RNA extracted from gill and digestive tract using TRI REAGENT® (Molecular Research Center, Inc) was subjected to mRNA purification using illustraTM QuickPrep Micro mRNA Purification Kit (GE Healthcare UK Limited). The purified mRNA was further reversed transcribed to RACE-Ready cDNA using a SMARTTMRACE cDNA Amplification Kit (Clontech Laboratory, Inc). The reverse transcription is performed by mixing of 1.0 μ g mRNA, 1 μ l of 5' CDS primer A and 1 μ l of SMART II A oligonucliotide for 5'RACE-PCR and 1.0 μ g of mRNA, 1 μ l of 3' CDS primer A for 3'RACE-PCR. The solution was gently mixed and briefly centrifuged. The reaction was incubated at 70 °C for 2 min and immediately placed on ice of 2 min. The reaction tube was briefly centrifuged and added with 2 μ l of 5X first strand buffer, 1 μ l of (20mM) DDT, 1 μ l of dNTP Mix (10mM each) and 1 μ l of MMLV Reverse Transcriptase. The reaction was then incubated at 42 °C for 1.5 h. The first strand reaction products were diluted with 125 μ l of Tricine-EDTA buffer and heat at 72 °C for 7 min.

3.5.4.3 Rapid Amplification of cDNA Ends (RACE)

Master Mix of 5' and 3' RACE PCR reaction were prepared in a volume of 41.50 μ l for each reaction. The mixture contains 34.5 μ l of PCR-Grade water, 5 μ l of 10X Advantage 2 PCR buffer, 1 μ l of dNTP mix (10 mM each) and 1 μ l of 50X Advantage 2 polymerase mix. PCR reaction was performed for 25 cycles of 94 °C for 30 sec, 68 °C for 30 sec, and 72 °C for 3 min. The 5' and 3' RACE-PCR products were analyzed using 1.2% agarose gel electrophoresis.

3.5.5 SSCP (Single-Strand Conformation Polymorphism)

SSCP was the electrophoretic separation of single-strand nucleic acids base on subtle differences in sequence (often a single base pair) which results in a different secondary structure and a measurable difference in mobility through a gel. The method used in this experiment was a method described by Hein et al., (2003) using Polyacrylamide Electrophoresis, PROTEAN[®] II xi Cell (Bio-Rad, USA). Polyacrylamide gel (1.5% gel, 2.66% cross-link) (16x20x0.4cm) was prepared. The gel was allowed to polymerize for 4 h and pre-run in the gel box in a 4 °C cold room

for at least 5 min. PCR product (8 μ l) from each sample was mixed with 32 μ l of loading dye and heated at 95 °C for 5 min and immediately transferred to the ice box. Sample was loaded onto polyacrylamide gel and running until the dye reaches the bottom of the gel. After the gel was removed with on side attached to the glass, placed into the fix-stop solution for 20 min, and washed with distilled water, the gel was stained with 0.1% silver nitrate for 30 min., washed again with distilled water for 10 sec., and placed into the developing solution. Once the band of DNA starts to appear, the gel was transferred into freshly prepare developing solution and shaken until all DNA bands are visualized. Following gel staining, separating band of ssDNA was analyzed. Each ssDNA band was cut out of the gel and washed 3 times with ultrapure water. Each band was added with 20 μ l of ultrapure water and incubated at 37 °C for 24 h to allow DNA to diffuse to from gel to the water. This cDNA was used as template for amplification of each variation of genes. PCR product was loaded onto 1% agarose gel and the band of interest is cut out and DNA was eluted.

3.5.6 Cloning and Sequencing

Target DNA obtained from PCR was purified using QIAquick gel extraction kit (QIAGEN). Method was conducted following manufacture protocol. Purified DNA was ligated to pGEM-T easy vector by performing in a final volume of 10 µl ligation reaction that contains 3 µl of target PCR product, 25 ng of pGEM-T easy vector, 5 µl of 2x rapid ligation buffer (60 mM Tris-HCl pH 7.8, 20 mM DTT, 2 mM ATP and 10% PEG 8000) and 3 Weiss unit of T4 DNA ligase. The ligation solution was gently mixed by pipetting and incubated at 4 °C overnight. Ligation product was then transformed into E.Coli strain JM109 cells by mixing the resulting ligation solution into 200 µl of the competent cells, placing in a 42 °C water bath for 45 sec, and immediately placing on ice for 5 min. The solution was then added into a tube containing 1 ml of SOC medium. The solution was incubated at 37 °C with vigorous shaking for 1.5 h. The solution was transferred to a microcentrifuge tube and centrifuged at 8,000 rpm for 1 min at room temperature. The supernatant was discarded and the cell pellet was resuspended with 100 µl of SOC medium. The cell solution was spread on LB agar containing 50 µg/ml of ampicillin, 25 µg/ml of IPIG, and 20 µg/ml of X-gal. The plate was incubated at 37 °C overnight. The recombinant clones containing inserted DNA were observed as white colony whereas the clones

without inserted DNA are blue colony. The recombinant plasmid was screened for the size of inserted DNA using colony PCR. The PCR was performed in a volume of 25 µl containing 1x buffer, 1.5 mM MgCl₂, 0.2 mM each of dATP, dCTP, dGTP, dTTP, 0.2 (5'CCGGCTCGTATGTTGTGTGGA-3') μM of pUC1 and pUC2 (GTGCTGCAAGGCGATTAAGTTGG-3') primers and 0.5 U of DyNAzymeTMII DNA Polymerase (Finnzymes). Individual of recombinant colony was picked using micropipette tip and mixed in the amplification reaction. The PCR profiles was predenatured at 94 °C for 3 min, followed by 35 cycles of 94 °C for 30 sec, 55 °C for 60 sec, and 72 °C for 90 sec, and a final extension at 72 °C for 7 min, The resulting PCR product was analyzed using agarose gel electrophoresis. Alternatively, the recombinant clones showing expected size of target DNA insert can be detected by restriction enzyme digestion. The method was conducted by isolating plasmid from cultured cells using QIAprep® Miniprep Kit (QIAGEN GmbH, D-40724 Hilden). The insert size of recombinant plasmid was examined by digestion with ECoRI. The digestion was performed in a volume of 15 µl reaction containing 1x restriction buffer (90mM Tris-HCl, pH 7.5, 10mM NaCl, and 50 mM MgCl₂), 1 µg of recombinant plasmid and 2-3 units of ECoRI and incubated at 37 °C for 3-4 h. The resulting digestion was analyzed using agarose gel electrophoresis. Recombinant plasmid containing target DNA fragment was subjected to sequence analysis. The cloned DNA fragment was sequenced by automated DNA sequencer using M13 forward and/or M13 reverse primers as the sequencing primer by MACROGEN (Korea). The obtained nucleotide sequences were subjected to BLAS search (NCBI) to identify homologous nucleotide sequence.

3.6 Cloning and characterization of mercury inducible genes in P.viridis

Target genes including metallothionein, cytochrome P450, and heat shock proteins that reported in various animals to respond significantly to heavy metal exposure or recognized as sensitive biomarkers for heavy metal were subjected to cloning and characterization. cDNA partial sequences of the target genes were determined by performing degenerate and specific PCR and full length sequences were obtained by RACE-PCR.

3.6.1 Primer design

To amplify fragments of the target genes in *P.viridis*, degenerated and specific primers for PCR amplification were designed. Primers specific to each target gene are shown in Table 3.1. For Metallothionein gene, degenerated primers were designed from conserved regions specific to each isoform of MT.

Table 3.1 Sequence, length and the melting temperature of primers designed for MT genes and some of its isoforms from *P.viridis*.

Gene	Sequence	Length (bp)	Tm °C
Metallothionein	Sense 5'ATgCCCAgCCCTTgTAATTg 3'	20	57.8
	Anti sense 5'TTATTTgCACgAACAACTgg 3'	20	53.7
β-actin	Sense 5'TTgggACgATATggAgAAgAT 3'	21	56.2
	Anti sense 5' ACgACCAgAggCgTACAgAg 3'	20	57.5
pvMT01	Sense 5'CTTgTAATTgCATTgAAACAA 3'	21	51.9
	Anti sense 5'CATgCACACTCTCCTggC 3'	18	54.3
pvMT02	Sense 5'ggTgCAgCggAgAAgA 3'	16	51.7
	Anti sense 5'CTggAgTCACATTTACAggTg 3'	21	52.7
pvMT03	Sense 5'gTgggAgTggATgCAgC 3'	17	53.8
	Anti sense 5'CCACACgCACACgCAT 3'	16	54.2
pvMT07	Sense 5'gTgggAgTgggTgCAgA 3'	17	54.0
-	Anti sense 5'TACAggTCTTTggTCCCg 3'	18	53.4
pvMT08	Sense 5'TgggAgTgggTgCAgA 3'	16	52.2
	Anti sense 5'TACAggTCTTTggTCCCA 3'	18	50.7
pvMT11	Sense 5'ATgCCCAgCCCTTgTAAT 3'	18	55.1
_	Anti sense 5'TgCACACTCTCCTggCTg 3'	18	54.9
CYP4	Sense 5'ATCCgAgCggAAgTCgATACTT 3'	22	62.1
	Anti sense 5'gTggTTCATgCCAgACAgTTgg 3'	22	62.5
HSP71	Sense 5'ACTCgCAAAgACAggCAACAA 3'	21	60.8
6	Anti sense 5 ' CTCAgACgACgAACAgCTCTCTT 3 '	23	60.8
3.6.2 PC	R amplification	ย	·

PCR was conducted to amplify fragments of target gene using total RNA extracted from gill and digestive tract of *P.viridis*. PCR reaction was performed in a final volume of 25 µl, which composed of 1X buffer, 1.5 mM MgCl₂, 0.2 mM dNTP mix, 0.2 µM Forward Primer, 0.2 µM Reverse Primer, 1U of DyNAzymeTM II DNA Polymerase (Finnzymes), The typical PCR profiles was predenaturing at 94 °C for 5 min, followed by 35 cycles of 94 °C for 30 sec, 50-65 °C for 45 sec (depending on the melting temperature of the primer), and 72 °C for 45 sec, and a final extension at $72 \,^{\circ}$ C for 5 min. Amounts of first strand cDNA template and annealing temperature for each gene are shown in Table 3.2

Gene	First Strand cDNA (ng)	Anealing Temperature (°C)	PCR Product (bp)
Metallothionein	500	50	220
β-actin	500	50	208
pvMT01	500	50	151
pvMT02	500	50	154
pvMT03	500	50	118
pvMT07	500	50	147
pvMT08	500	50	146
pvMT11	500	50	159
CYP4	250	55	355
HSP71	250	55	337

Table 3.2 Details on template and annealing temperature used for gene amplification

3.7 Expression analysis of the gene in mussel exposed to mercury

Expression levels of target genes, including various subunits of metallothionein, cytochrome P450, heat shock protein 70 in mussels exposed to Hg (lab test) and mussels transplanted at petroleum platforms (field test) were analyzed using semi-quantitative RT-PCR analysis. β -actin was used as internal control gene.

3.7.1 Exposure of mussel to mercury

Acclimated mussels were exposed to mussel in 5 exposure series: 0, 0.1, 0.2, 0.5 and 1 μ g/l. Exposed mussel (N=10) were collected from each treatment after 1, 2, 3, 4, 5, 6, 7 and 8 weeks of exposure and their gills and digestive tracts were subjected to the total RNA extraction and first strand cDNA synthesis as described in 3.5.1.2 and 3.5.3.

3.7.2 Semi-quantitative analysis

3.7.2.1 Primer design

Primer designed specifically for each target gene and used for semiquantitative RT-PCR are shown in Table 3.1

3.7.2.2 Optimization of PCR condition

Prior to the quantitative analysis, the appropriate PCR condition including temperature, template concentration, number of cycles, and MgCl₂ concentration for each of target genes and reference gene were verified based on the criteria that the PCR product must be on the log phase of amplification.

PCR was performed in a PCR thermal cycler (Hybraid Limited, England). The PCR reaction was based on the standard condition consisted of 1X buffer, 1.5 mM MgCl₂, 0.2 mM dNTP mix, 0.2 μ M Forward Primer, 0.2 μ M Reverse Primer, 1U of DyNAzymeTM II DNA Polymerase (Finnzymes), The typical PCR Profiles was predenaturing at 94 °C for 5 min, followed by 35 cycles of 94 °C for 30 sec, 50-65 °C for 45 sec (depending on the melting temperature of the primer), and 72 °C for 45 sec, and a final extension at 72 °C for 5 min. The condition was optimized as follow.

First, the annealing temperature for each target gene was adjusted within several degrees to obtain the best intensity and specificity of the target band. Then, PCR reactions with various concentrations of DNA templates (between 50-1000 ng) and amplified in different numbers of PCR cycles (20, 25, 30 and 35 cycles) were carried out. The condition that amplified the PCR product in the exponential range and did not reach a plateau level was chosen. Also, the applications of MgCl₂ and primer concentration, ranged from 1.5, 2, 3, and 5 mM for MgCl₂ and 0.05, 0.1, 0.15 and 0.2 μ M for primers, and were determined, the concentrations that gave the highest yield and specificity were chosen.

3.7.2.3 Semi-quantitative RT-PCR

Semi-quantitative RT-PCR for each target gene was conducted using the optimize condition as shown in Table 3.4. The PCR product was analyzed using agarose gel electrophoresis. The intensity of target band was examined using the Quantity I Program (BioRad). The expression ratio of target gene and β -actin gene was analyzed using statistical package in SPSS Version 15 for Window. Significant different among group of treatments was examined using Duncan's test and P<0.05.

 Table 3.3 Optimal condition for Semi-quantitative RT-PCR of gene in gill and digestive tract of Hg exposed mussel.

Gene	Template (ng/µl)	MgCl ₂ (µM)	Primer (µM)	Anealing Temp. (°C)	PCR cycle Number	PCR product (bp)
Metallothionein	500	50	25	50	28	220
β-actin	500	50	25	50	28	208
pvMT01	500	50	25	50	28	151
pvMT02	500	50	25	50	28	154
pvMT03	500	50	25	50	28	118
pvMT07	500	50	25	50	28	147
pvMT08	500	50	25	50	28	146
pvMT11	500	50	25	50	28	159
CYP4	250	50	25	55	28	355
HSP71	250	50	25	55	28	337

3.8 Determination of the correlation between Hg levels and expression levels of candidate genes.

Correlation of Hg levels and expression level of candidate genes will be evaluated by correlations and one way analysis of variance (ANOVA) followed by Duncan's new multiple range tests. Significant comparisons will be considered when the P value is < 0.05.

3.9 Single cell gel electrophoresis analysis or comet assay, (Genotoxicity test)

In vitro testing was conducted to examine the genotoxic effects of Hg on mussel haemocytes and sperms using single cell gel electrophoresis assay. The method was performed according to Pereira et al., (2010) with modification.

3.9.1 Haemocyte

Haemolymph was withdrawn from coelomic fluid of mussel using 24 G needle and 1 ml syringe containing 10% sodium citrate as anticoagulant (1:1 dilution). Haemolymph was centrifuged at 600 g for 2 minutes to precipitate haemocyte and then resuspended in 100 μ l of 10% sodium citrate.

Haemolymp obtained from healthy mussel were separated into 5 treatments with 3 replications. The test was conducted by adding 10 μ l of 10% Sodium citrate to haemolymp and diluted to the solution that contained approximately 10⁴ haemocytes. The solution was then mixed with mercuric chloride stock solution which was diluted to make the final concentration of 0, 0.001, 0.01, 0.1, 1.0 and 10.0 μ g/l, respectively.

The exposed haemocytes were then mixed with melted 1% low melting-point agarose, subsequenctly layered on 1 % agarose-precoated microscope slide, covered with a cover slip, and allowed to solidify at 4 °C. The coverslip was removed and a second layer of low melting-point agarose was placed on the top of the solidified layer. The gel was then covered with the cover slip and stored at 4 °C for solidification. After the removal of cover slip, the slide was subjected to a lysis step by placing the slide into chilled lysis solution (2.5 M NaCl, 10 mM Tris-HCl, 0.1 M Na₂EDTA, 1X Triton X, 10% Dimethylsulfoxide, pH 10) at 4 °C for 1 h. At the end of lysis step, the slide was placed in an electrophorisis chamber containing alkaline electrophoresis buffer (0.3 M NaOH, 1 mM Na₂EDTA, 0.2% Dimithylsulfoxide)for 30 min to allow DNA to unwind. The electrophoresis was conducted for 10 min at 26 V and 300 mA. After completion of the electrophorisis, the DNA was neutralized by placing the slide into neautralization buffer (400 mM Tris-HCl pH 7.5), stained with ethidium bromide, and dried for immersing in absoluted ethanol. For DNA damage visualization and analysis, micoscopic analysis was conducted using Olympus BX 50 Microscope. Randomly chosen nuclei image (N \geq 50) from each slide were taken using Pentax 20D and categorized into ghost cells or cells damaged by cytotoxicity and comet cells or cells whose DNA was damaged by genotoxicity, the comet cells were then analyzed using Comet Score software (CometScoreTM, TriTek Corporation, USA). DNA tail length was measured from the exposed haemocytes. DNA tail moment was calculated (tail length x % DNA in tail), and used as parameters for determining the degree of DNA damage.

Viability of haemocytes and the values of tail length and tail moment were analyzed using the statistical package in SPSS Version 15 for Window. The difference of parameter among group of treatment for each experiment was tested for normality and variance homogeneity using Shapiro-Wilk and Levene's test. For the genotoxicity test, the parameter was averaged tail length and tail moment. Significant different among group of treatments was examined using Duncan's test at P<0.05.

3.9.2 Sperm

Sperms was withdraw from sperm sac of mussel using 1 ml pipettes tip and diluted to 10^6 cell/ml. in 10% sodium citrate as anticoagulant approximately 500 µl.

Prior to the assay, *in vitro* cell was examined on the normal and Hg exposed haemocytes and sperms after 10, 30 and 60 min of exposure using PBS buffer. The mixture was left at room temperature.

The method for comet assay study in sperms similar with study in haemocytes cells.

3.10 Statistical Analysis

Variables of each experiment were typically analyzed using the statistical package in SPSS Version 15 for Window. The difference of each variable among group of treatment was tested for normality and variance homogeneity using Shapiro-Wilk and Levene's test. Significant different among group of treatments was examined using Duncan's test at P<0.05.

จุฬาลงกรณมหาวิทยาลัย

CHAPTER IV

RESULTS

4.1 Cloning and characterization

4.1. Degenerate PCR amplification

Degenerate primers designed from conserved regions of HSP70, HSP90, and CytochromeP450A1 of Pacific oyster, *Crassostrea gigas* (GenBank accession no. CB617404), Abalone, *Haliotis asinina*, (GenBank accession no.EF621884), and *Crassostrea gigas* (GenBank accession no. AJ305315), respectively (Table 4.1), were used for DNA amplification. As shown in figure 4.1, DNA fragments at the sizes of 400, 180, and 250 bp, were obtained from the PCR of HSP70, HSP90, and CYP1A, respectively. Sequence analysis these PCR products were shown in figure 4.2-4.4. BLAST result (Table 4.2) indicated that these 3 fragments were no match to the sequences of HSP70, HSP90, and CYP1A.

Figure 4.1 PCR product of HSP70 (lane 3), HSP90 (lane4), CYP1A (lane5) and β -actin gene (land 2) as positive control. Lane M is 100 bp DNA ladder.

Gene	Primer sequ	Length	Size	
			(bp)	(bp)
HSP70	Forward 5 '	ggAATAgATCTTggAACCACATA 3'	23	
	Reward 5'	TTgCCAAgATATgCTTCTgCAgT 3'	23	382
HSP90	Forward 5 '	ggTgAATgTTACCAAggAAgg 3'	21	
	Reward 5'	gTTACgATACAgCAAggAgATg 3'	22	126
CYP1A	Forward 5 '	gTgCATCAAAgAATTTTggATAC 3'	23	
	Reward 5'	TgCAATAATTTTTgAAgCCCCgg 3'	23	248

Table 4.1 Degenerate primers designed for amplifying target genes in mussel.

Figure 4.2 Nucleotide sequence of 400 bp fragment. Primers used in PCR are indicated in bold and underlined.

GTGAATGTTACAAGGAAGGAGGCTGAGAGTTGTGATTGCCTTCAGGGATTCCAGCTTACACA TTCCTTGGGAGGTGGAACTGGATCTGGTATGGGAACCCTGCTCATCTCCTTGCTGTATCGTA AC

Figure 4.3 Nucleotide sequence of 180 bp fragment. Primers used in PCR are indicated in bold and underlined.

ู่ในย่วิทยทรัพยากร

GTGCATCAAAGAATTTTGGATACTCTGGAAACATTATCGAAAGAGGATTGCGAAGAAAAAGG AATCTATCATACGCTTAAAGAAGCGACGGAGGAAAAAGACGAAAATGGGGAACCGTGTATAA ATGAGGATAACATATATGGAATACTTTTTAATCTTGCTGGAGCTGGATATTTAACAACACGG GGAACTCTATTATCCGTAATTCAGATCCTTGCAAAAAGA**CCGGGGCTTCAAAAATTATTGCA**

Figure 4.4 Nucleotide sequence of 250 bp fragment. Primers used in PCR are indicated in bold and underlined.

Table 4.2 BLAST results of PCR products amplified from first strand cDNA template of mussel tissue using degenerate primers designed from HSP70, HSP90, and CYP1A genes of closest species.

Gene	Detected size (bp)	Actual size (bp)	Putative gene	Species	Expected value	Figure
HSP70	400	382	Unknown	-	-	4.1
HSP90	180	126	Beta-tubulin	Rhizoctonia solani	0.58	4.1
CYP1A	250	248	Unknown	-	-	4.1

4.1.2 Specific PCR amplification

Specific primers (table 4.3) designed from HSP71 and CytochromeP450 family4 (CYP4) of green mussel, *P.viridis*, (GenBank accession no. DQ988328 and EU429566, respectively) were amplified and subjected to sequence analysis. The results of PCR and sequencing (figure 4.6 and 4.7) confirmed the identity of HSP71 and CYP4 genes of *P.viridis*.

Figure 4.5 PCR product of HSP71 (lane 3), CYP4 (lane4) β -actin gene (land 2) as positive control, and negative control (lane1). Lane M is 100 bp DNA ladder.

Gene	Primer sequence	Length (bp)	Size (bp)
HSP71	Forward 5' ACTCgCAAAgACAggCAACAA 3'	21	
	Reward 5' CTCAgACgACgAACAgCTCTCTT 3'	23	337
CYP4	Forward 5' ATCCgAgCggAAgTCgATACTT 3'	22	
	Reward 5' gTggTTCATgCCAgACAgTTgg 3'	22	355

Table 4.3 Specific primers designed from HSP71 and CYP4 genes of *P.viridis*.

Figure 4.6 Nucleotide sequence of HSP71. Primers used in PCR are indicated in bold and underlined.

Figure 4.7 Nucleotide sequence of CYP4. Primers used in PCR are indicated in bold and underlined.

จุฬาลงกรณ่มหาวิทยาลัย

Table 4.4 BLAST results of PCR products amplified from first strand cDNA template of mussel tissue using specific primers designed from HSP71 and CYP4 genes of *P.viridis*. (Appendix C)

Gene	Detected size (bp)	Size (bp)	Putative gene	Species	Expected value	Figure
HSP71	337	337	Heat shock protein 71	P. viridis	$2x10^{-56}$	4.5
CYP4	355	355	Cytochrome P450 family4	P. viridis	$6x10^{-65}$	4.5

4.2. Laboratory study

4.2.1. Mercury concentration (Total mercury) in mussel tissues

Average Hg levels in mussel tissues (whole soft tissue) measured in tank 1 (control), 2, 3, 4, and 5 were 0.0104 ± 0.0090 , 0.0579 ± 0.0241 , 0.0885 ± 0.0500 , 0.1378 ± 0.0505 , 0.1644 ± 0.0500 , $0.1383\pm0.0803 \mu g/g$, respectively (Table 4.5). In the first week, Hg concentrations in un-exposed (control) and other Hg expose mussels remained the same level except in tank 3 (200 ng/L) which were significantly higher (Fig.4.8A). At the end of the experiment (week 8), the differences between treatments were statistically significant (Fig.4.8B). Hg levels increased in corresponding to the increasing levels of Hg that applied to the mussels. The average level of Hg in the mussel before treatment was $0.0104\pm0.0091 \mu g/g$ while the level from the highest Hg treatment for 8 weeks was $0.1383\pm0.0803 \mu g/g$. The Hg level was approximately 10 times higher than that of initial mussel.

Figure 4.8 Hg concentrations in mussel tissue. The results of Hg level in mussel tissue at week 1(A) and average 8 weeks (B)

Time of Exposure (week)	Mussel tanks					
(week)	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	
	(Control)	(0.1 µg/L)	(0.2 µg/L)	(0.5 µg/L)	(1.0 µg/L)	
0	0.0104 ± 0.0090	0.0104 ± 0.0090	0.0104 ± 0.0090	0.0104±0.0903	0.0104 ± 0.0090	
1	0.0110±0.0191	0.0300 ± 0.0138	0.1490 ± 0.0262	0.1266±0.0998	0.0140 ± 0.0010	
2	0.0926±0.0371	0.0651±0.0265	0.1582±0.0196	0.1176±0.0295	0.2076 ± 0.1000	
3	0.0601±0.0291	0.1142±0.0694	0.0539±0.0159	0.1506 ± 0.0554	0.1048±0.0368	
4	0.0559 ± 0.0144	0.0793±0.0252	0.1057±0.0476	0.1237±0.0954	0.0747 ± 0.0378	
5	0.0650±0.0383	0.0898±0.0452	0.1464±0.0725	0.1966±0.0692	0.1499±0.0269	
6	0.0601±0.0396	0.1930±0.0663	0.2081±0.0587	0.2550±0.1094	0.2493±0.1023	
7	0.0608 ± 0.0337	0.0454±0.0243	NA	0.1810±0.0836	0.0167±0.1312	
8	NA	1.0914±0.0316	NA	NA	NA	
Average	0.0579±0.0241	0.0885 ± 0.0500	0.1378±0.0505	0.1644±0.0500	0.1383±0.0803	

Table 4.5 Mercury concentration (mean \pm SD) in tissue of experiment mussels exposed to different concentration of HgCl₂ (µg/g)

<u>Remark</u>: NA = data is not available due to mortality of mussel.

4.2.2 Mercury concentration in experiment water

After 8 weeks of mercuric chloride treatment, the average level of Hg detected in water of tank 1 (control) to tank 5 (0, 100, 200, 500, and 1000 ng/L, respectively) were 2.7514 ± 1.6959 , 4.9286 ± 2.5461 , 10.8600 ± 7.2910 , 18.0443 ± 12.1593 and 40.1314 ± 37.1110 ng/L, respectively (Table 4.6 and Figure 4.9). This revealed that Hg levels remained at 0.049, 0.054, 0.036, and 0.040 %, respectively, of the applied concentrations.

Figure 4.9 Hg concentrations in the mussel rearing water in tank 1 (0), tank 2 (0.1 μ g/L), tank 3 (0.2 μ g/L), tank 4 (0.5 μ g/L), tank 5 (1.0 μ g/L)

Time of Exposure	Mussel tanks					
(week)	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	
	(Control)	(0.1 µg/L)	(0.2 µg/L)	(0.5 µg/L)	(1.0 µg/L)	
0	2.60	8.48	23.14	27.93	109.5	
1	0.72	4.65	4.82	6.64	15.60	
2	1.53	2.37	3.88	6.60	18.82	
3	2.57	3.06	6.34	9.26	15.31	
4	2.03	2.23	7.54	17.38	22.67	
5	5.85	6.00	12.44	19.26	24.03	
6	3.96	7.71	17.86	39.24	74.99	
7	NA	NA	NA	NA	NA	
8	NA	NA	NA	NA	NA	
Average	2.75	4.93	10.86	18.04	40.13	

Table 4.6 Mercury concentrations in water of the experiment mussel tanks (ng/l)

<u>Remark</u>: NA = data is not available due to lost of sample in analysis process

4.2.3 Water quality

Water qualities (amount of nitrogenous waste) were determined every 2 days. As shown in figure 4.10-4.11, the levels of ammonia, nitrite, and nitrate were between 0.8365±0.6971, 0.0243±0.0031, and 11.8290±007898 mg/L, respectively. Ammonia and nitrite were initially increased but reduced to the safety level within 1 and 2 weeks, respectively. Nitrate level was also increased constantly but reduced gradually after water exchange. These results indicated that the amounts of nitrogenous waste in all experiment tanks did not reach the toxic level.

Figure 4.10 Experiment tanks for rearing of green mussels (A) and details of bioreactor used for nitrogenous waste treatment (B, C, and D).

Figure 4.11 Water qualities of the experiment tanks. A= tank1 (control), B = tank 2 (0.1 μ g/L), C =tank 3 (0.2 μ g/L), D = tank 4 (0.5 μ g/L), E = tank 5 (1.0 μ g/L) <u>Remark</u>: * Water was exchanged 50 %, 1 week before start treat Hg in the mussel tank.

4.3 Field study

4.3.1 Mercury concentration in mussel tissue

Hg concentrations in mussel tissues (whole soft tissue) measured from the mussel transplanted to petroleum platforms were shown in Table 4.7. Hg levels ranged between less than 0.0100 to 0.1725 μ g/g. The concentration of Hg in mussels maintained at 5 m. from station A and B were in the same level as station D (reference site) while that of station C 30D (Fig 4.12) was significantly higher than that of the other stations (P<0.05).

Figure 4.12 Hg concentration in mussel tissue from Station A, B, C and D at 5 m. depth. 30D.

When the levels of Hg in mussels from each station were compared according to time, the results showed that after 30 days, the level of Hg in tissue tended to increase. (Fig.4.13B, C, and E) At station A, the level of Hg in mussels at 20 m depth (Fig. 4.13E) at day 30 was significantly lower than that of day 60 and 90 (P<0.05).

When the levels of Hg in mussels from each station were compared according to depth, the result showed that there was significant difference between the level of Hg from the mussels exposed at 5 m, 20 m and 40 m depth at station B and C. At day 60, the level of Hg at 5m was significantly higher than that of 20 m and 40 m, respectively (P<0.05) (Fig. 4.14E and H).

Figure 4.13 Hg concentration in mussel tissue according to time of exposure. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C respectively. H to J indicates the result from 40 m. depth at station A to C respectively.

Figure 4.14 Hg concentration in mussel tissue according to depth of exposure. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C respectively. H to J indicates the result from 40 m. depth at station A to C respectively.

Station/Depth (m)		Days of Exposed	
()	30 Day	60 Day	90 Day
St.A 5 m	0.0341 ± 0.0143	0.0288 ± 0.0326	0.0502 ± 0.0198
St.A 20 m	0.0100 ± 0.0000	0.0797 ± 0.0275	0.0596±0.0316
St.A 40 m	0.0100 ± 0.0000	0.0876 ± 0.0097	NA
St.B 5 m	0.0535 ± 0.0262	0.1104 ± 0.0555	0.0243±0.0192
St.B 20 m	0.0250 ± 0.0260	0.0219±0.0206	0.0269 ± 0.0292
St.B 40 m	0.0100±0.0000	0.0100±0.0000	0.0100±0.0000
St.C 5 m	0.0319±0.0051	0.1313±0.0213	0.0888 ± 0.0054
St.C 20 m	0.0337±0.0130	0.0349±0.0216	0.0505 ± 0.0040
St.C 40 m	0.0412±0.0094	0.0100 ± 0.0000	0.0293±0.0166
St.D 5 m	0.0261±0.0075	0.0360 ± 0.0027	0.0328±0.0048

Table 4.7 Mercury concentrations (Mean \pm SD) in mussel ($\mu g/g$) tissue from petroleum production platform station A, B, C, and D (reference station)

<u>Remark</u>: NA = data was not available due to mortality of mussel.

Result in station D (reference site) showed only in 5 m. depth due to shallow water at mussel farms.

4.3.2 Plankton composition

The average composition of planktons detected from different sites was shown in fig 4.15. No significant difference were found for the composition of plankton (*t*-test, ns) within the offshore stations (Station A, B, and C) while the near shore station which was reference site (Station D) was significantly higher than that of Station A, B and C (p< 0.005). The dominant groups of planktons in station A, B, and C was blue green algae while the dominant group of station D was diatoms.

4.3.3 Survival rate of mussel

Transplanted mussels were collected (3 bags) from each station at 5, 20, and 40 m. and referent site. Survival rates of the mussels were determined and shown in Fig 4.16A-D.

Comparing the mussels maintained in different water depth, no significant difference between survival rates was found (*t*-test, ns) except at 90D station A and B survival rates of mussels at 20 m tend to higher than that of 5 and 40 m depth . When compared between stations, that of the mussels from Station D, which was a reference station, were significantly higher than that of the other station (*t*-test, s) (p< 0.005). During 3 months of experiment, the survival rates of mussel tend to decrease when increasing time of exposure.

Figure 4.16 Survival rates of Mussel, *Perna viridis*, from Petroleum Production Platform. A, B, and C represent data from station A, B, and C, respectively while D indicates station D (reference site).

<u>Remark</u>: * Lost of sample (mussel string shear) at station A 40 m 90D

4.3.4 Growth rate of transplanted mussels

The mussel growth rate was determined by measuring the average shell length of 10 mussels from each treatment. Mussels from Station D. (TRAD reference site) appeared to have larger sizes than the mussels from other stations. The results were shown in Fig 4.17. By comparing between different depths and stations, no significant difference was found for shell length of mussel (*t*-test, ns) between stations.

4.4 Determination of MT, HSP71, and CYP4 gene expression in Hg exposed mussels

4.4.1 Optimization of PCR condition

Prior to the quantitative analysis, the appropriate PCR condition including temperature, template concentration, number of cycles, and MgCl₂ concentration for each of target genes and reference gene were verified based on the criteria that the PCR product must be on the log phase of amplification. The condition was optimized as follow.

First, the annealing temperature for each target gene was adjusted within several degrees to obtain the best intensity and specificity of the target band. Then, PCR reactions with selected annealing temperature were conducted with various concentration of MgCl₂ (0.5, 1.0, and 1.5 mM) and the concentration that provide the best and specific target band was chosen. The optimal primer concentration was examined with the concentration ranging from 0.10, 0.20 0.25, and 0.30 μ M using PCR with optimal MgCl₂ concentration and the concentration that gave highest yield and specificity was chosen. Finally, optimal MgCl₂ and primer concentration was used to identify the suitable PCR cycle number with various concentration of DNA template (between 100 to 1,000 ng). The cycle number and amount of template that amplified the PCR product in the experimental range and did not reach a plateau level was chosen.

4.4.1.1 Metallothionein gene and its variants

Six subunits of MT gene (pv-MT01, pv-MT02, pv-MT03, pv-MT07, pv-MT08, and pvMT11) previously identified were subjected to expression analysis. Six pairs of primers specific to each subunit were designed and used for PCR amplification in comparison to total MT primers previously obtained for amplifying total MT gene. Figure 4.18 showed the PCR products of each subunit which were amplified from the same stock of first strand cDNA of mussel gills using specific primers of each subunit.

Figure 4.18 PCR products of MT variants of *P.viridis* using the first strand cDNA extracted from gill (lane 1 to 9 represent 100 bp ladder, β-Actin (200 bp), MT (220 bp), pvMT01 (151 bp), pvMT02 (154 bp), pvMT03 (118 bp), pvMT07 (147 bp), pvMT08 (146 bp), pvMT11 (159 bp), respectively.

The optimal PCR condition of total MT gene and 6 of its variants were shown in Fig. 4.19-4.25 and summary of optimal condition shown in table 4.8

Figure 4.19 Optimization of PCR condition for quantifying the expression level of total MT gene. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM.(Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.20 Optimization of PCR condition for quantifying the expression level of pvMT01. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.10, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.21 Optimization of PCR condition for quantifying the expression level of pvMT02. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM.(Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.22 Optimization of PCR condition for quantifying the expression level of pvMT03. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.23 Optimization of PCR condition for quantifying the expression level of pvMT07. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.24 Optimization of PCR condition for quantifying the expression level of pvMT08. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Figure 4.25 Optimization of PCR condition for quantifying the expression level of pvMT11. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

4.4.1.2 HSP71 gene

The optimal PCR condition of total HSP71 gene was shown in fig. 4.26

Figure 4.26 Optimization of PCR condition for quantifying the expression level of HSP71 gene. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

4.4.1.3 CYP4 gene

The optimal PCR condition of total CYP4 gene was shown in fig. 4.27

Figure 4.27 Optimization of PCR condition for quantifying the expression level of CYP4 gene. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles for 250 ng (Lane c1-c5)and 500 ng (Lane c6-c10) of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

4.4.1.4 β-actin gene

The optimal PCR condition of total β -actin gene was shown in fig 4.28

Figure 4.28 Optimization of PCR condition for quantifying the expression level of β -actin gene. MgCl₂ concentration was examined from the varied concentration of 0.5, 1.0, and 1.5 mM. (Lane a1-a3). Primer was examined from the concentration of 0.10. 0.20, 0.25 and 0.30 μ M (Lane b1-b4). Number of cycle was examined from the varied number of 15, 20, 25, 30, and 35 cycles (Lane c1-c5) for 500 ng of gill first strand cDNA template. Lane M is DNA ladder. The intensity of amplified product was plotted against the number of amplification cycle (d.)

Table 4.8 Summary of optimal condition	tion for semi-quantitative RT-PCR of gene
in gill of mercury exposed mussel.	

Gene	Template (ng/µl)	MgCl ₂ (mM)	Primer (µM)	Anealing Temp. (°C)	PCR cycle Number	PCR product (bp)
1.Metallothionein	500	0.50	0.25	50	28	220
2. pvMT01	500	0.50	0.25	50	28	151
3. pvMT02	500	0.50	0.25	50	28	154
4. pvMT03	500	0.50	0.25	50	28	118
5. pvMT07	500	0.50	0.25	50	28	147
6. pvMT08	500	0.50	0.25	50	28	146
7. pvMT11	500	0.50	0.25	50	28	159
8. HSP71	250	0.50	0.25	55	28	337
9. CYP4	250	0.50	0.25	55	28	355

4.4.2 Semi-quantitative RT-PCR of MTs, HSP71, and CYP4 genes

4.4.2.1 Laboratory study

4.4.2.1.1 Expression level of total MT gene in Hg exposed mussels

Total MT gene expression levels were determined from the mussels exposed to 0, 0.1, 0.2, 0.5, and 1.0 ppb of mercuric chloride for 8 weeks. The results (table 4.9 and figure 4.29 A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Within week 7, complete mortality of mussel was obtained from 0.2 ppb treatment. Complete mortalities were increasingly obtained within week 8 (control, 0.1, 0.5, and 1.0 ppb treatments).

Figure 4.29 Relative expression level of MT gene in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

 Table 4.9 Relative expression levels of MT gene of mussels exposed to different

 concentrations of HgCl₂

Time of Exposure	HgCl ₂ Concentration (μg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	
1	0.89±0.18	0.94±0.02	0.88±0.05	0.82 ± 0.20	1.03 ± 0.13	
2	1.04±0.06	1.02 ± 0.10	0.99±0.07	1.01 ± 0.17	0.95 ± 0.01	
3	0.95±0.01	0.90±0.02	0.98±0.11	0.99 ± 0.07	0.95 ± 0.02	
4	0.84±0.18	0.96±0.03	1.03±0.12	$0.84{\pm}0.18$	$0.97{\pm}0.04$	
5	0.94±0.05	0.97±0.06	0.99±0.09	0.96 ± 0.05	$0.97{\pm}0.01$	
6	0.89±0.09	0.99±0.06	0.94±0.01	0.95 ± 0.04	0.96±0.03	
7	0.97±0.02	1.00 ± 0.01	NA	0.97±0.03	0.97 ± 0.06	
8	NA	1.00 ± 0.00	NA	NA	NA	

<u>Remark</u>: NA = data not available due to mortality of mussel.

4.4.2.1.2 Expression level of pvMT01 in Hg exposed mussels

The results (table 4.10 and figure 4.30A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Also, no significant difference of the expression level of pvMT01 was detected in all mussels during the experiment.

Figure 4.30 Relative expression level of pvMT01 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

 Table 4.10 Relative expression level of pvMT01 gene of mussels exposed to different concentrations of HgCl₂

Time of Exposure	HgCl ₂ Concentration (µg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.74±0.33	0.74±0.33	0.74±0.33	0.74±0.33	0.74 ± 0.33	
1	0.83±0.12	0.93±0.14	0.96±0.04	0.95±0.08	1.05 ± 0.25	
2	1.01 ± 0.06	0.85±0.14	0.95±0.06	0.94±0.10	0.92±0.11	
3	0.94 ± 0.08	0.85 ± 0.04	0.97±0.13	0.92±0.05	0.86 ± 0.05	
4	0.94 ± 0.03	0.83±0.10	1.01±0.16	0.94±0.03	$0.94{\pm}0.03$	
5	0.90 ± 0.09	0.82 ± 0.10	0.93±0.12	$0.94{\pm}0.05$	0.92 ± 0.06	
6	0.95±0.05	0.96±0.08	0.92±0.02	0.96±0.06	0.88 ± 0.04	
7	0.90±0.03	1.01 ± 0.00	NA	0.88±0.13	0.97 ± 0.05	
8	NA	1.01 ± 0.01	NA	NA	NA	

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.1.3 Expression level of pvMT02 in Hg exposed mussels

The results (table 4.11 and figure 4.31A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Also, no significant difference of the expression level of pvMT02 was detected in all mussels during the experiment.

Figure 4.31 Relative expression level of pvMT02 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

จุฬาลงกรณ์มหาวิทยาลัย

Time of Exposure	HgCl ₂ Concentration (μg/L)				
(week)	0	0.1	0.2	0.5	1.0
0	0.64 ± 0.08	0.64 ± 0.08	0.64 ± 0.08	0.64 ± 0.08	0.64 ± 0.08
1	0.75±0.01	0.86 ± 0.06	0.88±0.20	0.94±0.10	0.85±0.16
2	0.95±0.09	0.84±0.16	0.87 ± 0.06	0.85±0.13	0.83±0.01
3	0.86 ± 0.09	0.78 ± 0.01	0.89 ± 0.09	0.81±0.05	0.79±0.03
4	0.93±0.11	0.88 ± 0.07	0.85±0.09	0.93±0.11	$0.80{\pm}0.02$
5	0.89±0.15	0.86±0.04	0.92±0.15	0.80 ± 0.04	0.82 ± 0.03
6	0.87±0.05	0.88±0.07	0.89±0.05	0.90±0.11	$0.94{\pm}0.05$
7	0.82±0.02	1.01 ± 0.01	NA	0.91 ± 0.08	$0.97{\pm}0.08$
8	NA	1.01 ± 0.00	NA	NA	NA

Table 4.11 Relative expression level of pvMT02 gene of mussels exposed to differentconcentrations of HgCl₂

4.4.2.1.4 Expression level of pvMT03 in Hg exposed mussels

The results (table 4.12 and figure 4.32A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Also, no significant difference of the expression level of pvMT03 was detected in all mussels during the experiment.

Figure 4.32 Relative expression level of pvMT03 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

 Table 4.12 Relative expression level of pvMT03 gene of mussels exposed to different concentrations of HgCl₂

Time of Exposure	HgCl ₂ Concentration (µg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.82 ± 0.20	0.82 ± 0.20	0.82±0.20	$0.82{\pm}0.20$	0.82 ± 0.20	
1	0.94±0.01	0.83±0.24	0.91±0.04	0.90±0.06	1.01 ± 0.14	
2	1.02 ± 0.06	0.92 ± 0.08	1.01±0.07	0.97±0.14	0.98±0.10	
3	0.90 ± 0.07	0.86 ± 0.01	1.01±0.13	0.91±0.11	0.86 ± 0.04	
4	0.86±0.09	0.87 ± 0.08	0.97±0.19	0.86 ± 0.09	0.90 ± 0.05	
5	0.92 ± 0.07	0.85 ± 0.10	0.92±0.15	0.91±0.06	$0.84{\pm}0.09$	
6	0.90±0.08	0.92 ± 0.09	0.90±0.06	0.92 ± 0.06	0.90 ± 0.03	
7	0.89±0.02	1.01 ± 0.01	NA	0.92±0.10	0.93±0.10	
8	NA	1.01 ± 0.02	NA	NA	NA	

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.1.5 pvMT07 expression in mussels tissue

Significant differences between the expression levels of pvMT07 in mussels from different treatments were detected (table 4.13 and figure 4.33A-H). It was increasing in correlation with the increasing level of Hg applied to the mussels. Expression level of pvMT07 from mussels exposed to 0.2 ppb of mercuric chloride was significantly higher than that of control mussels within the first week (p<0.05) (Fig. 4.34A). At the end of the experiment (8 weeks), the average pvMT07 expression level from all Hg treatments (tank 2-5) appeared to be significantly higher than that of control mussels (tank 1) (p<0.05) (Fig. 4.34B).

Figure 4.33 Relative expression level of pvMT07 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

<u>Remark</u>: The same superscripts indicated that the relative expression level was not significantly different (P \ge 0.05) amount group of treatment within the same period of exposure.

Figure 4.34 Average expression level of pvMT07 at week 1 (A) and average 8 week (B).

<u>Remark</u>: The same superscripts indicated that the relative expression level was not significantly different ($P \ge 0.05$) amount group of treatment within the same period of exposure.

concentrations of figer ₂							
Time of Exposure	สายั	(µg/L)					
(week)	0	0.1	0.2	0.5	1.0		
0	0.51 ± 0.22^{a}	0.51 ± 0.22^{a}	0.51 ± 0.22^{a}	0.51 ± 0.22^{a}	0.51 ± 0.22^{a}		
10.0	0.37 ± 0.04^{a}	$0.63 \pm 0.41^{a,b}$	1.33 ± 0.28^{b}	$1.13 \pm 0.32^{a,b}$	$0.65 \pm 0.36^{a,b}$		
2	$0.76 \pm 0.42^{a,b}$	$0.78 \pm 0.36^{a,b}$	$0.77 \pm 0.08^{a,b}$	1.16±0.33 ^{a,b}	$0.96 \pm 0.23^{a,b}$		
3	0.54 ± 0.29^{a}	$1.15\pm0.26^{a,b}$	$0.89 \pm 0.06^{a,b}$	$1.10\pm0.34^{a,b}$	$1.42 \pm 0.82^{a,b}$		

 $0.89 \pm 0.27^{a,b}$

 $1.34\pm0.58^{a,b}$

 $1.09\pm0.19^{a,b}$

NA

NA

 $.03\pm0.59^{a,b}$

 $1.42\pm0.52^{a,b}$

 $1.20\pm0.10^{a,b}$

 1.61 ± 0.23^{b}

NA

1

 0.86 ± 0.41

 $1.06\pm0.13^{a,b}$

 $1.11\pm0.05^{a,b}$

 $1.35\pm0.13^{a,b}$

NA

a,b

 $1.16\pm0.24^{a,b}$

 $0.73 \pm 0.08^{a,b}$

 $0.91 \pm 0.25^{a,b}$

 $0.69 \pm 0.10^{a,b}$

0.91±0.27

4

5

6

7

8

 $0.94\pm0.11^{a,c}$

 $1.02\pm0.56^{a,b}$

 $0.72 \pm 0.04^{a,b}$

 $0.67 \pm 0.08^{a,b}$

NA

Table 4.13 Relative expression level of pvMT07	gene of mussels exposed to	different
concentrations of HgCl ₂		

<u>Remark</u>: NA = data was not available due to mortality of mussel. The same superscripts indicated that the relative expression level was not significantly different (P \geq 0.05) amount group of treatment within the same period of exposure.

4.4.2.1.6 Expression level of pvMT08 in Hg exposed mussels

The results (table 4.14 and figure 4.35A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Also, no significant difference of the expression level of pvMT08 was detected in all mussels during the experiment.

Figure 4.35 Relative expression level of pvMT08 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

Time of Exposure	f re HgCl ₂ Concentration (μg/L)				
(week)	0	0.1	0.2	0.5	1.0
0	0.58±0.24	0.58±0.24	0.58±0.24	0.58±0.24	0.58±0.24
1	0.59±0.06	0.61±0.03	0.65±0.11	0.78±0.20	1.03±0.13
2	0.87±0.18	0.76 ± 0.08	0.76±0.11	0.73±0.09	0.95 ± 0.01
3	0.68±0.03	0.70 ± 0.04	0.68 ± 0.07	0.66±0.09	0.95 ± 0.02
4	0.77±0.14	0.66 ± 0.05	0.77±0.14	0.62 ± 0.07	$0.97{\pm}0.04$
5	0.70 ± 0.07	0.76±0.07	0.64±0.07	0.71±0.08	$0.97{\pm}0.01$
6	0.74±0.03	0.75±0.11	0.74±0.06	0.83±0.10	0.96±0.03
7	0.69±0.04	1.03±0.01	NA	0.89±0.14	0.97 ± 0.06
8	NA	1.03 ± 0.02	NA	NA	NA

Table 4.14 Relative expression level of pvMT08 gene of mussels exposed to differentconcentrations of HgCl2

4.4.2.1.7 Expression level of pvMT11 in Hg exposed mussels

The results (table 4.15 and figure 4.36A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). Also, no significant difference of the expression level of pvMT11 was detected in all mussels during the experiment.

Figure 4.36 Relative expression level of pvMT11 in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

 Table 4.15 Relative expression level of pvMT11 gene of mussels exposed to different concentrations of HgCl2

Time of Exposure	HgCl ₂ Concentration (µg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.73±0.28	0.73±0.28	0.73±0.28	0.73±0.28	0.73±0.28	
1	0.79±0.02	0.95±0.17	0.95±0.14	0.89±0.12	1.02 ± 0.23	
2	1.05 ± 0.10	0.90±0.15	1.01 ± 0.06	0.91±0.08	0.96 ± 0.07	
3	0.85 ± 0.07	$0.84{\pm}0.06$	0.96±0.07	0.88±0.13	$0.84{\pm}0.08$	
4	0.87±0.22	0.87±0.12	1.03±0.17	0.87±0.22	0.93±0.12	
5	0.90±0.09	0.93±0.14	0.89±0.14	0.92±0.13	0.84±0.12	
6	0.96±0.11	0.91±0.16	0.94±0.09	0.94±0.07	0.96±0.12	
7	0.84 ± 0.06	1.01 ± 0.00	NA	0.93±0.12	0.96 ± 0.09	
8	NA	1.02 ± 0.02	NA	NA	NA	

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.1.8 Expression level of HSP71 gene in Hg exposed mussels

The results of HSP71 gene expression (table 4.16 and figure 4.37A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). No significant difference of the expression level was also detected in all mussels during the experiment.

Figure 4.37 Relative expression level of HSP71 gene in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

Time of Exposure	f re HgCl ₂ Concentration (μg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	
1	0.89±0.18	$0.94{\pm}0.02$	0.88 ± 0.05	0.82 ± 0.20	1.03±0.13	
2	1.04 ± 0.06	1.02 ± 0.10	0.99±0.07	1.01 ± 0.17	0.95±0.01	
3	0.95±0.01	0.90 ± 0.02	0.98±0.11	0.99 ± 0.07	0.95 ± 0.02	
4	$0.84{\pm}0.18$	0.96±0.03	1.03±0.12	$0.84{\pm}0.18$	$0.97{\pm}0.04$	
5	$0.94{\pm}0.05$	0.97±0.06	0.99±0.09	0.96 ± 0.05	$0.97{\pm}0.01$	
6	0.89±0.09	0.99±0.06	0.94±0.01	0.95 ± 0.04	0.96±0.03	
7	0.97 ± 0.02	1.00 ± 0.01	NA	0.97 ± 0.03	0.97 ± 0.06	
8	NA	1.00 ± 0.00	NA	NA	NA	

 Table 4.16 Relative expression level of HSP71 gene of mussels exposed to different concentrations of HgCl₂

4.4.2.1.9 Expression level of CYP4 gene in Hg exposed mussels

The results of CYP4 gene expression (table 4.17 and figure 4.38A-H) revealed no significant difference between mussels from control and other treatments (P>0.05). No significant difference of the expression level was also detected in all mussels during the experiment.

Figure 4.38 Relative expression level of CYP4 gene in experiment mussels. A to H indicates the result from week 1 to 8, respectively.

Table 4.17 Relative expression level of CYP4 gene of mussels exposed to differentconcentrations of HgCl2

Time of Exposure	HgCl ₂ Concentration (µg/L)					
(week)	0	0.1	0.2	0.5	1.0	
0	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	0.81±0.22	
1	0.89±0.18	0.94 ± 0.02	0.88±0.05	0.82±0.20	1.03±0.13	
2	1.04 ± 0.06	1.02 ± 0.10	0.99±0.07	1.01±0.17	0.95 ± 0.01	
3	0.95±0.01	0.90 ± 0.02	0.98±0.11	0.99±0.07	0.95 ± 0.02	
4	0.84 ± 0.18	0.96±0.03	1.03±0.12	0.84±0.18	0.97 ± 0.04	
5	0.94 ± 0.05	0.97 ± 0.06	0.99±0.09	0.96±0.05	0.97 ± 0.01	
6	0.89±0.09	0.99±0.06	0.94±0.01	0.95 ± 0.04	0.96 ± 0.03	
7	0.97±0.02	1.00 ± 0.01	NA	0.97±0.03	0.97 ± 0.06	
8	NA	1.00 ± 0.00	NA	NA	NA	

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.2 Field study

Expression levels of target genes including MT gene and its variants, HSP71, and CYP4 genes in mussels transplanted at petroleum production platforms were determined.

4.4.2.2.1 Expression level of total MT gene in transplanted mussels

Expression levels of total MT gene were determined in gills and digestive tracts of mussels transplanted at 3 offshore stations (station A, B, and C) in comparison with reference station (station D). The results of total MT expression levels in mussels at different depths during 3 months of experiment were shown in figure 4.39a, 4.39b and table 4.18a and 4.18b.

Figure 4.39a Relative expression level of total MT gene in gill of mussels transplanted at 4 studied sites. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Figure 4.39b Relative expression level of total MT gene in digestive tract of mussels transplanted at 4 studied sites. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

 Table 4.18a Relative expression level of total MT gene in gill of mussels transplanted at 4 studied sites (n=3)

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	1.04±0.31	0.91±0.19	1.75±0.89
ST.A 20 m	0.77±0.26	1.10±0.60	0.55±0.06
ST.A 40 m	0.79±0.46	1.22±0.33	NA
ST.B 5 m	1.07 ± 0.44	1.25±0.59	0.81±0.21
ST.B 20 m	0.83±0.47	0.99±0.18	1.27±0.60
ST.B 40 m	1.28±0.83	1.13±0.18	1.20±0.21
ST.C 5 m	0.99±0.15	0.60±0.07	0.29±0.03
ST.C 20 m	0.73±0.30	$1.44{\pm}0.48$	1.09±0.33
ST.C 40 m	1.00±0.57	1.50±0.66	0.62±0.23
ST.D 5 m	0.91±0.50	0.97±0.07	0.89±0.15

<u>Remark</u>: NA = data was not available due to mortality of mussel.

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	0.87±0.29	0.99±0.51	0.95±0.26
ST.A 20 m	0.91±0.41	0.83 ± 0.47	0.85±0.35
ST.A 40 m	0.65±0.24	1.10±0.43	NA
ST.B 5 m	0.75±0.20	1.19±0.41	0.69 ± 0.27
ST.B 20 m	0.83±0.47	1.01±0.66	0.80±0.31
ST.B 40 m	0.85±0.58	1.03±0.71	0.72 ± 0.17
ST.C 5 m	1.11±0.66	1.01±0.43	0.83 ± 0.43
ST.C 20 m	0.93±0.51	1.08±0.36	1.51±1.23
ST.C 40 m	1.27±0.39	1.09±0.07	0.41 ± 0.10
ST.D 5 m	0.91±0.50	0.92±0.40	1.41±0.15

Table 4.18b Relative expression level of total MT gene in digestive tract of mussels transplanted at 4 studied sites (n=3)

The total MT expression levels appeared to be various among different depths, time, and stations. Also, the average MT expression levels of mussels from some stations (station A and B) seemed to be higher than that of station D (reference site) and that of the gill appeared to be expressed higher than that of reference site. However, there were no significant differences between the results from these stations due to the diverse results between samples. This can be indicated that there is no influence factors on the expression level of total MT gene from mussels at reference site (station D) and petroleum production platforms (station A, B, and C). Similar result was obtained from the study of digestive tract (Fig. 4.40A and B)

Figure 4.40 Ratio of MT expression in mussels at 5 m. depth (A = ratio of MT in gill, B = ratio of MT in Digestive tract)

When compared the levels of total MT gene from each study site according to time, the results showed that after 30 days, the level of total MT gene tended to increase in tissue. (Fig. 4.41) However, the difference was not statistically significant.

Figure 4.41 Ratio of MT expression in mussel during times of experiment (A = MT gill at station B at 20m, B = MT digestive tract at station C at 20 m)

4.4.2.2.2 Expression level of pvMT01 in transplanted mussels

The pvMT01 expression levels appeared to be various among different depths, time, and stations. (Table 4.19) Also, the average pvMT01 expression levels of mussels from some stations (station A 60D) (Fig.4.42A) seemed to be higher than that of station D 30D and 60D (reference site) (Fig.4.42D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT01 gene from each study site according to time, the results showed that after 30 days, the level of pvMT01 gene tended to increase in tissue. (Fig. 4.42A, B, C, D, E, G, and F) However, the difference was not statistically significant.

When compared the level of pvMT01 gene between depths, the results showed the level of pvMT01 gene tended to decrease in tissue (station B 5, 20, and 40m.). (Fig. 4.42B, F, and I) However, the difference was not statistically significant.

Figure 4.42 Relative expression level of pvMT01 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	0.27±0.06	0.81±0.12	0.34±0.09
ST.A 20 m	$0.50{\pm}0.07$	0.69±0.31	0.65±0.39
ST.A 40 m	0.22 ± 0.03	0.40±0.36	NA
ST.B 5 m	0.48 ± 0.22	0.73±0.24	0.78±0.16
ST.B 20 m	0.58±0.28	0.44±0.34	0.24±0.03
ST.B 40 m	0.49±0.18	0.42±0.34	0.62 ± 0.41
ST.C 5 m	0.45±0.35	0.58±0.23	0.36±0.14
ST.C 20 m	0.27±0.03	0.51±0.25	0.47±0.39
ST.C 40 m	0.63±0.39	0.40±0.04	0.64±0.27
ST.D 5 m	0.42 ± 0.06	0.69±0.20	0.48±0.20

Table 4.19 Relative expression level of pvMT01 in gill of transplanted mussels (n=3)

4.4.2.2.3 Expression level of pvMT02 in transplanted mussels

The pvMT02 expression levels appeared to be various among different depths, time, and stations (Table 4.20). Also, the average pvMT02 expression levels of mussels from some stations (station B and C at 5M 30, and 60D) (Fig.4.43B and C) seemed to be higher than that of station D (reference site) (Fig.4.43D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT02 gene from each study site according to time, the results showed that after 30 days, the level of pvMT02 gene tended to increase in tissue. (Fig. 4.43E) However, the difference was not statistically significant.

When compared the level of pvMT02 gene between depths, the results showed the level of pvMT02 gene tended to decrease in tissue (station C 5, 20, and 40m.). (Fig. 4.43C, G, and J) However, the difference was not statistically significant.

Figure 4.43 Relative expression level of pvMT02 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	0.46±0.25	0.49±0.05	0.54±0.16
ST.A 20 m	0.55±0.09	0.69±0.27	0.43±0.07
ST.A 40 m	0.52±0.26	0.36±0.17	NA
ST.B 5 m	0.72 ± 0.34	0.59±0.09	0.53±0.14
ST.B 20 m	0.50±0.24	0.44±0.11	0.47±0.19
ST.B 40 m	0.41±0.12	0.43±0.19	0.85±0.19
ST.C 5 m	0.74±0.21	0.77±0.24	0.63±0.29
ST.C 20 m	0.53±0.15	0.60±0.17	0.50±0.04
ST.C 40 m	0.53±0.24	0.53±0.19	0.58±0.21
ST.D 5 m	0.66±0.27	0.57±0.06	0.59±0.19

Table 4.20 Relative expression level of pvMT02 in gill of transplanted mussels (n=3)

4.4.2.2.4 Expression level of pvMT03 in transplanted mussels

The pvMT03 expression levels appeared to be various among different depths, time, and stations. (Table 4.21) Also, the average pvMT03 expression levels of mussels from some stations (station A, B, and C) (Fig.4.44A, B, and C) seemed to be higher than that of station D (reference site) (Fig.4.44D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT03 gene from each study site according to time, the results showed that after 30 days, the level of pvMT03 gene tended to increase in tissue. (Fig. 4.44A, C, and E) However, the difference was not statistically significant.

When compared the level of pvMT03 gene between depths, the results showed the level of pvMT03 gene tended to decrease in tissue (station C 5, 20, and 40m.). (Fig. 4.44C, G, and J) However, the difference was not statistically significant.

Figure 4.44 Relative expression level of pvMT03 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	0.47±0.05	0.65±0.11	0.64±0.37
ST.A 20 m	0.28±0.18	0.74±0.34	0.47±0.21
ST.A 40 m	0.68±0.26	0.40±0.19	NA
ST.B 5 m	0.74±0.17	0.45±0.16	0.57±0.09
ST.B 20 m	0.48 ± 0.37	0.39±0.20	0.45±0.20
ST.B 40 m	0.59±0.23	0.68±0.26	0.74±0.27
ST.C 5 m	0.56±0.14	0.72±0.28	0.61±0.28
ST.C 20 m	0.65±0.13	0.51±0.16	0.44±0.09
ST.C 40 m	0.38±0.12	0.53±0.19	0.49±0.02
ST.D 5 m	0.45±0.06	0.47±0.11	0.51±0.08

Table 4.21 Relative expression level of pvMT03 in gill of transplanted mussels (n=3)

4.4.2.2.5 Expression level of pvMT07 in transplanted mussels

The pvMT07 expression levels appeared to be various among different depths, time, and stations. (Table 4.22) Also, the average pvMT07 expression levels of mussels from some stations (station A, B, and C) (Fig.4.45A, B, and C) seemed to be higher than that of station D (reference site) (Fig.4.45D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT07 gene from each study site according to time, the results showed that after 30 days, the level of pvMT07 gene tended to increase in tissue. (Fig. 4.45A, B, E, H, and J) However, the difference was not statistically significant.

When compared the level of pvMT07 gene between depths, the results showed the level of pvMT07 gene tended to decrease in tissue (station C 5, 20, and 40m.). (Fig. 4.45C, G, and J) However, the difference was not statistically significant.

Figure 4.45 Relative expression level of pvMT07 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth (m)	Time of Exposure (Day)		
	30 Day	60 Day	90 Day
ST.A 5 m	0.37±0.26	0.55±0.32	0.81±0.50
ST.A 20 m	0.49 ± 0.01	0.58±0.39	0.58±0.27
ST.A 40 m	0.57±0.03	0.77±0.03	NA
ST.B 5 m	0.61±0.31	0.74±0.37	0.66 ± 0.09
ST.B 20 m	0.41±0.26	0.38±0.29	0.36±0.23
ST.B 40 m	0.54±0.24	0.28±0.12	0.71±0.11
ST.C 5 m	0.61±0.34	0.76±0.18	0.65±0.20
ST.C 20 m	0.44±0.23	0.37±0.12	0.37±0.22
ST.C 40 m	0.40 ± 0.34	0.62±0.37	0.27±0.04
ST.D 5 m	0.51±0.06	0.41±0.21	0.41±0.14

Table 4.22 Relative expression level of pvMT07 in gill of transplanted mussels (n=3)

4.4.2.2.6 Expression level of pvMT08 in transplanted mussels

The pvMT08 expression levels appeared to be various among different depths, time, and stations. (Table 4.23) Also, the average pvMT08 expression levels of mussels from some stations (station A, B, and C) (Fig.4.46A, B, and C) seemed to be higher than that of station D (reference site) (Fig.4.46D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT08 gene from each study site according to time, the results showed that after 30 days, the level of pvMT08 gene tended to increase in tissue. (Fig. 4.46A, C, E, and J) However, the difference was not statistically significant.

When compared the level of pvMT08 gene between depths, the results showed the level of pvMT08 gene tended to decrease in tissue (station C 5, 20, and 40m.). (Fig. 4.46C, G, and J) However, the difference was not statistically significant.

Figure 4.46 Relative expression level of pvMT08 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth	Time of Exposure (Day)		
(m)	30 Day	60 Day	90 Day
ST.A 5 m	0.23±0.03	0.34±0.05	0.35±0.15
ST.A 20 m	0.19±0.06	0.50±0.35	0.23±0.07
ST.A 40 m	0.19±0.03	0.19±0.06	NA
ST.B 5 m	$0.40{\pm}0.18$	0.34±0.17	0.49±0.18
ST.B 20 m	0.40 ± 0.25	0.22±0.03	0.23±0.01
ST.B 40 m	0.33±0.05	0.21±0.05	0.35±0.16
ST.C 5 m	0.40 ± 0.23	0.48±0.28	0.27±0.03
ST.C 20 m	0.26 ± 0.06	0.31±0.09	0.25±0.03
ST.C 40 m	0.21±0.06	0.39±0.01	0.25±0.05
ST.D 5 m	0.39±0.05	0.28±0.08	0.30±0.18

Table 4.23 Relative expression level of pvMT08 in gill of transplanted mussels (n=3)

4.4.2.2.7 Expression level of pvMT11 in transplanted mussels

The pvMT11 expression levels appeared to be various among different depths, time, and stations. (Table 4.24) Also, the average pvMT11 expression levels of mussels from some stations (station A, B, and C) (Fig.4.47A, B, and C) seemed to be higher than that of station D (reference site) (Fig.4.47D) However, there were no significant differences between the results from these stations.

When compared the levels of pvMT11 gene from each study site according to time, the results showed that after 30 days, the level of pvMT11 gene tended to increase in tissue. (Fig. 4.47C, E, G, and J) However, the difference was not statistically significant.

When compared the level of pvMT11 gene between depths, the results showed the level of pvMT11 gene tended to decrease in tissue (station C 5, 20, and 40m.). (Fig. 4.47C, G, and J) However, the difference was not statistically significant.

Figure 4.47 Relative expression level of pvMT11 in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth		Time of Exposure (Day)
(Ш)	30 Day	60 Day	90 Day
ST.A 5 m	0.59±0.10	0.54±0.21	0.68±0.11
ST.A 20 m	0.38±0.10	0.69±0.32	0.46±0.32
ST.A 40 m	0.47±0.32	0.22 ± 0.05	NA
ST.B 5 m	0.75±0.45	0.59±0.29	0.47±0.33
ST.B 20 m	0.55±0.37	$0.60{\pm}0.08$	0.24±0.02
ST.B 40 m	0.44±0.24	0.46±0.08	0.81±0.27
ST.C 5 m	0.32±0.22	0.63±0.39	0.55±0.22
ST.C 20 m	0.25±0.04	0.40±0.19	0.30±0.04
ST.C 40 m	0.40 ± 0.33	0.56±0.27	0.27±0.07
ST.D 5 m	0.51±0.14	0.52±0.25	0.54±0.36

Table 4.24 Relative expression level of pvMT11 in gill of transplanted mussels (n=3)

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.2.8 Expression level of HSP71 gene in transplanted mussels

The HSP71 expression levels appeared to be various among different depths, time, and stations. (Table 4.25) Also, the average HSP71 expression levels of mussels from some stations (station A, B, and C) (Fig.4.48A, B, and C) seemed to be higher than that of station D (reference site) (Fig.4.48D) However, there were no significant differences between the results from these stations.

When compared the levels of HSP71 gene from each study site according to time, the results showed that after 30 days, the level of total HSP71 gene tended to increase in tissue. (Fig. 4.48A, C, and F) However, the difference was not statistically significant.

When compared the level of HSP71 gene between depths, the results showed the level of total HSP71 gene no significant difference were found between depths.

Figure 4.48 Relative expression level of HSP71 gene in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth		Time of Exposure (Day)
(m)	30 Day	60 Day	90 Day
ST.A 5 m	1.19±0.31	1.35±0.17	1.21±0.19
ST.A 20 m	1.32±0.10	1.06 ± 0.41	1.29±0.22
ST.A 40 m	1.12±0.15	1.16±0.37	NA
ST.B 5 m	1.30±0.01	1.27±0.13	1.35±0.24
ST.B 20 m	1.08±0.33	1.35±0.16	1.28 ± 0.14
ST.B 40 m	1.36±0.15	1.34±0.14	$1.34{\pm}0.06$
ST.C 5 m	1.21±0.19	1.41 ± 0.10	1.60±0.19
ST.C 20 m	1.05 ± 0.22	1.12±0.41	1.29±0.41
ST.C 40 m	1.32 ± 0.13	1.52±0.09	1.26 ± 0.03
ST.D 5 m	1.16±0.13	1.26±0.18	1.20 ± 0.20

Table 4.25 Relative expression level of HSP71 gene in gill of transplanted mussels (n=3)

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.2.2.9 Expression level of CYP4 gene in transplanted mussels

The CYP4 expression levels appeared to be various among different depths, time, and stations. (Table 4.26 and Fig.4.49) Also, the average CYP4 expression levels of mussels between stations no significant differences were found.

When compared the levels of CYP4 gene from each study site according to time, the results showed no significant difference were found between levels of total CYP4.

When compared the level of CYP4 gene between depths, the results showed the level of total CYP4 gene no significant difference were found.

Figure 4.49 Relative expression level of CYP4 gene in gill of transplanted mussels. A to D indicates the result from 5 m. depth at station A to D, respectively. E to G indicates the result from 20 m. depth at station A to C, respectively. H to J indicates the result from 40 m. depth at station A to C, respectively.

Stations/ Depth		Time of Exposure (Day)
(m)	30 Day	60 Day	90 Day
ST.A 5 m	0.96±0.10	0.83±0.17	0.63±0.11
ST.A 20 m	0.99±0.22	0.50±0.16	0.73±0.13
ST.A 40 m	0.89±0.06	0.50±0.01	NA
ST.B 5 m	0.87±0.03	0.73±0.12	0.93±0.20
ST.B 20 m	0.64±0.13	0.77±0.23	0.83±0.21
ST.B 40 m	0.63±0.31	0.67±0.34	0.67 ± 0.24
ST.C 5 m	0.73±0.16	0.78±0.31	0.81±0.15
ST.C 20 m	0.76 ± 0.07	0.71±0.18	0.65±0.19
ST.C 40 m	0.90±0.03	0.60±0.23	0.64 ± 0.09
ST.D 5 m	0.83±0.04	0.84±0.16	0.68 ± 0.14

Table 4.26 Relative expression level of CYP4 gene in gill of transplanted mussels (n=3)

<u>Remark</u>: NA = data was not available due to mortality of mussel.

4.4.3 Correlation between gene expression level and mercury concentration in mussel

4.4.3.1 Correlation between MT gene and Hg concentration in mussel

4.4.3.1.1 Total MT gene

Correlation between expression levels of total MT gene and Hg concentration were analyzed in gills of Hg treated mussels (laboratory study) and mussels transplanted at petroleum production platforms (field study). The results showed in figure 4.50 (laboratory data) and figure 4.51 (field data). The result revealed that expression level of MT gene did not correlated with the Hg level in the same mussel tissue.

Figure 4.50 Analysis of correlation between MT gene expression and Hg concentration in mussel tissue (Laboratory study)

Figure 4.51 Analysis of correlation between MT gene expression and Hg concentration in mussel tissue. (Field study)

4.4.3.1.2 pvMT01

The expression level of pvMT01 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between pvMT01 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.52 (Laboratory data) and Fig 4.53 (Field data).

Figure 4.52 Analysis of correlation between pvMT01 gene expression and Hg concentration in mussel tissue (Laboratory study).

Figure 4.53 Analysis of correlation between pvMT01 gene expression and Hg concentration in mussel tissue (Field study).

4.4.3.1.3 pvMT02 gene

The expression level of pvMT02 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between pvMT02 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.54 (Laboratory data) and Fig 4.55 (Field data.)

Figure 4.54 Analysis of correlation between pvMT02 gene expression and Hg concentration in mussel tissue (Laboratory study)

4.4.3.1.4 pvMT03 gene

The expression level of pvMT03 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between pvMT03 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.56 (Laboratory data) and Fig 4.57 (Field data.)

Figure 4.56 Analysis of correlation between pvMT03 gene expression and Hg concentration in mussel tissue (Laboratory study)

Figure 4.57 Analysis of correlation between pvMT03 gene expression and Hg concentration in mussel tissue (Field study).

4.4.3.1.5 pvMT07 gene

The expression level of pvMT07 gene appeared to be in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, the correlation was statistically significant (p<0.01). The results were shown in Fig. 4.58 (Laboratory data) and Fig 4.59 (Field data).

Figure 4.58 Analysis of correlation between pvMT07 gene expression and Hg concentration in mussel tissue ($R = 0.539^{**} p < 0.01$) (Laboratory study)

Figure 4.59 Analysis of correlation between pvMT07 gene expression and Hg concentration in mussel tissue ($R = 0.302^{**} p < 0.01$) (Field study)

4.4.3.1.6 pvMT08 gene

The expression level of pvMT08 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between pvMT08 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.60 (Laboratory data) and Fig 4.61 (Field data.)

Figure 4.60 Analysis of correlation between pvMT08 gene expression and Hg concentration in mussel tissue (Laboratory study)

Figure 4.61 Analysis of correlation between pvMT08 gene expression and Hg concentration in mussel tissue (Field study).

4.4.3.1.7 pvMT11 gene

The expression level of pvMT11 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between pvMT11 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.62 (Laboratory data) and Fig 4.63 (Field data.)

Figure 4.62 Analysis of correlation between pvMT11 gene expression and Hg concentration in mussel tissue (Laboratory study).

Figure 4.63 Analysis of correlation between pvMT11 gene expression and Hg concentration in mussel tissue (Field study).

As the results of correlation between Hg concentration and 6 of MT variants, it is indicated that the expression of pvMT07 was significantly correlated with Hg concentration of tested mussels better than the other subunits of MT gene (p<0.01) (figure 4.64E).

Figure 4.64 Correlation between the expression levels of 6 MT subunits including total MT in the same mussel tissue of *P.viridis* transplanted at petroleum processing

platform (Continuous line represents the expression of MT subunit while dotted line represents Hg concentration). A to G indicates correlation levels of genes total MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08, and pvMT11, respectively.

4.4.3.2 Correlation between HSP71 gene and Hg concentration in mussel tissue

The expression level of HSP71 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between HSP71 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.65 (Laboratory data) and Fig 4.66 A and B (Field data.)

Figure 4.65 Analysis of correlation between HSP71 gene expression and Hg concentration in mussel tissue (Laboratory study)

Figure 4.66 Analysis of correlation A = Correlation between HSP71 gene expression and Hg concentration in mussel tissue (Field study). B = Correlation between the expression levels of HSP71 in the same mussel tissue of *P.viridis* transplanted at petroleum processing platform (Continuous line represents the expressions of MT subunit while dotted line represents Hg concentration).

4.4.3.3 Correlation between CYP4 gene and Hg concentration in mussel tissue

The expression level of CYP4 gene was not in agreement with the increasing level of Hg concentration in mussel tissue. Therefore, there was no correlation between CYP4 and Hg concentration in both laboratory and field studies. The results were shown in Fig. 4.67 (Laboratory data) and Fig 4.68 A and B (Field data.)

Figure 4.67 Analysis of correlation between CYP4 gene expression and Hg concentration in mussel tissue (Laboratory study)

Figure 4.68 Analysis of correlation A = Correlation between CYP4 gene expression and Hg concentration in mussel tissue (Field study). B = Correlation between the expression levels of CYP4 in the same mussel tissue of *P.viridis* transplanted at petroleum processing platform (Continuous line represents the expressions of MT subunit while dotted line represents Hg concentration).

4.5 Single cell gel electrophoresis analysis (Comet assay)

DNA damage caused by exposing to Hg in vitro was measured in haemocytes (figure 4.69, 4.73) and sperm (figure 4.70, 4.74) of mussel. The degree of damage was estimated from tail length as the extent of the migration of the genetic material in the direction of the anode and the tail moment which is calculated by multiplying the tail length with % of DNA in tail. Mean tail length of comets obtained by Hg exposures are given in table 4.27 and 4.28. The trend of increase in comet tail length with increasing Hg concentration and duration is depicted in Figure 4.71A and B. At 10 min exposure, the comet tail lengths of the haemocyte treated with 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L of HgCl₂ were 53.56±24.25, 168.48±41.59, 181.91±51.88, 191.91±46.52, 212.54±36.40, and 245.80±31.91 in length (Table 4.27), which were 1.0, 3.15, 3.40, 3.58, 3.97, and 4.59 folds longer than that of control (Table 4.31, Fig.4.75a) and at 10 min exposure, the comet tail lengths of the sperms treated with 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L of HgCl₂ were 106.20±66.26, 128.35±43.75, 161.42±39.41, 225.06±48.51, 254.58±56.35, and 273.72±44.53 in length (Table

4.28), which were 1.0, 1.21, 1.52, 2.12, 2.40, and 2.58 folds longer than that of control (Table 4.31 and Fig.4.75a).

Figure 4.69 Mussel haemocytes visualized by microscope at 200X (a) and 600X (b)

Figure 4.70 Mussel sperm visualized by microscope at 200X (a) and 400X (b)

All concentrations evoked significant DNA damage (p<0.05) when compared with controls. The results also showed significant differences between treatment groups.

Figure 4.71 Comet Tail length. A indicates comet in haemocyte and B indicates comet in sperm

Table 4.27 DNA tail length (μ m) (mean \pm SD) from haemocyte after 10, 30, and 60 min of HgCl₂ exposure

Exposure	— Ц И		HgCl ₂ concer	ntration (µg/L)	0	
Time (min)	0	0.001	0.01	0.1	1.0	10.0
10	53.56±24.25 ^a	168.48±41.59 ^c	181.91±51.88 ^c	191.91±46.52 ^c	212.54±36.40 ^c	245.80±31.91 ^d
30	87.68±34.06 ^b	$162.72 \pm 46.88^{\circ}$	195.08±40.81 ^c	250.38 ± 47.72^{d}	239.07±49.54 ^d	339.11±58.03 ^g
60	86.48±27.42 ^b	154.14±44.76 ^c	237.66±48.03 ^d	277.02±41.18 ^e	263.88±45.25 ^{de}	321.58±58.77 ^f

<u>Remark</u>: The same superscripts indicated that the DNA tail length was not significantly different (P \ge 0.05) amount group of treatment within the same period of exposure.

Exposure		HgCl ₂ concentration (µg/L)				
Time (min)	0	0.001	0.01	0.1	1.0	10.0
10	106.20±66.26 ^a	128.35±43.75 ^b	161.42±39.41 ^c	225.06±48.51 ^d	254.58±56.35 ^{de}	273.72±44.53 ^f
30	99.11±33.59 ^a	142.69±61.41 ^{bc}	230.37±53.20 ^d	253.59±40.59 ^{de}	280.21±47.16 ^f	277.90±55.05 ^f
60	111.72±31.62 ^a	228.50±53.43 ^d	278.75±24.08 ^e	264.21±32.06 ^{de}	317.66±29.04 ^g	335.85±41.99 ^h

Table 4.28 DNA tail length (μ m) (mean \pm SD) from sperms after 10, 30, and 60 min of HgCl₂ exposure

<u>Remark</u>: The same superscripts indicated that the DNA tail length was not significantly different ($P \ge 0.05$) amount group of treatment within the same period of exposure.

The comet tail moment of the haemocyte treated with 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L of HgCl₂ at 10 min were 6.77±6.48, 49.96±30.27, 69.27±37.97, 71.68±34.55, 88.36±40.34, and 135.12±27.96 (Table 4.29), which were 1.0, 1.21, 1.52, 2.12, 2.40, and 2.58 folds higher than that of control (Table 4.31, Fig.4.75A) and at 10 min exposure, the comet tail moment of the sperms treated with 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L of HgCl₂ were 25.83±27.80, 53.81±32.60, 87.22±36.79, 150.80±51.50, 172.94±61.86, and 187.08±52.81 (Table 4.30), which were 1.0, 2.08, 3.38, 5.84, 6.70, and 7.24 folds higher than that of control (Table 4.32 and Fig.4.76A). The values of comet tail moment of DNA damage significant differences on the DNA tail moment of haemocyte and sperms exposed to different concentrations of HgCl₂ were obtained (p<0.05). within 10 min of exposure, there was a small difference in the extent of comet tail moment between sperms and haemocytes treated with 0.001 μ g/L HgCl₂ and control group, statistically significant (p<0.05). It appeared that sperms of mussel responded to Hg quicker that haemocytes.

จุฬาลงกรณมหาวิทยาลัย

Figure 4.72 Tail moment in mussel haemocyte (A) and sperm (B)

Table 4.29 DNA tail moment (mean \pm SD) from haemocyte representing DNA damage after 10, 30, and 60 min of HgCl₂ exposure

Exposure	HgCl ₂ concentration (µg/L)					
Time (min)	0	0.001	0.01	0.1	1.0	10.0
10	6.77±6.48 ^a	47.96±30.27°	69.27±37.97 ^d	71.68±34.55 ^d	88.36±40.34 ^d	135.12±47.96 ^f
30	15.08±13.09 ^a	37.05±23.34 ^b	57.74±39.25 ^{cd}	98.83±44.83 ^e	102.29±48.37 ^e	152.63±61.71 ^g
60	16.68±12.68 ^a	38.94±25.08 ^b	108.51±47.58 ^e	139.12±53.99 ^f	128.35 ± 42.30^{f}	174.18±69.85 ^h

<u>Remark</u>: The same superscripts indicated that the DNA tail length was not significantly different (P \ge 0.05) amount group of treatment within the same period of exposure.

Table 4.30 DNA tail moment (mean \pm SD) from sperms representing DNA damage after 10, 30, and 60 min of HgCl₂ exposure

Exposure			HgCl ₂ conce	ntration (µg/L)		
Time (min)	0	0.001	0.01	0.1	1.0	10.0
10	25.83±27.80 ^a	53.81±32.60 ^b	87.22±36.79 ^{bc}	150.80 ± 51.50^{de}	172.94±61.86 ^{de}	187.08±52.81 ^e
30	30.65±19.67 ^a	52.55±40.57 ^b	129.94±54.08 ^d	166.39±53.62 ^{de}	180.22±58.25 ^{de}	199.29±65.94 ^e
60	37.61±27.41 ^a	104.51±58.84 ^c	173.93±51.38 ^e	199.41±39.61 ^f	234.06±45.14 ^g	248.42±57.73 ^h

<u>Remark</u>: The same superscripts indicated that the DNA tail length was not significantly different ($P \ge 0.05$) amount group of treatment within the same period of exposure.

Figure 4.73 Comet result of mussel haemocytes exposed to 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L is show in a, b, c, d, e, and f, respectively, within 10, 30, and 60 min. (a-f = 10 min treated, g-l. = 30 min treated and m-r = 60 min treated)

Figure 4.74 Comet result of mussel sperms exposed to 0, 0.001, 0.01, 0.1, 1.0, and 10.0 μ g/L is show in a, b, c, d, e, and f, respectively, within 10, 30, and 60 min. (a-f = 10 min treated, g-l = 30 min treated and m-r = 60 min treated)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.75 Ratio of tail length of mussel haemocyte and sperms compare with control, A=10 min treated, B=30 min treated, C=60 min treated.

Table 4.31 Ratio of tail length of mussel haemocyte and sperms compare with control, A=10 min treated, B=30 min treated, C=60 min treated.

Exposure	HgCl ₂ concentration (µg/L)						
Time (min)/target	0	0.001	0.01	0.1	1.0	10.0	
tissues							
10 sperm	1.00	1.21	1.52	2.12	2.40	2.58	
10 haemocyte	1.00	3.15	3.40	3.58	3.97	4.59	
30 sperm	1.00	1.44	2.32	2.56	2.83	2.80	
30 haemocyte	1.00	1.86	2.23	2.86	2.73	3.87	
60 sperm	1.00	2.05	2.50	2.36	2.84	3.01	
60 haemocyte	1.00	1.78	2.75	3.20	3.05	3.71	

Figure 4.76 Ratio of tail moment of mussel haemocyte and sperms compare with control, A=10 min treated, B=30 min treated, C=60 min treated.

Table 4.32 Ratio of tail moment of mussel haemocyte and sperms compare with control, A=10 min treated, B=30 min treated, C=60 min treated.

Exposure	HgCl ₂ concentration (µg/L)						
Time (min)/target tissues	0	0.001	0.01	0.1	1.0	10.0	
10 sperm	1.0	2.08	3.38	5.84	6.70	7.24	
10 haemocyte	1.0	7.08	10.23	10.59	13.05	19.96	
30 sperm	1.0	1.71	4.24	5.43	5.88	6.50	
30 haemocyte	1.0	2.46	3.83	6.55	6.78	10.12	
60 sperm	1.0	2.78	4.62	5.30	6.22	6.61	
60 haemocyte	1.0	2.33	6.51	8.34	7.70	10.44	

CHAPTER V

DISCUSSION

5.1 Use of mussel as model animal for Hg bio-monitoring

Various metal-accumulating biomaterials, such as plants (AI- Shayeb et al., 1995), non-parasite organisms (lichens, mosses, algae) (Antonelli et al., 2001; Conti and Cecchetti, 2003), and animal tissues and organs (feathers, livers, kidneys, bones) (Catsiki and Strogyloudi, 1999; Dauwe et al., 2006) have been used as environmental bioindicators because they are those with low-cost, ease of sampling, and showing a good correlation with environmental quality change of ecosystems. Mollusks, especially mussels, were found promising for monitoring the change of heavy metal contamination in aquatic systems (Claisse et al., 2001; Astudillo et al., 2002; Nicholson, 2003). However, using living organisms often times can be limited because they are not always a natural component of the ecosystem and sometimes appear there spontaneously. In this study, green or green lipped mussel, *Perna viridis*, were used as bioindicator for monitoring Hg in petroleum production platform by transplanting into the sites to be monitored because this mussel is a common sessile animal and widely distributed in the Gulf of Thailand.

During 3 months of mussel transplantation at petroleum production platforms, increasing mortality was detected. However, no significant difference between survival rates of the mussels was found between different water depths, and stations. There was no significant difference between the growth rates of transplanted mussels from different petroleum platform stations. However, significant different growth rate can be detected between mussels when compared to those from reference site. This was probably due to the less abundance of food. This was confirmed by the result of plankton composition between stations where the amounts of diatoms from reference site which was the natural habitat of mussel were much higher than any of the test stations. These results indicated that mussels could be transplanted and survived in un-natural habitat such as petroleum production platforms in the middle of the Gulf of Thailand where food was much less abundant for up to 3 months without significant physical change.

5.2 Mercury concentration in water and mussel

Hg monitoring programs have been carried out globally (Amiard et al., 2000). Advances in analytical techniques over the last decade have allowed extremely accurate determinations of Hg and Hg species. As the result, determination of Hg level in various sources is still the most important part for facilitating the monitoring strategy in the activities involving Hg.

In this study, mussels were exposed to very low levels of inorganic Hg (between 0.1 to $1.0 \ \mu g/L$) under controlled laboratory condition. The levels of Hg in rearing water decreased rapidly. Less than 0.1% (between 0.03 to 0.05%) of total Hg was detected after 24 h of application. This result coincides with most experiments (Sanchez et al., 1998) since inorganic Hg has been known to be changed quickly in aquatic environment and mostly transformed into organic Hg by living organisms (Kannan et al., 1998). This indicated that the amount of Hg measured from the water only represent very small amount of Hg that actually released into water.

Microorganisms in sediments produce most of organic Hg as methylated forms which are then concentrated in aquatic food chain. Predatory organisms at the top of the food chain can accumulate MeHg in their diets and present elevated concentrations. While the concentration at the bottom of the aquatic food chain may be at the low parts per trillion levels, at the top, fish tissue can present Hg concentrations in excess of 1 ppm. Bioconcentration factors can be on the order of 10 thousand to100 thousand times (Fowler et al., 1978; Phillips and Buhler, 1978; Thompson et al., 1990; Yamada et al., 2003).

Mercuric chloride was used as source of Hg in this study because it was one form of inorganic Hg which was proved to be the dominant toxic species in water. Although MeHg is the most toxic form of Hg, its concentration was found to be less in water and tends to accumulate in organisms and sediment (Sayler et al., 1975; Pentreath, 1976; Barkay et al., 1997). This is also the case in this study that the increasing level of Hg in mussel tissue coincide with the increasing level of Hg applied to the test tank and the tissue Hg levels were thousand folds higher than that of water (Table 5.1 and 5.2)

 Table 5.1 Average Hg concentration in experiment water (mussel tank) during 8

 weeks of experiment

Mercury Concentration (µg/l)					
Control	Tank 2	Tank 3	Tank 4	Tank 5	
0.0028±0.0017	0.0050 ± 0.0025	0.0109±0.0073	0.0180 ± 0.0122	0.0401±0.0371	

 Table 5.2 Average Hg concentration in experiment mussel during 8 weeks of experiment

Mercury Concentration (µg/kg)					
Control	Tank 2	Tank 3	Tank 4	Tank 5	
57.9±24.1	88.5±50.0	137.8±50.5	164.4±50.0	138.3±80.3	

Concentrations of Hg in coastal water and estuaries generally are much higher than those in the open ocean. Concentration in relatively uncontaminated coastal and estuarine water may be as high as 19 ng/L dissolved Hg. in British estuaries (Law et al., 1994) (Table 5.3). Hg concentration as high as 350 ng/L were reported in the Derwent Estuary, Tasmania (Plaschke et al., 1997). In the Gulf of Thailand, the levels of Hg were between 0.31 to 4.54 ng/L (Table 5.3) (DMF, 2008) which were in the same level as those found in the Offshore Great Britain, and English channal this level of Hg is quite low in the safe level less than standard ($0.1 \mu g/L$) (PCD, 1997).

 Table 5.3 Concentrations of dissolved total Hg in oceanic and coastal waters of the world based on recent determinations. Concentrations are ng/L

Location	Total Mercury (ng/L)	Reference
Darwent Estuary, Tasmania	350.0	Plaschke et al., 1997
Dogger Bank, North Sea	0.19-0.12	Fileman et al., 1991
North Sea, Offshore	0.34	Coquery & Cossa, 1995
North Sea, Nearshore	0.72	Coquery & Cossa, 1995
Offshore Great Britain	<0.2-6.7	Law et al., 1994.
English Channal	0.19-4.1	Cossa & Fileman, 1991
Straits of Dover	0.12-1.3	Cossa & Fileman, 1991
British Estuaries	0.35-19.0	Law et al., 1994.
Lapdev Sea, N. Russia	0.80-2.7	Coquery et al., 1995
Kara Sea, N. Russia	0.14-3.4	Coquery et al., 1995
North Atlantic Surface water	0.31	Mason et al., 1995
Patuxent River Estuary, MD	0.04-0.30	Bernoit et al., 1998
North Atlantic Ocean	0.10-0.50	Guentzel et al., 1996
Mediterranean Sea 1-5000 m	0.16-1.28	Cossa et al., 1997
South Florida Estuarine	3.0-7.4	Kannan et al., 1998
Gulf of Thailand Offshore	0.31-4.54	DMF, 2008

In field study, Hg concentration in the water around platform was monitored every 3 or 4 years by the Department of Mineral Fuel, Ministry of Energy. The standard value for the offshore seawater regulation is less than 0.1 (μ g/l) (PCD, 1997). The average Hg concentrations of water detected at Station A, B, C, and D (reference site) were 3.51-4.54, 1.25-2.00, 0.44, and 0.31 ng/l, respectively (Table 5.4). Hg concentration at every platform was lower than the standard limit values of the offshore seawater regulation.

Table 5.4 Mercury concentrations in the Gulf of Thailand at Station A, B, C and D

 (reference site) (DMF, 2008)

Year	Station	Platform	Distances form Platform	Hg-Total (ng/l)		
2004	Station A	Average	surface	4.54		
		Average	bottom	3.51		
2004	Station B	Average	surface	2.00		
		Average	bottom	1.25		
2003	Station C	Average	surface	0.44		
		Average	bottom	NA		
2003	Reference site	Average	surface	0.31		
		Average	bottom	NA		

<u>Remark</u>: NA = data is not available.

Concentration of Hg in the whole soft tissues of mussel of marine organisms from throughout the world generally falls in the range of 0.003 to 264 μ g/g dry weight (Table 5.5). The average level of Hg in the mussel before treatment was 0.0104±0.0091 μ g/g while the level from the highest Hg treatment for 8 weeks was 0.1383±0.0803 μ g /g which were approximately 10 times higher than that of initial mussels. At petroleum platforms, Hg concentrations in mussel tissues were in the range between 0.0100 to 0.1725 μ g/g. The average level was slightly lower than that of laboratory study (0.0100 to 0.3644 μ g/g.). Although, the amount of Hg applied to laboratory test mussels was many folds higher than Hg levels in the field, the Hg levels obtained from laboratory appeared to be slightly higher than that of field study. However, both results were still in the same range of Hg found in mussels studied by Neff (2002) (0.004-11.7 μ g /g. dry wt.) as shown in table 5.5 In previous study, the levels of Hg detected from tested mussels reached between 1.3200 to 2.2900 μ g /g after exposing to 1-5 μ g /L of Hg for 4 weeks (Parsont, 2003). This level was more than 10 times higher than the result of this study, indicating that Hg accumulated in

mussel tissue could be very high if the mussel were treated with very high level of Hg.

The average level of Hg in tissue of mussels transplanted to petroleum platforms for 3 months was 0.0413 μ g/g. This value was much lower than that of mussel located at Map Ta Phut areas (0.175 μ g/g) where industrial activities were heavily operated (PCD, 2010). Minimal risk level (MRL) which has been set for Hg exposure in human recommends that people can ingest Hg between 0.002 to 0.007 mg/kg/day without appreciable risk of adverse non-cancer health effect (ATSDR, 2010). According to this MRL guideline, average people (weight at 60 kg) should not consume Hg more than 0.42 mg/day which can be roughly calculated as 44 kg of transplanted mussels and 10 kg of mussels from Map Ta Phut areas per day. This calculation reveals the degree of possible Hg risk to human consuming mussels from the lowest and highest level of Hg found in the Gulf of Thailand.

Taxon	No. Analyses	Hg Conc. μg/g	Remark		
All	858	0.003-264	Neff, 2002		
Macroalgae	15	0.1-46.8	Neff, 2002		
Polychaetes	16	0.085-7.3	Neff, 2002		
Snails	38	0.025-3.7	Neff, 2002		
Mussels	60	0.004-11.7	Neff, 2002		
Oysters	74	0.003-8.0	Neff, 2002		
Scallops	5	0.05-0.35	Neff, 2002		
Clams	32	0.005-85	Neff, 2002		
Cephalopods	18	0.013-8.2	Neff, 2002		
Shrimp	27	0.02-6.2	Neff, 2002		
Lobsters	14	0.05-12.6	Neff, 2002		
Crabs	20	0.015-2.3	Neff, 2002		
Echinoderms	5	0.031-1.4	Neff, 2002		
Sharks	57	0.035-52.5	Neff, 2002		
Fish	379	0.01-115	Neff, 2002		
Sea turtles	8	0.04-1.78	Neff, 2002		
Marine Birds	24	0.15-25.0	Neff, 2002		
Marine Mammals	27	0.005-264	Neff, 2002		
Mussel (P. viridis)	87	0.04-0.69	This study (Field)		
Mussel (P. viridis)	108	0.04-1.46	This study (Lab)		

Table 5.5 Range of Hg concentrations in mussel or whole soft tissues of marine organism from throughout the world (Neff, 2002). Concentrations are μ g/g dry weight

<u>Remark</u>: from this study conversation factor change wet weight to dry weight is multiply by 4.0

5.3 Bioaccumulation of mercury in tested mussel

The average level of Hg in the acclimated mussels before treatment was $0.0104\pm0.0091 \ \mu$ g/g while the level from the highest Hg treatment for 8 weeks was $0.1383\pm0.0803 \ \mu$ g/g. The Hg level rose approximately 10 times higher than that of initial mussels. The accumulation of Hg in tested mussels can be roughly determined by calculating the amount of Hg applied to the rearing tank and that detected from mussel tissues. The result revealed that mussel in experiment tanks accumulated 48.89%, 27.56%, 14.52%, and 4.51% of Hg in tank 2-5, respectively.

The accumulation efficiencies of Hg vary greatly between organisms, especially in marine mollusks (Neff, 2002). The assimilation efficiency of Hg from food of Mussel *Mytilus edulis* was reported to be 1-9 % for inorganic Hg and 30-87% for MeHg (Gagnon & Fisher, 1997). In this study, the maximum accumulation of Hg (48.89 %) was found in mussels exposed to the lowest level of Hg (100 ng/L) (Table 5.6). The levels of accumulation seemed to be reduced when the level of Hg applied to the mussels was increased. This un-expected result was probably due to excess level of Hg applied to the mussels. Also, nitrifying bacteria from bioreactors and algae might play some parts in absorbing Hg from the treated water. It was quite interesting to note that detectable amount of Hg was obtained from control treatment (both tissue and water) where Hg was not applied to the tank (Table 5.6). The amount of Hg detected in control mussel tissues and water were in the same level as those detected from reference site in field study, indicating that the Hg detected in control samples were the background concentration of Hg normally found in mussels from natural habitat.

Table	5.6	Summary	for	mass	balance	of Hg	g in	mussel	water	tank	after	8	weeks	of
experi	ment	t (Laborato	ory s	study)										

Mussel tank		Hg in water tank (%)									
	Hg conc. Exposed to mussel	Hg added		Hg accumulated in mussel tissue		Hg remained in water		Hg loss			
		μg	%	μg	%	μg	%	μg	%	Remark	
Tank 1	0	0	-	75.31	-	15.41	-	-	-	Control	
Tank 2	100 ng/L	304.00	100	148.64	48.89	27.60	9.08	127.77	42.03		
Tank 3	200 ng/L	608.00	100	167.59	27.56	60.81	10.00	379.60	62.43		
Tank 4	500 ng/L	1,520.00	100	220.71	14.52	108.22	7.12	1,191.07	78.36		
Tank 5	1,000 ng/L	3,040.00	100	137.10	4.50	224.74	7.40	2,678.16	88.09		

Hg in inorganic or (such as HgCl₂) can accumulate through plankton because phytoplanktons can bioaccumulate inorganic Hg at the cell membranes of plant in a relative non-bioavailable forms. Also, an organic form or MeHg can accumulate through methylation of inorganic Hg by sediment bacteria (Mason et al., 1995). Lobsters, *Nephrops norvegica*, accumulated inorganic and organic Hg from both water and food. Hg, particularly inorganic forms and taken up from the water, accumulated preferentially in gills while Hg, accumulated from food, concentrated in hepatopancreas (Canli and Furness, 1995). All organic Hg (MeHg) is associated with soft tissues, whereas 15 % of the inorganic Hg is bound to the exoskeleton (study on copepod) (Lawson and Mason, 1998).

5.4 Expression analysis of Hg responding genes in mussels exposed to very low level of Hg

Hg is a trace component of all fossil fuels including natural gas, gas condensates, crude oil, and coal. The production processes of these fuels provide the main opportunity for emissions of Hg to the environment. Speciation techniques for Hg compounds in water have evolved along with the development of the very sensitive detectors. Hg and its compounds can now be measured in aqueous media at below parts per trillion (ng/L) levels. But the use of these advanced techniques is still limited due to the requirement of sophisticated equipments and special operators. Therefore, this study focuses on the feasibility and validity of using candidate genes, which were earlier reported as Hg responsive genes, as biomarkers of Hg contamination in the surrounding areas of petroleum production platforms in the Gulf of Thailand.

Bioassay was established using semi-quantitative RT-PCR for quantitative evaluation of the transcripts of the target genes which included MT and its variants, HSP71, and CYP4 of mussel. The assay was initially conducted on the mussels exposed to 0 to 1.0 μ g/L of Hg in laboratory controlled condition. Consequently after an appropriate condition for each gene was obtained, field validation was carried out by measuring the expression of candidate genes from mussels transplanted to the petroleum production platforms

5.4.1 Laboratory study

Twelve forms MT of *P.viridis* were previously identified. They were divided into two main subforms, defined as mop1 and mop2 that contained 6 isoforms, similar to mop1 and mop2 of mollusk metallothioneins (Figure 5.1).

Figure 5.1 Diagram of classification of variant metallothionein gene from gill and digestive tract. The members of isoform mop1a are pvMT1 and pvMT10. The members of isoform mop1b are pvMT11 and pvMT12. The member of isoform mop1c is pvMT2. The member of isoform mop2a is pvMT7. The member of isoform mop2b is pvMT8. The members of isoform mop2c are pvMT3, pvMT4, pvMT5, pvMT6, and pvMT9 (Parsont, 2003).

Six variants pvMTs (pv-MT01, pv-MT02, pv-MT03, pv-MT07, pv-MT08, and pvMT11) out of 12 pvMTs were selected for primer design due to limited regions for possible specific primer production.

Expression levels of 6 subunits and total MT gene were analyzed on the gills of mussels exposed to various levels of Hg (0-1.0 μ g/L). The result revealed that only the expression of pvMT07 responded and correlated significantly to the amount of Hg at very low levels (lower than 0.2 μ g/L) within the first week of experiment while total MT, which was previously responsive to Hg at the concentrations of 1-5 μ g/L (Parsont, 2003), did not show significant difference among mussels from all

treatments. The result indicated that pvMT07 is the most sensitive form among tested pvMT variants when mussels were exposed to Hg at the level lower than 1 μ g/L.

Metal-specific forms of MT have been reported in a number of organisms (Roesijadi, 1992). Most mammals tissues examined by far contained two major MT isoforms, designated as MT-I and MT-II (Kojima and Kagi, 1978; Kagi, 1993). In mouse, 4 isoforms of MT (MTI, MTII, MTIII, and MTIV) were found and studied on the effect of zinc and cadmium. The result showed that only MTI isoform was specific to zinc (Andrew, 2000). So far, a few DNA sequences of molluscan MTs have been characterized. These include MTs in the mussels, *Mytilus edulis* (Lemoine et al., 2000; Soazig and Marc 2003), *Perna viridis* (Khoo and Patel, 1999) and the oyster *Crassostrea virginica* (Roesijadi, 1992; Unger and Rosejadi, 1996). To date, the highest number of isoforms found in aquatic species was in mussel, *M. edulis* MT (at least nine Cd-induced isoforms). Evidences also indicated that some forms were more specific to curtain metal than the others (Rigaa et al., 1998).

Buouwer (2002) studied 3 isoforms of MT gene in blue crab, *Callinectes sppidus*, (MTI, MTII and MTIII). His result revealed that MTI was induced by cadmium, zinc and copper; MT-II was induced by cadmium and zinc, and MTIII was induced by copper only. The data also showed that one gene could be specific to a few contaminants. Two isoform of MT, (MT10 and MT20) were found in *Mytilus edulis*. The result showed that MT20 was more specific to cadmium than MT10 (Soazig, 2003). In this study, only one isoform of MT (pvMT07) was found to be more specific to very low level of Hg (<0.1 μ g/g Hg in tissue) than the others. No Hg related gene ever report on the response of Hg at this very low level.

For the expression analysis of other Hg-related genes, a few attempts to clone HSP70, HSP90, and CYPA1 genes have been conducted using degenerate primers designed from conserved regions of those genes from closest species reported in GenBank database. None of them were successfully obtained. Therefore, reported genes including HSP71 and CYP4 of mussel were obtained and used for designing specific primers for quantitative evaluation analysis. The result showed that the expressions of HSP71 and CYP4 genes were not significantly different in mussels exposed to Hg level lower than $1 \mu g/L$.

Usually, these 2 genes are proved to be sensitive to many toxicants including Hg (Shaw, 2002; Micovic, 2009). They did not show any dose-related responses to Hg in this study was possible because of 2 reasons; one was the doses of Hg used in this study was much lower than the threshold of these genes or the forms of these genes used in this study were not specific to Hg.

Study on HSP70 and HSC70 of Mediterranean mussel, *Mytilus* galloprovincialis, exposed to Hg^{2+} at 150 µg/L revealed that expression of HSP70 was induced and reached maximum levels after 24 h of exposure while HSC70 level was inhibited after 1 day and induced after 6 days of exposure (Franzellitti, and Fabbri, 2005).

Members of the Cytochrome P450 (CYP) family are key detoxification enzymes which metabolize many chemicals such as plant metabolites and pharmaceutical contaminants (Nebert et al., 1989). The CYP isozymes superfamily consists of over 800 genes (Nelson, 2010). CYP enzymes are potentially induced in response to specific environmental xenobiotics (Gonzalez, 1998). Among them, CYP1A isoform, the most frequent used biomarkers, was reported to be induced by PAHs, PCBs, and dioxin. CYP1a1 mRNA levels in Murine hepatoma Hepa 1c1c7 cells were found to be increased when exposed to 5 μ M Hg²⁺ (Korashy and El-Kadi . 2005; Bozcaarmutlu and Arinc, 2007). CYP4 isoform was known to be induced by phthalate ester plasticizers, and chlorinated aryl phenoxy herbicides (Stein et al., 1998). HSP72 has also been induced by Hg (II) in NRK-52E cells significantly after 24 h. of treatment of 40 µM HgCl₂ (Stacchiotti, 2009) Duffy et al., (1999) study on HSP70 and HSP60 from 31 gills of Alaska fish. The expression level of HSP70 significantly correlation with Hg level higher than 1.0 µg/g. but no statistical relationship between increased levels of HSP60 in gills and increased Hg levels. Bozcaarmutlu and Arinc (2007) study the effect of Hg on CYP in leapin mullet (*Liza* saliens) the result shown 50 mM Hg concentration inhibited the Cytochrome P450 reductase activity completely (100%).

5.4.2 Field validation

Optimized condition of semi-quantitative RT-PCR for each genes used with tested mussels in laboratory study were carried out with samples collected from field study sites. Quantitative evaluation revealed similar result obtaining from laboratory study where only the expression of pvMT07 correlated with the Hg level in tissue of mussels.

Dose-related expressions of MTs and other Hg related genes are generally induced by sublethal and lethal doses of various metals including Hg. They have been successfully used as biomarkers in various numbers of environmental monitoring programs (Rigaa et al., 1998). An increasing number of investigations on the environmental impact of heavy metal using the induction of MT gene as indicator have been applied to the real world conditions. Use of MT gene expression as biomarker for determining the environmental impact of heavy metals has increasingly been applied to the real world condition. For example, MT expressions were analyzed in springtail, *Orchesella cincta*, at cadmium contaminated area and reference site in Netherlands. The study also included MT gene that involved cadmium tolerance Results showed that the mean constitutive MT mRNA expression of populations from polluted sites was significantly higher than of populations from reference sites (Astudillo, et al., 2002).

For the environmental impact of Hg, the assessment is more complicated due to the lethal dose of Hg is much lower than most heavy metals (Zoll, 1988). Investigation on chronic effect of Hg in various species of diverse ecosystem has become even harder since the chronic dose is many folds lower than the acute concentration and in many cases, chronic levels of Hg are in proximity to the levels currently considered safe (Hontela, 1996; Vezer, 2005). In this study, pvMT07, one subunit of *P.viridis*, has been proved to be sensitive to the induction of Hg at very low level (< 1.0 μ /L). Furthermore, its feasibility for determining the exposure of Hg in mussels has been confirmed in both laboratory and field studies. The results from the investigations on other stress inducible genes such as HSP71 and CYP4 in *P.viridis* revealed no significant change in their expression levels after exposing to low levels of Hg in the field, indicating that these genes were not sensitive enough to detect the exposure of Hg at the levels and times tested in this study. Further investigation on
these 2 genes in mussels exposed to higher concentrations of Hg will clarify their sensitivity and availability as biomarker of exposure for the higher doses of Hg. Generally, these 2 genes belong to heat shock proteins and cytochrome P450 families which are recognized as stress responsive genes in various organisms (Campbell, 1996). In invertebrates, CYP4 are mainly reported and the expression level of its genes has become one of the potential biomarkers for determining chemical contaminants in marine environment (Simpson, 1997; Snyder, 1998; Chaty, 2004). CYP1A is usually found in most vertebrates and commonly used as biomarker of exposure for many substances including heavy metals (Goksoyr, 1992; Ueng, 1996 Shaw, 2002). For example, cytochrome P450 expression and hypertension of human was investigated on the possible link between non-workplace cadmium (Cd) exposure. The results indicated that the relationships between liver and kidney Cd burdens and the abundance of the CYP isoform 4A11 were shown (Baker, 2003).

5.5 Genotoxicity of Hg on haemocytes and sperms of mussels

Scoring of comets can be conducted in several ways including the percentage of DNA in the comet tail, the length of the tail, and DNA tail moment (product of the fraction of DNA in the tail and tail length). Tail moment is considered to be one of the best indices of induced DNA damage among the various parameters (De Boeck et al., 2000). For the evaluation of DNA damage in this study, 2 parameters were monitored; tail length and tail moment. Significant results with regard to comet tail length and tail moment. Significant results with regard to comet tail length and tail moment were observed with Hg exposure over a range of concentrations from 0.001 to 10.0 μ g/L at different interval times (10, 30, and 60 min) in comparison with hydrogen peroxide treatment. Similar results were obtained from both parameters. Increases were found when measuring Comet tail length, but the greatest changes were in tail moment which showed that the extent of DNA damage was proportional to the concentration of Hg. The result indicated that the lowest level of Hg was still highly toxic to both somatic and germ cells of mussels.

Sperms appeared to be more sensitive to Hg exposure than haemocytes. In mammals, effects of Hg on reproductive development are well documented. Studies of occupational exposure indicate that exposure to elemental Hg may affect human reproduction. Possible effects are increased spontaneous abortions, congenital anomalies, and reduced fertility among women (Khan, 1987). In aquatic invertebrates,

their susceptibility varies greatly to Hg. Generally, larval stages are more sensitive than adults (WHO, 1989).

Hg is known to induce genetic damage in vertebrates (Ben-Ozer et al., 2000; Ruiz et al., 2008). In hamster, ovary cells exposed to 75 μ M of Hg for 60 min created DNA damage (Orazio, 1984). Hg is well studied in terms of its bioavailability, bioaccumulation, biomagnification, and cellular toxicity, especially in bivalves (G'eret et al., 2002). Nevertheless, despite its high toxicity and genotoxicity (in vertebrates), only few studies reported that Hg was shown to be genotoxic to invertebrates. One example was found in a mollusk, Mytilus galloprovincialis (Bolognesi et al., 2004). It was found that exposure of *M. galloprovincialis* to 32 μ g/L of HgCl₂ for 5 days caused a significant increase in the frequency of micronuclei in both gill cells and haemocytes. In M. edulis, single strand breaks could be detected using the Comet assay in haemocytes exposed to $HgCl_2$ at the concentration of 20 μ g/L for one day (Tran et al., 2007) (Table 5.7). In this study, DNA damage was detectable in both haemocytes and sperms of mussels after exposing in vitro to HgCl₂ at the concentration of 0.001 μ g/L for only 10 min. This indicates that mussel cells are more sensitive to Hg than other mollusks. In higher Hg concentration leading to more DNA in comet tails, similar result was obtained from the study on haemocyte of bivalve mollusk, Scrobicularia plana (Petridis, 2009).

Table 5.7 Assessment of DNA damage by comet assays after *in vitro* exposure of aquatic animal cells to genotoxicants.

Animal	Tissue/cell	Chemical treated	Assessment method	Response ± (D-R;I)	Reference
Mussel (<i>M</i> ,edulis)	Gills, haemocytes Digestive gland, sperm	H ₂ O ₂ ,NDMA MX, BP, NP, Cu, NF, araC, MNNG	Empirical Score Percentage of DNA in tail Tail length	D-R; I	Steinert, 1996 Wilson, 1998 Michelmore, 1998a Micchelmore, 1998b
Mussel (M, edulis)	Haemocyte	Hg, Se	% DNA in tail	D-R; I	Tran, 2007
Mud welk (<i>N. tegula</i>)	Haemocyte	H ₂ O ₂ , Cu	Tail length	I	Sastre, 1997.
Ribbed mussel (<i>M. senhousia</i>)	Haemocyte	H_2O_2	Tail length	Ι	Sastre, 1997.
Flounder (P. americanus)	Blood	H ₂ O ₂ , MNNG	Tail length	D-R; I	Cotelle, 1999. Nacci, 1996.
Bivalve mollusk (S. plana)	Haemocyte	H ₂ O ₂ ,(xeno-) estrogens	Tail length, Tail moment	D-R; I	Petridis, 2009.
Brown trout (Salmo trtta)	Hepatocyte	MNNG	Tail length	Ι	Micchelmore, 1998b
Mussel (P. viridis)	Haemocyte, sperm	H ₂ O ₂ , HgCl ₂	Tail length, Tail moment	D-R; I	This study

<u>Remark:</u> \pm Dose-response (D-R) curves and /or significant increase above control (I) MNNG = n-methyl-nitrosoguanidine, BP = benzo(a)pyrene, MX = 3-chloro-4(dichloromethyl)-5-hydroxy-2[5H]-furanone, NP =1-nitropyrene, NF = nitrofurantoin, araC = cytosine- β -D-arabinofuranoside, NDMA = N-nitrosodimethylamine.

In this study, the ratio of tail length of mussel haemocyte and sperms in comparison with control showed significant increase when the levels of Hg increase from 1.5 to 4.5 times higher than control. The same result was found in haemocyte of flounder treated with H_2O_2 in low dose (5µM of H_2O_2). Average tail length was approximately 2.2 times higher than control. In high dose (500µM H_2O_2), average tail length increased 11-17 times higher than control (Nacci, 1996). The effect of HgCl₂ at 20 µg/L was reported to cause DNA damage in *M. edulis* (Tran et al., 2007).

The DNA must be considered a target site of its toxic action. If induction of DNA lesions and active repair of these lesions are important for mutagenicity of carcinogenicity of a chemical agent, then Hg may be expected to have mutagenic activity. Additionally, the DNA lesions induced by HgCl₂ may result in miscoding during DNA replication. However, HgCl₂ has been shown to inhibit cell growth specifically in S phase (Costa, 1983) and therefore miscoding during DNA replication must occur at concentrations of HgCl₂ that allow this process to proceed in order to achieve a mutagenic response in a surviving cell. These mechanistic findings may help explain the low mutagenic/carcinogenic activity displayed by HgCl₂ in a number of experimental systems (Leonard, 1983)

The DNA damage results revealed a great deal of information about the various ways mussels respond to different contaminants and suggest a pathway of toxicity that has not been considered in previous studies. When compared to germ cell DNA damage, somatic cells appear to have a high capacity to repair damage than germ cell (Steinert, 1998). The ability to distinguish between somatic and germ cell DNA damage is one of the most informative aspects of the Comet assay. The organism capacity to cope with contaminant exposure can be compared to overall sustained damage levels. In addition, germ cell damage shows a more rapid response and in the future may represent a rapid measurement.

5.6 Applications and future prospects

Apart form the natural emission, the primary sources of Hg released into the Gulf of Thailand are the discharge of offshore petroleum operation and anthropogenic

activities along the coastline. There were an increasing number of platforms for oil and gas exploration and production. It was reported that 21 oil rigs were operating in the middle of the Gulf by the year 2002 (DMF, 2008). This led to the increasing amount of Hg released into the Gulf.

Pollution Control Department (PCD) has performed comprehensive monitoring program for determining Hg contamination in water, sediment, and marine organisms in the vulnerable areas surrounding the oil and gas processing platforms. The result in 1995 showed high Hg concentrations in seawater around the area and it was calculated in 1997 that Hg released into water was between 40-300 kg/year or loading into water from 20-740 µg/L (Pornsook et al, 2010). In 1998, Hg level in tissue samples ranged from 0.023 to 1.57 μ g/g dry weight, while in 2001, the level of Hg in sea water was 0.0008 μ g/L and tissue samples were between 0.001 to 0.51 μ g/g (Pornsook et al, 2010). Until now, the results have shown that Hg in water and animal tissues are decreasing over time and the ranges of Hg levels measured were still lower than the standard limit (standard allowable values are 0.1 μ g/L in sea water and 0.5 $\mu g/g$ (wet weight) or 1.25 $\mu g/g$ (dry weight) in animal tissues) (PCDa, 2010). On the other hand, the levels of Hg in sediment from different platforms varied the value at one platform to be between 0.015 and 0.02 $\mu g/g$ (sediment) and the other location was between 0.02-5.01 µg/g (sediment) (Pornsook et al, 2010). In addition, Hg levels in the sediment collected from central production platform were higher than sediment from the distance radius points. The results reveal a trend of decreasing Hg levels in sediments with increasing distance from the platform. This indicates that Hg can accumulate further in sediment and if the discharge continues, perhaps finally Hg can go beyond the prescribed standard while Hg levels in water and animal tissues are still below standard ($1\mu g/g$ sediment dry weight) (PCDa, 2010). It is well aware that inorganic Hg can transform quickly into organic Hg and accumulate in sediment and microorganisms. Therefore, monitoring Hg level in the water cannot adequately indicate the activity of Hg in aquatic environment.

Another major source of Hg is the anthropogenic activities in the areas of industrial ports and estates where heavy industries are operated in the vicinity to the coastline of the inner Gulf. Map Ta Phut and Laem Chabang areas, located at eastern part of Thailand, are the classic examples of industrial estates that are confronting with pollution caused by industrial activities. Map Ta Phut also has a high-capacity

industrial port to serve heavy industries with a wide range of public utilities and infrastructure services. It is presently the biggest industrial port in Thailand, located in a strategic location suitable for all types of industries. PCD has conducted pollution monitoring program using samples collected from surrounding areas and the results generally indicated that the levels of most pollutants, especially heavy metals, were lower than the standard limit (PCDb, 2010) while the data of National Cancer Institute of Thailand indicated that during 1997-2001, all types of cancer are increasingly found in Map Ta Phut areas, 3-5 folds higher than the people in the other areas (Jadsri, 2006; Sangrajang, 2008; Thai Post, 2008). A number of people having increased symptoms relating to respiratory tract also significantly (Bureau of Occupational and Environmental Diseases, Department of Disease Control Ministry of Public Health, Thailand, 2010). These contradictory evidences clearly showed that parameters routinely used for determining the effects of harmful chemicals in the areas were not sensitive enough for early detection of contaminant exposure and/or the toxic effects.

The ability of low level of pollutants and their derivatives to affect their toxic actions can complicate the assessment based solely on environmental levels. Deleterious effects on populations are often difficult to detect in organisms since most effects tend to be clear only after longer periods of time. When the effect finally becomes obvious, the destructive process may have gone beyond the point where it can be reversed by remedial actions or risk reduction. Standard method commonly used to measure the toxicity of chemicals by evaluating mortality values can only provide a measure of short-term acute toxicity and are not always useful for predicting the ecological consequences of exposure to a particular chemical where effects are observed at concentrations well below the lethal value. Hence, the need for associate methods to assess, monitor, and mitigate the impact of Hg is important. This scenario has triggered the research to establish early-warning signals, or biomarkers, reflecting the adverse biological responses towards environmental toxins.

In this study, we assessed the use of *P.viridis* MTs as biomarker of exposure by exposing healthy mussels to 2 conditions: laboratory exposures where mussels were exposed at arrange of very low concentration of Hg and field exposure where mussels were exposed to Hg contaminated water at the real-world condition from petroleum processing facilities in the middle of the Gulf of Thailand. This study found that pvMT07 induction threshold lies near 0.2-0.5 μ g/L of Hg while expression of other forms of pvMT weakly correlates with this range. It is proved that pvMT07 can be applied as a suitable biomarker for Hg monitoring at the areas such as petroleum production platforms in the Gulf of Thailand where Hg level is close to the background value. This Biomarker can provide information on the potential adverse impacts of Hg contaminants and can act as early warning signals of impending environmental damage.

There is increasing interest in assessing the impact of genotoxicants which are chemicals capable of causing damage to genetic materials released into coastal marine ecosystems. The level of cellular DNA damage has been proposed as a sensitive biomarker in environmental biomonitoring. In the present study, single cell gel electrophoresis or comet assay is used as the technique to preliminarily determine the DNA damage of haemocyte and sperm of mussels caused by in vitro exposure of Hg. The result provides some evidences on the potential genotoxic property of Hg. Nevertheless, the nominal concentrations used in this study may not reflect the exact concentration that mussel cells may respond to Hg since the experiment was conducted *in vitro* where cells were collected and experimented in artificial media. Further study in the *in vivo* condition is needed to verify the exact situation where the whole bodies of living animals are exposed to Hg before the assessment of DNA damage in aquatic animals collected from contaminated sites is carried out. Additionally, since variations in factors such as feeding, reproduction, sexual status and lipid content, as well as DNA repair rate can affect the pollutant uptake of organisms, it would be more instructive to relate a biological response to the body burdens of the toxicant concerned rather than the nominal concentrations. As genotoxicants are often present at contaminated marine sites, it is suggested that the comet assay could be beneficially used at many sites to determine if there are linkages between DNA damage and effects at the population and community levels.

Application of the assays on both pvMT07 and DNA damage established in the present study can be further conducted in most polluted areas such as Map Ta Phut and Laem Chabang industrial ports and estates along the coastal line of inner gulf. It is suitable for applying these assays in these contaminated areas because they are natural habitat to mussels which are used as bioindicators in the assay. Even in some sites where mussels are not available, mussels from reference site in Trad can be easily transplanted to the target sites. However, the situation facing one specific problem and requiring one biomarker is rare. Generally, ecosystem has to confront with multiple causes of disturbances and it is virtually impossible to monitor all contaminants that are potential threat to the environment. Various number of biomarkers used in environmental studies include enzymes, receptors, biogenic amines. vitamins. hormones. DNA damage, antioxidants, immunological, reproductive cycle, skeletal abnormalities and other pathological effects and the ability to integrate data from different platforms is not a straightforward procedure. Therefore, a panel of complementary and ecologically relevant biomarkers would be necessary and extensive research associating biomarker and ecological studies in the ecosystems of different quality are needed in order to validate the use of biomarkers for modeling environmental quality.

สุนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER VI

CONCLUSION

The production of all fossil fuels is one of the main sources for emissions of mercury to the environment. It is important that the cycle of Hg and released compounds including their effects on living organisms are monitored efficiently. In this study, bioassay for determining Hg contamination in marine environment at the surrounding areas of petroleum platform in the Gulf of Thailand was established. The study focused on the feasibility and validity of using candidate genes, which were earlier reported as Hg responsive genes, as biomarkers. In addition, the genotoxicity of Hg was investigated using comet assay. Green mussel, *P.viridis*, was used as model species for monitoring the change of Hg contamination in target areas.

The study was initially conducted by testing the response of mussels to low level of Hg in controlled condition. The result indicated that growth and survival rate of the experiment mussels from laboratory and field studies were relatively normal when compared to the mussels rearing in their natural habitat. Transplantation of mussels at petroleum production platforms showed no sign of any physical anomalies on experiment samples. This showed that transplanted mussels could be maintained in un-natural habitat such as petroleum production platforms in the middle of the Gulf of Thailand where food was much less abundant for up to 3 months without significant physical change.

Sublethal levels of inorganic Hg (between 0.1 to 1.0 μ g/L) were applied to experiment mussels for 8 weeks in order to monitor Hg concentration in both water and tissues of the mussels. The result revealed that Hg level in water decreased rapidly. Less than 0.1% was detected after 24 h of application while Hg level in tissue increased significantly; indicating that the majority of Hg applied to the experiment tank was absorbed into the tested mussels.

The average level of Hg in the mussel before treatment was 0.0104 μ g/g while the level from the 10 μ g/L Hg (the highest dose) treatment for 8 weeks was 0.1383 μ g/g. It was more than 10 times higher than in the initial mussels. This indicates that Hg can be uptaken into living organisms almost completely within 24 h and Hg can be accumulated in the mussel tissue at the concentration more than 1,000 folds higher than the Hg level in the surrounding water.

It was calculated that almost 50% of Hg applied to the tested mussels during the experiment were accumulated in the mussel body. The accumulation rate of Hg is reduced when Hg level in the surrounding water increases. This is presumably because the uncertain level of bacteria growing in the water-treated bioreactor and the excess amount of Hg applied to the mussels or it could be the higher efficiency of mussel to eliminate Hg from their bodies when the homeostasis was interfered. Although, Hg level of transplanted mussels appeared to be slightly lower than that of laboratory tested mussels due to the experiment period was shorter and the level of Hg in the surrounding water was much lower, the difference between Hg levels of water and tissue from mussels transplanted at the field sites was still in agreement with the result obtained from the laboratory study.

In order to develop a reliable and easy-to-use method to monitor the effect of sublethal level of Hg on marine organisms, molecular response of mussels exposed to Hg at very low level were analyzed. Expression levels of MT genes and their 6 variant forms, together with other 2 Hg responsive genes, HSP71 and CYP4, were analyzed in mussels exposed to sublethal level of Hg (0 to $1.0 \ \mu g/L$) in laboratory condition. Bioassay for quantitative evaluation of the transcripts of the target genes was established using semi-quantitative RT-PCR technique. The result of laboratory study indicated that pvMT07, one of MT variant form, responded to Hg at very low levels (lower than $0.2 \ \mu g/L$) within the first week of experiment while the other candidate genes showed no difference in each treatment. Expression level of pvMT07 also correlated significantly with the increasing level of Hg applied to the tested mussels.

In order to study the feasibility and validity of the obtained method, the optimal condition of the assay used in laboratory study was used for analyzing the expression level of those candidate genes in mussels transplanted at petroleum platform. The result of all candidate genes provide no detectable change on their expression among sampling mussels due to the Hg level in the surrounding areas was lower than the minimal level of the assay. However, the correlation between expression levels and Hg level in mussels still confirmed that pvMT07 was dose-related to Hg even at very low level. The results from both laboratory and field studies

show that the capacity of pvMT07 and the method can be used as a tool to monitor Hg activity at very low level.

Study of Hg genotoxicity to mussel was conducted on haemocyte and sperm cells using single cell gel electrophoresis. Target cells were exposed *in vitro* to HgCl₂ at the concentration between 0.001 to 10.0 μ g/L at different time interval (10, 30, and 60 min). By measuring the tail length and the tail moment of the assay, similar result was obtained from the assay of both haemocyte and sperm which indicated that the extent of DNA damage was proportional to the level of Hg and the DNA damage could be detected after exposing to Hg level as low as 0.001 μ g/L for 10 min. Sperm which is a germ cell appeared to be more sensitive to Hg exposure than haemocyte which is a somatic cell.

REFERENCE

- AI-Shayeb, S.M., AI-Rajhi, Seaward, M.R.D. 1995. The date palm (*Phoenix dactylifera L.*) as a biomonitor of lead and other elements in arid environment.Sci. Total Environ. 168: 1-10.
- Amiard, J.C., Caquet, Th. and Lagadic, L. 2000. Biomarkers as tools for environmental qualityassessment. In Lagadic, L, Caquet, T., Amiard, J.C. and Ramade F. (eds.). Use of Biomarkers for Environmental Quality Assessment. pp. 17-27. Netherlands: AA BALKEMA Press.
- Andersen, V., Maage, A., and Johannessen, P.J. 1996. Heavy Metals in Blue Mussels (*Mytilus edulis*) in the Bergen Harbor Area, Western Norway. **Bull. Environ. Contam. Toxicol.** 57: 589-596.
- Andrews, G.K. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. **Biochem. Pharmacol.** 59: 95-104.
- Antonelli, M.L., Ercole, P., and Campenella, L. 1998. Studies about the adsorption on lichen *Evernia prunastri* by enthalpimetric measurements. **Talanta**: 45: 1039-1047.
- APHA, AWWA, WEF. 1992. Standard Methods for the Examination of Water and Wastewater. Wachington. DC.
- Astudillo, L.R.D., Yen, I.C., Agard, J., and Hubbard, R. 2002. Heavy metals in green mussel (*Perna viridis*) and Oysers (*Crassostrea* sp.) from Trinidad and Venezuela. Arch. Environ. Contam. Toxicol. 42: 410-415.
- Asubel, F.M., Brent, R., Kingstons, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. 1989. Current protocols in molecular biology. New York: John Wiley&Sons Press.
- ATSDR, Agency for Toxic Substance and Disease Registry. [Online]. 2006. ToxFAQs: CABSTM/Chemical Agent Briefing Sheet, Mercury. Available from http://www.atsdr.cdc.gov/cabs/mercury/mercury_cabs.pdf. [2010, April 21]
- Baker, J.R., Satarug, S., Edwards, R.J., Moore, M.R., Williams, D.J., and Reilly, P.E.G. 2003. Potential for early involvement of CYP isoforms in aspects of human cadmium toxicity. **Toxicol. Lett.** 137: 85-93.
- Bagenstose, L.M., Salgame, P., and Monestier, M. 1999. Murine Mercury-induced Autoimmunity. **Immunologic Res.** 20: 67-78.
- Barkay, T., Billman, M., and Turner, P.R. 1997. Effects of dissolved organic carbon and salinity on biavailability of mercury. **Appl. Environ. Microbiol.** 1997: 4267-4271.

- Barrett, J.C., Vainio, H., Peakall, D., and Goldstein, B.D. 1997. 12th Meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals: Susceptibility to Environmental Hazards. Environ. Health Perspect. 105(4): 699-737.
- Ben-Ozer, E.Y., Rosenspire, A.J., McCabe Jr, M.J., Worth, R.G., Kindzelskii, A.L., Warra, N.S., and Petty, H.R. 2000. Mercuric chloride damage cellular DNA by a non-apoptotic mechanism. **Mutation Research.** 470: 19-27.
- Bernoit, J.M., Gilmour, C.C., Mason. R.P. Riedel, G.S., and Riedel, G.F. 1998. Behavioral of mercury in the Patuxent River estuary. **Biogeochem**. 40: 249-265.
- Boening, D.W. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40: 1335-1351.
- Bolognesi, C., Grenzilli, G., Lasagna, C., Perrone, E., and Roggieri, P. 2004. Genotoxicity biomarkers in Mytilus galloprovincialis wild versus caged mussels. **Mutation Research**. 552: 153-162.
- Bozcaarmutlu, A., Arinc, E. 2007. Effect of mercury, cadmium, nickel, chromium and zinc on kinetic properties of NADPH-cytochrome P450 reductase purified from leaping mullet (*Liza saliens*). Toxicol. in Vitro. 21: 408-416.
- Broeg, K., Westernhagen, H.V., Zander, S., Körting, W., and Koehler, A. 2005. The "bioeffect assessment index" (BAI) A concept for the quantification of effects of marine pollution by an integrated biomarker approach. Mar. Pollut. Bull. 50: 495-503.
- Brulle, F., Mitta, G., Leroux, R., Lemière, S., Leprêtre, A., and Vandenbulcke, F. 2007. The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in *Eisenia fetida*: A trade-off mechanism. **Comp. Biochem. Physiol. C.** 144: 334-341.
- Bryan. G.W. and Langston, W.J. 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review, **Envrion. Pollut.** 76: 89-131.
- Bunce, Nigel, and Hunt, Jim, Mercury pollution [Online]. 2003. Available from http://www.physics.uoguelph.ca/summer/scor/articles/scor104.htm. [2003, June 2]

Bureau of Occupational and Environmental Diseases Department of Disease Control Ministry of Public Health Thailand [Online]. 2010. Situation of environmental pollution problems affecting health in the area, Map Ta Phut, Rayong. Available from http://www.envocc.org/html/modules.php?name=Downloads&d_op=viewdow nload&cid=5 [2010, April 28]

- Buouwer, M., Syring, R., and Brouwer, T.H. 2002. Role of a copper-specific metallothionein of the blue crab, *Callinectes sapidus*, in copper metabolism associated with degradation and synthesis of hemocyanin. J Inorg. Biochem. 88: 228-239.
- Campbell, P.M., Kruzynski, G.M., Birtwell, I.K., and Devlin, R.H. 1996. Quantitation of dose-dependent increase in CYP1A1 messenger RNA levels in juvenile Chinook salmon exposed to treated bleached-kraft mill effluent using two field sampling techniques. **Environ. Toxicol. Chem.** 15: 1119-1123.
- Canli, M. and Furness, R.W. 1995. Mercury and cadmium uptake from seawater and from food by the Norway lobster *Nephrops norvegicus*, **Environ. Toxicol. Chem**. 14: 819-828.
- Canesi, L., Ciacci, C., and Gallo, 2000. Hg2+ and Cu2+ interfere with agonistmediated Ca²⁺ signaling in isolated *Mytilus* digestive gland cells. Aquat. Toxicol. 49: 1-11.
- Catsiki, V.A., and Strogyloudi, E. 1999. Survey of metal levels in common fish species from Greek waters. Sci. Total Environ. 237: 387-400.
- Chang, L. W. 1997. Neurotoxic effects of mercury-a review, **Environ. Res.** 14: 329-373.
- Chaty, S., Rodius, F., and Vasseur, P. 2004. A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss) Aquat. Toxicol. 69: 81-93.
- Choi, Y.K., Jo, P.G., and Choi, C.Y. 2008. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, *Crassostrea gigas*. **Comp. Biochem. Physiol. C.** 147: 286-292.
- Claisse, D., Cossa. D. Sanjuan, J.B., Touchhard, Sanjuan and B Bombled. 2001. Mar. Pollut. Bull. 42(4): 329-332.
- Conti, M.E., and Cocchetti, G. 2003. A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. **Environ. Res.** 93: 99-112.
- Coquery, M., Cossa, D., and Martin, J.M. 1995. The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent Arctic coastal waters. **Water Air Soil Pollut.** 80: 653-664.
- Cossa, D., and Fileman, C. 1991. Mercury concentrations in surface waters of the English Channel: a cooperative study, **Mar. Pollut. Bull.** 22: 197-200.
- Cossa, D., Martin, J.M., Takayanagi, K. and Sanjuan, J. 1997. The distribution and cycling of mercury species in the western Mediterranean. **Deep Sea Res.** 44: 721-740.

- Costa, M., Cantoni, O., deMars, M., and Swartzendruber, D.E. 1983. Toxic metals produce an S-phase specific cell cycle block, **Res. Commun. Chem. Pathol. Pharmacol.** 38: 405.
- Costelle, S. and Ferard, K.F. 1999. Comet assay in genetic ecotoxicology: a review, **Environ. Mol. Mutagen**. 34: 246-255.
- Danielson, B.R. 1984. Ferotoxicity of inorganic mercury: Distribution and effect of nutrient uptake by placenta and fetus. **Neurotoxicol. Teratol.** 18: 129-134.
- Daniel, K. 2009. Mercury distribution in different tissues and trophic levels of fish from atropical reservoir, Brazil. **Neotropical Ichthyology**. 7(4): 751-758.
- Dauwe, T., Janssens, E., and Eens, M. 2006. Effects of heavy metal exposure on the contition and health of adult great tits (*Parus major*). Environ. Pollut. 140: 71-78.
- Dave, G., Xiu, R. Q. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, *Brachydanio rerio*. Arch. Environ. Contam. Toxicol. 21: 126-134.
- De Boeck, M., Touil, N., De Visscher, G., Vande, P.A., and Kirsch-Volders, M. 2000. Validation and implementation of an internal standard in comet assay analysis. **Mutat. Res**. 469: 181-197.
- DMF, Department of Mineral Fuel. 2008. Mercury concentrations in the gulf of Thailand. (Unpublished data)
- Duffy, L.K., Scofield, E., Rodgers, T., Patton, M., and Bowyer, R.T. 1999. Comparative baseline levels of mercury, HSP70 and HSP60 in subsistence fish fro the Yukon-Kuskokwim delta region of Alaska. Com. Biochem. Physiol. C. 124: 181-186.
- Faverney, C. R-de., Lafaurie, M., Girard, J.P., and Rahmani, R. 2000. The nitroxide stable radical tempo prevents metal-induced inhibition of CYP1A1 expression and induction. **Toxicol. Lett.** 111: 219-227.
- Feder, M. E., and Hofmann, G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282.
- Fileman, C., Althaus, M., Law, R.J., and Haslam, I. 1991. Dissolved and particulate trace metals in surface waters over the Dogger Bank, central North Sea. Mar. Pollut. Bull. 22: 241-244.
- Flora, D. F., Benicelli, C. and Bagnasco, M. 1994. Genotoxicity of mercury compounds. A review. Mutat. Res. 317: 57-79.
- Fowler, S. W., Heyraud, M., and Rosa, J. L. 1978. Factors affecting methyl and inorganic mercury dynamics in mussels and shrimp. Mar. Biol. 46: 267-276.

- Franzellitti, S., and Fabbri, E. 2005. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem. Biophys. Res. Commun. 336: 1157-1163.
- Gagnon, C and Fisher, N.S. 1997. Bioavailability of sediment-bound methyl and inorganic mercury to marine bivalve. **Environ. Sci. Technol**. 31: 399-998.
- Gašpić, Z. K., Odžak, N., Ujević, I., Zvonarić, T., Horvat, M., and Barić 2006. Biomonitoring of mercury in polluted coastal area using transplanted mussels. **Sci. Total Environ.** 368: 199-209.
- G'eret, F., Jouan, A., Turpin, V. Bebianno, M.J., and Cosson, R.P. 2002. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (*Crassostrea gigas*) and the mussel (*Mytilus edulis*). Aquat. Living Resources, 15: 61-66.
- Gray, J. S. 2002. Biomagnification in marine systems: the perspective of an ecologist. Mar. Pollut. Bull. 45: 46-52.
- Goksoyr, A., Forlin, L. 1992. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring, Aquat. Toxicol. 22: 287-311.
- Gonzalez, F.J., 1998. The molecular biology of Cytochrome P-450 system. Pharmacol. Ther. 45: 241-298.
- Gorge, S.G. 1990. Biochemical and cytological assessments of metal toxicity in marine animals In Furness, R.W., and Rainbow, P.S., (eds.) Heavy Metal in the Marine Environment. pp. 123-142. Boca Raton, FL: CRC Press
- Goyer, R.A. Nutrition and metal toxicity. 1995. Am. J. Clin. Nutr. 61(3): 5458-6508.
- Guentzel, J.L., Powell, R.T., Landing, W.M. and Mason, R.P. 1996. Mercury associated with coloidal material in an estuarine and open-ocean environment. **Mar. Chem.** 55: 177-188.
- Halander, A. 2003. Biological markers in alcoholism. **J Neural transm. Supplement**. 66: 15-32.
- Harboe, M., and Quayle, A. J. 1991. Heat shock proteins: Friend and foe. Clin. Exp. Immunol. 86:2-5.
- Harris, R.C. and Snodgrass, W.J. 1993. Bioenergetics Simulations of Mercury Uptake and Retention in Walleye (*Stizostedion vitreum*) and Yellow Perch (*Perca flavescens*). Water Pollut. Res. J. Can. 28 (1): 217-236.

- Hein, I., Mach, R.L., Farnleitner, A.H., and Wagner, M. 2003. Application of singlestrand conformation polymorphism and denaturing gradient gel electrophoresis for fla sequence typing of *Campylobacter jejuni*. J. Microbiol. Methods 52: 305–313.
- Hermesz, E., Abraham, M., Nemcsok, J. 2001. Tissue-specific expression of two metallothionein genes in common carp during cadmium exposure and temperature shock. Comp. Biochem. Physiol. 128C: 457–465.
- Hightower, Jane. Mercury and autism in children, San Francisco Medical Society [Online]. 2010. Available from: http://www.sfms.org/sfm/sfm401b.htm [2010, April 6].
- Hontela, A., Daniel, C., and Richard, A.C. 1996. Effects of acute and subacute exposures to cadmium on the interregnal and thyroid function in rainbow trout, *Oncorhynchus mykiss*. Aquat. Toxicol. 35: 171-182.
- Hudson, R.J.M., Gherini, S.A., Watras, C.J., and Porcella, D.B. 1994. Modeling the biogeochemical Cycle of Mercury in Lakes In C.J. Watras and J.W. Huckabee (Eds.), Mercury Pollution-Integration and Synthesis, The Mercury Cycling Model (MCM) and Its Application to the MTL Study Lakes. pp. 58-81. Florida USA: Lewis Publishers/CRC Press Inc.
- Hylander, L.D., and Meili, M. 2002. 500 years of mercury production—Global annual inventory by region until 2000 and associated emissions: Sci. Total Environ. 304:13-27.
- Iwama G.K., Thomas, P.T., Forsyth, R.B., and Vijayan, M.M. 1998. Heat shock protein expression in fish. **Rev. Fish Biol. Fish.** 8: 35-56.
- Jadsri, S., Singhasivanon, P., Kaewkungwal, J., Sithiprasasna, R., Siriruttanapruk, S., and Konchom, S. 2006. Spario-temporal effects of estimated pollutants released from and industrial estate on the occurrence of respiratory disease in Maptaphut Municipality, Thailand. **Int. J. Health Geographics.** 5: 48.
- Jewett, S.C., and Lawrence, K.D. 2007. Mercury in fish of Alaska, with emphasis on subsistence species. Sci. Total Environ. 387: 3-27.
- Kagi, J.H.R. 1993. Evolution, structure and chemical activity of class I metallothioneins In Suzuki, K.T., Imura, N., and Kumura, M. (eds.) an overview. Metallothionein III. pp. 29-55. Basel Switzerland: Birkhauser Verlag Press.
- Kamakshi, V. Gopal. 2003. Neurotoxic effects of mercury on auditory cortex networks growing on microelectrode arrays: a preliminary analysis. **Neruotoxicol. Tetratol.** 25: 69-76.
- Kannan, K., Smith, R.G., Lee, R.F., Windom, H.L., Heitmuller, P.T., Macauley, J.M., and Summers, J.K. 1998. Distribution of total merury and methyl mercury in

water sediment, and fish from south Florida estuaries, Arch. Environ. Contam. Toxicol. 34: 109-118.

- Kawasaki, E. S., Innis, M. A., Gelfand, D. H., Sninsly, J. J., and White, T. J. 1990. Amplification of RNA. In Innis MA (eds.). PCR protocols: A guide to methods and applications. pp 21-27. San Diego: Academic Press.
- Khan, A.T., and Weis, J.S. 1987. Effects of methylmercury on sperm and egg viability of two populations of Killifish (*Fundulus heteroclitus*). Arch. Environ. Contam. Toxicol. 16: 499-5005.
- Khera, K.S. 1990.Teratogenic and genetic effects of mercury toxicity. **Teratology**. 8: 293-304.
- Khoo, H.W., and Patel, K.H. 1999. Metallothionein cDNA, promoter and genomic sequences of the tropical green mussel *Perna viridis*. J. Exp. Zool. 284: 445-453.
- Kimura, T., and Itoh, N. 2008. Function of Metallothionein in gene expression and signal transduction: Newly found protective role of Metallothionein. J. Health Sci. 54(3): 251-260.
- Kling, P.G., and Olsson, P.E., 2000. Involvement of Differential metallothionein expression in free radical sensitivity of RTG-2 and CHSE-214 cells. Free Radical Biol. Med. 28: 1628–1637.
- Kojima, Y., and Kagi, J.H.R. 1978. Metallothionein. Trends Biochem Sci. 3(2): 90-93.
- Köhler, H.R., and Eckwetr, H. 1996. The induction of stress protein (hsp) in *Oniscus asellus* (Isopoda) as a molecular marker of multiply heavy metal exposure. II: Joint toxicity and transfer to field situations. **Ecotoxicol**. 6: 263-274.
- Korashy, H.M., and El-Kadi, A.O.S. 2005. Regulatory mechanisms modulating the expression of cytochrome P450 1A1 gene by heavy metals. **Toxicol. Sci.** 88(1): 39-51.
- Kopećek, P., Altmannova, K., and Weigl, E. 2001. Stress protein: nomenclature division and function. **Biomed. Paper** 145(2): 39-47.
- Kubicka-Murranyi, M. 1996. Systemic autoimmune disease induced by mercuric chloride. Int. Arch Allergy Immunol. 109(1): 11-20.
- Langston, W.J. 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In Furness, R.W. and Rainbow, P.S. (eds). Heavy Metals in the Marine Environment. pp 101-122. Boca Raton, FL: CRC Press.
- Law, R.J., Waldock, M.J., Allchin, C.R., Laslett, R.E., and Bailey, K.J. 1994. Contaminants in sea water around England and Whales: results from monitoring surveys, 1990-1992. Mar. Pollut. Bull. 28: 668-675.

- Lawson, N.M. and Mason, R.P. 1998. Accumulation of mercury in estuarine food chains. **Biogeochem**. 40: 235-247.
- Leaner, J.J., and Mason, R.P. 2002. Factors controlling the bioavailability of ingested methylmercury to channel catfish and Atlantic sturgeon. **Environ. Sci. Technol.** 36: 5124-5129.
- Lee, R. F., and Steinert, S. 2003. Use of the single cell gel electrophoresis/Comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. **Mutat. Res.** 544(1): 43-64.
- Leonard, A., Jacquet, P., and Lauwerys, R.R. 1983. Mutagenicity and teratogenicity of mercury compounds, **Mutat. Res**. 114: 1.
- Lemoine, S., Bigot, V., Sellos, D., Cosson, R.P., and Laulier, M. 2000. Metallothionein Isoforms in Mytilus edulis (Mollusca, Bivalvia): Complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and copper. Mar. Biotechnol. 2: 195-203.
- Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., Hakanson, L., Iverfeldt, A., Meili, M., and Timm, B. 1991. Mercury in the Swedish Environment- Recent Research on Causes, consequences and Corrective Methods. Water Air Soil Pollut. 55: 11-13.
- Lu, H., Hunt, D.M., Ganti, R., Davis, A., Dutt, K., Alam, J., and Hunt, R.C. 2002. Metallothionein protects retinal pigment epithelial cells against apoptosis and oxidative stress. Exp. Eye Res. 74: 83–92.
- Lynn, R. Goldman, Michael W. Shannon, MD. 2001 Technical Report: Mercury in the environment: implications for pediatricians. **Pediatrics.** 108: 197-205.
- Mason, R.P., Reinfelder, J.R., and Morel, F.M.M. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. **Environ. Sci. Technol.** 30 (6): 1835-1845.
- Mason, P.R., Reinfelder, J.R. and Morel, F.M.M. 1995. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80: 915-921.
- Matta, M.B., Linse, J., Cairncross, C., Franxesdese, L., and Kocan, R.M. 2001. Reproductive and transgeneration effects of methylmercury or Aroclor 1268 on *Fundulus heteroclitus*. Environ. Toxicol. Chem. 20: 327-335.
- Michelmore, C.L., Birmelin, C., Livingstone, D.R., and Chipman, J.K. 1998a. Detection of DNA strand breaks in isolated mussel (*Mytilus edulis*) digestive gland cells using the "comet assay". **Ecotoxicol. Environ. Safety**. 41: 51-58.

- Michelmore, C.L., and Chipman, J.K. 1998b. Detection of DNA strand breaks in brown trout (*Salmo trutta*) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay, **Aquat.Toxicol.** 41: 161-182.
- Micovic, V., Bulog, A., Kucic, N. Jakovac, J., and Radosevic-Stasic, B. 2009. Metallothioneins and heat shock protein 70 in marine mussels as sensor of environmental pollution in Northern Adriatic Sea. Environ. Toxicol. Phamacol. 28: 439-447.
- Miller, K.A., Addison, R.F., and Bandiera, S.M. 2003, Hepatic CYP1A levels and EROD activity in English sole: biomonitoring of marine contaminants in Vancouver Harbour. **Mar. Environ. Res.** 57: 37-54.
- McFadden, S.A. 1996. Xenobiotic metabolism and adverse environmental response: sulfur dependent detoxification pathways. **Toxicol.** 111(1-3): 43-65.
- Nacci, D.E., Cayula, S., and Jackim, E. 1996. Detection of DNA damage in individual cells from marine organisms using the single cell gel assay. Aquat. Toxicol. 35: 197-210.
- Nashimura, H., and Kumagai, M. 1983. Mercury pollution of fishes in Minamata Bay and surrounding water: analysis of pathway of mercury. **Water Air Soil Pollut.** 20: 401-411.
- Nakhlé, K. F., Cossa, D., Khalat, G., and Beliaeff, B. 2006. *Brachidontes variabilis* and *Patella* sp. As quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. **Environ. Pollut.** 142: 73-82.
- Narbonne, J.F, 2000. History-Biological Basis of the Use of Biomarkers in Ecotoxicity. In Lagadic, L., Caquet, T., Amiard, J.C., and Ramade, F. (eds.)
 Use of Biomarkers for Environmental Quality Assessment pp. 1-7. Rotterdam, Netherlands: AA BALKEMA Press.
- Neff, J.M. 2002. Mercury in the Ocean. In Neff, J.M. (ed.). **Bioaccumulation in marine organism effect of contaminants from oil well produced water**. pp.103-130. Netherlands: Elsevier Science Ltd.Press.
- Nerbert, D. W., Nelson, D. R., Adesnik, M., Coon, M. J. Estabrook, R. W. Gonzalez, F. J. Guengerich, F. P., Gunsalus, I. C., Jonhson, E. F., Kemper, B., Levin, W., Phillips. I. R., Sato, R. and Waterman, M.R. 1989. The P450 superfamily: update listing of all genes and recommended nomenclature for the Chemosomal loci. **DNA** 8: 1-13.
- Nelson, D. R. The Cytochrome P450 Homepage. Human Genomic [Online]. 2010. Available from http://drnelson.uthsc.edu/CytochrompP450.html. [2010, April 6]
- Neff, J.M. Influence of offshore oil and gas platforms on environmental risks of mercury in the Gulf of Mexico [Online]. 2002. Available from http://www.masgc.org/mercury/ [2010, April 4]

- Nicholson, S., and Szefer, P. 2003. Accumulation of metal in the soft tissues, byssus and shell of the mytilid mussel *Perna viridis* (Bivalvia: Mytilidae) from polluted and uncontaminated locations in Hong Kong coastal waters. **Mar. Pollut. Bull.** 46: 1035-1048.
- NIMPIS. *Perna viridis* species summary. National Introduced Marine Pest Information System. [Online]. 2002. Available from http://crimp.marine.csiro.au/nimpis [2006, Apr 13].
- Odžak, N., Zvonarić, T., Gašpić, Z.K., and Barić, A. 2000. Biomonitoring of mercury in the Kaštela Bay using transplanted mussels. **Sci. Total Environ.** 261: 61-68.
- O'Halloran, T.V. 1993. Transition metals in control of gene expression. **Science**, 261(5122), 715-725.
- Orazio, C., Christie, N.T., Robinson, S.H. and Costa, M. 1984. Characterization of lesion produced by HgCl₂ in cell culture system. **Chem. Biol. Interaction.** 49: 209-224.
- Parsont C. 2003. Metallothionein as a biomarker for mercury contamination in mussel, *Perna viridis*. Thesis Master of Science in Environmental Science, Graduate School, Chulalongkorn University. 141 pp.
- PCD, Pollution Control Department, 1997. Law and Standard on Pollution Control in Thailand. 4th ed., Ministry of Science, Technoloty, and Environment, Thailand, 285 pp.
- PCDa, Pollution Control Department [Online]. 2010. Mercury in marine environmental of Thailand. Available from www.marinepcd.org/hgtaskforce/document/mercury.doc [2010, April 20]
- PCDb, Pollution Control Department [Online]. 2010. Environmental situation, Maptaphut. Available from http://www.pcd.go.th/Info_serv/pol_maptaput_WQA.html. [2010, April 20]
- Peakall, D., and Burger, J. 2003. Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol. Environ. Saf. 56: 110-121.
- Pentreath, R.J., 1976. The accumulation of cadmium by the plaice, *Pleuronectes platessa L.*, and the thornback ray, *Raja clavata L.* **J. Exper. Mar. Biol. Ecol.** 30: 223-232.
- Petridis, P., Jha, A.N., and Langston, W.J. 2009. Measurments of the genotoxic potential of (xeno-) estrogens in the bivalve mollusk *Scrobicularia plana*, using the Comet assay. **Aquat. Toxicol**. 94:8-15.

- Perry, D. M., Weis, J.S. and Weis, P. 1988. Cytologenetic effects of methylmercury in embryos of the killifish, *Fundulus heteroclitus*, Arch. Environ. Contam.Toxicol. 17: 569-574.
- Pelletier, E. and Larocque, R. 1987. Bioaccumulation of mercury in starfish from contaminated mussels. Mar. Pollut. Bull. 18: 482-485.
- Pereira, C. S. A., Guiulherme, S. I. A. G., Garroso, C. M. M. B., Verschaeve, L., Pacheco, M. G. G. P., and Mendo S. A. L. V. 2010. Evaluation of DNA Damage Induced by Environmental Exposure to Mercury in *Liza aurata* Using the Comet Assay. Arch Environ Contam Toxicol. 58: 112-122.
- Phillips, G.R., and Buhler, D.R. 1978. The relative contributions of methylmercury from food and water to rainbow trout (*Salmo gairdneri*) in a controlled laboratory environment. **Trans. Amer. Fish. Soc.** 107: 853-861.
- Pisoni, M., Cogotzi, L., Frigeri, A., Corsi, I., Bonacci, S., Iacocca, A., Lancini, L., Mastrototaro, F., Focardi, S., and Svelto, M. 2004. DNA adducts, benzo (a) pyrene monooxygenase activity, and lysosomal membrane stability in *Mytilus* galloprovincialis from different areas in Taranto coastal waters (Italy). Environ. Res. 96: 163-175.
- Plaschke, R., Dal Pont, G., and Butler, E.C.V. 1997. Mercury in water of the Darwent Estuary sample treatment and analysis. **Mar. Pollut. Bull.** 34: 177-185.
- Pornsook Chongprasith, Wilaiwan Utoomprurkporn, and Wimonporn Wilairatanadilok [Online]. 2010. Mercury Situation in Thailand. Available from www.marinepcd.org/.../Mercury%20situation%20in%20Thailand.doc [2010, April 20]
- Poupardin, R., Reynaud, S., Strode, C. Ranson, H., Vontas, J., and David, J.P. 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito *Aedes aegypti*: Impact on larval tolerance to chemical insecticides. **Insect Biochem. Mol. Biol**. 38: 540-551.
- Pruski, A., Dixon, D.R. 2002. Effect of cadmium on nuclear integrity and DNA repair efficiency in the gills of *Mytilus edulis*. Aquat.Toxicol. 57: 127-137.
- Rajagopal, S., Venugopalan, V.P., Nair, K.V.K., van der Velde, G., Jenner, H.A., den Hartog, C. 1998. Reproduction, growth rate and culture potential of the green mussel, *Perna viridis* (L.) in Edaiyur backwaters, east coast of India. Aquaculture 162:187-202.
- Ranvier, S., Gnassia-Barelli, M., Pergent, G., Capioment, A., and Romeo, M. 2000. The effect of mercury on glutathione S-transferase activity in the marine phanerogam *Posidonia oceanica*. Botan. Mar. 43: 161-168.
- Rigaa, A., Hajjou, M., and Sellos, D. 1998. Partial cDNA sequence of a metallothionein-like protein with new features from the bivalve Macoma balthica. **J Mar Biotechnolol**. 6: 83-85.

- Rios-Arana, J.V., Gardea-Torresdey, J.L., Webb, R., and Walsh, E.L. 1995. Heat shock protein 60 (HSP60) response of *Plationus patulus* (Rotifera: Monogononta) to combined exposures of arsenic and heavy metals. In Herzig, A., Gulati, R.D., Jersabek, C.D., and May, L. (eds.) Rotifera X: Rotifera Research: Trends, New Tools and Recent Advances. Hydrobiologia 546: 577-585. Netherlands: SpringerLink Press.
- Ruiz, A.R., Alhama, J., Blasco, J., Ariza, J.L.G., and Barea, J.L. 2008. New metallothionein assay in *Scrobicularia plana*: Heating effect and correlation with other biomarkers. Environ. Pollut. 156: 1340-1347.
- Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22: 81-114.
- Samson, J.C. and Shenker, J., 2000. The teratogenic effects of methylmercury on early development of the zebrafish, *Danio rerio*. Aquat. Toxicol. 48: 343-354.
- Sanchez Uria, J.E., and Sanz-Model, A. 1998. Inorganic and methylmercury speciation in environmental samples. Talanta. 47: 509-524.
- Sangrajang, S. 2008. Toxicological Review of Benzene: Cancer Aspect. **Thai Cancer** J. 28(2): 93-100.
- Sastre, M., Steinert, S., and Streib-Montee, R. 1997. Single cell gel/comet assay applied to the analysis of pollution-induced damage in the mud welk *Nassaruus tegula* and the ribbed mussel *Musculista senhousia*, Abstracts of the 18th Annual Meeting of the Society of Environmental Toxicology and Chemistry, pp.77. Pensacola.
- Sayler, G.S., Nelson Jr. J.D., and Colwell, R.R. 1975. Role of bacteria in bioaccumulation of mercury in the oyster *Crassostrea virginica*. Appl. Microbiol. 30: 91-96.
- Sharp, J.R., and Neff, J.M. 1982. The toxicity of mercuric chloride and methylmercuric chloride to Fundulus heteroclitus embryos in relation to exposure conditions. **Environ. Biol. Fish.** 7: 277-284.
- Shaw, J.P., Large, A.T., Donkin, P., Evans, S.V., Staff, F.J., Livingstone, D.R., Chipman, J.K., and Peters, L.D. 2004. Seasonal variation in cytochrome P450 immunopositive protein levels, lipid peroxidation and genetic toxicity in digestive gland of the mussel *Mytilus edulis*. Aquat. Toxicol. 67: 325-336.
- Shaw, J.P., Large, A.T., Livingstone, D.R., Doyotte, A., Renger, J., Chipman, J.K., and Peters, L.D. 2002. Elevation of Cytochrome P450-immunopositive protein and DNA damage in mussels (*Mytilus edulis*) transplanted to a contaminated site. Mar. Environ. Res. 54: 505-509.

- Shafer, T.J., Meacham, C.A., Barone Jr. 2002. Effects of prolonged exposure to nanomolar concentration concentration of methylmercury on voltae-sensitive sodium and calcium currents in PC12 cells. Brain Res. Dev. Frain Res. 136: 151-164.
- Simpson, A.E.C.M. 1997. The cytochrome P450 4 (CYP4) family. **Gen. Pharmacol**. 28: 351-359.
- Sirosis, J. E. and Atchison W. D. 1996. Effect of mercurial on ligand-and voltagegated ion channels: a review, **Neurotoxicol**. 17: 63-84.
- Snyder, M.J. 1998. Cytochrome P450 enzyme belonging to the CYP4 family from marine invertebrates. **Biochem. Biophys. Res. Commun.** 249:187-190.
- Soazig, L., and Marc, L. 2003. Potential use of the levels of the mRNA of a specific metallothionein isoform (MT20) in mussel (*Mytilus edulis*) as a biomarker of cadmium contamination. **Mar. Pollut. Bull.** 46: 1450-1455.
- Srikantarah, M.V.; Radjakushnan, A. N. 1970. Studies on the metabolism of vitamin B6 in the small intestine. Purification and properties of monkey intestinal pyridoxal kinases. Indian J. Biochem. 7(3): 151-156.
- Stacchiotti, A., Morandini, F., Bettoni, F., Schena, I., Lavazza, A., Grigolato, P.G., Apostoni, P., Rezzani, R., and Aleo, M.F. 2009. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicol. 264: 215-224.
- Stein, X. Percic, P, Gnassia-Barelli, M., Romeo, M and Lafaurie, M. 1998 Evaluation of biomarkers in caged fishes and mussels to assess the quality of water in a bay of NW Mediterranean sea. Environ. Poll. 99: 339-345.
- Steinert, S.A., Streib-Montee, R., Leather, J.M., and Chadwick, D.B. 1998. DNA damage in mussels at sites in San Diego Bay. **Mutat. Res.** 399: 65-85.
- Steinert, S.A. 1996. Contribution of apoptosis to observed DNA damage in mussel cells, **Mar. Environ. Res**. 42: 253-259.
- Szefer, P., Freelek, K., Szefer, L., Warzocha, and Zdrojewska, I. 2002. Distribution and relation ship of trace metal in soft tissue, Byssus and Shells of *Mytilus edulis trossulus* from the southern Baltic. **Environ. Pollut.** 120: 423-444.
- Timmermans M.J.T.N., Ellers, J., Roelofs, D., and Vanstraalen, N.M. 2005. Metallothionein mRNA Expression and Cadmium Tolerance in Metal-stressed and Reference Populations of the Springtail *Orchesella cincta*. **Ecotoxicol.** 14: 727-739.
- Thai Post, News. [Online] 2009. Pollution at Maptaphut. Environmental part. Available from http://www.thaipost.net/sunday/140309/1732 [2010, April 20].

- Thompson , D.R., Steward, F.M., and Furness, R.W. 1990. Using seabirds to monitor mercury in marine environments. The validity of conversion ratios for tissue comparisons. Mar. Pollut. Bull. 21: 339-342.
- Tran, D. Moody A.J., Fisher, A.S., Foulkes, M.E., and Jha, A.N. 2007. Protective effects of selenium on mercury-induced DNA damage in mussel haemocyte. **Aquat. Toxicol.** 84: 11-18.
- Ueng, Y.F., Liu, C., Lai, C.F., Meng, L.M., Hung, Y.Y., and Ueng, T.H. 1996. Effects of Cadmium and Environmental Pollution on Metallothionein and Cytochrome P450 in Tilapia. Bull. Environ. Contam. Toxicol. 57: 125-131.
- Unger, M.E., and Roesijadi, G. 1996. Increase in metallothionein mRNA accumulation during Cd challenge in oysters preexposed to Cd. Aquat. Toxicol. 34: 185-193.
- US. EPA. 2001. Methylmercury Water Quality Criterion for Protection of Human Health. Washington, D.C., U. S. Environmental Protection Agency, Office of Science and Technology.
- US. EPA. 1997. Mercury study Report to Congress, Volume IV: An Assessment of Exposure to Mercury in the United States, EPA-452/R-97-006.
- US. EPA. 1995. SW-846 EPA Method 3015: Microwave assisted acid digestion of aqueous sample and extracts In Test Methods for Evaluating Solid Waste, 3rd edition, 3rd update; Washington, DC, USA.
- Veil, J. A., Puder, M. G., Elcock, D. And Redweik, Jr. R. J. 2004. A White Paper Describing Produced water from production of crud oil, national gas, and coal bed methane. Prepared for U.S. Department of Energy, National Energy Technology Laboratory, Under Contact W-31-109-Eng-38. 79 pp.
- Veltman, J.C. 1980. Alterations of heme cytochrome P-450, and steroid metabolism by mercury in rat adrenal gland. **Arch. Biochem. Biophys.** 248(2): 467-478.
- Verlecar X.N., Jena K.B. and Chainy G.B.N. 2008. Modualtion of antioxidant defences in digestive gland of *Perna viridis* (L.), on mercury exposures. Chemosphere 71: 1977-1985.
- Vezer, T., Papp, A., Kurunzi, A., Parducz, A. Naray, M., and Nagymajtenyi, L. 2005. Behavioral and neurotoxic effects seem durine and after subchronic exposure of rat to organic mercury. Environ. Toxicol. Pharmacol. 19: 785-796.
- Viarengo, A., Burlando, B., Evangelisti, V., Mozzone, S., and Dondero, F. 2001. Sensitivity and specificity of Metallothionein as a biomarker for aquatic environment biomonitoring. In Garrigues, Ph., Barth. H., Walker, C.H., and Narbonne, J.F. (eds.). Biomarkers in Marine Organisms: A Practical Approach. pp. 29-43. Netherlands: Elsevier Science Press.

- Watras, C.J., and N.S. Bloom 1992. Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 37 (6): 1313-1318.
- Weeks, J.M. 1992. The use of the terrestrial amphipod *Arcitalitrus Dorrient* (Crustacea; Amphipoda; Talitridae) as a potential biomonitor of ambient zinc and copper availabilities in leaf-litter. **Chemosphere**. 24: 1505-1552.
- Werner, J., Palace, V., Baron, C., Shiu, R., and Yarmill, A. 2008. A Real-Time PCR Method for the Quantification of the Two Isoforms of Metallothionein in Lake Trout (*Salvelinus namaycush*). Arch. Environ Contam. Toxicol. 54: 84-91.
- Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., and Scheuhammer, A.M. 2002. Ecotoxicology of Mercury. In Hoffman, D. J., Rattner, B. A. Burton, G. A., and Cairns, J. (eds.). Handbook of Ecotoxicology. pp. 409-463. New York: Lewis Publishers.
- Wilson, J.T., Pascoe, P.L., Parry, J.M., and Dixon, D.R. 1998. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, *Mytilus edulis L*. (Mollusca: Pelecypoda). Mutat. Res. 399: 87-95)
- WHO, World Health Organization. 1989. Environmental Health Criteria 86: Mercury-Environmental Aspects. World Health Organization, Geneva, Switzerland. 150 pp.
- WHO, International Programe on Chemical Safety (IPCS). 1993. Biomarkers and risk assessment: concepts and principles. Environmental Health Criteria 155. World Health Organization, Geneva.
- Yamada, M., Takada, H., Toyoda, K., Yoshida, A., Shibata, A., Nomura, H., Wada, M., Nishimura, M., Okamoto, K., and Ohwada, K. 2003. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Mar. Pollut. Bull. 47: 105-113.
- Yanagi, T., Sachoemar, S.I., Takao, T., and Fujiwara, S. 2001. Seasonal variation of stratification in the Gulf of Thailand. **Oceanography**. 57: 461-470.
- ZOHEÏR M. T. 2009. Biomonitoring of environmental pollution on the Algerian west coast using caged mussels. **Oceanologia** 51: 63-84.
- Zoll, C., Saouter, E., Boudou, A., Riberyre, F and Jaylet, A. 1988. Genotoxicity and bioaccumulation of methyl mercury and mercuric chloride *in vivo* in the newt *Plwurodales waltl*, **Mutagenesis**. 3: 337-343.
- Zorita, I., Bilbao, E., Schad, A., Cancio, I., Soto, M., and Cajaraville, M.P. 2007. Tissue and cell specific expression of metallothionein genes in cadmium and copper exposure mussels analyzed by in situ hybridization and RT-PCR. Toxicol. Appl. Pharmacol. 220: 186-196.

APPENDICES

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A

1. LB Broth (per Liter)

10 g of NaCl

10 g of tryptone

5 g of yeast extract

Add deionized H₂O to a final volume of 1 liter. Adjust to pH 7.0 with 5 N NaOH and autoclave.

2. LB Agar (per Liter)

- 10 g of NaCl
- 10 g of tryptone
- 5 g of yeast extract
- 20 g of agar

Add deionized H_2O to a final volume of 1 liter. Adjust to pH 7.0 with 5 N NaOH and autoclave. After, pour into petri dishes (~25 ml/100 mm plate)

3. LB-Ampicillin Agar (per Liter)

- Prepare 1 liter of LB agar. Autoclave and cool to 55 °C

- Add 50 ml of filter-sterilized ampicillin

- Pour into petri dishes (~25 ml/100-mm plate)

4. 1x TAE Buffer

- 40 mM Tris-acetate
- 1 mM EDTA

5. SOB Medium (Per liter) :

- Bacto-tryptone	20 g
- Yeast extract	5 g
- NaCl	0.5 g

6. Ampicillin

Stock solution. 25 mg/ml of the sodium salt of ampicillin in water. Sterilize by filtration and store in aliquots at -20 °C

7.5 M NaCl

Dissolve 292.2 g of NaCl in 800 ml of H_2O . Adjust volume to 1 liter. Dispense into aliquots and sterilize by autoclaving.

8.1 M MgCl₂

Dissolve 203.3 g of $MgCl_2 : 6H_2O$ in 800 ml of H_2O . Adjust volume to 1 liter. Dispense into aliquots and sterilize by autoclaving.

9. 3 M Sodium acetate (pH 5.2)

Dissolve 408.1 g of sodium acetate 3 3H₂O in 800 ml of H₂O. Adjust pH to 5.2 with glacial acetic acid. Adjust volume to 1 liter. Dispense into aliquots and sterilize by autoclaving.

10. 10% Sodium dodecyl sulfate (SDS) (also called sodium lauryl sulfate)

Dissolve 100 g of electrophoresis-grade SDS in 900 ml of H_2O . Heat to 68 °C to assist dissolution. Adjust the pH to 7.2 by adding a few drops of concentrated HCl. Adjust volume to 1 liter. Dispense into aliquots.

11. Ethidium bromide 10 mg/ml

Add 1 g of ethidium bromide to 100 ml of H_2O . Stir on a magnetic stirrer for several hours to ensure that the dye has dissolved. Wrap the container in aluminum foil or transfer to a dark bottle and store at 4 °C.

- 10 mM Tris [·] Cl (pH 8.0)

- 1 mM EDTA (pH 8.0)

13. Tris-Borate (TBE)

-Working solution

- 0.089 N	A Tris-	borate
-----------	---------	--------

- 0.089 M boric acid

- 0.002 M EDTA

- Concentrated stock solution (5x)

Per liter:

- Tris base	54 g
- Boric acid	27.5 g
- 0.5 M EDTA (pH 8.0)	20 ml

14. Gel-Loading Buffer Type II

- 10x buffers

- 0.25% bromophenol blue

- 0.25% xylene cyanol

- 25% Ficoll (type 400) in H₂O

- Store at room temperature.

- 0.1 M Tris-Cl (pH 8.0)

- 0.01 M EDTA (pH 8.0)

- 0.1 M NaCl

16. Glycerol (10% v/v)

Dilute 1 volume of molecular-biology-grade glycerol in 9 volume of sterile pure H_2O . Sterilize the solution by passing it through a prerinsed 0.22 μ M filter. Store in 200-ml aliquots at 4 °C

17. IPTG (20% w/v, 0.8 M)

IPTG is isopropylthio-B-D-galactoside. Make a 20% solution of IPTG by dissolving 2 g of IPTG in 8 ml of distilled H₂O. Adjust the volume of the solution to 10 ml with H₂O and sterilize by passing it through a 0.22 μ M disposable filter. Dispense the solution into 1-ml aliquots and store them at -20 °C

18. X-gal solution (2% w/v)

X-gal is 5-bromo-4-chloro-3-indolyl-B-d-galactoside. Make a stock solution by dissolving X-gal in dimethylformamide at a concentration of 20 mg/ml solution. Use a glass or polypropylene tube. Wrap the tube containing the solution in aluminum foil to prevent damage by light and store at -20 °C. It is not necessary to sterilize X-gal solution by filtration.

19. 10% (w/v) Ammonium persulfate

Ammonium persulfate (sigma) 1.0 g is dissolved in 10 ml of dH₂O.

20. Resolving gel buffers : 3 M Tris-HCl pH 8.8

Tris 36.3 g is dissolved in 40 ml of dH_2O , adjusted with 1 M HCl to pH 8.8 and adjusted to 100 ml final volume with dH_2O .

21. Phosphate Buffer Saline (PBS)

NaCl	8 g
KC1	0.2 g
Na ₂ HPO ₄	1.44 g
KH ₂ PO ₄	0.24 g

Dissolve in 800 ml of dH_2O , adjust pH to 6.8 and adjust to 1000 ml final volume with dH_2O

22. 0.1 % DEPC- dH₂O

Diethyl pyrocarbonate 97 % 1 g

Add dH₂O to 1000 ml and incubate overnight at 37 °C then autoclave.

APPENDIX B

PCR product of MTs, HSP71 and CYP4 gene (Laboratory study)

Figure B1 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Long M	100 haga nair laddar	Lana		Lone		Long	
Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Initial #1 β-actin	2B	Initial #3 β-actin	2C	Control week1 #2 β-actin	2D	0.1 µg/L week1 #1 β-actin
Lane 3A	Initial #1 MT	3B	Initial #3 MT	3C	Control week1 #2 MT	3D	0.1 μg/L week1 #1 MT
Lane 4A	Initial #1 pvMT01	4B	Initial #3 pvMT01	4C	Control week1 #2 pvMT01	4D	0.1 µg/L week1 #1 pvMT01
Lane 5A	Initial #1 pvMT02	5B	Initial #3 pvMT02	5C	Control week1 #2 pvMT02	5D	0.1 µg/L week1 #1 pvMT02
Lane 6A	Initial #1 pvMT03	6B	Initial #3 pvMT03	6C	Control week1 #2 pvMT03	6D	0.1 µg/L week1 #1 pvMT03
Lane 7A	Initial #1 pvMT07	7B	Initial #3 pvMT07	7C	Control week1 #2 pvMT07	7D	0.1 µg/L week1 #1 pvMT07
Lane 8A	Initial #1 pvMT08	8B	Initial #3 pvMT08	8C	Control week1 #2 pvMT08	8D	0.1 μg/L week1 #1 pvMT08
Lane 9A	Initial #1 pvMT11	9B	Initial #3 pvMT11	9C	Control week1 #2 pvMT11	9D	0.1 μg/L week1 #1 pvMT11
Lane 10A	Initial #2 β-actin	10B	Control week1 #1 β-actin	10C	Control week1 #3 β-actin	10D	0.1 µg/L week1 #2 β-actin
Lane 11A	Initial #2 MT	11B	Control week1 #1 MT	11C	Control week1 #3 MT	11D	0.1 μg/L week1 #2 MT
Lane 12A	Initial #2 pvMT01	12B	Control week1 #1 pvMT01	12C	Control week1 #3 pvMT01	12D	0.1 μg/L week1 #2 pvMT01
Lane 13A	Initial #2 pvMT02	13B	Control week1 #1 pvMT02	13C	Control week1 #3 pvMT02	13D	0.1 µg/L week1 #2 pvMT02
Lane 14A	Initial #2 pvMT03	14B	Control week1 #1 pvMT03	14C	Control week1 #3 pvMT03	14D	0.1 µg/L week1 #2 pvMT03
Lane 15A	Initial #2 pvMT07	15B	Control week1 #1 pvMT07	15C	Control week1 #3 pvMT07	15D	0.1 µg/L week1 #2 pvMT07
Lane 16A	Initial #2 pvMT08	16B	Control week1 #1 pvMT08	16C	Control week1 #3 pvMT08	16D	0.1 µg/L week1 #2 pvMT08
Lane 17A	Initial #2 pvMT11	17B	Control week1 #1 pvMT11	17C	Control week1 #3 pvMT11	17D	0.1 µg/L week1 #2 pvMT11

Figure B2 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		1					
Lane M	100 base pair ladder	Lane	21 2 9/ 61 9/	Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.1 µg/L week1 #3 β-actin	2B	0.2 µg/L week1 #2 β-actin	2C	0.5 µg/L week1 #1 β-actin	2D	0.5 µg/L week1 #3 β-actin
Lane 3A	0.1 μg/L week1 #3 MT	3B	0.2 μg/L week1 #2 MT	3C	0.5 μg/L week1 #1 MT	3D	0.5 μg/L week1 #3 MT
Lane 4A	0.1 µg/L week1 #3 pvMT01	4B	0.2 μg/L week1 #2 pvMT01	4C	0.5 µg/L week1 #1 pvMT01	4D	0.5 μg/L week1 #3 pvMT01
Lane 5A	0.1 μg/L week1 #3 pvMT02	5B	0.2 μg/L week1 #2 pvMT02	5C	0.5 μg/L week1 #1 pvMT02	5D	0.5 µg/L week1 #3 pvMT02
Lane 6A	0.1 µg/L week1 #3 pvMT03	6B	0.2 μg/L week1 #2 pvMT03	6C	0.5 μg/L week1 #1 pvMT03	6D	0.5 µg/L week1 #3 pvMT03
Lane 7A	0.1 μg/L week1 #3 pvMT07	7B	0.2 μg/L week1 #2 pvMT07	7C	0.5 μg/L week1 #1 pvMT07	7D	0.5 μg/L week1 #3 pvMT07
Lane 8A	0.1 μg/L week1 #3 pvMT08	8B	0.2 μg/L week1 #2 pvMT08	8C	0.5 μg/L week1 #1 pvMT08	8D	0.5 µg/L week1 #3 pvMT08
Lane 9A	0.1 μg/L week1 #3 pvMT11	9B	0.2 μg/L week1 #2 pvMT11	9C	0.5 μg/L week1 #1 pvMT11	9D	0.5 μg/L week1 #3 pvMT11
Lane 10A	0.2 µg/L week1 #1 β-actin	10B	0.2 µg/L week1 #3 β-actin	10C	0.5 µg/L week1 #2 β-actin	10D	1.0 µg/L week1 #1 β-actin
Lane 11A	0.2 μg/L week1 #1 MT	11B	0.2 μg/L week1 #3 MT	11C	0.5 μg/L week1 #2 MT	11D	1.0 µg/L week1 #1 MT
Lane 12A	0.2 μg/L week1 #1 pvMT01	12B	0.2 µg/L week1 #3 pvMT01	12C	0.5 µg/L week1 #2 pvMT01	12D	1.0 μg/L week1 #1 pvMT01
Lane 13A	0.2 μg/L week1 #1 pvMT02	13B	0.2 µg/L week1 #3 pvMT02	13C	0.5 µg/L week1 #2 pvMT02	13D	1.0 µg/L week1 #1 pvMT02
Lane 14A	0.2 μg/L week1 #1 pvMT03	14B	0.2 µg/L week1 #3 pvMT03	14C	0.5 µg/L week1 #2 pvMT03	14D	1.0 μg/L week1 #1 pvMT03
Lane 15A	0.2 μg/L week1 #1 pvMT07	15B	0.2 μg/L week1 #3 pvMT07	15C	0.5 μg/L week1 #2 pvMT07	15D	1.0 μg/L week1 #1 pvMT07
Lane 16A	0.2 μg/L week1 #1 pvMT08	16B	0.2 µg/L week1 #3 pvMT08	16C	0.5 µg/L week1 #2 pvMT08	16D	1.0 μg/L week1 #1 pvMT08
Lane 17A	0.2 μg/L week1 #1 pvMT11	17B	0.2 μg/L week1 #3 pvMT11	17C	0.5 μg/L week1 #2 pvMT11	17D	1.0 μg/L week1 #1 pvMT11

Figure B3 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

	and the second se	-			a data da sera como como como		
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	1.0 µg/L week1 #2 β-actin	2B	Control week2 #1 β-actin	2C	Control week2 #1 β-actin	2D	0.1 µg/L week2 #2 β-actin
Lane 3A	1.0 μg/L week1 #2 MT	3B	Control week2 #1 MT	3C	Control week2 #1 MT	3D	0.1 μg/L week2 #2 MT
Lane 4A	1.0 μg/L week1 #2 pvMT01	4B	Control week2 #1 pvMT01	4C	Control week2 #1 pvMT01	4D	0.1 µg/L week2 #2 pvMT01
Lane 5A	1.0 μg/L week1 #2 pvMT02	5B	Control week2 #1 pvMT02	5C	Control week2 #1 pvMT02	5D	0.1 µg/L week2 #2 pvMT02
Lane 6A	1.0 μg/L week1 #2 pvMT03	6B	Control week2 #1 pvMT03	6C	Control week2 #1 pvMT03	6D	0.1 µg/L week2 #2 pvMT03
Lane 7A	1.0 μg/L week1 #2 pvMT07	7B	Control week2 #1 pvMT07	7C	Control week2 #1 pvMT07	7D	0.1 µg/L week2 #2 pvMT07
Lane 8A	1.0 μg/L week1 #2 pvMT08	8B	Control week2 #1 pvMT08	8C	Control week2 #1 pvMT08	8D	0.1 µg/L week2 #2 pvMT08
Lane 9A	1.0 μg/L week1 #2 pvMT11	9B	Control week2 #1 pvMT11	9C	Control week2 #1 pvMT11	9D	0.1 μg/L week2 #2 pvMT11
Lane 10A	1.0 µg/L week1 #3 β-actin	10B	Control week2 #1 β-actin	10C	0.1 µg/L week2 #1 β-actin	10D	0.1 µg/L week2 #3 β-actin
Lane 11A	1.0 μg/L week1 #3 MT	11B	Control week2 #1 MT	11C	0.1 μg/L week2 #1 MT	11D	0.1 μg/L week2 #3 MT
Lane 12A	1.0 μg/L week1 #3 pvMT01	12B	Control week2 #1 pvMT01	12C	0.1 μg/L week2 #1 pvMT01	12D	0.1 µg/L week2 #3 pvMT01
Lane 13A	1.0 μg/L week1 #3 pvMT02	13B	Control week2 #1 pvMT02	13C	0.1 μg/L week2 #1 pvMT02	13D	0.1 µg/L week2 #3 pvMT02
Lane 14A	1.0 μg/L week1 #3 pvMT03	14B	Control week2 #1 pvMT03	14C	0.1 μg/L week2 #1 pvMT03	14D	0.1 µg/L week2 #3 pvMT03
Lane 15A	1.0 μg/L week1 #3 pvMT07	15B	Control week2 #1 pvMT07	15C	0.1 μg/L week2 #1 pvMT07	15D	0.1 μg/L week2 #3 pvMT07
Lane 16A	1.0 μg/L week1 #3 pvMT08	16B	Control week2 #1 pvMT08	16C	0.1 μg/L week2 #1 pvMT08	16D	0.1 µg/L week2 #3 pvMT08
Lane 17A	1.0 μg/L week1 #3 pvMT11	17B	Control week2 #1 pvMT11	17C	0.1 μg/L week2 #1 pvMT11	17D	0.1 μg/L week2 #3 pvMT11

Figure B4 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-					
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.2 µg/L week2 #1 β-actin	2B	0.2 µg/L week2 #3 β-actin	2C	0.5 µg/L week2 #2 β-actin	2D	1.0 µg/L week2 #1 β-actin
Lane 3A	0.2 μg/L week2 #1 MT	3B	0.2 μg/L week2 #3 MT	3C	0.5 μg/L week2 #2 MT	3D	1.0 μg/L week2 #1 MT
Lane 4A	0.2 μg/L week2 #1 pvMT01	4B	0.2 μg/L week2 #3 pvMT01	4C	0.5 μg/L week2 #2 pvMT01	4D	1.0 μg/L week2 #1 pvMT01
Lane 5A	0.2 μg/L week2 #1 pvMT02	5B	0.2 μg/L week2 #3 pvMT02	5C	0.5 μg/L week2 #2 pvMT02	5D	1.0 μg/L week2 #1 pvMT02
Lane 6A	0.2 μg/L week2 #1 pvMT03	6B	0.2 μg/L week2 #3 pvMT03	6C	0.5 μg/L week2 #2 pvMT03	6D	1.0 μg/L week2 #1 pvMT03
Lane 7A	0.2 μg/L week2 #1 pvMT07	7B	0.2 μg/L week2 #3 pvMT07	7C	0.5 μg/L week2 #2 pvMT07	7D	1.0 μg/L week2 #1 pvMT07
Lane 8A	0.2 μg/L week2 #1 pvMT08	8B	0.2 μg/L week2 #3 pvMT08	8C	0.5 μg/L week2 #2 pvMT08	8D	1.0 μg/L week2 #1 pvMT08
Lane 9A	0.2 μg/L week2 #1 pvMT11	9B	0.2 μg/L week2 #3 pvMT11	9C	0.5 μg/L week2 #2 pvMT11	9D	1.0 μg/L week2 #1 pvMT11
Lane 10A	0.2 µg/L week2 #2 β-actin	10B	0.5 µg/L week2 #1 β-actin	10C	0.5 µg/L week2 #3 β-actin	10D	1.0 µg/L week2 #2 β-actin
Lane 11A	0.2 μg/L week2 #2 MT	11B	0.5 μg/L week2 #1 MT	11C	0.5 μg/L week2 #3 MT	11D	1.0 μg/L week2 #2 MT
Lane 12A	0.2 μg/L week2 #2 pvMT01	12B	0.5 μg/L week2 #1 pvMT01	12C	0.5 μg/L week2 #3 pvMT01	12D	1.0 μg/L week2 #2 pvMT01
Lane 13A	0.2 μg/L week2 #2 pvMT02	13B	0.5 μg/L week2 #1 pvMT02	13C	0.5 μg/L week2 #3 pvMT02	13D	1.0 μg/L week2 #2 pvMT02
Lane 14A	0.2 μg/L week2 #2 pvMT03	14B	0.5 μg/L week2 #1 pvMT03	14C	0.5 μg/L week2 #3 pvMT03	14D	1.0 µg/L week2 #2 pvMT03
Lane 15A	0.2 μg/L week2 #2 pvMT07	15B	0.5 μg/L week2 #1 pvMT07	15C	0.5 μg/L week2 #3 pvMT07	15D	1.0 μg/L week2 #2 pvMT07
Lane 16A	0.2 μg/L week2 #2 pvMT08	16B	0.5 µg/L week2 #1 pvMT08	16C	0.5 μg/L week2 #3 pvMT08	16D	1.0 μg/L week2 #2 pvMT08
Lane 17A	0.2 μg/L week2 #2 pvMT11	17B	0.5 μg/L week2 #1 pvMT11	17C	0.5 μg/L week2 #3 pvMT11	17D	1.0 μg/L week2 #2 pvMT11

Figure B5 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

	and the second se	-	a second as a second second				
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	1.0 µg/L week2 #3 β-actin	2B	Control week3 #2	2C	0.1 µg/L week3 #1 β-actin	2D	0.1 µg/L week3 #3 β-actin
Lane 3A	1.0 μg/L week2 #3 MT	3B	Control week3 #2 MT	3C	0.1 μg/L week3 #1 MT	3D	0.1 μg/L week3 #3 MT
Lane 4A	1.0 μg/L week2 #3 pvMT01	4B	Control week3 #2 pvMT01	4C	0.1 μg/L week3 #1 pvMT01	4D	0.1 µg/L week3 #3 pvMT01
Lane 5A	1.0 μg/L week2 #3 pvMT02	5B	Control week3 #2 pvMT02	5C	0.1 μg/L week3 #1 pvMT02	5D	0.1 µg/L week3 #3 pvMT02
Lane 6A	1.0 μg/L week2 #3 pvMT03	6B	Control week3 #2 pvMT03	6C	0.1 µg/L week3 #1 pvMT03	6D	0.1 µg/L week3 #3 pvMT03
Lane 7A	1.0 μg/L week2 #3 pvMT07	7B	Control week3 #2 pvMT07	7C	0.1 μg/L week3 #1 pvMT07	7D	0.1 μg/L week3 #3 pvMT07
Lane 8A	1.0 μg/L week2 #3 pvMT08	8B	Control week3 #2 pvMT08	8C	0.1 μg/L week3 #1 pvMT08	8D	0.1 µg/L week3 #3 pvMT08
Lane 9A	1.0 μg/L week2 #3 pvMT11	9B	Control week3 #2 pvMT11	9C	0.1 μg/L week3 #1 pvMT11	9D	0.1 μg/L week3 #3 pvMT11
Lane 10A	Control week3 #1 β-actin	10B	Control week3 #3	10C	0.1 µg/L week3 #2 β-actin	10D	0.2 µg/L week3 #1 β-actin
Lane 11A	Control week3 #1 MT	11B	Control week3 #3 MT	11C	0.1 μg/L week3 #2 MT	11D	0.2 μg/L week3 #1 MT
Lane 12A	Control week3 #1 pvMT01	12B	Control week3 #3 pvMT01	12C	0.1 µg/L week3 #2 pvMT01	12D	0.2 µg/L week3 #1 pvMT01
Lane 13A	Control week3 #1 pvMT02	13B	Control week3 #3 pvMT02	13C	0.1 µg/L week3 #2 pvMT02	13D	0.2 μg/L week3 #1 pvMT02
Lane 14A	Control week3 #1 pvMT03	14B	Control week3 #3 pvMT03	14C	0.1 µg/L week3 #2 pvMT03	14D	0.2 µg/L week3 #1 pvMT03
Lane 15A	Control week3 #1 pvMT07	15B	Control week3 #3 pvMT07	15C	0.1 μg/L week3 #2 pvMT07	15D	0.2 μg/L week3 #1 pvMT07
Lane 16A	Control week3 #1 pvMT08	16B	Control week3 #3 pvMT08	16C	0.1 µg/L week3 #2 pvMT08	16D	0.2 µg/L week3 #1 pvMT08
Lane 17A	Control week3 #1 pvMT11	17B	Control week3 #3 pvMT11	17C	0.1 μg/L week3 #2 pvMT11	17D	0.2 μg/L week3 #1 pvMT11

Figure B6 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.2 µg/L week3 #2 β-actin	2B	0.5 µg/L week3 #1 β-actin	2C	0.5 µg/L week3 #3 β-actin	2D	1.0 µg/L week3 #2 β-actin
Lane 3A	0.2 μg/L week3 #2 MT	3B	0.5 μg/L week3 #1 MT	3C	0.5 μg/L week3 #3 MT	3D	1.0 μg/L week3 #2 MT
Lane 4A	0.2 μg/L week3 #2 pvMT01	4B	0.5 μg/L week3 #1 pvMT01	4C	0.5 μg/L week3 #3 pvMT01	4D	1.0 µg/L week3 #2 pvMT01
Lane 5A	0.2 μg/L week3 #2 pvMT02	5B	0.5 μg/L week3 #1 pvMT02	5C	0.5 μg/L week3 #3 pvMT02	5D	1.0 µg/L week3 #2 pvMT02
Lane 6A	0.2 μg/L week3 #2 pvMT03	6B	0.5 μg/L week3 #1 pvMT03	6C	0.5 µg/L week3 #3 pvMT03	6D	1.0 µg/L week3 #2 pvMT03
Lane 7A	0.2 μg/L week3 #2 pvMT07	7B	0.5 μg/L week3 #1 pvMT07	7C	0.5 μg/L week3 #3 pvMT07	7D	1.0 μg/L week3 #2 pvMT07
Lane 8A	0.2 μg/L week3 #2 pvMT08	8B	0.5 µg/L week3 #1 pvMT08	8C	0.5 μg/L week3 #3 pvMT08	8D	1.0 μg/L week3 #2 pvMT08
Lane 9A	0.2 μg/L week3 #2 pvMT11	9B	0.5 μg/L week3 #1 pvMT11	9C	0.5 μg/L week3 #3 pvMT11	9D	1.0 µg/L week3 #2 pvMT11
Lane 10A	0.2 µg/L week3 #3 β-actin	10B	0.5 µg/L week3 #2 β-actin	10C	1.0 µg/L week3 #1 β-actin	10D	1.0 µg/L week3 #3 β-actin
Lane 11A	0.2 μg/L week3 #3 MT	11B	0.5 μg/L week3 #2 MT	11C	1.0 μg/L week3 #1 MT	11D	1.0 μg/L week3 #3 MT
Lane 12A	0.2 μg/L week3 #3 pvMT01	12B	0.5 μg/L week3 #2 pvMT01	12C	1.0 μg/L week3 #1 pvMT01	12D	1.0 µg/L week3 #3 pvMT01
Lane 13A	0.2 μg/L week3 #3 pvMT02	13B	0.5 µg/L week3 #2 pvMT02	13C	1.0 μg/L week3 #1 pvMT02	13D	1.0 μg/L week3 #3 pvMT02
Lane 14A	0.2 μg/L week3 #3 pvMT03	14B	0.5 µg/L week3 #2 pvMT03	14C	1.0 μg/L week3 #1 pvMT03	14D	1.0 µg/L week3 #3 pvMT03
Lane 15A	0.2 μg/L week3 #3 pvMT07	15B	0.5 μg/L week3 #2 pvMT07	15C	1.0 μg/L week3 #1 pvMT07	15D	1.0 µg/L week3 #3 pvMT07
Lane 16A	0.2 μg/L week3 #3 pvMT08	16B	0.5 µg/L week3 #2 pvMT08	16C	1.0 μg/L week3 #1 pvMT08	16D	1.0 µg/L week3 #3 pvMT08
Lane 17A	0.2 μg/L week3 #3 pvMT11	17B	0.5 μg/L week3 #2 pvMT11	17C	1.0 μg/L week3 #1 pvMT11	17D	1.0 μg/L week3 #3 pvMT11

Figure B7 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

	and the second se	-			a data da sera como como como		
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Control week4 #1 β-actin	2B	Control week4 #3	2C	0.1 µg/L week4 #2 β-actin	2D	0.2 µg/L week4 #1 β-actin
Lane 3A	Control week4 #1 MT	3B	Control week4 #3 MT	3C	0.1 μg/L week4 #2 MT	3D	0.2 μg/L week4 #1 MT
Lane 4A	Control week4 #1 pvMT01	4B	Control week4 #3 pvMT01	4C	0.1 μg/L week4 #2 pvMT01	4D	0.2 µg/L week4 #1 pvMT01
Lane 5A	Control week4 #1 pvMT02	5B	Control week4 #3 pvMT02	5C	0.1 μg/L week4 #2 pvMT02	5D	0.2 µg/L week4 #1 pvMT02
Lane 6A	Control week4 #1 pvMT03	6B	Control week4 #3 pvMT03	6C	0.1 μg/L week4 #2 pvMT03	6D	0.2 µg/L week4 #1 pvMT03
Lane 7A	Control week4 #1 pvMT07	7B	Control week4 #3 pvMT07	7C	0.1 μg/L week4 #2 pvMT07	7D	0.2 µg/L week4 #1 pvMT07
Lane 8A	Control week4 #1 pvMT08	8B	Control week4 #3 pvMT08	8C	0.1 μg/L week4 #2 pvMT08	8D	0.2 µg/L week4 #1 pvMT08
Lane 9A	Control week4 #1 pvMT11	9B	Control week4 #3 pvMT11	9C	0.1 μg/L week4 #2 pvMT11	9D	0.2 μg/L week4 #1 pvMT11
Lane 10A	Control week4 #2 β-actin	10B	0.1 µg/L week4 #1 β-actin	10C	0.1 µg/L week4 #3 β-actin	10D	0.2 µg/L week4 #2 β-actin
Lane 11A	Control week4 #2 MT	11B	0.1 μg/L week4 #1 MT	11C	0.1 μg/L week4 #3 MT	11D	0.2 μg/L week4 #2 MT
Lane 12A	Control week4 #2 pvMT01	12B	0.1 μg/L week4 #1 pvMT01	12C	0.1 μg/L week4 #3 pvMT01	12D	0.2 μg/L week4 #2 pvMT01
Lane 13A	Control week4 #2 pvMT02	13B	0.1 μg/L week4 #1 pvMT02	13C	0.1 μg/L week4 #3 pvMT02	13D	0.2 µg/L week4 #2 pvMT02
Lane 14A	Control week4 #2 pvMT03	14B	0.1 μg/L week4 #1 pvMT03	14C	0.1 μg/L week4 #3 pvMT03	14D	0.2 µg/L week4 #2 pvMT03
Lane 15A	Control week4 #2 pvMT07	15B	0.1 μg/L week4 #1 pvMT07	15C	0.1 μg/L week4 #3 pvMT07	15D	0.2 μg/L week4 #2 pvMT07
Lane 16A	Control week4 #2 pvMT08	16B	0.1 µg/L week4 #1 pvMT08	16C	0.1 µg/L week4 #3 pvMT08	16D	0.2 µg/L week4 #2 pvMT08
Lane 17A	Control week4 #2 pvMT11	17B	0.1 μg/L week4 #1 pvMT11	17C	0.1 μg/L week4 #3 pvMT11	17D	0.2 μg/L week4 #2 pvMT11

Figure B8 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-					
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.2 µg/L week4 #3 β-actin	2B	0.5 µg/L week4 #2 β-actin	2C	1.0 µg/L week4 #1 β-actin	2D	1.0 µg/L week4 #3 β-actin
Lane 3A	0.2 μg/L week4 #3 MT	3B	0.5 μg/L week4 #2 MT	3C	1.0 μg/L week4 #1 MT	3D	1.0 μg/L week4 #3 MT
Lane 4A	0.2 μg/L week4 #3 pvMT01	4B	0.5 μg/L week4 #2 pvMT01	4C	1.0 μg/L week4 #1 pvMT01	4D	1.0 μg/L week4 #3 pvMT01
Lane 5A	0.2 μg/L week4 #3 pvMT02	5B	0.5 μg/L week4 #2 pvMT02	5C	1.0 μg/L week4 #1 pvMT02	5D	1.0 µg/L week4 #3 pvMT02
Lane 6A	0.2 μg/L week4 #3 pvMT03	6B	0.5 μg/L week4 #2 pvMT03	6C	1.0 μg/L week4 #1 pvMT03	6D	1.0 µg/L week4 #3 pvMT03
Lane 7A	0.2 μg/L week4 #3 pvMT07	7B	0.5 μg/L week4 #2 pvMT07	7C	1.0 μg/L week4 #1 pvMT07	7D	1.0 µg/L week4 #3 pvMT07
Lane 8A	0.2 μg/L week4 #3 pvMT08	8B	0.5 μg/L week4 #2 pvMT08	8C	1.0 μg/L week4 #1 pvMT08	8D	1.0 µg/L week4 #3 pvMT08
Lane 9A	0.2 μg/L week4 #3 pvMT11	9B	0.5 μg/L week4 #2 pvMT11	9C	1.0 μg/L week4 #1 pvMT11	9D	1.0 µg/L week4 #3 pvMT11
Lane 10A	0.5 µg/L week4 #1 β-actin	10B	0.5 µg/L week4 #3 β-actin	10C	1.0 µg/L week4 #2 β-actin	10D	Control week5 #1 β-actin
Lane 11A	0.5 μg/L week4 #1 MT	11B	0.5 μg/L week4 #3 MT	11C	1.0 μg/L week4 #2 MT	11D	Control week5 #1 MT
Lane 12A	0.5 μg/L week4 #1 pvMT01	12B	0.5 μg/L week4 #3 pvMT01	12C	1.0 μg/L week4 #2 pvMT01	12D	Control week5 #1 pvMT01
Lane 13A	0.5 µg/L week4 #1 pvMT02	13B	0.5 µg/L week4 #3 pvMT02	13C	1.0 μg/L week4 #2 pvMT02	13D	Control week5 #1 pvMT02
Lane 14A	0.5 µg/L week4 #1 pvMT03	14B	0.5 µg/L week4 #3 pvMT03	14C	1.0 μg/L week4 #2 pvMT03	14D	Control week5 #1 pvMT03
Lane 15A	0.5 μg/L week4 #1 pvMT07	15B	0.5 μg/L week4 #3 pvMT07	15C	1.0 μg/L week4 #2 pvMT07	15D	Control week5 #1 pvMT07
Lane 16A	0.5 μg/L week4 #1 pvMT08	16B	0.5 µg/L week4 #3 pvMT08	16C	1.0 μg/L week4 #2 pvMT08	16D	Control week5 #1 pvMT08
Lane 17A	0.5 μg/L week4 #1 pvMT11	17B	0.5 μg/L week4 #3 pvMT11	17C	1.0 μg/L week4 #2 pvMT11	17D	Control week5 #1 pvMT11

Figure B9 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-					
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Control week5 #2 β-actin	2B	0.1 µg/L week5 #1 β-actin	2C	0.1 µg/L week5 #3 β-actin	2D	0.2 µg/L week5 #2 β-actin
Lane 3A	Control week5 #2 MT	3B	0.1 μg/L week5 #1 MT	3C	0.1 μg/L week5 #3 MT	3D	0.2 μg/L week5 #2 MT
Lane 4A	Control week5 #2 pvMT01	4B	0.1 μg/L week5 #1 pvMT01	4C	0.1 μg/L week5 #3 pvMT01	4D	0.2 μg/L week5 #2 pvMT01
Lane 5A	Control week5 #2 pvMT02	5B	0.1 μg/L week5 #1 pvMT02	5C	0.1 μg/L week5 #3 pvMT02	5D	0.2 μg/L week5 #2 pvMT02
Lane 6A	Control week5 #2 pvMT03	6B	0.1 μg/L week5 #1 pvMT03	6C	0.1 µg/L week5 #3 pvMT03	6D	0.2 μg/L week5 #2 pvMT03
Lane 7A	Control week5 #2 pvMT07	7B	0.1 μg/L week5 #1 pvMT07	7C	0.1 μg/L week5 #3 pvMT07	7D	0.2 μg/L week5 #2 pvMT07
Lane 8A	Control week5 #2 pvMT08	8B	0.1 μg/L week5 #1 pvMT08	8C	0.1 µg/L week5 #3 pvMT08	8D	0.2 μg/L week5 #2 pvMT08
Lane 9A	Control week5 #2 pvMT11	9B	0.1 μg/L week5 #1 pvMT11	9C	0.1 μg/L week5 #3 pvMT11	9D	0.2 μg/L week5 #2 pvMT11
Lane 10A	Control week5 #3 β-actin	10B	0.1 µg/L week5 #2 β-actin	10C	0.2 µg/L week5 #1 β-actin	10D	0.2 µg/L week5 #3 β-actin
Lane 11A	Control week5 #3 MT	11B	0.1 μg/L week5 #2 MT	11C	0.2 μg/L week5 #1 MT	11D	0.2 μg/L week5 #3 MT
Lane 12A	Control week5 #3 pvMT01	12B	0.1 μg/L week5 #2 pvMT01	12C	0.2 µg/L week5 #1 pvMT01	12D	0.2 μg/L week5 #3 pvMT01
Lane 13A	Control week5 #3 pvMT02	13B	0.1 μg/L week5 #2 pvMT02	13C	0.2 μg/L week5 #1 pvMT02	13D	0.2 μg/L week5 #3 pvMT02
Lane 14A	Control week5 #3 pvMT03	14B	0.1 μg/L week5 #2 pvMT03	14C	0.2 μg/L week5 #1 pvMT03	14D	0.2 µg/L week5 #3 pvMT03
Lane 15A	Control week5 #3 pvMT07	15B	0.1 μg/L week5 #2 pvMT07	15C	0.2 μg/L week5 #1 pvMT07	15D	0.2 μg/L week5 #3 pvMT07
Lane 16A	Control week5 #3 pvMT08	16B	0.1 μg/L week5 #2 pvMT08	16C	0.2 μg/L week5 #1 pvMT08	16D	0.2 µg/L week5 #3 pvMT08
Lane 17A	Control week5 #3 pvMT11	17B	0.1 μg/L week5 #2 pvMT11	17C	0.2 μg/L week5 #1 pvMT11	17D	0.2 μg/L week5 #3 pvMT11

Figure B10 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-					
Lane M	100 base pair ladder	Lane		Lane	121215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.5 µg/L week5 #1 β-actin	2B	0.5 µg/L week5 #3 β-actin	2C	1.0 µg/L week5 #2 β-actin	2D	Control week6 #1 β-actin
Lane 3A	0.5 μg/L week5 #1 MT	3B	0.5 μg/L week5 #3 MT	3C	1.0 μg/L week5 #2 MT	3D	Control week6 #1 MT
Lane 4A	0.5 μg/L week5 #1 pvMT01	4B	0.5 μg/L week5 #3 pvMT01	4C	1.0 μg/L week5 #2 pvMT01	4D	Control week6 #1 pvMT01
Lane 5A	0.5 μg/L week5 #1 pvMT02	5B	0.5 μg/L week5 #3 pvMT02	5C	1.0 μg/L week5 #2 pvMT02	5D	Control week6 #1 pvMT02
Lane 6A	0.5 μg/L week5 #1 pvMT03	6B	0.5 µg/L week5 #3 pvMT03	6C	1.0 μg/L week5 #2 pvMT03	6D	Control week6 #1 pvMT03
Lane 7A	0.5 μg/L week5 #1 pvMT07	7B	0.5 μg/L week5 #3 pvMT07	7C	1.0 μg/L week5 #2 pvMT07	7D	Control week6 #1 pvMT07
Lane 8A	0.5 μg/L week5 #1 pvMT08	8B	0.5 µg/L week5 #3 pvMT08	8C	1.0 μg/L week5 #2 pvMT08	8D	Control week6 #1 pvMT08
Lane 9A	0.5 μg/L week5 #1 pvMT11	9B	0.5 μg/L week5 #3 pvMT11	9C	1.0 μg/L week5 #2 pvMT11	9D	Control week6 #1 pvMT11
Lane 10A	0.5 µg/L week5 #2 β-actin	10B	1.0 µg/L week5 #1 β-actin	10C	1.0 µg/L week5 #3 β-actin	10D	Control week6 #2 β-actin
Lane 11A	0.5 μg/L week5 #2 MT	11B	1.0 μg/L week5 #1 MT	11C	1.0 μg/L week5 #3 MT	11D	Control week6 #2 MT
Lane 12A	0.5 μg/L week5 #2 pvMT01	12B	1.0 μg/L week5 #1 pvMT01	12C	1.0 μg/L week5 #3 pvMT01	12D	Control week6 #2 pvMT01
Lane 13A	0.5 μg/L week5 #2 pvMT02	13B	1.0 μg/L week5 #1 pvMT02	13C	1.0 μg/L week5 #3 pvMT02	13D	Control week6 #2 pvMT02
Lane 14A	0.5 μg/L week5 #2 pvMT03	14B	1.0 μg/L week5 #1 pvMT03	14C	1.0 μg/L week5 #3 pvMT03	14D	Control week6 #2 pvMT03
Lane 15A	0.5 μg/L week5 #2 pvMT07	15B	1.0 μg/L week5 #1 pvMT07	15C	1.0 μg/L week5 #3 pvMT07	15D	Control week6 #2 pvMT07
Lane 16A	0.5 μg/L week5 #2 pvMT08	16B	1.0 μg/L week5 #1 pvMT08	16C	1.0 μg/L week5 #3 pvMT08	16D	Control week6 #2 pvMT08
Lane 17A	0.5 μg/L week5 #2 pvMT11	17B	1.0 μg/L week5 #1 pvMT11	17C	1.0 μg/L week5 #3 pvMT11	17D	Control week6 #2 pvMT11

Figure B11 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane	121215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Control week6 #3 β-actin	2B	0.1 µg/L week6 #2 β-actin	2C	0.2 µg/L week6 #1 β-actin	2D	0.2 µg/L week6 #3 β-actin
Lane 3A	Control week6 #3 MT	3B	0.1 μg/L week6 #2 MT	3C	0.2 μg/L week6 #1 MT	3D	0.2 μg/L week6 #3 MT
Lane 4A	Control week6 #3 pvMT01	4B	0.1 μg/L week6 #2 pvMT01	4C	0.2 μg/L week6 #1 pvMT01	4D	0.2 μg/L week6 #3 pvMT01
Lane 5A	Control week6 #3 pvMT02	5B	0.1 μg/L week6 #2 pvMT02	5C	0.2 μg/L week6 #1 pvMT02	5D	0.2 μg/L week6 #3 pvMT02
Lane 6A	Control week6 #3 pvMT03	6B	0.1 μg/L week6 #2 pvMT03	6C	0.2 μg/L week6 #1 pvMT03	6D	0.2 µg/L week6 #3 pvMT03
Lane 7A	Control week6 #3 pvMT07	7B	0.1 μg/L week6 #2 pvMT07	7C	0.2 μg/L week6 #1 pvMT07	7D	0.2 μg/L week6 #3 pvMT07
Lane 8A	Control week6 #3 pvMT08	8B	0.1 µg/L week6 #2 pvMT08	8C	0.2 μg/L week6 #1 pvMT08	8D	0.2 μg/L week6 #3 pvMT08
Lane 9A	Control week6 #3 pvMT11	9B	0.1 μg/L week6 #2 pvMT11	9C	0.2 μg/L week6 #1 pvMT11	9D	0.2 μg/L week6 #3 pvMT11
Lane 10A	0.1 µg/L week6 #1 β-actin	10B	0.1 µg/L week6 #3 β-actin	10C	0.2 µg/L week6 #2 β-actin	10D	0.5 µg/L week6 #1 β-actin
Lane 11A	0.1 μg/L week6 #1 MT	11B	0.1 μg/L week6 #3 MT	11C	0.2 μg/L week6 #2 MT	11D	0.5 μg/L week6 #1 MT
Lane 12A	0.1 μg/L week6 #1 pvMT01	12B	0.1 µg/L week6 #3 pvMT01	12C	0.2 μg/L week6 #2 pvMT01	12D	0.5 μg/L week6 #1 pvMT01
Lane 13A	0.1 μg/L week6 #1 pvMT02	13B	0.1 µg/L week6 #3 pvMT02	13C	0.2 μg/L week6 #2 pvMT02	13D	0.5 μg/L week6 #1 pvMT02
Lane 14A	0.1 μg/L week6 #1 pvMT03	14B	0.1 µg/L week6 #3 pvMT03	14C	0.2 μg/L week6 #2 pvMT03	14D	0.5 µg/L week6 #1 pvMT03
Lane 15A	0.1 μg/L week6 #1 pvMT07	15B	0.1 µg/L week6 #3 pvMT07	15C	0.2 μg/L week6 #2 pvMT07	15D	0.5 μg/L week6 #1 pvMT07
Lane 16A	0.1 μg/L week6 #1 pvMT08	16B	0.1 µg/L week6 #3 pvMT08	16C	0.2 μg/L week6 #2 pvMT08	16D	0.5 μg/L week6 #1 pvMT08
Lane 17A	0.1 μg/L week6 #1 pvMT11	17B	0.1 μg/L week6 #3 pvMT11	17C	0.2 μg/L week6 #2 pvMT11	17D	0.5 μg/L week6 #1 pvMT11

Figure B12 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-		-			1
Lane M	100 base pair ladder	Lane		Lane	21225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.5 µg/L week6 #2 β-actin	2B	1.0 µg/L week6 #1 β-actin	2C	1.0 µg/L week6 #3 β-actin	2D	Control week7 #2 β-actin
Lane 3A	0.5 μg/L week6 #2 MT	3B	1.0 μg/L week6 #1 MT	3C	1.0 μg/L week6 #3 MT	3D	Control week7 #2 MT
Lane 4A	0.5 μg/L week6 #2 pvMT01	4B	1.0 μg/L week6 #1 pvMT01	4C	1.0 μg/L week6 #3 pvMT01	4D	Control week7 #2 pvMT01
Lane 5A	0.5 μg/L week6 #2 pvMT02	5B	1.0 μg/L week6 #1 pvMT02	5C	1.0 μg/L week6 #3 pvMT02	5D	Control week7 #2 pvMT02
Lane 6A	0.5 μg/L week6 #2 pvMT03	6B	1.0 μg/L week6 #1 pvMT03	6C	1.0 μg/L week6 #3 pvMT03	6D	Control week7 #2 pvMT03
Lane 7A	0.5 μg/L week6 #2 pvMT07	7B	1.0 μg/L week6 #1 pvMT07	7C	1.0 μg/L week6 #3 pvMT07	7D	Control week7 #2 pvMT07
Lane 8A	0.5 μg/L week6 #2 pvMT08	8B	1.0 μg/L week6 #1 pvMT08	8C	1.0 μg/L week6 #3 pvMT08	8D	Control week7 #2 pvMT08
Lane 9A	0.5 μg/L week6 #2 pvMT11	9B	1.0 μg/L week6 #1 pvMT11	9C	1.0 μg/L week6 #3 pvMT11	9D	Control week7 #2 pvMT11
Lane 10A	0.5 µg/L week6 #3 β-actin	10B	1.0 µg/L week6 #2 β-actin	10C	Control week7 #1 β-actin	10D	Control week7 #3 β-actin
Lane 11A	0.5 μg/L week6 #3 MT	11B	1.0 μg/L week6 #2 MT	11C	Control week7 #1 MT	11D	Control week7 #3 MT
Lane 12A	0.5 µg/L week6 #3 pvMT01	12B	1.0 μg/L week6 #2 pvMT01	12C	Control week7 #1 pvMT01	12D	Control week7 #3 pvMT01
Lane 13A	0.5 µg/L week6 #3 pvMT02	13B	1.0 μg/L week6 #2 pvMT02	13C	Control week7 #1 pvMT02	13D	Control week7 #3 pvMT02
Lane 14A	0.5 µg/L week6 #3 pvMT03	14B	1.0 μg/L week6 #2 pvMT03	14C	Control week7 #1 pvMT03	14D	Control week7 #3 pvMT03
Lane 15A	0.5 μg/L week6 #3 pvMT07	15B	1.0 μg/L week6 #2 pvMT07	15C	Control week7 #1 pvMT07	15D	Control week7 #3 pvMT07
Lane 16A	0.5 µg/L week6 #3 pvMT08	16B	1.0 μg/L week6 #2 pvMT08	16C	Control week7 #1 pvMT08	16D	Control week7 #3 pvMT08
Lane 17A	0.5 μg/L week6 #3 pvMT11	17B	1.0 μg/L week6 #2 pvMT11	17C	Control week7 #1 pvMT11	17D	Control week7 #3 pvMT11

Figure B13 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

		-				-	-
Lane M	100 base pair ladder	Lane		Lane	210.215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.1 µg/L week7 #1 β-actin	2B	0.1 µg/L week7 #3 β-actin	2C	0.2 µg/L week7 #2 β-actin	2D	1.0 μg/L week7 #1 β-actin
Lane 3A	0.1 μg/L week7 #1 MT	3B	0.1 μg/L week7 #3 MT	3C	0.2 μg/L week7 #2 MT	3D	1.0 μg/L week7 #1 MT
Lane 4A	0.1 μg/L week7 #1 pvMT01	4B	0.1 μg/L week7 #3 pvMT01	4C	0.2 μg/L week7 #2 pvMT01	4D	1.0 μg/L week7 #1 pvMT01
Lane 5A	0.1 μg/L week7 #1 pvMT02	5B	0.1 μg/L week7 #3 pvMT02	5C	0.2 μg/L week7 #2 pvMT02	5D	1.0 μg/L week7 #1 pvMT02
Lane 6A	0.1 μg/L week7 #1 pvMT03	6B	0.1 μg/L week7 #3 pvMT03	6C	0.2 μg/L week7 #2 pvMT03	6D	1.0 µg/L week7 #1 pvMT03
Lane 7A	0.1 μg/L week7 #1 pvMT07	7B	0.1 μg/L week7 #3 pvMT07	7C	0.2 μg/L week7 #2 pvMT07	7D	1.0 μg/L week7 #1 pvMT07
Lane 8A	0.1 μg/L week7 #1 pvMT08	8B	0.1 µg/L week7 #3 pvMT08	8C	0.2 μg/L week7 #2 pvMT08	8D	1.0 μg/L week7 #1 pvMT08
Lane 9A	0.1 μg/L week7 #1 pvMT11	9B	0.1 μg/L week7 #3 pvMT11	9C	0.2 μg/L week7 #2 pvMT11	9D	1.0 μg/L week7 #1 pvMT11
Lane 10A	0.1 µg/L week7 #2 β-actin	10B	0.2 µg/L week7 #1 β-actin	10C	0.2 µg/L week7 #3 β-actin	10D	1.0 µg/L week7 #2 β-actin
Lane 11A	0.1 μg/L week7 #2 MT	11B	0.2 μg/L week7 #1 MT	11C	0.2 μg/L week7 #3 MT	11D	1.0 μg/L week7 #2 MT
Lane 12A	0.1 µg/L week7 #2 pvMT01	12B	0.2 μg/L week7 #1 pvMT01	12C	0.2 μg/L week7 #3 pvMT01	12D	1.0 μg/L week7 #2 pvMT01
Lane 13A	0.1 µg/L week7 #2 pvMT02	13B	0.2 μg/L week7 #1 pvMT02	13C	0.2 μg/L week7 #3 pvMT02	13D	1.0 μg/L week7 #2 pvMT02
Lane 14A	0.1 µg/L week7 #2 pvMT03	14B	0.2 μg/L week7 #1 pvMT03	14C	0.2 μg/L week7 #3 pvMT03	14D	1.0 μg/L week7 #2 pvMT03
Lane 15A	0.1 μg/L week7 #2 pvMT07	15B	0.2 μg/L week7 #1 pvMT07	15C	0.2 μg/L week7 #3 pvMT07	15D	1.0 μg/L week7 #2 pvMT07
Lane 16A	0.1 µg/L week7 #2 pvMT08	16B	0.2 µg/L week7 #1 pvMT08	16C	0.2 μg/L week7 #3 pvMT08	16D	1.0 μg/L week7 #2 pvMT08
Lane 17A	0.1 μg/L week7 #2 pvMT11	17B	0.2 μg/L week7 #1 pvMT11	17C	0.2 μg/L week7 #3 pvMT11	17D	1.0 μg/L week7 #2 pvMT11

Figure B14 PCR product of MT, pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane	2. 146 - 7.17 - 31		
Lane 1A	Negative Control	1B	Positive Control β-actin		
Lane 2A	1.0 µg/L week7 #3 β-actin	2B	0.1 µg/L week8 #2 β-actin		
Lane 3A	1.0 μg/L week7 #3 MT	3B	0.1 μg/L week8 #2 MT		
Lane 4A	1.0 μg/L week7 #3 pvMT01	4B	0.1 μg/L week8 #2 pvMT01		
Lane 5A	1.0 μg/L week7 #3 pvMT02	5B	0.1 μg/L week8 #2 pvMT02		
Lane 6A	1.0 μg/L week7 #3 pvMT03	6B	0.1 μg/L week8 #2 pvMT03		
Lane 7A	1.0 μg/L week7 #3 pvMT07	7B	0.1 μg/L week8 #2 pvMT07		
Lane 8A	1.0 μg/L week7 #3 pvMT08	8B	0.1 μg/L week8 #2 pvMT08		
Lane 9A	1.0 μg/L week7 #3 pvMT11	9B	0.1 μg/L week8 #2 pvMT11		
Lane 10A	0.1 µg/L week8 #1 β-actin	10B	0.1 µg/L week8 #3 β-actin		
Lane 11A	0.1 μg/L week8 #1 MT	11B	0.1 μg/L week8 #3 MT		
Lane 12A	0.1 µg/L week8 #1 pvMT01	12B	0.1 μg/L week8 #3 pvMT01		
Lane 13A	0.1 µg/L week8 #1 pvMT02	13B	0.1 μg/L week8 #3 pvMT02		
Lane 14A	0.1 µg/L week8 #1 pvMT03	14B	0.1 µg/L week8 #3 pvMT03		
Lane 15A	0.1 µg/L week8 #1 pvMT07	15B	0.1 μg/L week8 #3 pvMT07		
Lane 16A	0.1 µg/L week8 #1 pvMT08	16B	0.1 μg/L week8 #3 pvMT08		
Lane 17A	0.1 μg/L week8 #1 pvMT11	17B	0.1 μg/L week8 #3 pvMT11		

Figure B15 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Control week1 #1 β-actin	2B	0.1 µg/L week1 #3 β-actin	2C	0.5 µg/L week1 #2 β-actin	2D	Control week2 #1 β-actin
Lane 3A	Control week1 #1 HSP71	3B	0.1 µg/L week1 #3 HSP71	3C	0.5 μg/L week1 #2 HSP71	3D	Control week2 #1 HSP71
Lane 4A	Control week1 #1 CYP450	4B	0.1 µg/L week1 #3 CYP450	4C	0.5 µg/L week1 #2 CYP450	4D	Control week2 #1 CYP450
Lane 5A	Control week1 #2 β-actin	5B	0.2 µg/L week1 #1 β-actin	5C	0.5 µg/L week1 #3 β-actin	5D	Control week2 #2 β-actin
Lane 6A	Control week1 #2 HSP71	6B	0.2 μg/L week1 #1 HSP71	6C	0.5 μg/L week1 #3 HSP71	6D	Control week2 #2 HSP71
Lane 7A	Control week1 #2 CYP450	7B	0.2 μg/L week1 #1 CYP450	7C	0.5 μg/L week1 #3 CYP450	7D	Control week2 #2 CYP450
Lane 8A	Control week1 #3 β-actin	8B	0.2 µg/L week1 #2 β-actin	8C	1.0 µg/L week1 #1 β-actin	8D	Control week2 #3 β-actin
Lane 9A	Control week1 #3 HSP71	9B	0.2 μg/L week1 #2 HSP71	9C	1.0 μg/L week1 #1 HSP71	9D	Control week2 #3 HSP71
Lane 10A	Control week1 #3 CYP450	10B	0.2 µg/L week1 #2 CYP450	10C	1.0 µg/L week1 #1 CYP450	10D	Control week2 #3 CYP450
Lane 11A	0.1 µg/L week1 #1 β-actin	11B	0.2 µg/L week1 #3 β-actin	11C	1.0 µg/L week1 #2 β-actin	11D	0.1 µg/L week2 #1 β-actin
Lane 12A	0.1 μg/L week1 #1 HSP71	12B	0.2 μg/L week1 #3 HSP71	12C	1.0 μg/L week1 #2 HSP71	12D	0.1 μg/L week2 #1 HSP71
Lane 13A	0.1 µg/L week1 #1 CYP450	13B	0.2 µg/L week1 #3 CYP450	13C	1.0 μg/L week1 #2 CYP450	13D	0.1 µg/L week2 #1 CYP450
Lane 14A	0.1 µg/L week1 #2 β-actin	14B	0.5 µg/L week1 #1 β-actin	14C	1.0 µg/L week1 #3 β-actin	14D	0.1 µg/L week2 #2 β-actin
Lane 15A	0.1 μg/L week1 #2 HSP71	15B	0.5 μg/L week1 #1 HSP71	15C	1.0 μg/L week1 #3 HSP71	15D	0.1 μg/L week2 #2 HSP71
Lane 16A	0.1 µg/L week1 #2 CYP450	16B	0.5 μg/L week1 #1 CYP450	16C	1.0 µg/L week1 #3 CYP450	16D	0.1 µg/L week2 #2 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B16 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.1 µg/L week2 #2 β-actin	2B	0.5 µg/L week2 #2 β-actin	2C	Control week3 #1 β-actin	2D	0.1 µg/L week3 #2 β-actin
Lane 3A	0.1 μg/L week2 #2 HSP71	3B	0.5 μg/L week2 #2 HSP71	3C	Control week3 #1 HSP71	3D	0.1 µg/L week3 #2 HSP71
Lane 4A	0.1 µg/L week2 #2 CYP450	4B	0.5 μg/L week2 #2 CYP450	4C	Control week3 #1 CYP450	4D	0.1 µg/L week3 #2 CYP450
Lane 5A	0.2 µg/L week2 #1 β-actin	5B	0.5 µg/L week2 #3 β-actin	5C	Control week3 #2 β-actin	5D	0.2 µg/L week3 #1 β-actin
Lane 6A	0.2 μg/L week2 #1 HSP71	6B	0.5 μg/L week2 #3 HSP71	6C	Control week3 #2 HSP71	6D	0.2 μg/L week3 #1 HSP71
Lane 7A	0.2 μg/L week2 #1 CYP450	7B	0.5 μg/L week2 #3 CYP450	7C	Control week3 #2 CYP450	7D	0.2 µg/L week3 #1 CYP450
Lane 8A	0.2 µg/L week2 #2 β-actin	8B	1.0 µg/L week2 #1 β-actin	8C	Control week3 #3 β-actin	8D	0.2 µg/L week3 #2 β-actin
Lane 9A	0.2 μg/L week2 #2 HSP71	9B	1.0 μg/L week2 #1 HSP71	9C	Control week3 #3 HSP71	9D	0.2 μg/L week3 #2 HSP71
Lane 10A	0.2 μg/L week2 #2 CYP450	10B	1.0 μg/L week2 #1 CYP450	10C	Control week3 #3 CYP450	10D	0.2 μg/L week3 #2 CYP450
Lane 11A	0.2 µg/L week2 #3 β-actin	11B	1.0 µg/L week2 #2 β-actin	11C	0.1 µg/L week3 #1 β-actin	11D	0.2 µg/L week3 #3 β-actin
Lane 12A	0.2 μg/L week2 #3 HSP71	12B	1.0 μg/L week2 #2 HSP71	12C	0.1 μg/L week3 #1 HSP71	12D	0.2 μg/L week3 #3 HSP71
Lane 13A	0.2 μg/L week2 #3 CYP450	13B	1.0 μg/L week2 #2 CYP450	13C	0.1 μg/L week3 #1 CYP450	13D	0.2 μg/L week3 #3 CYP450
Lane 14A	0.5 µg/L week2 #1 β-actin	14B	1.0 µg/L week2 #3 β-actin	14C	0.1 µg/L week3 #2 β-actin	14D	0.5 µg/L week3 #1 β-actin
Lane 15A	0.5 μg/L week2 #1 HSP71	15B	1.0 μg/L week2 #3 HSP71	15C	0.1 μg/L week3 #2 HSP71	15D	0.5 μg/L week3 #1 HSP71
Lane 16A	0.5 μg/L week2 #1 CYP450	16B	1.0 µg/L week2 #3 CYP450	16C	0.1 µg/L week3 #2 CYP450	16D	0.5 µg/L week3 #1 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	Blank

Figure B17 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

LanaM	100 h	T		Tarra		Tama	
Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.5 µg/L week3 #2 β-actin	2B	Control week4 #1 β-actin	-2C	0.1 µg/L week4 #2 β-actin	2D	0.5 µg/L week4 #2 β-actin
Lane 3A	0.5 μg/L week3 #2 HSP71	3B	Control week4 #1 HSP71	3C	0.1 μg/L week4 #2 HSP71	3D	0.5 µg/L week4 #2 HSP71
Lane 4A	0.5 μg/L week3 #2 CYP450	4B	Control week4 #1 CYP450	4C	0.1 μg/L week4 #2 CYP450	4D	0.5 μg/L week4 #2 CYP450
Lane 5A	0.5 µg/L week3 #3 β-actin	5B	Control week4 #2 β-actin	5C	0.2 µg/L week4 #1 β-actin	5D	0.5 µg/L week4 #3 β-actin
Lane 6A	0.5 μg/L week3 #3 HSP71	6B	Control week4 #2 HSP71	6C	0.2 μg/L week4 #1 HSP71	6D	0.5 μg/L week4 #3 HSP71
Lane 7A	0.5 μg/L week3 #3 CYP450	7B	Control week4 #2 CYP450	7C	0.2 μg/L week4 #1 CYP450	7D	0.5 μg/L week4 #3 CYP450
Lane 8A	1.0 µg/L week3 #1 β-actin	8B	Control week4 #3 β-actin	8C	0.2 µg/L week4 #2 β-actin	8D	1.0 µg/L week4 #1 β-actin
Lane 9A	1.0 μg/L week3 #1 HSP71	9B	Control week4 #3 HSP71	9C	0.2 μg/L week4 #2 HSP71	9D	1.0 μg/L week4 #1 HSP71
Lane 10A	1.0 µg/L week3 #1 CYP450	10B	Control week4 #3 CYP450	10C	0.2 μg/L week4 #2 CYP450	10D	1.0 µg/L week4 #1 CYP450
Lane 11A	1.0 µg/L week3 #2 β-actin	11B	0.1 µg/L week4 #1 β-actin	11C	0.2 µg/L week4 #3 β-actin	11D	1.0 µg/L week4 #2 β-actin
Lane 12A	1.0 μg/L week3 #2 HSP71	12B	0.1 μg/L week4 #1 HSP71	12C	0.2 μg/L week4 #3 HSP71	12D	1.0 μg/L week4 #2 HSP71
Lane 13A	1.0 μg/L week3 #2 CYP450	13B	0.1 μg/L week4 #1 CYP450	13C	0.2 μg/L week4 #3 CYP450	13D	1.0 µg/L week4 #2 CYP450
Lane 14A	1.0 µg/L week3 #3 β-actin	14B	0.1 µg/L week4 #2 β-actin	14C	0.5 µg/L week4 #1 β-actin	14D	1.0 µg/L week4 #3 β-actin
Lane 15A	1.0 µg/L week3 #3 HSP71	15B	0.1 μg/L week4 #2 HSP71	15C	0.5 μg/L week4 #1 HSP71	15D	1.0 µg/L week4 #3 HSP71
Lane 16A	1.0 µg/L week3 #3 CYP450	16B	0.1 µg/L week4 #2 CYP450	16C	0.5 μg/L week4 #1 CYP450	16D	1.0 µg/L week4 #3 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	Blank

Figure B18 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	Control week5 #1 β-actin	2B	0.1 µg/L week5 #2 β-actin	2C	0.5 µg/L week5 #2 β-actin	2D	Control week6 #1 β-actin
Lane 3A	Control week5 #1 HSP71	3B	0.1 μg/L week5 #2 HSP71	3C	0.5 μg/L week5 #2 HSP71	3D	Control week6 #1 HSP71
Lane 4A	Control week5 #1 CYP450	4B	0.1 μg/L week5 #2 CYP450	4C	0.5 μg/L week5 #2 CYP450	4D	Control week6 #1 CYP450
Lane 5A	Control week5 #2 β-actin	5B	0.2 µg/L week5 #1 β-actin	5C	0.5 µg/L week5 #3 β-actin	5D	Control week6 #2 β-actin
Lane 6A	Control week5 #2 HSP71	6B	0.2 μg/L week5 #1 HSP71	6C	0.5 μg/L week5 #3 HSP71	6D	Control week6 #2 HSP71
Lane 7A	Control week5 #2 CYP450	7B	0.2 μg/L week5 #1 CYP450	7C	0.5 μg/L week5 #3 CYP450	7D	Control week6 #2 CYP450
Lane 8A	Control week5 #3 β-actin	8B	0.2 µg/L week5 #2 β-actin	8C	1.0 µg/L week5 #1 β-actin	8D	Control week6 #3 β-actin
Lane 9A	Control week5 #3 HSP71	9B	0.2 μg/L week5 #2 HSP71	9C	1.0 μg/L week5 #1 HSP71	9D	Control week6 #3 HSP71
Lane 10A	Control week5 #3 CYP450	10B	0.2 μg/L week5 #2 CYP450	10C	1.0 μg/L week5 #1 CYP450	10D	Control week6 #3 CYP450
Lane 11A	0.1 µg/L week5 #1 β-actin	11B	0.2 µg/L week5 #3 β-actin	11C	1.0 µg/L week5 #2 β-actin	11D	0.1 µg/L week6 #1 β-actin
Lane 12A	0.1 μg/L week5 #1 HSP71	12B	0.2 μg/L week5 #3 HSP71	12C	1.0 μg/L week5 #2 HSP71	12D	0.1 μg/L week6 #1 HSP71
Lane 13A	0.1 μg/L week5 #1 CYP450	13B	0.2 μg/L week5 #3 CYP450	13C	1.0 μg/L week5 #2 CYP450	13D	0.1 µg/L week6 #1 CYP450
Lane 14A	0.1 µg/L week5 #2 β-actin	14B	0.5 µg/L week5 #1 β-actin	14C	1.0 µg/L week5 #3 β-actin	14D	0.1 µg/L week6 #2 β-actin
Lane 15A	0.1 μg/L week5 #2 HSP71	15B	0.5 μg/L week5 #1 HSP71	15C	1.0 μg/L week5 #3 HSP71	15D	0.1 μg/L week6 #2 HSP71
Lane 16A	0.1 µg/L week5 #2 CYP450	16B	0.5 μg/L week5 #1 CYP450	16C	1.0 μg/L week5 #3 CYP450	16D	0.1 µg/L week6 #2 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B19 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	0.1 µg/L week6 #2 β-actin	2B	0.5 µg/L week6 #2 β-actin	2C	Control week7 #1 β-actin	2D	0.1 µg/L week7 #2 β-actin
Lane 3A	0.1 μg/L week6 #2 HSP71	3B	0.5 μg/L week6 #2 HSP71	3C	Control week7 #1 HSP71	3D	0.1 μg/L week7 #2 HSP71
Lane 4A	0.1 µg/L week6 #2 CYP450	4B	0.5 μg/L week6 #2 CYP450	4C	Control week7 #1 CYP450	4D	0.1 μg/L week7 #2 CYP450
Lane 5A	0.2 µg/L week6 #1 β-actin	5B	0.5 µg/L week6 #3 β-actin	5C	Control week7 #2 β-actin	5D	0.5 µg/L week7 #1 β-actin
Lane 6A	0.2 μg/L week6 #1 HSP71	6B	0.5 μg/L week6 #3 HSP71	6C	Control week7 #2 HSP71	6D	0.5 μg/L week7 #1 HSP71
Lane 7A	0.2 μg/L week6 #1 CYP450	7B	0.5 μg/L week6 #3 CYP450	7C	Control week7 #2 CYP450	7D	0.5 μg/L week7 #1 CYP450
Lane 8A	0.2 µg/L week6 #2 β-actin	8B	1.0 µg/L week6 #1 β-actin	8C	Control week7 #3 β-actin	8D	0.5 µg/L week7 #2 β-actin
Lane 9A	0.2 μg/L week6 #2 HSP71	9B	1.0 μg/L week6 #1 HSP71	9C	Control week7 #3 HSP71	9D	0.5 μg/L week7 #2 HSP71
Lane 10A	0.2 μg/L week6 #2 CYP450	10B	1.0 μg/L week6 #1 CYP450	10C	Control week7 #3 CYP450	10D	0.5 μg/L week7 #2 CYP450
Lane 11A	0.2 µg/L week6 #3 β-actin	11B	1.0 µg/L week6 #2 β-actin	11C	0.1 µg/L week7 #1 β-actin	11D	0.5 µg/L week7 #3 β-actin
Lane 12A	0.2 μg/L week6 #3 HSP71	12B	1.0 μg/L week6 #2 HSP71	12C	0.1 μg/L week7 #1 HSP71	12D	0.5 μg/L week7 #3 HSP71
Lane 13A	0.2 μg/L week6 #3 CYP450	13B	1.0 μg/L week6 #2 CYP450	13C	0.1 μg/L week7 #1 CYP450	13D	0.5 μg/L week7 #3 CYP450
Lane 14A	0.5 µg/L week6 #1 β-actin	14B	1.0 µg/L week6 #3 β-actin	14C	0.1 µg/L week7 #2 β-actin	14D	1.0 µg/L week7 #1 β-actin
Lane 15A	0.5 μg/L week6 #1 HSP71	15B	1.0 μg/L week6 #3 HSP71	15C	0.1 μg/L week7 #2 HSP71	15D	1.0 μg/L week7 #1 HSP71
Lane 16A	0.5 μg/L week6 #1 CYP450	16B	1.0 µg/L week6 #3 CYP450	16C	0.1 μg/L week7 #2 CYP450	16D	1.0 µg/L week7 #1 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B20 PCR products of HSP71 and CYP4 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0% agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane			
Lane 1A	Negative Control	1B	Positive Control β-actin		
Lane 2A	1.0 µg/L week7 #3 β-actin	2B	Initial #2 β-actin		
Lane 3A	1.0 μg/L week7 #3 HSP71	3B	Initial #2 HSP71		
Lane 4A	1.0 μg/L week7 #3 CYP450	4B	Initial #2 CYP450		
Lane 5A	0.1 µg/L week8 #1 β-actin	5B	Initial #3 β-actin		
Lane 6A	0.1 µg/L week8 #1 HSP71	6B	Initial #3 HSP71		
Lane 7A	0.1 µg/L week8 #1 CYP450	7B	Initial #3 CYP450		
Lane 8A	0.1 µg/L week8 #2 β-actin				
Lane 9A	0.1 μg/L week8 #2 HSP71	_			
Lane 10A	0.1 µg/L week8 #2 CYP450				
Lane 11A	0.1 µg/L week8 #2 β-actin				
Lane 12A	0.1 μg/L week8 #2 HSP71				
Lane 13A	0.1 µg/L week8 #2 CYP450	2			
Lane 14A	Initial #1 β-actin			814	
Lane 15A	Initial #1 HSP71				
Lane 16A	Initial #1 CYP450				
Lane 17A	Blank		6 m		

ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

PCR product of MTs, HSP71 and CYP4 gene (Field study)

Figure B21 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT07 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane	6	Lane	6. 0./	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.A 5M 30D # 1 β-actin	2B	St.A 5M 30D # 3 β-actin	2C	St.A 20M 30D # 2 β-actin	2D	St.A 40M 30D # 1 β-actin
Lane 3A	St.A 5M 30D # 1 MT	3B	St.A 5M 30D # 3 MT	3C	St.A 20M 30D # 2 MT	3D	St.A 40M 30D # 1 MT
Lane 4A	St.A 5M 30D # 1 pvMT01	4B	St.A 5M 30D # 3 pvMT01	4C	St.A 20M 30D # 2 pvMT01	4D	St.A 40M 30D # 1 pvMT01
Lane 5A	St.A 5M 30D # 1 pvMT02	5B	St.A 5M 30D # 3 pvMT02	5C	St.A 20M 30D # 2 pvMT02	5D	St.A 40M 30D # 1 pvMT02
Lane 6A	St.A 5M 30D # 1 pvMT03	6B	St.A 5M 30D # 3 pvMT03	6C	St.A 20M 30D # 2 pvMT03	6D	St.A 40M 30D # 1 pvMT03
Lane 7A	St.A 5M 30D # 1 pvMT07	7B	St.A 5M 30D # 3 pvMT07	7C	St.A 20M 30D # 2 pvMT07	7D	St.A 40M 30D # 1 pvMT07
Lane 8A	St.A 5M 30D # 1 pvMT08	8B	St.A 5M 30D # 3 pvMT08	8C	St.A 20M 30D # 2 pvMT08	8D	St.A 40M 30D # 1 pvMT08
Lane 9A	St.A 5M 30D # 1 pvMT11	9B	St.A 5M 30D # 3 pvMT11	9C	St.A 20M 30D # 2 pvMT11	9D	St.A 40M 30D # 1 pvMT11
Lane 10A	St.A 5M 30D # 2 β-actin	10B	St.A 20M 30D # 1 β-actin	10C	St.A 20M 30D # 3 β-actin	10D	St.A 40M 30D # 2 β-actin
Lane 11A	St.A 5M 30D # 2 MT	11B	St.A 20M 30D # 1 MT	11C	St.A 20M 30D # 3 MT	11D	St.A 40M 30D # 2 MT
Lane 12A	St.A 5M 30D # 2 pvMT01	12B	St.A 20M 30D # 1 pvMT01	12C	St.A 20M 30D # 3 pvMT01	12D	St.A 40M 30D # 2 pvMT01
Lane 13A	St.A 5M 30D # 2 pvMT02	13B	St.A 20M 30D # 1 pvMT02	13C	St.A 20M 30D # 3 pvMT02	13D	St.A 40M 30D # 2 pvMT02
Lane 14A	St.A 5M 30D # 2 pvMT03	14B	St.A 20M 30D # 1 pvMT03	14C	St.A 20M 30D # 3 pvMT03	14D	St.A 40M 30D # 2 pvMT03
Lane 15A	St.A 5M 30D # 2 pvMT07	15B	St.A 20M 30D # 1 pvMT07	15C	St.A 20M 30D # 3 pvMT07	15D	St.A 40M 30D # 2 pvMT07
Lane 16A	St.A 5M 30D # 2 pvMT08	16B	St.A 20M 30D # 1 pvMT08	16C	St.A 20M 30D # 3 pvMT08	16D	St.A 40M 30D # 2 pvMT08
Lane 17A	St.A 5M 30D # 2 pvMT11	17B	St.A 20M 30D # 1 pvMT11	17C	St.A 20M 30D # 3 pvMT11	17D	St.A 40M 30D # 2 pvMT11

Figure B22 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT07 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

							-
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.A 40M 30D # 3 β-actin	2B	St.A 5M 60D # 2 β-actin	2C	St.A 20M 60D # 1 β-actin	2D	St.A 20M 60D # 3 β-actin
Lane 3A	St.A 40M 30D # 3 MT	3B	St.A 5M 60D # 2 MT	3C	St.A 20M 60D # 1 MT	3D	St.A 20M 60D # 3 MT
Lane 4A	St.A 40M 30D # 3 pvMT01	4B	St.A 5M 60D # 2 pvMT01	4C	St.A 20M 60D # 1 pvMT01	4D	St.A 20M 60D # 3 pvMT01
Lane 5A	St.A 40M 30D # 3 pvMT02	5B	St.A 5M 60D # 2 pvMT02	5C	St.A 20M 60D # 1 pvMT02	5D	St.A 20M 60D # 3 pvMT02
Lane 6A	St.A 40M 30D # 3 pvMT03	6B	St.A 5M 60D # 2 pvMT03	6C	St.A 20M 60D # 1 pvMT03	6D	St.A 20M 60D # 3 pvMT03
Lane 7A	St.A 40M 30D # 3 pvMT07	7B	St.A 5M 60D # 2 pvMT07	7C	St.A 20M 60D # 1 pvMT07	7D	St.A 20M 60D # 3 pvMT07
Lane 8A	St.A 40M 30D # 3 pvMT08	8B	St.A 5M 60D # 2 pvMT08	8C	St.A 20M 60D # 1 pvMT08	8D	St.A 20M 60D # 3 pvMT08
Lane 9A	St.A 40M 30D # 3 pvMT11	9B	St.A 5M 60D # 2 pvMT11	9C	St.A 20M 60D # 1 pvMT11	9D	St.A 20M 60D # 3 pvMT11
Lane 10A	St.A 5M 60D # 1 β-actin	10B	St.A 5M 60D # 3 β-actin	10C	St.A 20M 60D # 2 β-actin	10D	St.A 40M 60D # 1 β-actin
Lane 11A	St.A 5M 60D # 1 MT	11B	St.A 5M 60D # 3 MT	11C	St.A 20M 60D # 2 MT	11D	St.A 40M 60D # 1 MT
Lane 12A	St.A 5M 60D # 1 pvMT01	12B	St.A 5M 60D # 3 pvMT01	12C	St.A 20M 60D # 2 pvMT01	12D	St.A 40M 60D # 1 pvMT01
Lane 13A	St.A 5M 60D # 1 pvMT02	13B	St.A 5M 60D # 3 pvMT02	13C	St.A 20M 60D # 2 pvMT02	13D	St.A 40M 60D # 1 pvMT02
Lane 14A	St.A 5M 60D # 1 pvMT03	14B	St.A 5M 60D # 3 pvMT03	14C	St.A 20M 60D # 2 pvMT03	14D	St.A 40M 60D # 1 pvMT03
Lane 15A	St.A 5M 60D # 1 pvMT07	15B	St.A 5M 60D # 3 pvMT07	15C	St.A 20M 60D # 2 pvMT07	15D	St.A 40M 60D # 1 pvMT07
Lane 16A	St.A 5M 60D # 1 pvMT08	16B	St.A 5M 60D # 3 pvMT08	16C	St.A 20M 60D # 2 pvMT08	16D	St.A 40M 60D # 1 pvMT08
Lane 17A	St.A 5M 60D # 1 pvMT11	17B	St.A 5M 60D # 3 pvMT11	17C	St.A 20M 60D # 2 pvMT11	17D	St.A 40M 60D # 1 pvMT11

Figure B23 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT07 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

		_	0.00.0100.0	-			
Lane M	100 base pair ladder	Lane		Lane	211215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.A 40M 60D # 2 β-actin	2B	St.A 5M 90D #1 β-actin	2C	St.A 5M 90D # 3 β-actin	2D	St.A 20M 90D # 2 β-actin
Lane 3A	St.A 40M 60D # 2 MT	3B	St.A 5M 90D #1 MT	3C	St.A 5M 90D # 3 MT	3D	St.A 20M 90D # 2 MT
Lane 4A	St.A 40M 60D # 2 pvMT01	4B	St.A 5M 90D #1 pvMT01	4C	St.A 5M 90D # 3 pvMT01	4D	St.A 20M 90D # 2 pvMT01
Lane 5A	St.A 40M 60D # 2 pvMT02	5B	St.A 5M 90D #1 pvMT02	5C	St.A 5M 90D # 3 pvMT02	5D	St.A 20M 90D # 2 pvMT02
Lane 6A	St.A 40M 60D # 2 pvMT03	6B	St.A 5M 90D #1 pvMT03	6C	St.A 5M 90D # 3 pvMT03	6D	St.A 20M 90D # 2 pvMT03
Lane 7A	St.A 40M 60D # 2 pvMT07	7B	St.A 5M 90D #1 pvMT07	7C	St.A 5M 90D # 3 pvMT07	7D	St.A 20M 90D # 2 pvMT07
Lane 8A	St.A 40M 60D # 2 pvMT08	8B	St.A 5M 90D #1 pvMT08	8C	St.A 5M 90D # 3 pvMT08	8D	St.A 20M 90D # 2 pvMT08
Lane 9A	St.A 40M 60D # 2 pvMT11	9B	St.A 5M 90D #1 pvMT11	9C	St.A 5M 90D # 3 pvMT11	9D	St.A 20M 90D # 2 pvMT11
Lane 10A	St.A 40M 60D # 3 β-actin	10B	St.A 5M 90D # 2 β-actin	10C	St.A 20M 90D #1 β-actin	10D	St.A 20M 90D # 3 β-actin
Lane 11A	St.A 40M 60D # 3 MT	11B	St.A 5M 90D # 2 MT	11C	St.A 20M 90D # 1 MT	11D	St.A 20M 90D # 3 MT
Lane 12A	St.A 40M 60D # 3 pvMT01	12B	St.A 5M 90D # 2 pvMT01	12C	St.A 20M 90D # 1 pvMT01	12D	St.A 20M 90D # 3 pvMT01
Lane 13A	St.A 40M 60D # 3 pvMT02	13B	St.A 5M 90D # 2 pvMT02	13C	St.A 20M 90D # 1 pvMT02	13D	St.A 20M 90D # 3 pvMT02
Lane 14A	St.A 40M 60D # 3 pvMT03	14B	St.A 5M 90D # 2 pvMT03	14C	St.A 20M 90D # 1 pvMT03	14D	St.A 20M 90D # 3 pvMT03
Lane 15A	St.A 40M 60D # 3 pvMT07	15B	St.A 5M 90D # 2 pvMT07	15C	St.A 20M 90D # 1 pvMT07	15D	St.A 20M 90D # 3 pvMT07
Lane 16A	St.A 40M 60D # 3 pvMT08	16B	St.A 5M 90D # 2 pvMT08	16C	St.A 20M 90D # 1 pvMT08	16D	St.A 20M 90D # 3 pvMT08
Lane 17A	St.A 40M 60D # 3 pvMT11	17B	St.A 5M 90D # 2 pvMT11	17C	St.A 20M 90D # 1 pvMT11	17D	St.A 20M 90D # 3 pvMT11

Figure B24 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.B 5M 30D # 1 β-actin	2B	St.B 5M 30D # 3 β-actin	2C	St.B 20M 30D # 2 β-actin	2D	St.B 40M 30D # 1 β-actin
Lane 3A	St.B 5M 30D # 1 MT	3B	St.B 5M 30D # 3 MT	3C	St.B 20M 30D # 2 MT	3D	St.B 40M 30D # 1 MT
Lane 4A	St.B 5M 30D # 1 pvMT01	4B	St.B 5M 30D # 3 pvMT01	4C	St.B 20M 30D # 2 pvMT01	4D	St.B 40M 30D # 1 pvMT01
Lane 5A	St.B 5M 30D # 1 pvMT02	5B	St.B 5M 30D # 3 pvMT02	5C	St.B 20M 30D # 2 pvMT02	5D	St.B 40M 30D # 1 pvMT02
Lane 6A	St.B 5M 30D # 1 pvMT03	6B	St.B 5M 30D # 3 pvMT03	6C	St.B 20M 30D # 2 pvMT03	6D	St.B 40M 30D # 1 pvMT03
Lane 7A	St.B 5M 30D # 1 pvMT07	7B	St.B 5M 30D # 3 pvMT07	7C	St.B 20M 30D # 2 pvMT07	7D	St.B 40M 30D # 1 pvMT07
Lane 8A	St.B 5M 30D # 1 pvMT08	8B	St.B 5M 30D # 3 pvMT08	8C	St.B 20M 30D # 2 pvMT08	8D	St.B 40M 30D # 1 pvMT08
Lane 9A	St.B 5M 30D # 1 pvMT11	9B	St.B 5M 30D # 3 pvMT11	9C	St.B 20M 30D # 2 pvMT11	9D	St.B 40M 30D # 1 pvMT11
Lane 10A	St.B 5M 30D # 2 β-actin	10B	St.B 20M 30D # 1 β-actin	10C	St.B 20M 30D # 3 β-actin	10D	St.B 40M 30D # 2 β-actin
Lane 11A	St.B 5M 30D # 2 MT	11B	St.B 20M 30D # 1 MT	11C	St.B 20M 30D # 3 MT	11D	St.B 40M 30D # 2 MT
Lane 12A	St.B 5M 30D # 2 pvMT01	12B	St.B 20M 30D # 1 pvMT01	12C	St.B 20M 30D # 3 pvMT01	12D	St.B 40M 30D # 2 pvMT01
Lane 13A	St.B 5M 30D # 2 pvMT02	13B	St.B 20M 30D # 1 pvMT02	13C	St.B 20M 30D # 3 pvMT02	13D	St.B 40M 30D # 2 pvMT02
Lane 14A	St.B 5M 30D # 2 pvMT03	14B	St.B 20M 30D # 1 pvMT03	14C	St.B 20M 30D # 3 pvMT03	14D	St.B 40M 30D # 2 pvMT03
Lane 15A	St.B 5M 30D # 2 pvMT07	15B	St.B 20M 30D # 1 pvMT07	15C	St.B 20M 30D # 3 pvMT07	15D	St.B 40M 30D # 2 pvMT07
Lane 16A	St.B 5M 30D # 2 pvMT08	16B	St.B 20M 30D # 1 pvMT08	16C	St.B 20M 30D # 3 pvMT08	16D	St.B 40M 30D # 2 pvMT08
Lane 17A	St.B 5M 30D # 2 pvMT11	17B	St.B 20M 30D # 1 pvMT11	17C	St.B 20M 30D # 3 pvMT11	17D	St.B 40M 30D # 2 pvMT11

Figure B25 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

					and the second sec		
Lane M	100 base pair ladder	Lane		Lane	1210215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.B 40M 30D # 3 β-actin	2B	St.B 5M 60D # 2 β-actin	2C	St.B 20M 60D # 1 β-actin	2D	St.B 20M 60D # 3 β-actin
Lane 3A	St.B 40M 30D # 3 MT	3B	St.B 5M 60D # 2 MT	3C	St.B 20M 60D # 1 MT	3D	St.B 20M 60D # 3 MT
Lane 4A	St.B 40M 30D # 3 pvMT01	4B	St.B 5M 60D # 2 pvMT01	4C	St.B 20M 60D # 1 pvMT01	4D	St.B 20M 60D # 3 pvMT01
Lane 5A	St.B 40M 30D # 3 pvMT02	5B	St.B 5M 60D # 2 pvMT02	5C	St.B 20M 60D # 1 pvMT02	5D	St.B 20M 60D # 3 pvMT02
Lane 6A	St.B 40M 30D # 3 pvMT03	6B	St.B 5M 60D # 2 pvMT03	6C	St.B 20M 60D # 1 pvMT03	6D	St.B 20M 60D # 3 pvMT03
Lane 7A	St.B 40M 30D # 3 pvMT07	7B	St.B 5M 60D # 2 pvMT07	7C	St.B 20M 60D # 1 pvMT07	7D	St.B 20M 60D # 3 pvMT07
Lane 8A	St.B 40M 30D # 3 pvMT08	8B	St.B 5M 60D # 2 pvMT08	8C	St.B 20M 60D # 1 pvMT08	8D	St.B 20M 60D # 3 pvMT08
Lane 9A	St.B 40M 30D # 3 pvMT11	9B	St.B 5M 60D # 2 pvMT11	9C	St.B 20M 60D # 1 pvMT11	9D	St.B 20M 60D # 3 pvMT11
Lane 10A	St.B 5M 60D # 1 β-actin	10B	St.B 5M 60D # 3 β-actin	10C	St.B 20M 60D # 2 β-actin	10D	St.B 40M 60D # 1 β-actin
Lane 11A	St.B 5M 60D # 1 MT	11B	St.B 5M 60D # 3 MT	11C	St.B 20M 60D # 2 MT	11D	St.B 40M 60D # 1 MT
Lane 12A	St.B 5M 60D # 1 pvMT01	12B	St.B 5M 60D # 3 pvMT01	12C	St.B 20M 60D # 2 pvMT01	12D	St.B 40M 60D # 1 pvMT01
Lane 13A	St.B 5M 60D # 1 pvMT02	13B	St.B 5M 60D # 3 pvMT02	13C	St.B 20M 60D # 2 pvMT02	13D	St.B 40M 60D # 1 pvMT02
Lane 14A	St.B 5M 60D # 1 pvMT03	14B	St.B 5M 60D # 3 pvMT03	14C	St.B 20M 60D # 2 pvMT03	14D	St.B 40M 60D # 1 pvMT03
Lane 15A	St.B 5M 60D # 1 pvMT07	15B	St.B 5M 60D # 3 pvMT07	15C	St.B 20M 60D # 2 pvMT07	15D	St.B 40M 60D # 1 pvMT07
Lane 16A	St.B 5M 60D # 1 pvMT08	16B	St.B 5M 60D # 3 pvMT08	16C	St.B 20M 60D # 2 pvMT08	16D	St.B 40M 60D # 1 pvMT08
Lane 17A	St.B 5M 60D # 1 pvMT11	17B	St.B 5M 60D # 3 pvMT11	17C	St.B 20M 60D # 2 pvMT11	17D	St.B 40M 60D # 1 pvMT11

Figure B26 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

					and the second sec		
Lane M	100 base pair ladder	Lane		Lane	1210215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.B 40M 60D # 2 β-actin	2B	St.B 5M 90D # 1 β-actin	2C	St.B 5M 90D # 3 β-actin	2D	St.B 20M 90D # 2 β-actin
Lane 3A	St.B 40M 60D # 2 MT	3B	St.B 5M 90D # 1 MT	3C	St.B 5M 90D # 3 MT	3D	St.B 20M 90D # 2 MT
Lane 4A	St.B 40M 60D # 2 pvMT01	4B	St.B 5M 90D # 1 pvMT01	4C	St.B 5M 90D # 3 pvMT01	4D	St.B 20M 90D # 2 pvMT01
Lane 5A	St.B 40M 60D # 2 pvMT02	5B	St.B 5M 90D # 1 pvMT02	5C	St.B 5M 90D # 3 pvMT02	5D	St.B 20M 90D # 2 pvMT02
Lane 6A	St.B 40M 60D # 2 pvMT03	6B	St.B 5M 90D # 1 pvMT03	6C	St.B 5M 90D # 3 pvMT03	6D	St.B 20M 90D # 2 pvMT03
Lane 7A	St.B 40M 60D # 2 pvMT07	7B	St.B 5M 90D # 1 pvMT07	7C	St.B 5M 90D # 3 pvMT07	7D	St.B 20M 90D # 2 pvMT07
Lane 8A	St.B 40M 60D # 2 pvMT08	8B	St.B 5M 90D # 1 pvMT08	8C	St.B 5M 90D # 3 pvMT08	8D	St.B 20M 90D # 2 pvMT08
Lane 9A	St.B 40M 60D # 2 pvMT11	9B	St.B 5M 90D # 1 pvMT11	9C	St.B 5M 90D # 3 pvMT11	9D	St.B 20M 90D # 2 pvMT11
Lane 10A	St.B 40M 60D # 3 β-actin	10B	St.B 5M 90D # 2 β-actin	10C	St.B 20M 90D # 1 β-actin	10D	St.B 20M 90D # 3 β-actin
Lane 11A	St.B 40M 60D # 3 MT	11B	St.B 5M 90D # 2 MT	11C	St.B 20M 90D #1 MT	11D	St.B 20M 90D # 3 MT
Lane 12A	St.B 40M 60D # 3 pvMT01	12B	St.B 5M 90D # 2 pvMT01	12C	St.B 20M 90D #1 pvMT01	12D	St.B 20M 90D # 3 pvMT01
Lane 13A	St.B 40M 60D # 3 pvMT02	13B	St.B 5M 90D # 2 pvMT02	13C	St.B 20M 90D # 1 pvMT02	13D	St.B 20M 90D # 3 pvMT02
Lane 14A	St.B 40M 60D # 3 pvMT03	14B	St.B 5M 90D # 2 pvMT03	14C	St.B 20M 90D # 1 pvMT03	14D	St.B 20M 90D # 3 pvMT03
Lane 15A	St.B 40M 60D # 3 pvMT07	15B	St.B 5M 90D # 2 pvMT07	15C	St.B 20M 90D #1 pvMT07	15D	St.B 20M 90D # 3 pvMT07
Lane 16A	St.B 40M 60D # 3 pvMT08	16B	St.B 5M 90D # 2 pvMT08	16C	St.B 20M 90D #1 pvMT08	16D	St.B 20M 90D # 3 pvMT08
Lane 17A	St.B 40M 60D # 3 pvMT11	17B	St.B 5M 90D # 2 pvMT11	17C	St.B 20M 90D #1 pvMT11	17D	St.B 20M 90D # 3 pvMT11

Figure B27 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

							1
Lane M	100 base pair ladder	Lane		Lane	1211215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.B 40M 90D # 1 β-actin	2B	St.B 40M 90D # 3 β-actin	2C	St.C 5M 30D # 2 β-actin	2D	St.C 20M 30D # 1 β-actin
Lane 3A	St.B 40M 90D # 1 MT	3B	St.B 40M 90D # 3 MT	3C	St.C 5M 30D # 2 MT	3D	St.C 20M 30D # 1 MT
Lane 4A	St.B 40M 90D # 1 pvMT01	4B	St.B 40M 90D # 3 pvMT01	4C	St.C 5M 30D # 2 pvMT01	4D	St.C 20M 30D # 1 pvMT01
Lane 5A	St.B 40M 90D # 1 pvMT02	5B	St.B 40M 90D # 3 pvMT02	5C	St.C 5M 30D # 2 pvMT02	5D	St.C 20M 30D # 1 pvMT02
Lane 6A	St.B 40M 90D # 1 pvMT03	6B	St.B 40M 90D # 3 pvMT03	6C	St.C 5M 30D # 2 pvMT03	6D	St.C 20M 30D # 1 pvMT03
Lane 7A	St.B 40M 90D # 1 pvMT07	7B	St.B 40M 90D # 3 pvMT07	7C	St.C 5M 30D # 2 pvMT07	7D	St.C 20M 30D # 1 pvMT07
Lane 8A	St.B 40M 90D # 1 pvMT08	8B	St.B 40M 90D # 3 pvMT08	8C	St.C 5M 30D # 2 pvMT08	8D	St.C 20M 30D # 1 pvMT08
Lane 9A	St.B 40M 90D #1 pvMT11	9B	St.B 40M 90D # 3 pvMT11	9C	St.C 5M 30D # 2 pvMT11	9D	St.C 20M 30D # 1 pvMT11
Lane 10A	St.B 40M 90D # 2 β-actin	10B	St.C 5M 30D # 1 β-actin	10C	St.C 5M 30D # 3 β-actin	10D	St.C 20M 30D # 2 β-actin
Lane 11A	St.B 40M 90D # 2 MT	11B	St.C 5M 30D # 1 MT	11C	St.C 5M 30D # 3 MT	11D	St.C 20M 30D # 2 MT
Lane 12A	St.B 40M 90D # 2 pvMT01	12B	St.C 5M 30D # 1 pvMT01	12C	St.C 5M 30D # 3 pvMT01	12D	St.C 20M 30D # 2 pvMT01
Lane 13A	St.B 40M 90D # 2 pvMT02	13B	St.C 5M 30D # 1 pvMT02	13C	St.C 5M 30D # 3 pvMT02	13D	St.C 20M 30D # 2 pvMT02
Lane 14A	St.B 40M 90D # 2 pvMT03	14B	St.C 5M 30D # 1 pvMT03	14C	St.C 5M 30D # 3 pvMT03	14D	St.C 20M 30D # 2 pvMT03
Lane 15A	St.B 40M 90D # 2 pvMT07	15B	St.C 5M 30D # 1 pvMT07	15C	St.C 5M 30D # 3 pvMT07	15D	St.C 20M 30D # 2 pvMT07
Lane 16A	St.B 40M 90D # 2 pvMT08	16B	St.C 5M 30D # 1 pvMT08	16C	St.C 5M 30D # 3 pvMT08	16D	St.C 20M 30D # 2 pvMT08
Lane 17A	St.B 40M 90D # 2 pvMT11	17B	St.C 5M 30D # 1 pvMT11	17C	St.C 5M 30D # 3 pvMT11	17D	St.C 20M 30D # 2 pvMT11

Figure B28 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane	1211215	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.C 20M 30D # 3 β-actin	2B	St.C 40M 30D # 2 β-actin	2C	St.C 5M 60D # 1 β-actin	2D	St.C 5M 60D # 3 β-actin
Lane 3A	St.C 20M 30D # 3 MT	3B	St.C 40M 30D # 2 MT	3C	St.C 5M 60D # 1 MT	3D	St.C 5M 60D # 3 MT
Lane 4A	St.C 20M 30D # 3 pvMT01	4B	St.C 40M 30D # 2 pvMT01	4C	St.C 5M 60D # 1 pvMT01	4D	St.C 5M 60D # 3 pvMT01
Lane 5A	St.C 20M 30D # 3 pvMT02	5B	St.C 40M 30D # 2 pvMT02	5C	St.C 5M 60D # 1 pvMT02	5D	St.C 5M 60D # 3 pvMT02
Lane 6A	St.C 20M 30D # 3 pvMT03	6B	St.C 40M 30D # 2 pvMT03	6C	St.C 5M 60D # 1 pvMT03	6D	St.C 5M 60D # 3 pvMT03
Lane 7A	St.C 20M 30D # 3 pvMT07	7B	St.C 40M 30D # 2 pvMT07	7C	St.C 5M 60D # 1 pvMT07	7D	St.C 5M 60D # 3 pvMT07
Lane 8A	St.C 20M 30D # 3 pvMT08	8B	St.C 40M 30D # 2 pvMT08	8C	St.C 5M 60D # 1 pvMT08	8D	St.C 5M 60D # 3 pvMT08
Lane 9A	St.C 20M 30D # 3 pvMT11	9B	St.C 40M 30D # 2 pvMT11	9C	St.C 5M 60D # 1 pvMT11	9D	St.C 5M 60D # 3 pvMT11
Lane 10A	St.C 40M 30D # 1 β-actin	10B	St.C 40M 30D # 3 β-actin	10C	St.C 5M 60D # 2 β-actin	10D	St.C 20M 60D # 1 β-actin
Lane 11A	St.C 40M 30D # 1 MT	11B	St.C 40M 30D # 3 MT	11C	St.C 5M 60D # 2 MT	11D	St.C 20M 60D # 1 MT
Lane 12A	St.C 40M 30D # 1 pvMT01	12B	St.C 40M 30D # 3 pvMT01	12C	St.C 5M 60D # 2 pvMT01	12D	St.C 20M 60D # 1 pvMT01
Lane 13A	St.C 40M 30D # 1 pvMT02	13B	St.C 40M 30D # 3 pvMT02	13C	St.C 5M 60D # 2 pvMT02	13D	St.C 20M 60D # 1 pvMT02
Lane 14A	St.C 40M 30D # 1 pvMT03	14B	St.C 40M 30D # 3 pvMT03	14C	St.C 5M 60D # 2 pvMT03	14D	St.C 20M 60D # 1 pvMT03
Lane 15A	St.C 40M 30D # 1 pvMT07	15B	St.C 40M 30D # 3 pvMT07	15C	St.C 5M 60D # 2 pvMT07	15D	St.C 20M 60D # 1 pvMT07
Lane 16A	St.C 40M 30D # 1 pvMT08	16B	St.C 40M 30D # 3 pvMT08	16C	St.C 5M 60D # 2 pvMT08	16D	St.C 20M 60D # 1 pvMT08
Lane 17A	St.C 40M 30D # 1 pvMT11	17B	St.C 40M 30D # 3 pvMT11	17C	St.C 5M 60D # 2 pvMT11	17D	St.C 20M 60D # 1 pvMT11

Figure B29 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.C 20M 60D # 2 β-actin	2B	St.C 40M 60D # 1 β-actin	2C	St.C 40M 60D # 3 β-actin	2D	St.C 5M 90D # 2 β-actin
Lane 3A	St.C 20M 60D # 2 MT	3B	St.C 40M 60D # 1 MT	3C	St.C 40M 60D # 3 MT	3D	St.C 5M 90D # 2 MT
Lane 4A	St.C 20M 60D # 2 pvMT01	4B	St.C 40M 60D # 1 pvMT01	4C	St.C 40M 60D # 3 pvMT01	4D	St.C 5M 90D # 2 pvMT01
Lane 5A	St.C 20M 60D # 2 pvMT02	5B	St.C 40M 60D # 1 pvMT02	5C	St.C 40M 60D # 3 pvMT02	5D	St.C 5M 90D # 2 pvMT02
Lane 6A	St.C 20M 60D # 2 pvMT03	6B	St.C 40M 60D # 1 pvMT03	6C	St.C 40M 60D # 3 pvMT03	6D	St.C 5M 90D # 2 pvMT03
Lane 7A	St.C 20M 60D # 2 pvMT07	7B	St.C 40M 60D # 1 pvMT07	7C	St.C 40M 60D # 3 pvMT07	7D	St.C 5M 90D # 2 pvMT07
Lane 8A	St.C 20M 60D # 2 pvMT08	8B	St.C 40M 60D # 1 pvMT08	8C	St.C 40M 60D # 3 pvMT08	8D	St.C 5M 90D # 2 pvMT08
Lane 9A	St.C 20M 60D # 2 pvMT11	9B	St.C 40M 60D # 1 pvMT11	9C	St.C 40M 60D # 3 pvMT11	9D	St.C 5M 90D # 2 pvMT11
Lane 10A	St.C 20M 60D # 3 β-actin	10B	St.C 40M 60D # 2 β-actin	10C	St.C 5M 90D # 1 β-actin	10D	St.C 5M 90D # 3 β-actin
Lane 11A	St.C 20M 60D # 3 MT	11B	St.C 40M 60D # 2 MT	11C	St.C 5M 90D # 1 MT	11D	St.C 5M 90D # 3 MT
Lane 12A	St.C 20M 60D # 3 pvMT01	12B	St.C 40M 60D # 2 pvMT01	12C	St.C 5M 90D # 1 pvMT01	12D	St.C 5M 90D # 3 pvMT01
Lane 13A	St.C 20M 60D # 3 pvMT02	13B	St.C 40M 60D # 2 pvMT02	13C	St.C 5M 90D # 1 pvMT02	13D	St.C 5M 90D # 3 pvMT02
Lane 14A	St.C 20M 60D # 3 pvMT03	14B	St.C 40M 60D # 2 pvMT03	14C	St.C 5M 90D # 1 pvMT03	14D	St.C 5M 90D # 3 pvMT03
Lane 15A	St.C 20M 60D # 3 pvMT07	15B	St.C 40M 60D # 2 pvMT07	15C	St.C 5M 90D # 1 pvMT07	15D	St.C 5M 90D # 3 pvMT07
Lane 16A	St.C 20M 60D # 3 pvMT08	16B	St.C 40M 60D # 2 pvMT08	16C	St.C 5M 90D # 1 pvMT08	16D	St.C 5M 90D # 3 pvMT08
Lane 17A	St.C 20M 60D # 3 pvMT11	17B	St.C 40M 60D # 2 pvMT11	17C	St.C 5M 90D # 1 pvMT11	17D	St.C 5M 90D # 3 pvMT11

Figure B30 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

					a data data data data data data data da		
Lane M	100 base pair ladder	Lane		Lane	121225	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.C 20M 90D # 1 β-actin	2B	St.C 20M 90D # 3 β-actin	2C	St.C 40M 90D # 2 β-actin	2D	St.D 5M 30D # 1 β-actin
Lane 3A	St.C 20M 90D # 1 MT	3B	St.C 20M 90D # 3 MT	3C	St.C 40M 90D # 2 MT	3D	St.D 5M 30D # 1 MT
Lane 4A	St.C 20M 90D #1 pvMT01	4B	St.C 20M 90D # 3 pvMT01	4C	St.C 40M 90D # 2 pvMT01	4D	St.D 5M 30D # 1 pvMT01
Lane 5A	St.C 20M 90D # 1 pvMT02	5B	St.C 20M 90D # 3 pvMT02	5C	St.C 40M 90D # 2 pvMT02	5D	St.D 5M 30D # 1 pvMT02
Lane 6A	St.C 20M 90D # 1 pvMT03	6B	St.C 20M 90D # 3 pvMT03	6C	St.C 40M 90D # 2 pvMT03	6D	St.D 5M 30D # 1 pvMT03
Lane 7A	St.C 20M 90D #1 pvMT07	7B	St.C 20M 90D # 3 pvMT07	7C	St.C 40M 90D # 2 pvMT07	7D	St.D 5M 30D # 1 pvMT07
Lane 8A	St.C 20M 90D # 1 pvMT08	8B	St.C 20M 90D # 3 pvMT08	8C	St.C 40M 90D # 2 pvMT08	8D	St.D 5M 30D # 1 pvMT08
Lane 9A	St.C 20M 90D #1 pvMT11	9B	St.C 20M 90D # 3 pvMT11	9C	St.C 40M 90D # 2 pvMT11	9D	St.D 5M 30D # 1 pvMT11
Lane 10A	St.C 20M 90D # 2 β-actin	10B	St.C 40M 90D # 1 β-actin	10C	St.C 40M 90D # 3 β-actin	10D	St.D 5M 30D # 2 β-actin
Lane 11A	St.C 20M 90D # 2 MT	11B	St.C 40M 90D # 1 MT	11C	St.C 40M 90D # 3 MT	11D	St.D 5M 30D # 2 MT
Lane 12A	St.C 20M 90D # 2 pvMT01	12B	St.C 40M 90D # 1 pvMT01	12C	St.C 40M 90D # 3 pvMT01	12D	St.D 5M 30D # 2 pvMT01
Lane 13A	St.C 20M 90D # 2 pvMT02	13B	St.C 40M 90D # 1 pvMT02	13C	St.C 40M 90D # 3 pvMT02	13D	St.D 5M 30D # 2 pvMT02
Lane 14A	St.C 20M 90D # 2 pvMT03	14B	St.C 40M 90D # 1 pvMT03	14C	St.C 40M 90D # 3 pvMT03	14D	St.D 5M 30D # 2 pvMT03
Lane 15A	St.C 20M 90D # 2 pvMT07	15B	St.C 40M 90D # 1 pvMT07	15C	St.C 40M 90D # 3 pvMT07	15D	St.D 5M 30D # 2 pvMT07
Lane 16A	St.C 20M 90D # 2 pvMT08	16B	St.C 40M 90D # 1 pvMT08	16C	St.C 40M 90D # 3 pvMT08	16D	St.D 5M 30D # 2 pvMT08
Lane 17A	St.C 20M 90D # 2 pvMT11	17B	St.C 40M 90D # 1 pvMT11	17C	St.C 40M 90D # 3 pvMT11	17D	St.D 5M 30D # 2 pvMT11

Figure B31 PCR product of MT , pvMT01, pvMT02, pvMT03, pvMT07, pvMT08 and pvMT11 using first strand cDNA from mussel gill , β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

T M	1001 111	T	01000010/		1101000	T	
Lane M	100 base pair ladder	Lane		Lane	ALV 11 1715	Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.D 5M 30D # 3 β-actin	2B	St.D 5M 60D # 2 β-actin	2C	St.D 5M 90D # 1 β-actin	2D	St.D 5M 90D # 3 β-actin
Lane 3A	St.D 5M 30D # 3 MT	3B	St.D 5M 60D # 2 MT	3C	St.D 5M 90D # 1 MT	3D	St.D 5M 90D # 3 MT
Lane 4A	St.D 5M 30D # 3 pvMT01	4B	St.D 5M 60D # 2 pvMT01	4C	St.D 5M 90D # 1 pvMT01	4D	St.D 5M 90D # 3 pvMT01
Lane 5A	St.D 5M 30D # 3 pvMT02	5B	St.D 5M 60D # 2 pvMT02	5C	St.D 5M 90D # 1 pvMT02	5D	St.D 5M 90D # 3 pvMT02
Lane 6A	St.D 5M 30D # 3 pvMT03	6B	St.D 5M 60D # 2 pvMT03	6C	St.D 5M 90D # 1 pvMT03	6D	St.D 5M 90D # 3 pvMT03
Lane 7A	St.D 5M 30D # 3 pvMT07	7B	St.D 5M 60D # 2 pvMT07	7C	St.D 5M 90D # 1 pvMT07	7D	St.D 5M 90D # 3 pvMT07
Lane 8A	St.D 5M 30D # 3 pvMT08	8B	St.D 5M 60D # 2 pvMT08	8C	St.D 5M 90D # 1 pvMT08	8D	St.D 5M 90D # 3 pvMT08
Lane 9A	St.D 5M 30D # 3 pvMT11	9B	St.D 5M 60D # 2 pvMT11	9C	St.D 5M 90D # 1 pvMT11	9D	St.D 5M 90D # 3 pvMT11
Lane 10A	St.D 5M 60D # 1 β-actin	10B	St.D 5M 60D # 3 β-actin	10C	St.D 5M 90D # 2 β-actin	10D	
Lane 11A	St.D 5M 60D # 1 MT	11B	St.D 5M 60D # 3 MT	11C	St.D 5M 90D # 2 MT	11D	
Lane 12A	St.D 5M 60D # 1 pvMT01	12B	St.D 5M 60D # 3 pvMT01	12C	St.D 5M 90D # 2 pvMT01	12D	
Lane 13A	St.D 5M 60D # 1 pvMT02	13B	St.D 5M 60D # 3 pvMT02	13C	St.D 5M 90D # 2 pvMT02	13D	
Lane 14A	St.D 5M 60D # 1 pvMT03	14B	St.D 5M 60D # 3 pvMT03	14C	St.D 5M 90D # 2 pvMT03	14D	
Lane 15A	St.D 5M 60D # 1 pvMT07	15B	St.D 5M 60D # 3 pvMT07	15C	St.D 5M 90D # 2 pvMT07	15D	
Lane 16A	St.D 5M 60D # 1 pvMT08	16B	St.D 5M 60D # 3 pvMT08	16C	St.D 5M 90D # 2 pvMT08	16D	
Lane 17A	St.D 5M 60D # 1 pvMT11	17B	St.D 5M 60D # 3 pvMT11	17C	St.D 5M 90D # 2 pvMT11	17D	

Figure B32 PCR products of HSP71 and CYP450 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.A 5M 30D # 1 β-actin	2B	St.A 20M 30D # 3 β-actin	2C	St.A 5M 60D # 2 β-actin	2D	St.A 40M 60D # 1 β-actin
Lane 3A	St.A 5M 30D #1 HSP71	3B	St.A 20M 30D # 3 HSP71	3C	St.A 5M 60D # 2 HSP71	3D	St.A 40M 60D # 1 HSP71
Lane 4A	St.A 5M 30D # 1 CYP450	4B	St.A 20M 30D # 3 CYP450	4C	St.A 5M 60D # 2 CYP450	4D	St.A 40M 60D # 1 CYP450
Lane 5A	St.A 5M 30D # 2 β-actin	5B	St.A 40M 30D # 1 β-actin	5C	St.A 5M 60D # 3 β-actin	5D	St.A 40M 60D # 2 β-actin
Lane 6A	St.A 5M 30D # 2 HSP71	6B	St.A 40M 30D # 1 HSP71	6C	St.A 5M 60D # 3 HSP71	6D	St.A 40M 60D # 2 HSP71
Lane 7A	St.A 5M 30D # 2 CYP450	7B	St.A 40M 30D # 1 CYP450	7C	St.A 5M 60D # 3 CYP450	7D	St.A 40M 60D # 2 CYP450
Lane 8A	St.A 5M 30D # 3 β-actin	8B	St.A 40M 30D # 2 β-actin	8C	St.A 20M 60D # 1 β-actin	8D	St.A 40M 60D # 3 β-actin
Lane 9A	St.A 5M 30D # 3 HSP71	9B	St.A 40M 30D # 2 HSP71	9C	St.A 20M 60D # 1 HSP71	9D	St.A 40M 60D # 3 HSP71
Lane 10A	St.A 5M 30D # 3 CYP450	10B	St.A 40M 30D # 2 CYP450	10C	St.A 20M 60D # 1 CYP450	10D	St.A 40M 60D # 3 CYP450
Lane 11A	St.A 20M 30D # 1 β-actin	11B	St.A 40M 30D # 3 β-actin	11C	St.A 20M 60D # 2 β-actin	11D	St.A 5M 90D #1 β-actin
Lane 12A	St.A 20M 30D # 1 HSP71	12B	St.A 40M 30D # 3 HSP71	12C	St.A 20M 60D # 2 HSP71	12D	St.A 5M 90D #1 HSP71
Lane 13A	St.A 20M 30D # 1 CYP450	13B	St.A 40M 30D # 3 CYP450	13C	St.A 20M 60D # 2 CYP450	13D	St.A 5M 90D #1 CYP450
Lane 14A	St.A 20M 30D # 2 β-actin	14B	St.A 5M 60D # 1 β-actin	14C	St.A 20M 60D # 3 β-actin	14D	St.A 5M 90D # 2 β-actin
Lane 15A	St.A 20M 30D # 2 HSP71	15B	St.A 5M 60D # 1 HSP71	15C	St.A 20M 60D # 3 HSP71	15D	St.A 5M 90D # 2 HSP71
Lane 16A	St.A 20M 30D # 2 CYP450	16B	St.A 5M 60D # 1 CYP450	16C	St.A 20M 60D # 3 CYP450	16D	St.A 5M 90D # 2 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	Blank

Figure B33 PCR products of HSP71 and CYP450 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.A 5M 90D # 3 β-actin	2B	St.B 5M 30D # 2 β-actin	2C	St.B 40M 30D # 1 β-actin	2D	St.B 5M 60D # 3 β-actin
Lane 3A	St.A 5M 90D # 3 HSP71	3B	St.B 5M 30D # 2 HSP71	3C	St.B 40M 30D # 1 HSP71	3D	St.B 5M 60D # 3 HSP71
Lane 4A	St.A 5M 90D # 3 CYP450	4B	St.B 5M 30D # 2 CYP450	4C	St.B 40M 30D # 1 CYP450	4D	St.B 5M 60D # 3 CYP450
Lane 5A	St.A 20M 90D # 1 β-actin	5B	St.B 5M 30D # 3 β-actin	5C	St.B 40M 30D # 2 β-actin	5D	St.B 20M 60D # 1 β-actin
Lane 6A	St.A 20M 90D # 1 HSP71	6B	St.B 5M 30D # 3 HSP71	6C	St.B 40M 30D # 2 HSP71	6D	St.B 20M 60D #1 HSP71
Lane 7A	St.A 20M 90D # 1 CYP450	7B	St.B 5M 30D # 3 CYP450	7C	St.B 40M 30D # 2 CYP450	7D	St.B 20M 60D # 1 CYP450
Lane 8A	St.A 20M 90D # 2 β-actin	8B	St.B 20M 30D # 1 β-actin	8C	St.B 40M 30D # 3 β-actin	8D	St.B 20M 60D # 2 β-actin
Lane 9A	St.A 20M 90D # 2 HSP71	9B	St.B 20M 30D # 1 HSP71	9C	St.B 40M 30D # 3 HSP71	9D	St.B 20M 60D # 2 HSP71
Lane 10A	St.A 20M 90D # 2 CYP450	10B	St.B 20M 30D # 1 CYP450	10C	St.B 40M 30D # 3 CYP450	10D	St.B 20M 60D # 2 CYP450
Lane 11A	St.A 20M 90D # 3 β-actin	11B	St.B 20M 30D # 2 β-actin	11C	St.B 5M 60D # 1 β-actin	11D	St.B 20M 60D # 3 β-actin
Lane 12A	St.A 20M 90D # 3 HSP71	12B	St.B 20M 30D # 2 HSP71	12C	St.B 5M 60D # 1 HSP71	12D	St.B 20M 60D # 3 HSP71
Lane 13A	St.A 20M 90D # 3 CYP450	13B	St.B 20M 30D # 2 CYP450	13C	St.B 5M 60D # 1 CYP450	13D	St.B 20M 60D # 3 CYP450
Lane 14A	St.B 5M 30D # 1 β-actin	14B	St.B 20M 30D # 3 β-actin	14C	St.B 5M 60D # 2 β-actin	14D	St.B 40M 60D # 1 β-actin
Lane 15A	St.B 5M 30D # 1 HSP71	15B	St.B 20M 30D # 3 HSP71	15C	St.B 5M 60D # 2 HSP71	15D	St.B 40M 60D # 1 HSP71
Lane 16A	St.B 5M 30D #1 CYP450	16B	St.B 20M 30D # 3 CYP450	16C	St.B 5M 60D # 2 CYP450	16D	St.B 40M 60D # 1 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B34 PCR products of HSP71 and CYP450 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.B 40M 60D # 2 β-actin	2B	St.B 20M 90D #1 β-actin	2C	St.B 40M 90D # 3 β-actin	2D	St.C 20M 30D # 2 β-actin
Lane 3A	St.B 40M 60D # 2 HSP71	3B	St.B 20M 90D # 1 HSP71	3C	St.B 40M 90D # 3 HSP71	3D	St.C 20M 30D # 2 HSP71
Lane 4A	St.B 40M 60D # 2 CYP450	4B	St.B 20M 90D # 1 CYP450	4C	St.B 40M 90D # 3 CYP450	4D	St.C 20M 30D # 2 CYP450
Lane 5A	St.B 40M 60D # 3 β-actin	5B	St.B 20M 90D # 2 β-actin	5C	St.C 5M 30D # 1 β-actin	5D	St.C 20M 30D # 3 β-actin
Lane 6A	St.B 40M 60D # 3 HSP71	6B	St.B 20M 90D # 2 HSP71	6C	St.C 5M 30D # 1 HSP71	6D	St.C 20M 30D # 3 HSP71
Lane 7A	St.B 40M 60D # 3 CYP450	7B	St.B 20M 90D # 2 CYP450	7C	St.C 5M 30D # 1 CYP450	7D	St.C 20M 30D # 3 CYP450
Lane 8A	St.B 5M 90D # 1 β-actin	8B	St.B 20M 90D # 3 β-actin	8C	St.C 5M 30D # 2 β-actin	8D	St.C 40M 30D # 1 β-actin
Lane 9A	St.B 5M 90D #1 HSP71	9B	St.B 20M 90D # 3 HSP71	9C	St.C 5M 30D # 2 HSP71	9D	St.C 40M 30D # 1 HSP71
Lane 10A	St.B 5M 90D # 1 CYP450	10B	St.B 20M 90D # 3 CYP450	10C	St.C 5M 30D # 2 CYP450	10D	St.C 40M 30D # 1 CYP450
Lane 11A	St.B 5M 90D # 2 β-actin	11B	St.B 40M 90D # 1 β-actin	11C	St.C 5M 30D # 3 β-actin	11D	St.C 40M 30D # 2 β-actin
Lane 12A	St.B 5M 90D # 2 HSP71	12B	St.B 40M 90D # 1 HSP71	12C	St.C 5M 30D # 3 HSP71	12D	St.C 40M 30D # 2 HSP71
Lane 13A	St.B 5M 90D # 2 CYP450	13B	St.B 40M 90D # 1 CYP450	13C	St.C 5M 30D # 3 CYP450	13D	St.C 40M 30D # 2 CYP450
Lane 14A	St.B 5M 90D # 3 β-actin	14B	St.B 40M 90D # 2 β-actin	14C	St.C 20M 30D # 1 β-actin	14D	St.C 40M 30D # 3 β-actin
Lane 15A	St.B 5M 90D # 3 HSP71	15B	St.B 40M 90D # 2 HSP71	15C	St.C 20M 30D # 1 HSP71	15D	St.C 40M 30D # 3 HSP71
Lane 16A	St.B 5M 90D # 3 CYP450	16B	St.B 40M 90D # 2 CYP450	16C	St.C 20M 30D # 1 CYP450	16D	St.C 40M 30D # 3 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B35 PCR products of HSP71 and CYP450 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B and 1D. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A and 1C. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		Lane		Lane	
Lane 1A	Negative Control	1B	Positive Control β-actin	1C	Negative Control	1D	Positive Control β-actin
Lane 2A	St.C 5M 60D # 1 β-actin	2B	St.C 20M 60D # 3 β-actin	2C	St.C 5M 90D # 2 β-actin	2D	St.C 40M 90D # 1 β-actin
Lane 3A	St.C 5M 60D # 1 HSP71	3B	St.C 20M 60D # 3 HSP71	3C	St.C 5M 90D # 2 HSP71	3D	St.C 40M 90D # 1 HSP71
Lane 4A	St.C 5M 60D # 1 CYP450	4B	St.C 20M 60D # 3 CYP450	4C	St.C 5M 90D # 2 CYP450	4D	St.C 40M 90D # 1 CYP450
Lane 5A	St.C 5M 60D # 2 β-actin	5B	St.C 40M 60D # 1 β-actin	5C	St.C 5M 90D # 3 β-actin	5D	St.C 40M 90D # 2 β-actin
Lane 6A	St.C 5M 60D # 2 HSP71	6B	St.C 40M 60D # 1 HSP71	6C	St.C 5M 90D # 3 HSP71	6D	St.C 40M 90D # 2 HSP71
Lane 7A	St.C 5M 60D # 2 CYP450	7B	St.C 40M 60D # 1 CYP450	7C	St.C 5M 90D # 3 CYP450	7D	St.C 40M 90D # 2 CYP450
Lane 8A	St.C 5M 60D # 3 β-actin	8B	St.C 40M 60D # 2 β-actin	8C	St.C 20M 90D # 1 β-actin	8D	St.C 40M 90D # 3 β-actin
Lane 9A	St.C 5M 60D # 3 HSP71	9B	St.C 40M 60D # 2 HSP71	9C	St.C 20M 90D # 1 HSP71	9D	St.C 40M 90D # 3 HSP71
Lane 10A	St.C 5M 60D # 3 CYP450	10B	St.C 40M 60D # 2 CYP450	10C	St.C 20M 90D # 1 CYP450	10D	St.C 40M 90D # 3 CYP450
Lane 11A	St.C 20M 60D # 1 β-actin	11B	St.C 40M 60D # 3 β-actin	11C	St.C 20M 90D # 2 β-actin	11D	St.D 5M 30D #1 β-actin
Lane 12A	St.C 20M 60D # 1 HSP71	12B	St.C 40M 60D # 3 HSP71	12C	St.C 20M 90D # 2 HSP71	12D	St.D 5M 30D #1 HSP71
Lane 13A	St.C 20M 60D # 1 CYP450	13B	St.C 40M 60D # 3 CYP450	13C	St.C 20M 90D # 2 CYP450	13D	St.D 5M 30D # 1 CYP450
Lane 14A	St.C 20M 60D # 2 β-actin	14B	St.C 5M 90D # 1 β-actin	14C	St.C 20M 90D # 3 β-actin	14D	St.D 5M 30D # 2 β-actin
Lane 15A	St.C 20M 60D # 2 HSP71	15B	St.C 5M 90D #1 HSP71	15C	St.C 20M 90D # 3 HSP71	15D	St.D 5M 30D # 2 HSP71
Lane 16A	St.C 20M 60D # 2 CYP450	16B	St.C 5M 90D #1 CYP450	16C	St.C 20M 90D # 3 CYP450	16D	St.D 5M 30D # 2 CYP450
Lane 17A	Blank	17B	Blank	17C	Blank	17D	

Figure B36 PCR products of HSP71 and CYP450 using first strand cDNA from mussel gill, β -actin used as positive control is shown in lane 1B. Lane M is 100 bp DNA ladder. Negative control is shown in Lane 1A. Analyzed on 2.0 % agarose gel electrophoresis and stain with ethidium bromide.

Lane M	100 base pair ladder	Lane		1 A			
Lane 1A	Negative Control	1B	Positive Control β-actin	2			
Lane 2A	St.D 5M 30D # 3 β-actin	2B	St.D 5M 90D # 2 β-actin				
Lane 3A	St.D 5M 30D # 3 HSP71	3B	St.D 5M 90D # 2 HSP71	112			
Lane 4A	St.D 5M 30D # 3 CYP450	4B	St.D 5M 90D # 2 CYP450				
Lane 5A	St.D 5M 60D # 1 β-actin	5B	St.D 5M 90D # 3 β-actin	2.9.8			
Lane 6A	St.D 5M 60D # 1 HSP71	6B	St.D 5M 90D # 3 HSP71				
Lane 7A	St.D 5M 60D # 1 CYP450	7B	St.D 5M 90D # 3 CYP450	11			
Lane 8A	St.D 5M 60D # 2 β-actin						
Lane 9A	St.D 5M 60D # 2 HSP71						
Lane 10A	St.D 5M 60D # 2 CYP450				5		
Lane 11A	St.D 5M 60D # 3 β-actin						
Lane 12A	St.D 5M 60D # 3 HSP71				2		
Lane 13A	St.D 5M 60D # 3 CYP450						
Lane 14A	St.D 5M 90D #1 β-actin						
Lane 15A	St.D 5M 90D #1 HSP71						
Lane 16A	St.D 5M 90D # 1 CYP450						
Lane 17A	Blank			\sim			

ุคูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย **Table B1** Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Initial # 1	4,614.1009	4,626.5590	1.0027	
2	Initial # 2	4,362.2049	3,697.4049	0.8476	
3	Initial # 3	4,470.4610	2,570.5151	0.5750	
4	Control week 1 #1	3,729.9440	3,833.2634	1.0277	
5	Control week 1 #2	4,132.5567	3,932.1277	0.9515	
6	Control week 1 #3	2,939.6814	2,029.8500	0.6905	
7	0.1µg/L week 1 #1	2,819.2144	2,566.0490	0.9102	
8	0.1µg/L week 1 #2	4,505.5442	4,296.9375	0.9537	
9	0.1µg/L week 1 #3	4,793.9111	4,527.3696	0.9444	
10	0.2µg/L week 1 #1	4,521.8023	3,777.0614	0.8353	
11	0.2µg/L week 1 #2	4,385.6091	3,822.4969	0.8716	
12	0.2µg/L week 1 #3	3,741.5767	3,487.8978	0.9322	
13	0.5µg/L week 1 #1	4,059.6151	3,764.0751	0.9272	
14	0.5µg/L week 1 #2	2,774.2561	1,644.3016	0.5927	
15	0.5µg/L week 1 #3	2,660.4727	2,489.4043	0.9357	
16	1.0µg/L week 1 #1	3,814.7958	3,572.9378	0.9366	
17	1.0µg/L week 1 #2	4,240.0034	5,006.1720	1.1807	
18	1.0µg/L week 1 #3	4,287.2744	4,163.8009	0.9712	

Table B2 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 2 #1	4,024.6938	3,934.9431	0.9777	
2	Control week 2 #2	3,493.8203	3,844.9493	1.1005	
3	Control week 2 #3	4,000.2257	4,158.2347	1.0395	
4	0.1µg/L week 2 #1	3,083.5758	2,982.7428	0.9673	
5	0.1µg/L week 2 #2	2,907.9053	3,277.7909	1.1272	
6	0.1µg/L week 2 #3	4,284.1060	4,080.1826	0.9524	
7	0.2µg/L week 2 #1	4,877.0516	4,413.2439	0.9049	
8	0.2µg/L week 2 #2	4,305.4288	4,344.1777	1.0090	
9	0.2µg/L week 2 #3	3,920.9012	4,084.7948	1.0418	
10	0.5µg/L week 2 #1	3,740.3510	3,379.4071	0.9035	
11	0.5µg/L week 2 #2	4,069.0739	3,745.1757	0.9204	
12	0.5µg/L week 2 #3	4,068.2414	4,912.4015	1.2075	
13	1.0µg/L week 2 #1	3,062.4611	2,951.2937	0.9637	
14	1.0µg/L week 2 #2	4,076.4051	3,842.8271	0.9427	
15	1.0µg/L week 2 #3	3,814.7958	3,585.1451	0.9398	

Table B3 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 3 #1	3,082.5593	2,940.4534	0.9539	
2	Control week 3 #2	3,017.1826	2,836.7550	0.9402	
3	Control week 3 #3	2,848.2378	2,734.8779	0.9602	
4	0.1µg/L week 3 #1	2,574.0440	2,276.7419	0.8845	
5	0.1µg/L week 3 #2	2,918.3688	2,676.4360	0.9171	
6	0.1µg/L week 3 #3	3,034.4658	2,755.9018	0.9082	
7	0.2µg/L week 3 #1	2,344.5554	2,081.0274	0.8876	
8	0.2µg/L week 3 #2	3,086.3942	2,941.9510	0.9532	
9	0.2µg/L week 3 #3	2,966.6725	3,252.3630	1.0963	
10	0.5µg/L week 3 #1	2,880.3089	2,763.3684	0.9594	
11	0.5µg/L week 3 #2	2,902.5039	2,746.9297	0.9464	
12	0.5µg/L week 3 #3	3,144.0750	3,380.8238	1.0753	
13	1.0µg/L week 3 #1	2,863.1308	2,773.2284	0.9686	
14	1.0µg/L week 3 #2	3,037.7491	2,942.9713	0.9688	
15	1.0µg/L week 3 #3	2,127.5958	1,969.7282	0.9258	

Table B4 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 4 #1	2,592.5354	2,242.0246	0.8648	
2	Control week 4 #2	3,341.3874	2,180.2553	0.6525	
3	Control week 4 #3	3,404.5315	3,422.2351	1.0052	
4	0.1µg/L week 4 #1	3,081.7976	3,049.7469	0.9896	
5	0.1µg/L week 4 #2	2,765.4202	2,595.0703	0.9384	
6	0.1µg/L week 4 #3	2,837.3635	2,676.2013	0.9432	
7	0.2µg/L week 4 #1	2,935.9934	2,849.0880	0.9704	
8	0.2µg/L week 4 #2	2,370.9793	2,252.6674	0.9501	
9	0.2µg/L week 4 #3	3,283.8642	3,829.3140	1.1661	
10	0.5µg/L week 4 #1	3,532.2120	3,054.6569	0.8648	
11	0.5µg/L week 4 #2	3,221.1666	2,101.8112	0.6525	
12	0.5µg/L week 4 #3	2,937.3593	2,952.6336	1.0052	
13	1.0µg/L week 4 #1	3,044.7096	2,878.4685	0.9454	
14	1.0µg/L week 4 #2	2,666.5538	2,515.0936	0.9432	
15	1.0µg/L week 4 #3	3,054.0867	3,087.9871	1.0111	

Table B5 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 5 #1	3,271.7227	2,888.2768	0.8828	
2	Control week 5 #2	3,248.4071	3,179.5409	0.9788	
3	Control week 5 #3	2,354.1545	2,285.6486	0.9709	
4	0.1µg/L week 5 #1	2,950.2865	3,006.0469	1.0189	
5	0.1µg/L week 5 #2	3,110.6768	2,836.6262	0.9119	
6	0.1µg/L week 5 #3	3,252.3404	3,229.2488	0.9929	
7	0.2µg/L week 5 #1	2,758.9107	2,674.4880	0.9694	
8	0.2µg/L week 5 #2	3,416.6640	3,118.7309	0.9128	
9	0.2µg/L week 5 #3	3,657.7959	4,007.1154	1.0955	
10	0.5µg/L week 5 #1	3,546.0033	3,513.3801	0.9908	
11	0.5µg/L week 5 #2	3,164.2350	2,827.5604	0.8936	
12	0.5µg/L week 5 #3	2,857.3082	2,819.5917	0.9868	
13	1.0µg/L week 5 #1	3,013.5030	2,881.5116	0.9562	
14	1.0µg/L week 5 #2	2,716.6498	2,642.4852	0.9727	
15	1.0µg/L week 5 #3	2,302.1478	2,261.3998	0.9823	

Table B6 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 6 #1	2,791.7754	2,191.8228	0.7851	
2	Control week 6 #2	3,678.1178	3,369.1559	0.9160	
3	Control week 6 #3	3,357.4901	3,229.5697	0.9619	
4	0.1µg/L week 6 #1	3,144.3501	2,967.3232	0.9437	
5	0.1µg/L week 6 #2	3,293.4432	3,505.5409	1.0644	
6	0.1µg/L week 6 #3	3,059.6972	2,970.0481	0.9707	
7	0.2µg/L week 6 #1	2,449.5583	2,323.6510	0.9486	
8	0.2µg/L week 6 #2	2,438.6325	2,295.9725	0.9415	
9	0.2µg/L week 6 #3	3,159.6243	2,940.3464	0.9306	
10	0.5µg/L week 6 #1	2,709.5262	2,453.4759	0.9055	
11	0.5µg/L week 6 #2	2,968.1829	2,935.8297	0.9891	
12	0.5µg/L week 6 #3	2,891.1344	2,786.1862	0.9637	
13	1.0µg/L week 6 #1	2,927.7575	2,824.9933	0.9649	
14	1.0µg/L week 6 #2	2,956.9075	2,736.6179	0.9255	
15	1.0µg/L week 6 #3	2,977.7102	2,941.0843	0.9877	

Table B7 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 7 #1	3,613.9686	3,564.8187	0.9864	
2	Control week 7 #2	3,580.6571	3,516.9214	0.9822	
3	Control week 7 #3	3,512.8680	3,333.0092	0.9488	
4	0.1µg/L week 7 #1	2,760.9605	2,757.3713	0.9987	
5	0.1µg/L week 7 #2	3,284.3780	3,310.9815	1.0081	
6	0.1µg/L week 7 #3	2,493.4878	2,480.7710	0.9949	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,421.4160	1.0075	
11	0.5µg/L week 7 #2	3,329.0584	3,223.8602	0.9684	
12	0.5µg/L week 7 #3	3,030.7918	2,858.3397	0.9431	
13	1.0µg/L week 7 #1	3,236.8091	3,292.1585	1.0171	
14	1.0µg/L week 7 #2	2,242.8432	2,022.3717	0.9017	
15	1.0µg/L week 7 #3	2,142.8291	2,150.1147	1.0034	

Table B8 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity MT	Ratio MT/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	2,948.6553	1.0053	
5	0.1µg/L week 8 #2	3,396.6355	3,399.0131	1.0007	
6	0.1µg/L week 8 #3	3,351.7961	3,374.5883	1.0068	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B9 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Initial # 1	4,614.1009	4,640.8627	1.0058	
2	Initial # 2	4,362.2049	3,673.8490	0.8422	
3	Initial # 3	4,470.4610	1,669.2701	0.3734	
4	Control week 1 #1	3,729.9440	2,602.0089	0.6976	
5	Control week 1 #2	4,132.5567	3,542.4276	0.8572	
6	Control week 1 #3	2,939.6814	2,730.0821	0.9287	
7	0.1µg/L week 1 #1	2,819.2144	2,627.7898	0.9321	
8	0.1µg/L week 1 #2	4,505.5442	3,562.5338	0.7907	
9	0.1µg/L week 1 #3	4,793.9111	5,116.5413	1.0673	
10	0.2µg/L week 1 #1	4,521.8023	4,386.1482	0.9700	
11	0.2µg/L week 1 #2	4,385.6091	4,365.8739	0.9955	
12	0.2µg/L week 1 #3	3,741.5767	3,453.4753	0.9230	
13	0.5µg/L week 1 #1	4,059.6151	4,118.0736	1.0144	
14	0.5µg/L week 1 #2	2,774.2561	2,664.3956	0.9604	
15	0.5µg/L week 1 #3	2,660.4727	2,294.6577	0.8625	
16	1.0µg/L week 1 #1	3,814.7958	3,542.0379	0.9285	
17	1.0µg/L week 1 #2	4,240.0034	5,668.4605	1.3369	
18	1.0µg/L week 1 #3	4,287.2744	3,783.5196	0.8825	

Table B10 Intensity of band and ratio pvMT01 expression gene in gill of mussel*P.viridis* Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 2 #1	4,024.6938	3,787.2369	0.9410	
2	Control week 2 #2	3,493.8203	3,613.6584	1.0343	
3	Control week 2 #3	4,000.2257	4,241.4394	1.0603	
4	0.1µg/L week 2 #1	3,083.5758	3,045.9561	0.9878	
5	0.1µg/L week 2 #2	2,907.9053	2,435.0799	0.8374	
6	0.1µg/L week 2 #3	4,284.1060	3,059.2801	0.7141	
7	0.2µg/L week 2 #1	4,877.0516	4,306.4365	0.8830	
8	0.2µg/L week 2 #2	4,305.4288	4,275.7214	0.9931	
9	0.2µg/L week 2 #3	3,920.9012	3,795.4323	0.9680	
10	0.5µg/L week 2 #1	3,740.3510	3,411.2001	0.9120	
11	0.5µg/L week 2 #2	4,069.0739	3,485.1618	0.8565	
12	0.5µg/L week 2 #3	4,068.2414	4,243.5826	1.0431	
13	1.0µg/L week 2 #1	3,062.4611	2,423.9379	0.7915	
14	1.0µg/L week 2 #2	4,076.4051	3,904.3808	0.9578	
15	1.0µg/L week 2 #3	3,814.7958	3,831.5809	1.0044	

Table B11 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 3 #1	3,082.5593	3,186.7499	1.0338	
2	Control week 3 #2	3,017.1826	2,672.0169	0.8856	
3	Control week 3 #3	2,848.2378	2,565.6926	0.9008	
4	0.1µg/L week 3 #1	2,574.0440	2,203.3816	0.8560	
5	0.1µg/L week 3 #2	2,918.3688	2,560.8686	0.8775	
6	0.1µg/L week 3 #3	3,034.4658	2,451.5449	0.8079	
7	0.2µg/L week 3 #1	2,344.5554	2,097.2048	0.8945	
8	0.2µg/L week 3 #2	3,086.3942	2,756.1500	0.8930	
9	0.2µg/L week 3 #3	2,966.6725	3,339.2865	1.1256	
10	0.5µg/L week 3 #1	2,880.3089	2,701.4417	0.9379	
11	0.5µg/L week 3 #2	2,902.5039	2,515.3099	0.8666	
12	0.5µg/L week 3 #3	3,144.0750	3,016.7400	0.9595	
13	1.0µg/L week 3 #1	2,863.1308	2,579.1082	0.9008	
14	1.0µg/L week 3 #2	3,037.7491	2,649.2210	0.8721	
15	1.0µg/L week 3 #3	2,127.5958	1,705.6936	0.8017	

Table B12 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 4 #1	2,592.5354	2,503.8707	0.9658	
2	Control week 4 #2	3,341.3874	3,027.2970	0.9060	
3	Control week 4 #3	3,404.5315	3,197.5360	0.9392	
4	0.1µg/L week 4 #1	3,081.7976	2,516.9041	0.8167	
5	0.1µg/L week 4 #2	2,765.4202	2,587.3271	0.9356	
6	0.1µg/L week 4 #3	2,837.3635	2,073.8290	0.7309	
7	0.2µg/L week 4 #1	2,935.9934	2,623.6037	0.8936	
8	0.2µg/L week 4 #2	2,370.9793	2,251.7190	0.9497	
9	0.2µg/L week 4 #3	3,283.8642	3,894.6629	1.1860	
10	0.5µg/L week 4 #1	3,532.2120	3,411.4103	0.9658	
11	0.5µg/L week 4 #2	3,221.1666	2,918.3769	0.9060	
12	0.5µg/L week 4 #3	2,937.3593	2,758.7678	0.9392	
13	1.0µg/L week 4 #1	3,044.7096	2,950.0192	0.9689	
14	1.0µg/L week 4 #2	2,666.5538	2,439.3634	0.9148	
15	1.0µg/L week 4 #3	3,054.0867	2,898.9391	0.9492	

Table B13 Intensity of band and ratio pvMT01 expression gene in gill of mussel*P.viridis* Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 5 #1	3,271.7227	2,630.1379	0.8039	
2	Control week 5 #2	3,248.4071	3,001.5282	0.9240	
3	Control week 5 #3	2,354.1545	2,303.3047	0.9784	
4	0.1µg/L week 5 #1	2,950.2865	2,721.0492	0.9223	
5	0.1µg/L week 5 #2	3,110.6768	2,586.8389	0.8316	
6	0.1µg/L week 5 #3	3,252.3404	2,340.0589	0.7195	
7	0.2µg/L week 5 #1	2,758.9107	2,386.7336	0.8651	
8	0.2µg/L week 5 #2	3,416.6640	2,920.9061	0.8549	
9	0.2µg/L week 5 #3	3,657.7959	3,902.8682	1.0670	
10	0.5µg/L week 5 #1	3,546.0033	3,446.7152	0.9720	
11	0.5µg/L week 5 #2	3,164.2350	2,771.8698	0.8760	
12	0.5µg/L week 5 #3	2,857.3082	2,767.3030	0.9685	
13	1.0µg/L week 5 #1	3,013.5030	2,580.7640	0.8564	
14	1.0µg/L week 5 #2	2,716.6498	2,598.2038	0.9564	
15	1.0µg/L week 5 #3	2,302.1478	2,187.5008	0.9502	

Table B14 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 6 #1	2,791.7754	2,594.3969	0.9293	
2	Control week 6 #2	3,678.1178	3,351.1331	0.9111	
3	Control week 6 #3	3,357.4901	3,357.8258	1.0001	
4	0.1µg/L week 6 #1	3,144.3501	2,886.8278	0.9181	
5	0.1µg/L week 6 #2	3,293.4432	3,472.9358	1.0545	
6	0.1µg/L week 6 #3	3,059.6972	2,789.2200	0.9116	
7	0.2µg/L week 6 #1	2,449.5583	2,199.4584	0.8979	
8	0.2µg/L week 6 #2	2,438.6325	2,264.0265	0.9284	
9	0.2µg/L week 6 #3	3,159.6243	2,962.4637	0.9376	
10	0.5µg/L week 6 #1	2,709.5262	2,413.9169	0.8909	
11	0.5µg/L week 6 #2	2,968.1829	3,016.8611	1.0164	
12	0.5µg/L week 6 #3	2,891.1344	2,769.7067	0.9580	
13	1.0µg/L week 6 #1	2,927.7575	2,720.4723	0.9292	
14	1.0µg/L week 6 #2	2,956.9075	2,521.3550	0.8527	
15	1.0µg/L week 6 #3	2,977.7102	2,539.0935	0.8527	

Table B15 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 7 #1	3,613.9686	3,387.7342	0.9374	
2	Control week 7 #2	3,580.6571	3,142.3847	0.8776	
3	Control week 7 #3	3,512.8680	3,099.4035	0.8823	
4	0.1µg/L week 7 #1	2,760.9605	2,769.7956	1.0032	
5	0.1µg/L week 7 #2	3,284.3780	3,304.0843	1.0060	
6	0.1µg/L week 7 #3	2,493.4878	2,512.4383	1.0076	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,467.9405	1.0212	
11	0.5µg/L week 7 #2	3,329.0584	2,877.9710	0.8645	
12	0.5µg/L week 7 #3	3,030.7918	2,312.4941	0.7630	
13	1.0µg/L week 7 #1	3,236.8091	3,150.0626	0.9732	
14	1.0µg/L week 7 #2	2,242.8432	2,052.8743	0.9153	
15	1.0µg/L week 7 #3	2,142.8291	2,161.0431	1.0085	
Table B16 Intensity of band and ratio pvMT01 expression gene in gill of mussel*P.viridis* Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	2,970.6536	1.0128	
5	0.1µg/L week 8 #2	3,396.6355	3,397.3148	1.0002	
6	0.1µg/L week 8 #3	3,351.7961	3,402.7434	1.0152	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B17 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Initial # 1	4,614.1009	3,226.1794	0.6992	
2	Initial # 2	4,362.2049	2,883.8537	0.6611	
3	Initial # 3	4,470.4610	2,464.5651	0.5513	
4	Control week 1 #1	3,729.9440	2,763.5155	0.7409	
5	Control week 1 #2	4,132.5567	3,161.8192	0.7651	
6	Control week 1 #3	2,939.6814	2,203.5852	0.7496	
7	0.1µg/L week 1 #1	2,819.2144	2,259.3184	0.8014	
8	0.1µg/L week 1 #2	4,505.5442	3,831.0642	0.8503	
9	0.1µg/L week 1 #3	4,793.9111	4,403.2073	0.9185	
10	0.2µg/L week 1 #1	4,521.8023	3,240.3235	0.7166	
11	0.2µg/L week 1 #2	4,385.6091	4,812.3289	1.0973	
12	0.2µg/L week 1 #3	3,741.5767	3,114.8626	0.8325	
13	0.5µg/L week 1 #1	4,059.6151	4,267.0615	1.0511	
14	0.5µg/L week 1 #2	2,774.2561	2,341.1947	0.8439	
15	0.5µg/L week 1 #3	2,660.4727	2,500.0462	0.9397	
16	1.0µg/L week 1 #1	3,814.7958	2,681.4200	0.7029	
17	1.0µg/L week 1 #2	4,240.0034	4,360.8435	1.0285	
18	1.0µg/L week 1 #3	4,287.2744	3,545.5759	0.8270	

Table B18 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 2 #1	4,024.6938	3,575.9404	0.8885	
2	Control week 2 #2	3,493.8203	3,678.6434	1.0529	
3	Control week 2 #3	4,000.2257	3,578.2019	0.8945	
4	0.1µg/L week 2 #1	3,083.5758	2,400.5637	0.7785	
5	0.1µg/L week 2 #2	2,907.9053	2,966.0634	1.0200	
6	0.1µg/L week 2 #3	4,284.1060	3,119.6860	0.7282	
7	0.2µg/L week 2 #1	4,877.0516	3,917.7355	0.8033	
8	0.2µg/L week 2 #2	4,305.4288	3,925.2595	0.9117	
9	0.2µg/L week 2 #3	3,920.9012	3,558.2178	0.9075	
10	0.5µg/L week 2 #1	3,740.3510	2,642.9320	0.7066	
11	0.5µg/L week 2 #2	4,069.0739	3,673.1530	0.9027	
12	0.5µg/L week 2 #3	4,068.2414	3,881.1023	0.9540	
13	1.0µg/L week 2 #1	3,062.4611	2,539.0865	0.8291	
14	1.0µg/L week 2 #2	4,076.4051	3,421.7344	0.8394	
15	1.0µg/L week 2 #3	3,814.7958	3,162.4658	0.8290	

Table B19 Intensity of band and ratio pvMT02 expression gene in gill of mussel*P.viridis* Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 3 #1	3,082.5593	2,581.0269	0.8373	
2	Control week 3 #2	3,017.1826	2,911.2794	0.9649	
3	Control week 3 #3	2,848.2378	2,246.9748	0.7889	
4	0.1µg/L week 3 #1	2,574.0440	2,041.2169	0.7930	
5	0.1µg/L week 3 #2	2,918.3688	2,300.5501	0.7883	
6	0.1µg/L week 3 #3	3,034.4658	2,345.3386	0.7729	
7	0.2µg/L week 3 #1	2,344.5554	1,840.2415	0.7849	
8	0.2µg/L week 3 #2	3,086.3942	2,867.5689	0.9291	
9	0.2µg/L week 3 #3	2,966.6725	2,853.9389	0.9620	
10	0.5µg/L week 3 #1	2,880.3089	2,234.5437	0.7758	
11	0.5µg/L week 3 #2	2,902.5039	2,268.3068	0.7815	
12	0.5µg/L week 3 #3	3,144.0750	2,719.3105	0.8649	
13	1.0µg/L week 3 #1	2,863.1308	2,226.0842	0.7775	
14	1.0µg/L week 3 #2	3,037.7491	2,505.5354	0.8248	
15	1.0µg/L week 3 #3	2,127.5958	1,659.7375	0.7801	

Table B20 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 4 #1	2,592.5354	2,082.5837	0.8033	
2	Control week 4 #2	3,341.3874	3,188.3518	0.9542	
3	Control week 4 #3	3,404.5315	3,477.7290	1.0215	
4	0.1µg/L week 4 #1	3,081.7976	2,966.2302	0.9625	
5	0.1µg/L week 4 #2	2,765.4202	2,271.5161	0.8214	
6	0.1µg/L week 4 #3	2,837.3635	2,418.0012	0.8522	
7	0.2µg/L week 4 #1	2,935.9934	2,193.1871	0.7470	
8	0.2µg/L week 4 #2	2,370.9793	2,109.2232	0.8896	
9	0.2µg/L week 4 #3	3,283.8642	2,952.1939	0.8990	
10	0.5µg/L week 4 #1	3,532.2120	2,837.4259	0.8033	
11	0.5µg/L week 4 #2	3,221.1666	3,073.6371	0.9542	
12	0.5µg/L week 4 #3	2,937.3593	3,000.5125	1.0215	
13	1.0µg/L week 4 #1	3,044.7096	2,461.3433	0.8084	
14	1.0µg/L week 4 #2	2,666.5538	2,081.2453	0.7805	
15	1.0µg/L week 4 #3	3,054.0867	2,516.5674	0.8240	

 Table 21 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 5 #1	3,271.7227	2,509.0842	0.7669	
2	Control week 5 #2	3,248.4071	2,712.4200	0.8350	
3	Control week 5 #3	2,354.1545	2,494.9329	1.0598	
4	0.1µg/L week 5 #1	2,950.2865	2,441.6571	0.8276	
5	0.1µg/L week 5 #2	3,110.6768	2,681.4034	0.8620	
6	0.1µg/L week 5 #3	3,252.3404	2,932.9606	0.9018	
7	0.2µg/L week 5 #1	2,758.9107	2,155.2610	0.7812	
8	0.2µg/L week 5 #2	3,416.6640	3,059.2810	0.8954	
9	0.2µg/L week 5 #3	3,657.7959	3,952.2484	1.0805	
10	0.5µg/L week 5 #1	3,546.0033	2,709.1466	0.7640	
11	0.5µg/L week 5 #2	3,164.2350	2,523.4774	0.7975	
12	0.5µg/L week 5 #3	2,857.3082	2,414.9969	0.8452	
13	1.0µg/L week 5 #1	3,013.5030	2,402.0633	0.7971	
14	1.0µg/L week 5 #2	2,716.6498	2,312.9556	0.8514	
15	1.0µg/L week 5 #3	2,302.1478	1,893.2863	0.8224	

Table B22 Intensity of band and ratio pvMT02 expression gene in gill of mussel*P.viridis* Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 6 #1	2,791.7754	2,364.9129	0.8471	
2	Control week 6 #2	3,678.1178	3,031.5047	0.8242	
3	Control week 6 #3	3,357.4901	3,101.9851	0.9239	
4	0.1µg/L week 6 #1	3,144.3501	2,646.9139	0.8418	
5	0.1µg/L week 6 #2	3,293.4432	3,176.5259	0.9645	
6	0.1µg/L week 6 #3	3,059.6972	2,545.9740	0.8321	
7	0.2µg/L week 6 #1	2,449.5583	2,118.1331	0.8647	
8	0.2µg/L week 6 #2	2,438.6325	2,299.6305	0.9430	
9	0.2µg/L week 6 #3	3,159.6243	2,682.2051	0.8489	
10	0.5µg/L week 6 #1	2,709.5262	2,169.5176	0.8007	
11	0.5µg/L week 6 #2	2,968.1829	2,634.2623	0.8875	
12	0.5µg/L week 6 #3	2,891.1344	2,941.7292	1.0175	
13	1.0µg/L week 6 #1	2,927.7575	2,612.7308	0.8924	
14	1.0µg/L week 6 #2	2,956.9075	2,737.2093	0.9257	
15	1.0µg/L week 6 #3	2,977.7102	2,971.1592	0.9978	

Table B23 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 7 #1	3,613.9686	2,929.8444	0.8107	
2	Control week 7 #2	3,580.6571	3,028.5198	0.8458	
3	Control week 7 #3	3,512.8680	2,802.9174	0.7979	
4	0.1µg/L week 7 #1	2,760.9605	2,780.0111	1.0069	
5	0.1µg/L week 7 #2	3,284.3780	3,336.9281	1.0160	
6	0.1µg/L week 7 #3	2,493.4878	2,512.6877	1.0077	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,412.9262	1.0050	
11	0.5µg/L week 7 #2	3,329.0584	2,871.9787	0.8627	
12	0.5µg/L week 7 #3	3,030.7918	2,643.1535	0.8721	
13	1.0μg/L week 7 #1	3,236.8091	3,297.3374	1.0187	
14	1.0μg/L week 7 #2	2,242.8432	1,970.3377	0.8785	
15	1.0µg/L week 7 #3	2,142.8291	2,160.6146	1.0083	

Table B24 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	2,973.2934	1.0137	
5	0.1µg/L week 8 #2	3,396.6355	3,414.6376	1.0053	
6	0.1µg/L week 8 #3	3,351.7961	3,371.2365	1.0058	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B25 Intensity of band and ratio pvMT03 expression gene in gill of mussel*P.viridis* Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Initial # 1	4,614.1009	4,553.6562	0.9869	
2	Initial # 2	4,362.2049	3,790.7561	0.8690	
3	Initial # 3	4,470.4610	2,655.9009	0.5941	
4	Control week 1 #1	3,729.9440	3,463.9990	0.9287	
5	Control week 1 #2	4,132.5567	3,938.3266	0.9530	
6	Control week 1 #3	2,939.6814	2,760.0669	0.9389	
7	0.1µg/L week 1 #1	2,819.2144	2,353.7621	0.8349	
8	0.1µg/L week 1 #2	4,505.5442	2,648.8094	0.5879	
9	0.1µg/L week 1 #3	4,793.9111	5,134.2787	1.0710	
10	0.2µg/L week 1 #1	4,521.8023	3,928.9940	0.8689	
11	0.2µg/L week 1 #2	4,385.6091	3,945.2940	0.8996	
12	0.2µg/L week 1 #3	3,741.5767	3,575.4507	0.9556	
13	0.5µg/L week 1 #1	4,059.6151	3,747.0248	0.9230	
14	0.5µg/L week 1 #2	2,774.2561	2,599.2006	0.9369	
15	0.5µg/L week 1 #3	2,660.4727	2,201.0091	0.8273	
16	1.0µg/L week 1 #1	3,814.7958	3,445.1421	0.9031	
17	1.0µg/L week 1 #2	4,240.0034	4,964.6200	1.1709	
18	1.0µg/L week 1 #3	4,287.2744	4,064.3361	0.9480	

 Table B26 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 2 #1	4,024.6938	3,952.6518	0.9821	
2	Control week 2 #2	3,493.8203	3,444.9069	0.9860	
3	Control week 2 #3	4,000.2257	4,351.8456	1.0879	
4	0.1µg/L week 2 #1	3,083.5758	2,817.4632	0.9137	
5	0.1µg/L week 2 #2	2,907.9053	2,941.9278	1.0117	
6	0.1µg/L week 2 #3	4,284.1060	3,626.0673	0.8464	
7	0.2µg/L week 2 #1	4,877.0516	4,526.3915	0.9281	
8	0.2µg/L week 2 #2	4,305.4288	4,522.8530	1.0505	
9	0.2µg/L week 2 #3	3,920.9012	4,097.3417	1.0450	
10	0.5µg/L week 2 #1	3,740.3510	3,402.2233	0.9096	
11	0.5µg/L week 2 #2	4,069.0739	3,575.0884	0.8786	
12	0.5µg/L week 2 #3	4,068.2414	4,609.7243	1.1331	
13	1.0µg/L week 2 #1	3,062.4611	2,673.8348	0.8731	
14	1.0µg/L week 2 #2	4,076.4051	4,228.0474	1.0372	
15	1.0µg/L week 2 #3	3,814.7958	3,970.0580	1.0407	

Table B27 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 3 #1	3,082.5593	2,993.7816	0.9712	
2	Control week 3 #2	3,017.1826	2,718.7832	0.9011	
3	Control week 3 #3	2,848.2378	2,384.2598	0.8371	
4	0.1µg/L week 3 #1	2,574.0440	2,247.9126	0.8733	
5	0.1µg/L week 3 #2	2,918.3688	2,538.1053	0.8697	
6	0.1µg/L week 3 #3	3,034.4658	2,568.0684	0.8463	
7	0.2µg/L week 3 #1	2,344.5554	2,000.3746	0.8532	
8	0.2µg/L week 3 #2	3,086.3942	3,307.0714	1.0715	
9	0.2µg/L week 3 #3	2,966.6725	3,253.8464	1.0968	
10	0.5µg/L week 3 #1	2,880.3089	2,528.3352	0.8778	
11	0.5µg/L week 3 #2	2,902.5039	2,387.3095	0.8225	
12	0.5µg/L week 3 #3	3,144.0750	3,268.2660	1.0395	
13	1.0µg/L week 3 #1	2,863.1308	2,340.8957	0.8176	
14	1.0µg/L week 3 #2	3,037.7491	2,680.2060	0.8823	
15	1.0µg/L week 3 #3	2,127.5958	1,899.3048	0.8927	

Table B28 Intensity of band and ratio pvMT03 expression gene in gill of mussel*P.viridis* Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 4 #1	2,592.5354	2,505.9447	0.9666	
2	Control week 4 #2	3,341.3874	2,700.5093	0.8082	
3	Control week 4 #3	3,404.5315	2,736.9029	0.8039	
4	0.1µg/L week 4 #1	3,081.7976	2,686.0948	0.8716	
5	0.1µg/L week 4 #2	2,765.4202	2,614.9813	0.9456	
6	0.1µg/L week 4 #3	2,837.3635	2,255.1365	0.7948	
7	0.2µg/L week 4 #1	2,935.9934	2,467.1153	0.8403	
8	0.2µg/L week 4 #2	2,370.9793	2,084.8021	0.8793	
9	0.2µg/L week 4 #3	3,283.8642	3,925.5313	1.1954	
10	0.5µg/L week 4 #1	3,532.2120	3,414.2361	0.9666	
11	0.5µg/L week 4 #2	3,221.1666	2,603.3468	0.8082	
12	0.5µg/L week 4 #3	2,937.3593	2,361.3431	0.8039	
13	1.0µg/L week 4 #1	3,044.7096	2,726.8419	0.8956	
14	1.0µg/L week 4 #2	2,666.5538	2,258.0378	0.8468	
15	1.0µg/L week 4 #3	3,054.0867	2,881.2254	0.9434	

Table B29 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 5 #1	3,271.7227	2,729.5983	0.8343	
2	Control week 5 #2	3,248.4071	3,075.2670	0.9467	
3	Control week 5 #3	2,354.1545	2,271.9945	0.9651	
4	0.1µg/L week 5 #1	2,950.2865	2,505.3833	0.8492	
5	0.1µg/L week 5 #2	3,110.6768	2,348.2499	0.7549	
6	0.1µg/L week 5 #3	3,252.3404	3,092.3253	0.9508	
7	0.2µg/L week 5 #1	2,758.9107	2,273.0665	0.8239	
8	0.2µg/L week 5 #2	3,416.6640	2,842.3228	0.8319	
9	0.2µg/L week 5 #3	3,657.7959	3,991.7526	1.0913	
10	0.5µg/L week 5 #1	3,546.0033	3,222.6078	0.9088	
11	0.5µg/L week 5 #2	3,164.2350	2,694.9789	0.8517	
12	0.5µg/L week 5 #3	2,857.3082	2,748.4447	0.9619	
13	1.0µg/L week 5 #1	3,013.5030	2,309.2474	0.7663	
14	1.0µg/L week 5 #2	2,716.6498	2,555.8241	0.9408	
15	1.0µg/L week 5 #3	2,302.1478	1,870.0346	0.8123	

Table B30 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 6 #1	2,791.7754	2,473.5130	0.8860	
2	Control week 6 #2	3,678.1178	3,017.8956	0.8205	
3	Control week 6 #3	3,357.4901	3,296.3837	0.9818	
4	0.1µg/L week 6 #1	3,144.3501	2,744.3887	0.8728	
5	0.1µg/L week 6 #2	3,293.4432	3,381.7074	1.0268	
6	0.1µg/L week 6 #3	3,059.6972	2,635.0112	0.8612	
7	0.2µg/L week 6 #1	2,449.5583	2,339.3282	0.9550	
8	0.2µg/L week 6 #2	2,438.6325	2,041.8670	0.8373	
9	0.2µg/L week 6 #3	3,159.6243	2,839.2384	0.8986	
10	0.5µg/L week 6 #1	2,709.5262	2,322.8768	0.8573	
11	0.5µg/L week 6 #2	2,968.1829	2,909.1161	0.9801	
12	0.5µg/L week 6 #3	2,891.1344	2,699.7413	0.9338	
13	1.0µg/L week 6 #1	2,927.7575	2,675.0921	0.9137	
14	1.0µg/L week 6 #2	2,956.9075	2,559.4991	0.8656	
15	1.0µg/L week 6 #3	2,977.7102	2,760.6351	0.9271	

Table B31 Intensity of band and ratio pvMT03 expression gene in gill of mussel*P.viridis* Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 7 #1	3,613.9686	3,191.4957	0.8831	
2	Control week 7 #2	3,580.6571	3,261.2625	0.9108	
3	Control week 7 #3	3,512.8680	3,100.8086	0.8827	
4	0.1µg/L week 7 #1	2,760.9605	2,770.9000	1.0036	
5	0.1µg/L week 7 #2	3,284.3780	3,326.0896	1.0127	
6	0.1µg/L week 7 #3	2,493.4878	2,502.4644	1.0036	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,447.5648	1.0152	
11	0.5µg/L week 7 #2	3,329.0584	3,157.2790	0.9484	
12	0.5µg/L week 7 #3	3,030.7918	2,454.9413	0.8100	
13	1.0µg/L week 7 #1	3,236.8091	3,138.4101	0.9696	
14	1.0µg/L week 7 #2	2,242.8432	1,833.5243	0.8175	
15	1.0µg/L week 7 #3	2,142.8291	2,143.2577	1.0002	

Table B32 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	2,979.4529	1.0158	
5	0.1µg/L week 8 #2	3,396.6355	3,417.3549	1.0061	
6	0.1µg/L week 8 #3	3,351.7961	3,423.1894	1.0213	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B33 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Initial # 1	4,614.1009	2,152.4781	0.4665	
2	Initial # 2	4,362.2049	3,250.7151	0.7452	
3	Initial # 3	4,470.4610	1,380.9254	0.3089	
4	Control week 1 #1	3,729.9440	1,275.6408	0.3420	
5	Control week 1 #2	4,132.5567	1,419.9465	0.3436	
6	Control week 1 #3	2,939.6814	1,204.0935	0.4096	
7	0.1µg/L week 1 #1	2,819.2144	818.1360	0.2902	
8	0.1µg/L week 1 #2	4,505.5442	4,883.5594	1.0839	
9	0.1µg/L week 1 #3	4,793.9111	2,441.0595	0.5092	
10	0.2µg/L week 1 #1	4,521.8023	7,319.4413	1.6187	
11	0.2µg/L week 1 #2	4,385.6091	4,672.4280	1.0654	
12	0.2µg/L week 1 #3	3,741.5767	4,928.7790	1.3173	
13	0.5µg/L week 1 #1	4,059.6151	4,405.4943	1.0852	
14	0.5µg/L week 1 #2	2,774.2561	4,055.9624	1.4620	
15	0.5µg/L week 1 #3	2,660.4727	2,223.3571	0.8357	
16	1.0µg/L week 1 #1	3,814.7958	933.8620	0.2448	
17	1.0µg/L week 1 #2	4,240.0034	3,995.7792	0.9424	
18	1.0µg/L week 1 #3	4,287.2744	3,333.7846	0.7776	

Table B34 Intensity of band and ratio pvMT07 expression gene in gill of mussel*P.viridis* Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 2 #1	4,024.6938	1,106.7908	0.2750	
2	Control week 2 #2	3,493.8203	3,457.4846	0.9896	
3	Control week 2 #3	4,000.2257	4,049.4285	1.0123	
4	0.1µg/L week 2 #1	3,083.5758	1,104.5368	0.3582	
5	0.1µg/L week 2 #2	2,907.9053	2,738.6652	0.9418	
6	0.1µg/L week 2 #3	4,284.1060	4,394.6360	1.0258	
7	0.2µg/L week 2 #1	4,877.0516	3,353.9484	0.6877	
8	0.2µg/L week 2 #2	4,305.4288	3,594.1720	0.8348	
9	0.2µg/L week 2 #3	3,920.9012	3,113.9797	0.7942	
10	0.5µg/L week 2 #1	3,740.3510	5,769.1174	1.5424	
11	0.5µg/L week 2 #2	4,069.0739	3,992.9823	0.9813	
12	0.5µg/L week 2 #3	4,068.2414	3,861.1679	0.9491	
13	1.0µg/L week 2 #1	3,062.4611	3,730.9963	1.2183	
14	1.0µg/L week 2 #2	4,076.4051	3,624.7394	0.8892	
15	1.0µg/L week 2 #3	3,814.7958	2,988.5111	0.7834	

Table B35 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 3 #1	3,082.5593	763.5500	0.2477	
2	Control week 3 #2	3,017.1826	1,603.9342	0.5316	
3	Control week 3 #3	2,848.2378	2,354.3533	0.8266	
4	0.1µg/L week 3 #1	2,574.0440	3,748.3228	1.4562	
5	0.1µg/L week 3 #2	2,918.3688	2,949.5953	1.0107	
6	0.1µg/L week 3 #3	3,034.4658	2,995.0177	0.9870	
7	0.2µg/L week 3 #1	2,344.5554	2,153.2397	0.9184	
8	0.2µg/L week 3 #2	3,086.3942	2,851.2110	0.9238	
9	0.2µg/L week 3 #3	2,966.6725	2,440.3848	0.8226	
10	0.5µg/L week 3 #1	2,880.3089	4,255.0804	1.4773	
11	0.5µg/L week 3 #2	2,902.5039	2,359.4454	0.8129	
12	0.5µg/L week 3 #3	3,144.0750	3,195.6378	1.0164	
13	1.0µg/L week 3 #1	2,863.1308	6,771.0179	2.3649	
14	1.0µg/L week 3 #2	3,037.7491	2,729.1138	0.8984	
15	1.0µg/L week 3 #3	2,127.5958	2,107.5964	0.9906	

Table B36 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 4 #1	2,592.5354	2,125.8791	0.8200	
2	Control week 4 #2	3,341.3874	3,427.9293	1.0259	
3	Control week 4 #3	3,404.5315	3,350.7399	0.9842	
4	0.1µg/L week 4 #1	3,081.7976	4,401.4234	1.4282	
5	0.1µg/L week 4 #2	2,765.4202	3,025.9227	1.0942	
6	0.1µg/L week 4 #3	2,837.3635	2,734.9347	0.9639	
7	0.2µg/L week 4 #1	2,935.9934	1,731.3553	0.5897	
8	0.2µg/L week 4 #2	2,370.9793	2,367.8970	0.9987	
9	0.2µg/L week 4 #3	3,283.8642	3,593.5326	1.0943	
10	0.5µg/L week 4 #1	3,532.2120	1,554.5265	0.4401	
11	0.5µg/L week 4 #2	3,221.1666	3,292.0322	1.0220	
12	0.5µg/L week 4 #3	2,937.3593	4,770.2715	1.6240	
13	1.0µg/L week 4 #1	3,044.7096	1,171.6043	0.3848	
14	1.0µg/L week 4 #2	2,666.5538	3,000.9397	1.1254	
15	1.0µg/L week 4 #3	3,054.0867	3,255.6564	1.0660	

Table B37 Intensity of band and ratio pvMT07 expression gene in gill of mussel*P.viridis* Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 5 #1	3,271.7227	5,455.9248	1.6676	
2	Control week 5 #2	3,248.4071	2,211.8404	0.6809	
3	Control week 5 #3	2,354.1545	1,641.5519	0.6973	
4	0.1µg/L week 5 #1	2,950.2865	2,263.4598	0.7672	
5	0.1µg/L week 5 #2	3,110.6768	1,968.7474	0.6329	
6	0.1µg/L week 5 #3	3,252.3404	2,569.0237	0.7899	
7	0.2µg/L week 5 #1	2,758.9107	5,558.1014	2.0146	
8	0.2µg/L week 5 #2	3,416.6640	3,483.2890	1.0195	
9	0.2µg/L week 5 #3	3,657.7959	3,618.2917	0.9892	
10	0.5µg/L week 5 #1	3,546.0033	2,981.4796	0.8408	
11	0.5µg/L week 5 #2	3,164.2350	5,773.1467	1.8245	
12	0.5µg/L week 5 #3	2,857.3082	4,594.5515	1.6080	
13	1.0µg/L week 5 #1	3,013.5030	2,836.3090	0.9412	
14	1.0µg/L week 5 #2	2,716.6498	3,278.1813	1.2067	
15	1.0µg/L week 5 #3	2,302.1478	2,384.1042	1.0356	

Table B38 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 6 #1	2,791.7754	2,136.8249	0.7654	
2	Control week 6 #2	3,678.1178	2,578.3606	0.7010	
3	Control week 6 #3	3,357.4901	2,314.3179	0.6893	
4	0.1µg/L week 6 #1	3,144.3501	2,641.8829	0.8402	
5	0.1µg/L week 6 #2	3,293.4432	3,891.5325	1.1816	
6	0.1µg/L week 6 #3	3,059.6972	2,133.8328	0.6974	
7	0.2µg/L week 6 #1	2,449.5583	2,242.0807	0.9153	
8	0.2µg/L week 6 #2	2,438.6325	2,592.5103	1.0631	
9	0.2µg/L week 6 #3	3,159.6243	4,066.1205	1.2869	
10	0.5µg/L week 6 #1	2,709.5262	3,553.0017	1.3113	
11	0.5µg/L week 6 #2	2,968.1829	3,539.5581	1.1925	
12	0.5µg/L week 6 #3	2,891.1344	3,186.3192	1.1021	
13	1.0µg/L week 6 #1	2,927.7575	3,330.9098	1.1377	
14	1.0µg/L week 6 #2	2,956.9075	3,362.2995	1.1371	
15	1.0µg/L week 6 #3	2,977.7102	3,105.4539	1.0429	

Table B39 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 7 #1	3,613.9686	2,119.9540	0.5866	
2	Control week 7 #2	3,580.6571	2,649.6863	0.7400	
3	Control week 7 #3	3,512.8680	2,416.5019	0.6879	
4	0.1µg/L week 7 #1	2,760.9605	1,611.5727	0.5837	
5	0.1µg/L week 7 #2	3,284.3780	2,351.9431	0.7161	
6	0.1µg/L week 7 #3	2,493.4878	1,929.7102	0.7739	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	6,344.9863	1.8684	
11	0.5µg/L week 7 #2	3,329.0584	5,030.8731	1.5112	
12	0.5µg/L week 7 #3	3,030.7918	4,357.6724	1.4378	
13	1.0µg/L week 7 #1	3,236.8091	3,891.6156	1.2023	
14	1.0µg/L week 7 #2	2,242.8432	3,261.5425	1.4542	
15	1.0µg/L week 7 #3	2,142.8291	2,958.1756	1.3805	

 Table B40 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	1,768.6652	0.6030	
5	0.1µg/L week 8 #2	3,396.6355	3,624.2100	1.0670	
6	0.1µg/L week 8 #3	3,351.7961	3,559.2723	1.0619	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B41 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Initial # 1	4,614.1009	3,883.6888	0.8417	
2	Initial # 2	4,362.2049	2,337.7056	0.5359	
3	Initial # 3	4,470.4610	1,650.0472	0.3691	
4	Control week 1 #1	3,729.9440	2,248.7832	0.6029	
5	Control week 1 #2	4,132.5567	2,158.4344	0.5223	
6	Control week 1 #3	2,939.6814	1,854.9390	0.6310	
7	0.1µg/L week 1 #1	2,819.2144	1,630.0698	0.5782	
8	0.1µg/L week 1 #2	4,505.5442	2,790.7341	0.6194	
9	0.1µg/L week 1 #3	4,793.9111	2,996.1944	0.6250	
10	0.2µg/L week 1 #1	4,521.8023	2,275.8231	0.5033	
11	0.2µg/L week 1 #2	4,385.6091	3,087.9074	0.7041	
12	0.2µg/L week 1 #3	3,741.5767	2,204.5370	0.5892	
13	0.5µg/L week 1 #1	4,059.6151	3,045.5233	0.7502	
14	0.5µg/L week 1 #2	2,774.2561	1,482.8399	0.5345	
15	0.5µg/L week 1 #3	2,660.4727	1,763.8934	0.6630	
16	1.0µg/L week 1 #1	3,814.7958	2,249.9666	0.5898	
17	1.0µg/L week 1 #2	4,240.0034	4,190.3954	0.9883	
18	1.0µg/L week 1 #3	4,287.2744	3,287.4820	0.7668	

Table B42 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 2 #1	4,024.6938	2,882.0832	0.7161	
2	Control week 2 #2	3,493.8203	2,914.1955	0.8341	
3	Control week 2 #3	4,000.2257	4,251.8399	1.0629	
4	0.1µg/L week 2 #1	3,083.5758	2,406.1142	0.7803	
5	0.1µg/L week 2 #2	2,907.9053	2,390.5890	0.8221	
6	0.1µg/L week 2 #3	4,284.1060	2,855.7851	0.6666	
7	0.2µg/L week 2 #1	4,877.0516	3,568.0509	0.7316	
8	0.2µg/L week 2 #2	4,305.4288	3,793.9439	0.8812	
9	0.2µg/L week 2 #3	3,920.9012	3,329.6293	0.8492	
10	0.5µg/L week 2 #1	3,740.3510	2,435.3425	0.6511	
11	0.5µg/L week 2 #2	4,069.0739	3,131.5593	0.7696	
12	0.5µg/L week 2 #3	4,068.2414	3,514.5537	0.8639	
13	1.0µg/L week 2 #1	3,062.4611	2,282.4522	0.7453	
14	1.0µg/L week 2 #2	4,076.4051	3,321.4549	0.8148	
15	1.0µg/L week 2 #3	3,814.7958	2,434.6027	0.6382	

Table B43 Intensity of band and ratio pvMT08 expression gene in gill of mussel*P.viridis* Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 3 #1	3,082.5593	1,989.1755	0.6453	
2	Control week 3 #2	3,017.1826	2,110.8209	0.6996	
3	Control week 3 #3	2,848.2378	2,006.0139	0.7043	
4	0.1µg/L week 3 #1	2,574.0440	1,878.5373	0.7298	
5	0.1µg/L week 3 #2	2,918.3688	1,905.4030	0.6529	
6	0.1µg/L week 3 #3	3,034.4658	2,219.7117	0.7315	
7	0.2µg/L week 3 #1	2,344.5554	1,736.8466	0.7408	
8	0.2µg/L week 3 #2	3,086.3942	2,387.6346	0.7736	
9	0.2µg/L week 3 #3	2,966.6725	2,473.3148	0.8337	
10	0.5µg/L week 3 #1	2,880.3089	2,005.8471	0.6964	
11	0.5µg/L week 3 #2	2,902.5039	1,771.6884	0.6104	
12	0.5µg/L week 3 #3	3,144.0750	2,332.2748	0.7418	
13	1.0µg/L week 3 #1	2,863.1308	1,711.2933	0.5977	
14	1.0µg/L week 3 #2	3,037.7491	1,909.2253	0.6285	
15	1.0µg/L week 3 #3	2,127.5958	1,620.3770	0.7616	

Table B44 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 4 #1	2,592.5354	2,353.7629	0.9079	
2	Control week 4 #2	3,341.3874	2,125.4565	0.6361	
3	Control week 4 #3	3,404.5315	2,633.4051	0.7735	
4	0.1µg/L week 4 #1	3,081.7976	2,028.7474	0.6583	
5	0.1µg/L week 4 #2	2,765.4202	1,984.7420	0.7177	
6	0.1µg/L week 4 #3	2,837.3635	1,748.6671	0.6163	
7	0.2µg/L week 4 #1	2,935.9934	2,030.5331	0.6916	
8	0.2µg/L week 4 #2	2,370.9793	2,108.0377	0.8891	
9	0.2µg/L week 4 #3	3,283.8642	2,994.5558	0.9119	
10	0.5µg/L week 4 #1	3,532.2120	3,206.8953	0.9079	
11	0.5µg/L week 4 #2	3,221.1666	2,048.9841	0.6361	
12	0.5µg/L week 4 #3	2,937.3593	2,272.0474	0.7735	
13	1.0µg/L week 4 #1	3,044.7096	1,860.3176	0.6110	
14	1.0µg/L week 4 #2	2,666.5538	1,479.9374	0.5550	
15	1.0µg/L week 4 #3	3,054.0867	2,094,4927	0.6858	

Table B45 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 5 #1	3,271.7227	2,054.3147	0.6279	
2	Control week 5 #2	3,248.4071	2,470.7385	0.7606	
3	Control week 5 #3	2,354.1545	1,688.3996	0.7172	
4	0.1µg/L week 5 #1	2,950.2865	2,093.5233	0.7096	
5	0.1µg/L week 5 #2	3,110.6768	2,236.8877	0.7191	
6	0.1µg/L week 5 #3	3,252.3404	2,742.6987	0.8433	
7	0.2µg/L week 5 #1	2,758.9107	1,736.4584	0.6294	
8	0.2µg/L week 5 #2	3,416.6640	2,265.2483	0.6630	
9	0.2µg/L week 5 #3	3,657.7959	3,223.9813	0.8814	
10	0.5µg/L week 5 #1	3,546.0033	2,354.1916	0.6639	
11	0.5µg/L week 5 #2	3,164.2350	1,784.3121	0.5639	
12	0.5µg/L week 5 #3	2,857.3082	2,012.1164	0.7042	
13	1.0µg/L week 5 #1	3,013.5030	1,904.5339	0.6320	
14	1.0µg/L week 5 #2	2,716.6498	2,168.9732	0.7984	
15	1.0µg/L week 5 #3	2,302.1478	1,626.6976	0.7066	

Table B46 Intensity of band and ratio pvMT07 expression gene in gill of mussel*P.viridis* Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT08/AT	Remark
1	Control week 6 #1	2,791.7754	2,094.3899	0.7502	
2	Control week 6 #2	3,678.1178	2,611.4636	0.7100	
3	Control week 6 #3	3,357.4901	2,593.9968	0.7726	
4	0.1µg/L week 6 #1	3,144.3501	2,097.2815	0.6670	
5	0.1µg/L week 6 #2	3,293.4432	2,862.6608	0.8692	
6	0.1µg/L week 6 #3	3,059.6972	2,138.4224	0.6989	
7	0.2µg/L week 6 #1	2,449.5583	2,297.1958	0.9378	
8	0.2µg/L week 6 #2	2,438.6325	1,633.8838	0.6700	
9	0.2µg/L week 6 #3	3,159.6243	2,300.5225	0.7281	
10	0.5µg/L week 6 #1	2,709.5262	1,834.0783	0.6769	
11	0.5µg/L week 6 #2	2,968.1829	2,318.7445	0.7812	
12	0.5µg/L week 6 #3	2,891.1344	2,205.9355	0.7630	
13	1.0µg/L week 6 #1	2,927.7575	2,728.9628	0.9321	
14	1.0µg/L week 6 #2	2,956.9075	2,154.9942	0.7288	
15	1.0µg/L week 6 #3	2,977.7102	2,494.7256	0.8378	

Table B47 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 7 #1	3,613.9686	2,409.0715	0.6666	
2	Control week 7 #2	3,580.6571	2,619.2507	0.7315	
3	Control week 7 #3	3,512.8680	2,370.8346	0.6749	
4	0.1µg/L week 7 #1	2,760.9605	2,823.0821	1.0225	
5	0.1µg/L week 7 #2	3,284.3780	3,396.7038	1.0342	
6	0.1µg/L week 7 #3	2,493.4878	2,562.8068	1.0278	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,517.8609	1.0359	
11	0.5µg/L week 7 #2	3,329.0584	3,231.1841	0.9706	
12	0.5µg/L week 7 #3	3,030.7918	2,030.9336	0.6701	
13	1.0μg/L week 7 #1	3,236.8091	2,886.2627	0.8917	
14	1.0µg/L week 7 #2	2,242.8432	1,658.1339	0.7393	
15	1.0µg/L week 7 #3	2,142.8291	2,195.1141	1.0244	

Table B48 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	3,057.7669	1.0425	
5	0.1µg/L week 8 #2	3,396.6355	3,426.8655	1.0089	
6	0.1µg/L week 8 #3	3,351.7961	3,495.5882	1.0429	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B49 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Initial # 1	4,614.1009	1,859.9441	0.4031	
2	Initial # 2	4,362.2049	3,740.1545	0.8574	
3	Initial # 3	4,470.4610	4,103.4361	0.9179	
4	Control week 1 #1	3,729.9440	2,950.0127	0.7909	
5	Control week 1 #2	4,132.5567	3,203.5580	0.7752	
6	Control week 1 #3	2,939.6814	2,382.6118	0.8105	
7	0.1µg/L week 1 #1	2,819.2144	2,449.3335	0.8688	
8	0.1µg/L week 1 #2	4,505.5442	3,819.3498	0.8477	
9	0.1µg/L week 1 #3	4,793.9111	5,490.4663	1.1453	
10	0.2µg/L week 1 #1	4,521.8023	4,322.3908	0.9559	
11	0.2µg/L week 1 #2	4,385.6091	4,742.1591	1.0813	
12	0.2µg/L week 1 #3	3,741.5767	3,022.4457	0.8078	
13	0.5µg/L week 1 #1	4,059.6151	4,121.7272	1.0153	
14	0.5µg/L week 1 #2	2,774.2561	2,138.6740	0.7709	
15	0.5µg/L week 1 #3	2,660.4727	2,372.0775	0.8916	
16	1.0µg/L week 1 #1	3,814.7958	3,428.3570	0.8987	
17	1.0µg/L week 1 #2	4,240.0034	5,428.9004	1.2804	
18	1.0µg/L week 1 #3	4,287.2744	3,735.5022	0.8713	

Table B50 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 2 #1	4,024.6938	3,984.0444	0.9899	
2	Control week 2 #2	3,493.8203	3,493.4710	0.9999	
3	Control week 2 #3	4,000.2257	4,641.4619	1.1603	
4	0.1µg/L week 2 #1	3,083.5758	2,402.4139	0.7791	
5	0.1µg/L week 2 #2	2,907.9053	3,114.6574	1.0711	
6	0.1µg/L week 2 #3	4,284.1060	3,695.4699	0.8626	
7	0.2µg/L week 2 #1	4,877.0516	4,671.7277	0.9579	
8	0.2µg/L week 2 #2	4,305.4288	4,372.1630	1.0155	
9	0.2µg/L week 2 #3	3,920.9012	4,196.1484	1.0702	
10	0.5µg/L week 2 #1	3,740.3510	3,069.3320	0.8206	
11	0.5µg/L week 2 #2	4,069.0739	3,809.0601	0.9361	
12	0.5µg/L week 2 #3	4,068.2414	3,986.8766	0.9800	
13	1.0µg/L week 2 #1	3,062.4611	2,719.4654	0.8880	
14	1.0µg/L week 2 #2	4,076.4051	3,953.7053	0.9699	
15	1.0µg/L week 2 #3	3,814.7958	3,922.7546	1.0283	

Table B51 Intensity of band and ratio pvMT11 expression gene in gill of mussel

P.viridis Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 3 #1	3,082.5593	2,399.7725	0.7785	
2	Control week 3 #2	3,017.1826	2,792.7042	0.9256	
3	Control week 3 #3	2,848.2378	2,385.9688	0.8377	
4	0.1µg/L week 3 #1	2,574.0440	2,318.4414	0.9007	
5	0.1µg/L week 3 #2	2,918.3688	2,261.1521	0.7748	
6	0.1µg/L week 3 #3	3,034.4658	2,599.0199	0.8565	
7	0.2µg/L week 3 #1	2,344.5554	2,068.6012	0.8823	
8	0.2µg/L week 3 #2	3,086.3942	3,124.6655	1.0124	
9	0.2µg/L week 3 #3	2,966.6725	2,899.9223	0.9775	
10	0.5µg/L week 3 #1	2,880.3089	2,624.2494	0.9111	
11	0.5µg/L week 3 #2	2,902.5039	2,148.7237	0.7403	
12	0.5µg/L week 3 #3	3,144.0750	3,119.5512	0.9922	
13	1.0µg/L week 3 #1	2,863.1308	2,210.0506	0.7719	
14	1.0µg/L week 3 #2	3,037.7491	2,474.2466	0.8145	
15	1.0µg/L week 3 #3	2,127.5958	1,971.0048	0.9264	

Table B52 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 4 #1	2,592.5354	2,676.2743	1.0323	
2	Control week 4 #2	3,341.3874	2,054.9532	0.6150	
3	Control week 4 #3	3,404.5315	3,233.2836	0.9497	
4	0.1µg/L week 4 #1	3,081.7976	2,607.8172	0.8462	
5	0.1µg/L week 4 #2	2,765.4202	2,777.5880	1.0044	
6	0.1µg/L week 4 #3	2,837.3635	2,195.5519	0.7738	
7	0.2µg/L week 4 #1	2,935.9934	2,712.2707	0.9238	
8	0.2µg/L week 4 #2	2,370.9793	2,252.1932	0.9499	
9	0.2µg/L week 4 #3	3,283.8642	4,033.8988	1.2284	
10	0.5µg/L week 4 #1	3,532.2120	3,646.3024	1.0323	
11	0.5µg/L week 4 #2	3,221.1666	1,981.0174	0.6150	
12	0.5µg/L week 4 #3	2,937.3593	2,789.6101	0.9497	
13	1.0µg/L week 4 #1	3,044.7096	2,973.1589	0.9765	
14	1.0µg/L week 4 #2	2,666.5538	2,122.0435	0.7958	
15	1.0µg/L week 4 #3	3,054.0867	3,085.8492	1.0104	

Table 53 Intensity of band and ratio pvMT11 expression gene in gill of mussel

P.viridis Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 5 #1	3,271.7227	2,734.5059	0.8358	
2	Control week 5 #2	3,248.4071	3,252.3052	1.0012	
3	Control week 5 #3	2,354.1545	2,057.2956	0.8739	
4	0.1µg/L week 5 #1	2,950.2865	2,899.5416	0.9828	
5	0.1µg/L week 5 #2	3,110.6768	2,393.3548	0.7694	
6	0.1µg/L week 5 #3	3,252.3404	3,396.4191	1.0443	
7	0.2µg/L week 5 #1	2,758.9107	2,105.6006	0.7632	
8	0.2µg/L week 5 #2	3,416.6640	2,934.9144	0.8590	
9	0.2µg/L week 5 #3	3,657.7959	3,807.7655	1.0410	
10	0.5µg/L week 5 #1	3,546.0033	3,596.0020	1.0141	
11	0.5µg/L week 5 #2	3,164.2350	2,442.1566	0.7718	
12	0.5µg/L week 5 #3	2,857.3082	2,749.8734	0.9624	
13	1.0µg/L week 5 #1	3,013.5030	2,305.6312	0.7651	
14	1.0µg/L week 5 #2	2,716.6498	2,676.1717	0.9851	
15	1.0µg/L week 5 #3	2,302.1478	1,778.6394	0.7726	

Table B54 Intensity of band and ratio pvMT11 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 6 #1	2,791.7754	2,711.0931	0.9711	
2	Control week 6 #2	3,678.1178	3,111.3198	0.8459	
3	Control week 6 #3	3,357.4901	3,568.6762	1.0629	
4	0.1µg/L week 6 #1	3,144.3501	2,423.0362	0.7706	
5	0.1µg/L week 6 #2	3,293.4432	3,587.8770	1.0894	
6	0.1µg/L week 6 #3	3,059.6972	2,641.1306	0.8632	
7	0.2µg/L week 6 #1	2,449.5583	2,498.5495	1.0200	
8	0.2µg/L week 6 #2	2,438.6325	2,064.5463	0.8466	
9	0.2µg/L week 6 #3	3,159.6243	3,033.2393	0.9600	
10	0.5µg/L week 6 #1	2,709.5262	2,391.6987	0.8827	
11	0.5µg/L week 6 #2	2,968.1829	3,028.1402	1.0202	
12	0.5µg/L week 6 #3	2,891.1344	2,623.7044	0.9075	
13	1.0µg/L week 6 #1	2,927.7575	2,891.7461	0.9877	
14	1.0µg/L week 6 #2	2,956.9075	2,427.0297	0.8208	
15	1.0µg/L week 6 #3	2,977.7102	3,162.0304	1.0619	

Table B55 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 7 #1	3,613.9686	2,867.6841	0.7935	
2	Control week 7 #2	3,580.6571	3,239.7785	0.9048	
3	Control week 7 #3	3,512.8680	2,837.6948	0.8078	
4	0.1µg/L week 7 #1	2,760.9605	2,770.3478	1.0034	
5	0.1µg/L week 7 #2	3,284.3780	3,322.8053	1.0117	
6	0.1µg/L week 7 #3	2,493.4878	2,504.9579	1.0046	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	3,395.9464	3,458.4319	1.0184	
11	0.5µg/L week 7 #2	3,329.0584	3,302.0930	0.9919	
12	0.5µg/L week 7 #3	3,030.7918	2,398.8717	0.7915	
13	1.0µg/L week 7 #1	3,236.8091	3,328.7345	1.0284	
14	1.0µg/L week 7 #2	2,242.8432	1,925.9294	0.8587	
15	1.0µg/L week 7 #3	2,142.8291	2,138.5434	0.9980	

Table B56 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11/AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	2,933.1098	3,014.9435	1.0279	
5	0.1µg/L week 8 #2	3,396.6355	3,368.1037	0.9916	
6	0.1µg/L week 8 #3	3,351.7961	3,451.3444	1.0297	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B57 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71/AT	Remark
1	Initial # 1	4,948.9080	7,761.3724	1.5683	
2	Initial # 2	5,869.6804	7,099.3784	1.2095	
3	Initial # 3	6,391.2779	8,378.3263	1.3109	
4	Control week 1 #1	5,533.1721	7,276.1213	1.3150	
5	Control week 1 #2	5,744.7702	8,958.3947	1.5594	
6	Control week 1 #3	6,864.2663	9,275.6830	1.3513	
7	0.1µg/L week 1 #1	6,550.0303	8,069.6374	1.2320	
8	0.1µg/L week 1 #2	5,537.6524	7,020.0819	1.2677	
9	0.1µg/L week 1 #3	7,114.1081	9,693.6837	1.3626	
10	0.2µg/L week 1 #1	7,314.5163	9,584.2107	1.3103	
11	0.2µg/L week 1 #2	5,783.6662	4,375.9219	0.7566	
12	0.2µg/L week 1 #3	5,973.4150	6,316.2890	1.0574	
13	0.5µg/L week 1 #1	6,638.7972	7,134.7153	1.0747	
14	0.5µg/L week 1 #2	5,759.3939	9,428.7037	1.6371	
15	0.5µg/L week 1 #3	5,464.8281	7,824.5409	1.4318	
16	1.0µg/L week 1 #1	5,014.7358	7,932.3091	1.5818	
17	1.0µg/L week 1 #2	7,061.5204	9,004.1446	1.2751	
18	1.0µg/L week 1 #3	7,906.8951	9,951.6182	1.2586	

Table B58 Intensity of band and ratio HSP71 expression gene in gill of mussel*P.viridis* Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71/AT	Remark
1	Control week 2 #1	4,906.8794	6,726.8410	1.3709	
2	Control week 2 #2	7,745.7126	3,356.2173	0.4333	
3	Control week 2 #3	6,625.0768	2,222.0508	0.3354	
4	0.1µg/L week 2 #1	4,906.8794	5,637.5137	1.1489	
5	0.1µg/L week 2 #2	5,090.2482	3,078.0731	0.6047	
6	0.1µg/L week 2 #3	5,612.1038	604.4236	0.1077	
7	0.2µg/L week 2 #1	5,844.6554	8,465.9833	1.4485	
8	0.2µg/L week 2 #2	5,547.3226	5,477.4263	0.9874	
9	0.2µg/L week 2 #3	4,646.2849	4,661.1530	1.0032	
10	0.5µg/L week 2 #1	5,092.4202	6,750.0030	1.3255	
11	0.5µg/L week 2 #2	5,680.4334	7,378.3150	1.2989	
12	0.5µg/L week 2 #3	5,435.3515	6,986.0573	1.2853	
13	1.0µg/L week 2 #1	5,794.3042	6,042.3004	1.0428	
14	1.0µg/L week 2 #2	5,435.3515	3,782.4611	0.6959	
15	1.0µg/L week 2 #3	5,092.4202	5,310.3758	1.0428	

Table B59 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71/AT	Remark
1	Control week 3 #1	3,552.3372	4,786.7744	1.3475	
2	Control week 3 #2	3,642.8747	4,908.7736	1.3475	
3	Control week 3 #3	3,473.7997	4,231.7828	1.2182	
4	0.1µg/L week 3 #1	4,339.0740	5,815.6609	1.3403	
5	0.1µg/L week 3 #2	1,094.4997	1,300.0467	1.1878	
6	0.1µg/L week 3 #3	4,174.2428	4,592.9194	1.1003	
7	0.2µg/L week 3 #1	5,278.5274	6,377.5168	1.2082	
8	0.2µg/L week 3 #2	5,780.5981	7,497.4358	1.2970	
9	0.2µg/L week 3 #3	5,037.0082	4,733.2766	0.9397	
10	0.5µg/L week 3 #1	5,301.9396	7,341.5957	1.3847	
11	0.5µg/L week 3 #2	6,864.2663	10,201.6725	1.4862	
12	0.5µg/L week 3 #3	6,550.0303	10,617.5992	1.6210	
13	1.0µg/L week 3 #1	5,537.6524	13,046.7090	2.3560	
14	1.0µg/L week 3 #2	7,114.1081	13,822.0006	1.9429	
15	1.0µg/L week 3 #3	7,314.5163	17,429,7609	2.3829	

Table B60 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	Control week 4 #1	4,895.2647	7,483.8806	1.5288	
2	Control week 4 #2	6,105.9066	8,545.8269	1.3996	
3	Control week 4 #3	5,812.1026	7,221.5375	1.2425	
4	0.1µg/L week 4 #1	4,094.2165	4,456.5547	1.0885	
5	0.1µg/L week 4 #2	5,844.3786	6,116.1422	1.0465	
6	0.1µg/L week 4 #3	3,992.4232	5,250.0366	1.3150	
7	0.2µg/L week 4 #1	3,925.4352	5,448.5040	1.3880	
8	0.2µg/L week 4 #2	5,030.4201	3,878.4539	0.7710	
9	0.2µg/L week 4 #3	3,886.1920	1,866.5380	0.4803	
10	0.5µg/L week 4 #1	4,419.5982	4,684.7741	1.0600	
11	0.5µg/L week 4 #2	4,948.9080	4,776.1911	0.9651	
12	0.5µg/L week 4 #3	5,869.6804	6,264.7099	1.0673	
13	1.0µg/L week 4 #1	6,391.2779	9,727.5250	1.5220	
14	1.0µg/L week 4 #2	5,533.1721	6,561.2355	1.1858	
15	1.0µg/L week 4 #3	5,744.7702	8,449.9825	1.4709	

Table 61 Intensity of band and ratio HSP71 expression gene in gill of mussel*P.viridis* Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	Control week 5 #1	2,153.4869	2,528.4089	1.1741	
2	Control week 5 #2	2,213.1355	2,186.1352	0.9878	
3	Control week 5 #3	2,354.1245	3,484.1042	1.4800	
4	0.1µg/L week 5 #1	2,063.9602	2,745.6862	1.3303	
5	0.1µg/L week 5 #2	1,536.8286	1,910.1242	1.2429	
6	0.1µg/L week 5 #3	3,697.7778	3,698.1476	1.0001	
7	0.2µg/L week 5 #1	4,255.7910	5,290.3738	1.2431	
8	0.2µg/L week 5 #2	3,558.9752	4,808.5314	1.3511	
9	0.2µg/L week 5 #3	3,140.5961	2,419.8293	0.7705	
10	0.5µg/L week 5 #1	2,054.3975	2,357.8320	1.1477	
11	0.5µg/L week 5 #2	253.7845	321.6210	1.2673	
12	0.5µg/L week 5 #3	1,960.1109	2,087.5181	1.0650	
13	1.0µg/L week 5 #1	1,617.9180	1,661.7636	1.0271	
14	1.0µg/L week 5 #2	1,045.7399	1,433.0820	1.3704	
15	1.0µg/L week 5 #3	1,583.5310	1,857.7986	1.1732	

Table B62 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	Control week 6 #1	2,491.1923	2,787.6442	1.1190	
2	Control week 6 #2	3,032.9762	3,590.7405	1.1839	
3	Control week 6 #3	1,626.4986	2,121.1169	1.3041	
4	0.1µg/L week 6 #1	2,410.1602	2,812.4159	1.1669	
5	0.1µg/L week 6 #2	2,682.1382	2,988.4384	1.1142	
6	0.1µg/L week 6 #3	2,848.4461	3,381.1055	1.1870	
7	0.2µg/L week 6 #1	2,612.2243	2,691.1135	1.0302	
8	0.2µg/L week 6 #2	2,665.1991	3,691.0343	1.3849	
9	0.2µg/L week 6 #3	2,567.2854	3,464.5516	1.3495	
10	0.5µg/L week 6 #1	2,568.4180	2,808.3082	1.0934	
11	0.5µg/L week 6 #2	3,823.1324	4,987.6585	1.3046	
12	0.5µg/L week 6 #3	2,563.3857	3,049.9163	1.1898	
13	1.0µg/L week 6 #1	3,511.4126	4,913.5196	1.3993	
14	1.0µg/L week 6 #2	2,522.7908	2,864.8812	1.1356	
15	1.0µg/L week 6 #3	2,125.5729	2,295.4062	1.0799	

Table B63 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	Control week 7 #1	5,425.6526	6,363.2053	1.1728	
2	Control week 7 #2	6,259.5219	7,379.3504	1.1789	
3	Control week 7 #3	6,690.2881	7,490.4466	1.1196	
4	0.1µg/L week 7 #1	6,278.3319	7,724.2318	1.2303	
5	0.1µg/L week 7 #2	6,924.6604	9,245.1141	1.3351	
6	0.1µg/L week 7 #3	4,916.2485	5,253.9948	1.0687	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	4,702.2705	5,241.6209	1.1147	
11	0.5µg/L week 7 #2	3,900.7953	4,373.5717	1.1212	
12	0.5µg/L week 7 #3	4,263.2821	4,395.4438	1.0310	
13	1.0µg/L week 7 #1	4,276.7157	4,282.7031	1.0014	
14	1.0µg/L week 7 #2	4,827.5104	5,392.3291	1.1170	
15	1.0µg/L week 7 #3	4,949.5030	5,122.2406	1.0349	

Table B64 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	3,125.2484	3,575.9093	1.1442	
5	0.1µg/L week 8 #2	3,248.5385	3,600.6801	1.1084	
6	0.1µg/L week 8 #3	3,637.7851	4,168.9017	1.1460	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Table B65 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 1)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4/AT	Remark
1	Initial # 1	4,948.9080	4,825.1853	0.9750	
2	Initial # 2	5,869.6804	959.1058	0.1634	
3	Initial # 3	6,391.2779	2,540.5330	0.3975	
4	Control week 1 #1	5,533.1721	3,781.9231	0.6835	
5	Control week 1 #2	5,744.7702	940.9934	0.1638	
6	Control week 1 #3	6,864.2663	3,955.1902	0.5762	
7	0.1µg/L week 1 #1	<u>6,550.0303</u>	5,728.0015	0.8745	
8	0.1µg/L week 1 #2	5,537.6524	4,271.7450	0.7714	
9	0.1µg/L week 1 #3	7,114.1081	5,701.9576	0.8015	
10	0.2µg/L week 1 #1	7,314.5163	5,664.3614	0.7744	
11	0.2µg/L week 1 #2	5,783.6662	3,135.9038	0.5422	
12	0.2µg/L week 1 #3	5,973.4150	1,072.8253	0.1796	
13	0.5µg/L week 1 #1	6,638.7972	3,569.6812	0.5377	
14	0.5µg/L week 1 #2	5,759.3939	2,652.7768	0.4606	
15	0.5µg/L week 1 #3	5,464.8281	1,194.6114	0.2186	
16	1.0µg/L week 1 #1	5,014.7358	4,946.0339	0.9863	
17	1.0µg/L week 1 #2	7,061.5204	3,715.0659	0.5261	
18	1.0µg/L week 1 #3	7,906.8951	4,426.2799	0.5598	

Table B66 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 2)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4/AT	Remark
1	Control week 2 #1	4,906.8794	2,681.1189	0.5464	
2	Control week 2 #2	7,745.7126	3,706.3235	0.4785	
3	Control week 2 #3	6,625.0768	2,233.9759	0.3372	
4	0.1µg/L week 2 #1	4,906.8794	3,411.7532	0.6953	
5	0.1µg/L week 2 #2	5,090.2482	4,132.7725	0.8119	
6	0.1µg/L week 2 #3	5,612.1038	2,661.2596	0.4742	
7	0.2µg/L week 2 #1	5,844.6554	4,954.5143	0.8477	
8	0.2µg/L week 2 #2	5,547.3226	4,310.2697	0.7770	
9	0.2µg/L week 2 #3	4,646.2849	1,804.6171	0.3884	
10	0.5µg/L week 2 #1	5,092.4202	3,948.6627	0.7754	
11	0.5µg/L week 2 #2	5,680.4334	3,821.2276	0.6727	
12	0.5µg/L week 2 #3	5,435.3515	2,319.2645	0.4267	
13	1.0µg/L week 2 #1	5,794.3042	2,152.0046	0.3714	
14	1.0µg/L week 2 #2	5,435.3515	1,018.5849	0.1874	
15	1.0µg/L week 2 #3	5,092.4202	1,891.3249	0.3714	

Table B67 Intensity of band and ratio CYP4 expression gene in gill of mussel*P.viridis* Laboratory study (Week 3)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4/AT	Remark
1	Control week 3 #1	3,552.3372	4,255.7000	1.1980	
2	Control week 3 #2	3,642.8747	1,801.0372	0.4944	
3	Control week 3 #3	3,473.7997	1,954.7071	0.5627	
4	0.1µg/L week 3 #1	4,339.0740	2,885.0503	0.6649	
5	0.1µg/L week 3 #2	1,094.4997	303.6142	0.2774	
6	0.1µg/L week 3 #3	4,174.2428	1,606.6661	0.3849	
7	0.2µg/L week 3 #1	5,278.5274	1,559.8049	0.2955	
8	0.2µg/L week 3 #2	5,780.5981	2,690.8684	0.4655	
9	0.2µg/L week 3 #3	5,037.0082	664.8851	0.1320	
10	0.5µg/L week 3 #1	5,301.9396	1,679.1243	0.3167	
11	0.5µg/L week 3 #2	6,864.2663	5,744.0180	0.8368	
12	0.5µg/L week 3 #3	6,550.0303	5,138.4988	0.7845	
13	1.0µg/L week 3 #1	5,537.6524	8,088.2950	1.4606	
14	1.0µg/L week 3 #2	7,114.1081	5,758.8705	0.8095	
15	1.0µg/L week 3 #3	7,314.5163	827.2718	0.1131	

Table B68 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 4)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	Control week 4 #1	4,895.2647	2,240.0731	0.4576	
2	Control week 4 #2	6,105.9066	3,991.4312	0.6537	
3	Control week 4 #3	5,812.1026	764.8727	0.1316	
4	0.1µg/L week 4 #1	4,094.2165	2,337.3882	0.5709	
5	0.1µg/L week 4 #2	5,844.3786	3,281.6186	0.5615	
6	0.1µg/L week 4 #3	3,992.4232	931.0331	0.2332	
7	0.2µg/L week 4 #1	3,925.4352	1,452.8036	0.3701	
8	0.2µg/L week 4 #2	5,030.4201	959.8042	0.1908	
9	0.2µg/L week 4 #3	3,886.1920	1,111.0623	0.2859	
10	0.5µg/L week 4 #1	4,419.5982	977.1732	0.2211	
11	0.5µg/L week 4 #2	4,948.9080	1,403.5103	0.2836	
12	0.5µg/L week 4 #3	5,869.6804	2,429.4607	0.4139	
13	1.0µg/L week 4 #1	6,391.2779	1,289.1208	0.2017	
14	1.0µg/L week 4 #2	5,533.1721	1,373.3333	0.2482	
15	1.0µg/L week 4 #3	5,744.7702	1,980.7968	0.3448	

Table B69 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 5)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	Control week 5 #1	2,153.4869	1,019.0300	0.4732	
2	Control week 5 #2	2,213.1355	465.6437	0.2104	
3	Control week 5 #3	2,354.1245	322.7505	0.1371	
4	0.1µg/L week 5 #1	2,063.9602	521.5627	0.2527	
5	0.1µg/L week 5 #2	1,536.8286	590.9106	0.3845	
6	0.1µg/L week 5 #3	3,697.7778	652.6578	0.1765	
7	0.2µg/L week 5 #1	4,255.7910	863.5000	0.2029	
8	0.2µg/L week 5 #2	3,558.9752	2,184.4990	0.6138	
9	0.2µg/L week 5 #3	3,140.5961	1,569.3559	0.4997	
10	0.5µg/L week 5 #1	2,054.3975	455.4599	0.2217	
11	0.5µg/L week 5 #2	253.7845	82.1500	0.3237	
12	0.5µg/L week 5 #3	1,960.1109	658.9893	0.3362	
13	1.0µg/L week 5 #1	1,617.9180	242.5259	0.1499	
14	1.0µg/L week 5 #2	1,045.7399	881.0359	0.8425	
15	1.0µg/L week 5 #3	1,583.5310	598.4164	0.3779	

Table B70 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 6)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	Control week 6 #1	2,491.1923	702.0180	0.2818	
2	Control week 6 #2	3,032.9762	674.5339	0.2224	
3	Control week 6 #3	1,626.4986	775.6772	0.4769	
4	0.1µg/L week 6 #1	2,410.1602	654.1175	0.2714	
5	0.1µg/L week 6 #2	2,682.1382	803.3004	0.2995	
6	0.1µg/L week 6 #3	2,848.4461	1,078.1368	0.3785	
7	0.2µg/L week 6 #1	2,612.2243	405.4172	0.1552	
8	0.2µg/L week 6 #2	2,665.1991	486.6654	0.1826	
9	0.2µg/L week 6 #3	2,567.2854	264.1737	0.1029	
10	0.5µg/L week 6 #1	2,568.4180	721.2118	0.2808	
11	0.5µg/L week 6 #2	3,823.1324	669.8128	0.1752	
12	0.5µg/L week 6 #3	2,563.3857	598.5506	0.2335	
13	1.0µg/L week 6 #1	3,511.4126	2,929.9226	0.8344	
14	1.0µg/L week 6 #2	2,522.7908	1,094.1344	0.4337	
15	1.0µg/L week 6 #3	2,125.5729	1,038.9801	0.4888	

Table B71 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 7)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	Control week 7 #1	5,425.6526	4,019.8660	0.7409	
2	Control week 7 #2	6,259.5219	5,061.4494	0.8086	
3	Control week 7 #3	6,690.2881	3,441.4842	0.5144	
4	0.1µg/L week 7 #1	6,278.3319	4,305.6800	0.6858	
5	0.1µg/L week 7 #2	6,924.6604	5,806.3278	0.8385	
6	0.1µg/L week 7 #3	4,916.2485	2,798.8203	0.5693	
7	0.2µg/L week 7 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 7 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 7 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 7 #1	4,702.2705	3,300.0534	0.7018	
11	0.5µg/L week 7 #2	3,900.7953	2,136.4656	0.5477	
12	0.5µg/L week 7 #3	4,263.2821	1,831.0796	0.4295	
13	1.0µg/L week 7 #1	4,276.7157	2,439.4387	0.5704	
14	1.0µg/L week 7 #2	4,827.5104	1,815.1439	0.3760	
15	1.0µg/L week 7 #3	4,949.5030	1,903.0839	0.3845	

Table B72 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Laboratory study (Week 8)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	Control week 8 #1	NA	NA	NA	Lost of sample
2	Control week 8 #2	NA	NA	NA	Lost of sample
3	Control week 8 #3	NA	NA	NA	Lost of sample
4	0.1µg/L week 8 #1	3,125.2484	2,327.9976	0.7449	
5	0.1µg/L week 8 #2	3,248.5385	1,514.1438	0.4661	
6	0.1µg/L week 8 #3	3,637.7851	1,555.1531	0.4275	
7	0.2µg/L week 8 #1	NA	NA	NA	Lost of sample
8	0.2µg/L week 8 #2	NA	NA	NA	Lost of sample
9	0.2µg/L week 8 #3	NA	NA	NA	Lost of sample
10	0.5µg/L week 8 #1	NA	NA	NA	Lost of sample
11	0.5µg/L week 8 #2	NA	NA	NA	Lost of sample
12	0.5µg/L week 8 #3	NA	NA	NA	Lost of sample
13	1.0µg/L week 8 #1	NA	NA	NA	Lost of sample
14	1.0µg/L week 8 #2	NA	NA	NA	Lost of sample
15	1.0µg/L week 8 #3	NA	NA	NA	Lost of sample

Intensity AT Intensity MT Ratio MT /AT Remark No. Sample St. A 5 m. 30 D # 1 8,645.3427 2,819.2462 0.3261 St. A 5 m. 30 D # 2 2 7,689.3353 6,277.5733 0.8164 3 St. A 5 m. 30 D # 3 7,713.9057 2,071.1837 0.2685 6,176.4749 4,242.6206 4 St. A 5 m. 60 D # 1 0.6869 5 St. A 5 m. 60 D # 2 7,136.0990 7,111.8363 0.9966 7,796.3429 5,256.2944 0.6742 6 St. A 5 m. 60 D # 3 7 St. A 5 m. 90 D # 1 5,140.0396 6,881.4850 1.3388 10,531.5661 8 St. A 5 m. 90 D # 2 7,953.7543 1.3241 9,351.6848 9 St. A 5 m. 90 D # 3 2,910.2443 0.3112 10 St. A 20 m. 30 D # 1 6,883.0467 1,556.9452 0.2262 St. A 20 m. 30 D # 2 965.5429 0.2262 11 4,268.5360 12 St. A 20 m. 30 D # 3 7,396.9588 6,402.8075 0.8656 5,039.6338 13 St. A 20 m. 60 D # 1 3.313.0553 0.6574 14 St. A 20 m. 60 D # 2 4,557.2385 4,256.9164 0.9341 1,618.3739 15 St. A 20 m. 60 D # 3 4.663.9016 0.3470 16 St. A 20 m. 90 D # 1 8,836.0504 7,837.5767 0.8870 17 St. A 20 m. 90 D # 2 8,711.9107 7,012.2169 0.8049 18 St. A 20 m. 90 D # 3 8,086.6887 1,742.6814 0.2155 19 St. A 40 m. 30 D # 1 7,256.2690 5,028.5944 0.6930

1,790.3840

2,208.4736

1,521.1919

5,607.5397

3,453.4062

NA

NA

NA

0.2556

0.2242

0.2003

0.7420

0.4651

NA

NA

NA

Lost of sample

Lost of sample

Lost of sample

Table B73 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Field study (Station A)

 Table B74 Intensity of band and ratio MT expression gene in gill of mussel P.viridis

7,004.6322

9,850.4621

7,594.5678

7,557.3311

7,425.0832

NA

NA

NA

Field study (Station B)

St. A 40 m. 30 D # 2

<u>St. A 40 m.</u> 30 D # 3

St. A 40 m. 60 D # 1

St. A 40 m. 60 D # 2

St. A 40 m. 60 D # 3

St. A 40 m. 90 D # 1

St. A 40 m. 90 D # 2

St. A 40 m. 90 D # 3

20

21

22

23

24

25

26

27

No.	Sample	Intensity AT	Intensity MT	Ratio MT /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	3,579.1180	0.5762	
2	St. B 5 m. 30 D # 2	6,337.6929	1,836.0296	0.2897	
3	St. B 5 m. 30 D # 3	5,282.9348	1,423.2226	0.2694	
4	St. B 5 m. 60 D # 1	8,786.3905	4,961.6747	0.5647	
5	St. B 5 m. 60 D # 2	9,508.5596	2,379.0416	0.2502	
6	St. B 5 m. 60 D # 3	8,415.0986	7,582.8454	0.9011	
7	St. B 5 m. 90 D # 1	9,116.4300	8,204.7870	0.9000	
8	St. B 5 m. 90 D # 2	8,444.1335	2,687.7677	0.3183	
9	St. B 5 m. 90 D # 3	6,798.2050	1,742.3799	0.2563	
10	St. B 20 m. 30 D # 1	6,877.8125	6,404.6190	0.9312	
11	St. B 20 m. 30 D # 2	9,410.1542	6,840.2411	0.7269	
12	St. B 20 m. 30 D # 3	6,243.3234	3,967.0077	0.6354	
13	St. B 20 m. 60 D # 1	9,630.3849	2,686.8774	0.2790	
14	St. B 20 m. 60 D # 2	6,465.5505	1,406.2572	0.2175	
15	St. B 20 m. 60 D # 3	9,702.4652	2,110.2862	0.2175	
16	St. B 20 m. 90 D # 1	9,484.3576	3,709.3323	0.3911	
17	St. B 20 m. 90 D # 2	6,411.8919	1,300.3317	0.2028	
18	St. B 20 m. 90 D # 3	7,122.5406	1,728.6406	0.2427	
19	St. B 40 m. 30 D # 1	8,069.4263	2,630.6330	0.3260	
20	St. B 40 m. 30 D # 2	5,746.6361	1,165.4178	0.2028	
21	St. B 40 m. 30 D # 3	5,560.2206	1,525.7245	0.2744	
22	St. B 40 m. 60 D # 1	9,726.9608	2,316.9621	0.2382	
23	St. B 40 m. 60 D # 2	8,981.9906	5,717.9352	0.6366	
24	St. B 40 m. 60 D # 3	8,207.4043	1,315.6469	0.1603	
25	St. B 40 m. 90 D # 1	8,212.1626	8,123.4712	0.9892	
26	St. B 40 m. 90 D # 2	7,068.9784	5,635.3896	0.7972	
27	St. B 40 m. 90 D # 3	6,300.3348	3,659.8645	0.5809	

Table B75 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*Field study (Station C)

No.	Sample	Intensity AT	Intensity MT	Ratio MT /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	6,365.6304	0.9950	
2	St. C 5 m. 30 D # 2	4,638.7242	1,083.6060	0.2336	
3	St. C 5 m. 30 D # 3	5,194.6838	1,698.1421	0.3269	
4	St. C 5 m. 60 D # 1	4,240.8082	3,961.3389	0.9341	
5	St. C 5 m. 60 D # 2	4,760.0214	3,790.8811	0.7964	
6	St. C 5 m. 60 D # 3	6,859.8407	5,077.6541	0.7402	
7	St. C 5 m. 90 D # 1	7,490.6541	1,852.4388	0.2473	
8	St. C 5 m. 90 D # 2	6,196.3638	1,909.0997	0.3081	
9	St. C 5 m. 90 D # 3	7,054.8009	3,467.4346	0.4915	
10	St. C 20 m. 30 D # 1	6,070.2033	1,607.3898	0.2648	
11	St. C 20 m. 30 D # 2	6,156.3653	1,568.6419	0.2548	
12	St. C 20 m. 30 D # 3	7,313.1038	2,229.7654	0.3049	
13	St. C 20 m. 60 D # 1	6,790.7105	5,304.2240	0.7811	
14	St. C 20 m. 60 D # 2	6,495.0784	5,819.5902	0.8960	
15	St. C 20 m. 60 D # 3	8,478.2315	2,098.3623	0.2475	
16	St. C 20 m. 90 D # 1	7,826.1923	5,601.2058	0.7157	
17	St. C 20 m. 90 D # 2	8,743.7875	2,066.1570	0.2363	
18	St. C 20 m. 90 D # 3	6,444.5242	1,607.9088	0.2495	
19	St. C 40 m. 30 D # 1	7,867.2218	7,281.1137	0.9255	
20	St. C 40 m. 30 D # 2	8,838.1920	8,681.7560	0.9823	
21	St. C 40 m. 30 D # 3	8,147.8342	6,851.5138	0.8409	
22	St. C 40 m. 60 D # 1	6,071.8885	2,569.0160	0.4231	
23	St. C 40 m. 60 D # 2	6,782.1438	2,832.9015	0.4177	
24	St. C 40 m. 60 D # 3	8,244.9591	2,050.5213	0.2487	
25	St. C 40 m. 90 D # 1	5,825.3692	5,446.1377	0.9349	
26	St. C 40 m. 90 D # 2	6,956.1669	6,417.7596	0.9226	
27	St. C 40 m. 90 D # 3	4,130.1569	3,862.1097	0.9351	

Table B76 Intensity of band and ratio MT expression gene in gill of mussel *P.viridis*

 Field study (Station D)

No.	Sample	Intensity AT	Intensity MT	Ratio MT /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	2,896.8278	0.4921	
2	St. D 5 m. 30 D # 2	5,534.5675	2,279.1349	0.4118	
3	St. D 5 m. 30 D # 3	6,681.7459	2,842.4147	0.4254	
4	St. D 5 m. 60 D # 1	6,595.9673	4,576.2821	0.6938	
5	St. D 5 m. 60 D # 2	5,854.2557	1,505.7146	0.2572	
6	St. D 5 m. 60 D # 3	9,043.0346	3,315.1765	0.3666	
7	St. D 5 m. 90 D # 1	4,098.3793	3,016.4072	0.7360	
8	St. D 5 m. 90 D # 2	5,600.8017	5,110.1715	0.9124	
9	St. D 5 m. 90 D # 3	6,774.3701	7,008.0859	1.0345	

ы. µ э m. 90 µ # з 6,774.3701 7,008.0859 1.0345

Table B77 Intensity of band and ratio pvMT01 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	2,019.5520	0.2336	
2	St. A 5 m. 30 D # 2	7,689.3353	1,865.4327	0.2426	
3	St. A 5 m. 30 D # 3	7,713.9057	2,677.4967	0.3471	
4	St. A 5 m. 60 D # 1	6,176.4749	5,516.2098	0.8931	
5	St. A 5 m. 60 D # 2	7,136.0990	8,005.2759	1.1218	
6	St. A 5 m. 60 D # 3	7,796.3429	6,774.2423	0.8689	
7	St. A 5 m. 90 D # 1	5,140.0396	6,458.9737	1.2566	
8	St. A 5 m. 90 D # 2	7,953.7543	10,566.5626	1.3285	
9	St. A 5 m. 90 D # 3	9,351.6848	2,853.1990	0.3051	
10	St. A 20 m. 30 D # 1	6,883.04 <mark>6</mark> 7	3,123.5266	0.4538	
11	St. A 20 m. 30 D # 2	4,268.5360	1,937.0617	0.4538	
12	St. A 20 m. 30 D # 3	7,396.9588	4,298.3727	0.5811	
13	St. A 20 m. 60 D # 1	5,039.6338	3,403.7687	0.6754	
14	St. A 20 m. 60 D # 2	4,557.2385	4,275.1454	0.9381	
15	St. A 20 m. 60 D # 3	4,663.9016	1,596.9199	0.3424	
16	St. A 20 m. 90 D # 1	8,836.0504	8,289.0989	0.9381	
17	St. A 20 m. 90 D # 2	8,711.9107	7,075.8139	0.8122	
18	St. A 20 m. 90 D # 3	8,086.6887	1,727.3167	0.2136	
19	St. A 40 m. 30 D # 1	7,256.2690	5,474.8549	0.7545	
20	St. A 40 m. 30 D # 2	7,004.6322	1,728.7432	0.2468	
21	St. A 40 m. 30 D # 3	9,850.4621	2,173.0119	0.2206	
22	St. A 40 m. 60 D # 1	7,594.5678	1,365.5033	0.1798	
23	St. A 40 m. 60 D # 2	7,557.3311	6,127.4841	0.8108	
24	St. A 40 m. 60 D # 3	7,425.0832	1,552.5849	0.2091	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B78 Intensity of band and ratio pvMT01 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	3,868.5781	0.6228	
2	St. B 5 m. 30 D # 2	6,337.6929	3,770.2935	0.5949	
3	St. B 5 m. 30 D # 3	5,282.9348	1,208.7355	0.2288	
4	St. B 5 m. 60 D # 1	8,786.3905	8,462.1727	0.9631	
5	St. B 5 m. 60 D # 2	9,508.5596	4,569.8137	0.4806	
6	St. B 5 m. 60 D # 3	8,415.0986	6,209.5013	0.7379	
7	St. B 5 m. 90 D # 1	9,116.4300	6,239.2847	0.6844	
8	St. B 5 m. 90 D # 2	8,444.1335	5,788.4535	0.6855	
9	St. B 5 m. 90 D # 3	6,798.2050	6,505.8822	0.9570	
10	St. B 20 m. 30 D # 1	6,877.8125	5,613.6706	0.8162	
11	St. B 20 m. 30 D # 2	9,410.1542	2,528.5084	0.2687	
12	St. B 20 m. 30 D # 3	6,243.3234	4,023.8219	0.6445	
13	St. B 20 m. 60 D # 1	9,630.3849	8,055.8170	0.8365	
14	St. B 20 m. 60 D # 2	6,465.5505	1,580.1806	0.2444	
15	St. B 20 m. 60 D # 3	9,702.4652	2,359.6395	0.2432	
16	St. B 20 m. 90 D # 1	9,484.3576	2,139.6711	0.2256	
17	St. B 20 m. 90 D # 2	6,411.8919	1,765.8350	0.2754	
18	St. B 20 m. 90 D # 3	7,122.5406	1,653.1417	0.2321	
19	St. B 40 m. 30 D # 1	8,069.4263	2,587.8650	0.3207	
20	St. B 40 m. 30 D # 2	5,746.6361	1,582.6236	0.2754	
21	St. B 40 m. 30 D # 3	5,560.2206	2,671.6860	0.4805	
22	St. B 40 m. 60 D # 1	9,726.9608	2,814.0098	0.2893	
23	St. B 40 m. 60 D # 2	8,981.9906	7,263.7358	0.8087	
24	St. B 40 m. 60 D # 3	8,207.4043	1,431.3713	0.1744	
25	St. B 40 m. 90 D # 1	8,212.1626	5,787.1110	0.7047	
26	St. B 40 m. 90 D # 2	7,068.9784	1,619.5029	0.2291	
27	St. B 40 m. 90 D # 3	6,300.3348	3,564,7294	0.5658	

Table B79 Intensity of band and ratio pvMT01 expression gene in gill of mussel *P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	1,716.4810	0.2683	
2	St. C 5 m. 30 D # 2	4,638.7242	1,081.2866	0.2331	
3	St. C 5 m. 30 D # 3	5,194.6838	4,406.1308	0.8482	
4	St. C 5 m. 60 D # 1	4,240.8082	3,021.1518	0.7124	
5	St. C 5 m. 60 D # 2	4,760.0214	3,385.3272	0.7112	
6	St. C 5 m. 60 D # 3	6,859.8407	5,146.2525	0.7502	
7	St. C 5 m. 90 D # 1	7,490.6541	1,862.9257	0.2487	
8	St. C 5 m. 90 D # 2	6,196.3638	1,925.2102	0.3107	
9	St. C 5 m. 90 D # 3	7,054.8009	3,470.2565	0.4919	
10	St. C 20 m. 30 D # 1	6,070.2033	1,626.2075	0.2679	
11	St. C 20 m. 30 D # 2	6,156.3653	1,460.2898	0.2372	
12	St. C 20 m. 30 D # 3	7,313.1038	2,205.6321	0.3016	
13	St. C 20 m. 60 D # 1	6,790.7105	3,552.8997	0.5232	
14	St. C 20 m. 60 D # 2	6,495.0784	4,836.2353	0.7446	
15	St. C 20 m. 60 D # 3	8,478.2315	2,138.2100	0.2522	
16	St. C 20 m. 90 D # 1	7,826.1923	7,201.6621	0.9202	
17	St. C 20 m. 90 D # 2	8,743.7875	2,034.6794	0.2327	
18	St. C 20 m. 90 D # 3	6,444.5242	1,657.5316	0.2572	
19	St. C 40 m. 30 D # 1	7,867.2218	5,895.6960	0.7494	
20	St. C 40 m. 30 D # 2	8,838.1920	8,352.9753	0.9451	
21	St. C 40 m. 30 D # 3	8,147.8342	1,522.8302	0.1869	
22	St. C 40 m. 60 D # 1	6,071.8885	2,561.1226	0.4218	
23	St. C 40 m. 60 D # 2	6,782.1438	2,864.7775	0.4224	
24	St. C 40 m. 60 D # 3	8,244.9591	2,895.6297	0.3512	
25	St. C 40 m. 90 D # 1	5,825.3692	4,624.1781	0.7938	
26	St. C 40 m. 90 D # 2	6,956.1669	2,240.5814	0.3221	
27	St. C 40 m. 90 D # 3	and in	14d	0.7938	

Table B80 Intensity of band and ratio pvMT01 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT01	Ratio pvMT01 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	2,865.6284	0.4868	
2	St. D 5 m. 30 D # 2	5,534.5675	2,145.1984	0.3876	
3	St. D 5 m. 30 D # 3	6,681.7459	2,476.9232	0.3707	
4	St. D 5 m. 60 D # 1	6,595.9673	5,248.4112	0.7957	
5	St. D 5 m. 60 D # 2	5,854.2557	4,769.4621	0.8147	
6	St. D 5 m. 60 D # 3	9,043.0346	4,141.7098	0.4580	
7	St. D 5 m. 90 D # 1	4,098.3793	1,870.5003	0.4564	
8	St. D 5 m. 90 D # 2	5,600.8017	3,842.7101	0.6861	
9	St. D 5 m. 90 D # 3	6,774.3701	1,968.6319	0.2906	

จุฬาลงกรณ์มหาวิทยาลัย

Table B81 Intensity of band and ratio pvMT02 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	3,164.1954	0.3660	
2	St. A 5 m. 30 D # 2	7,689.3353	2,156.0896	0.2804	
3	St. A 5 m. 30 D # 3	7,713.9057	5,726.0322	0.7423	
4	St. A 5 m. 60 D # 1	6,176.4749	4,855.9446	0.7862	
5	St. A 5 m. 60 D # 2	7,136.0990	8,612.5579	1.2069	
6	St. A 5 m. 60 D # 3	7,796.3429	4,252.9050	0.5455	
7	St. A 5 m. 90 D # 1	5,140.0396	5,753.2463	1.1193	
8	St. A 5 m. 90 D # 2	7,953.7543	10,102.8587	1.2702	
9	St. A 5 m. 90 D # 3	9,351.6848	4,929.2730	0.5271	
10	St. A 20 m. 30 D # 1	6,883.0467	4,208.2947	0.6114	
11	St. A 20 m. 30 D # 2	4,268.5360	2,596.9773	0.6084	
12	St. A 20 m. 30 D # 3	7,396.9588	3,288.6879	0.4446	
13	St. A 20 m. 60 D # 1	5,039.6338	3,612.9135	0.7169	
14	St. A 20 m. 60 D # 2	4,557.2385	4,230.9402	0.9284	
15	St. A 20 m. 60 D # 3	4,663.9016	3,459.6822	0.7418	
16	St. A 20 m. 90 D # 1	8,836.0504	3,820.7082	0.4324	
17	St. A 20 m. 90 D # 2	8,711.9107	4,410.8404	0.5063	
18	St. A 20 m. 90 D # 3	8,086.6887	2,933.8506	0.3628	
19	St. A 40 m. 30 D # 1	7,256.2690	6,034.3133	0.8316	
20	St. A 40 m. 30 D # 2	7,004.6322	4,903.9430	0.7001	
21	St. A 40 m. 30 D # 3	9,850.4621	2,172.0269	0.2205	
22	St. A 40 m. 60 D # 1	7,594.5678	2,148.5032	0.2829	
23	St. A 40 m. 60 D # 2	7,557.3311	4,207.1662	0.5567	
24	St. A 40 m. 60 D # 3	7,425.0832	1,864.4384	0.2511	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2 🥖	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B82 Intensity of band and ratio pvMT02 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	5,119.5923	0.8242	
2	St. B 5 m. 30 D # 2	6,337.6929	6,252.7678	0.9866	
3	St. B 5 m. 30 D # 3	5,282.9348	1,767.6700	0.3346	
4	St. B 5 m. 60 D # 1	8,786.3905	5,918.5126	0.6736	
5	St. B 5 m. 60 D # 2	9,508.5596	4,662.0468	0.4903	
6	St. B 5 m. 60 D # 3	8,415.0986	4,999.4101	0.5941	
7	St. B 5 m. 90 D # 1	9,116.4300	6,208.2888	0.6810	
8	St. B 5 m. 90 D # 2	8,444.1335	4,093.7159	0.4848	
9	St. B 5 m. 90 D # 3	6,798.2050	2,864.0838	0.4213	
10	St. B 20 m. 30 D # 1	6,877.8125	3,006.2918	0.4371	
11	St. B 20 m. 30 D # 2	9,410.1542	2,787.2877	0.2962	
12	St. B 20 m. 30 D # 3	6,243.3234	4,779.2640	0.7655	
13	St. B 20 m. 60 D # 1	9,630.3849	5,445.9827	0.5655	
14	St. B 20 m. 60 D # 2	6,465.5505	2,398.7192	0.3710	
15	St. B 20 m. 60 D # 3	9,702.4652	3,599.6146	0.3710	
16	St. B 20 m. 90 D # 1	9,484.3576	6,513.8568	0.6868	
17	St. B 20 m. 90 D # 2	6,411.8919	2,255.0624	0.3517	
18	St. B 20 m. 90 D # 3	7,122.5406	2,541.3225	0.3568	
19	St. B 40 m. 30 D # 1	8,069.4263	2,930.8156	0.3632	
20	St. B 40 m. 30 D # 2	5,746.6361	2,021.0919	0.3517	
21	St. B 40 m. 30 D # 3	5,560.2206	1,784.8308	0.3210	
22	St. B 40 m. 60 D # 1	9,726.9608	5,771.9785	0.5934	
23	St. B 40 m. 60 D # 2	8,981.9906	4,374.2294	0.4870	
24	St. B 40 m. 60 D # 3	8,207.4043	1,836.8171	0.2238	
25	St. B 40 m. 90 D # 1	8,212.1626	8,307.4237	1.0116	
26	St. B 40 m. 90 D # 2	7,068.9784	7,487.4619	1.0592	
27	St. B 40 m. 90 D # 3	6,300.3348	4,875.8291	0.7739	

Table B83 Intensity of band and ratio pvMT02 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	5,122.5731	0.8007	
2	St. C 5 m. 30 D # 2	4,638.7242	2,349.5138	0.5065	
3	St. C 5 m. 30 D # 3	5,194.6838	4,684.0464	0.9017	
4	St. C 5 m. 60 D # 1	4,240.8082	4,441.3984	1.0473	
5	St. C 5 m. 60 D # 2	4,760.0214	2,928.8412	0.6153	
6	St. C 5 m. 60 D # 3	6,859.8407	5,688.8659	0.8293	
7	St. C 5 m. 90 D # 1	7,490.6541	6,868.1808	0.9169	
8	St. C 5 m. 90 D # 2	6,196.3638	2,050.3768	0.3309	
9	St. C 5 m. 90 D # 3	7,054.8009	3,892.1336	0.5517	
10	St. C 20 m. 30 D # 1	6,070.2033	4,110.1347	0.6771	
11	St. C 20 m. 30 D # 2	6,156.3653	3,319.5121	0.5392	
12	St. C 20 m. 30 D # 3	7,313.1038	2,773.8603	0.3793	
13	St. C 20 m. 60 D # 1	6,790.7105	3,080.2663	0.4536	
14	St. C 20 m. 60 D # 2	6,495.0784	5,064.8621	0.7798	
15	St. C 20 m. 60 D # 3	8,478.2315	4,701.1794	0.5545	
16	St. C 20 m. 90 D # 1	7,826.1923	3,812.1383	0.4871	
17	St. C 20 m. 90 D # 2	8,743.7875	4,727.7659	0.5407	
18	St. C 20 m. 90 D # 3	6,444.5242	2,951.5921	0.4580	
19	St. C 40 m. 30 D # 1	7,867.2218	3,662.1917	0.4655	
20	St. C 40 m. 30 D # 2	8,838.1920	7,026.3626	0.7950	
21	St. C 40 m. 30 D # 3	8,147.8342	2,709.9696	0.3326	
22	St. C 40 m. 60 D # 1	6,071.8885	2,576.3023	0.4243	
23	St. C 40 m. 60 D # 2	6,782.1438	2,862.7429	0.4221	
24	St. C 40 m. 60 D # 3	8,244.9591	6,215.0502	0.7538	
25	St. C 40 m. 90 D # 1	5,825.3692	4,159.8962	0.7141	
26	St. C 40 m. 90 D # 2	6,956.1669	2,363.7055	0.3398	
27	St. C 40 m. 90 D # 3	4,130.1569	2,896.4790	0.7013	

 Table B84 Intensity of band and ratio pvMT02 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT02	Ratio pvMT02 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	3,100.5064	0.5267	
2	St. D 5 m. 30 D # 2	5,534.5675	2,674.8565	0.4833	
3	St. D 5 m. 30 D # 3	6,681.7459	6,495.9934	0.9722	
4	St. D 5 m. 60 D # 1	6,595.9673	4,222.0787	0.6401	
5	St. D 5 m. 60 D # 2	5,854.2557	2,994.4518	0.5115	
6	St. D 5 m. 60 D # 3	9,043.0346	5,135.5393	0.5679	
7	St. D 5 m. 90 D # 1	4,098.3793	3,241.8180	0.7910	
8	St. D 5 m. 90 D # 2	5,600.8017	3,106.2046	0.5546	
9	St. D 5 m. 90 D # 3	6,774.3701	2,774.7820	0.4096	

จุฬาลงกรณ์มหาวิทยาลัย

Table B85 Intensity of band and ratio pvMT03 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	4,560.4183	0.5275	
2	St. A 5 m. 30 D # 2	7,689.3353	3,384.0764	0.4401	
3	St. A 5 m. 30 D # 3	7,713.9057	3,506.7415	0.4546	
4	St. A 5 m. 60 D # 1	6,176.4749	5,673.7099	0.9186	
5	St. A 5 m. 60 D # 2	7,136.0990	8,048.0925	1.1278	
6	St. A 5 m. 60 D # 3	7,796.3429	4,219.3808	0.5412	
7	St. A 5 m. 90 D # 1	5,140.0396	6,227.6720	1.2116	
8	St. A 5 m. 90 D # 2	7,953.7543	10,402.7152	1.3079	
9	St. A 5 m. 90 D # 3	9,351.6848	9,773.4458	1.0451	
10	St. A 20 m. 30 D # 1	6,883.0467	1,221.7408	0.1775	
11	St. A 20 m. 30 D # 2	4,268.5360	764.0680	0.1790	
12	St. A 20 m. 30 D # 3	7,396.9588	3,661.4946	0.4950	
13	St. A 20 m. 60 D # 1	5,039.6338	3,923.3549	0.7785	
14	St. A 20 m. 60 D # 2	4,557.2385	4,732.2364	1.0384	
15	St. A 20 m. 60 D # 3	4,663.9016	1,713.9838	0.3675	
16	St. A 20 m. 90 D # 1	8,836.0504	6,139.2878	0.6948	
17	St. A 20 m. 90 D # 2	8,711.9107	3,926.4582	0.4507	
18	St. A 20 m. 90 D # 3	8,086.6887	2,174.5106	0.2689	
19	St. A 40 m. 30 D # 1	7,256.2690	6,384.0654	0.8798	
20	St. A 40 m. 30 D # 2	7,004.6322	5,466.4149	0.7804	
21	St. A 40 m. 30 D # 3	9,850.4621	3,799.3232	0.3857	
22	St. A 40 m. 60 D # 1	7,594.5678	1,496.8893	0.1971	
23	St. A 40 m. 60 D # 2	7,557.3311	4,297.0985	0.5686	
24	St. A 40 m. 60 D # 3	7,425.0832	3,310.1021	0.4458	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2 🥖	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B86 Intensity of band and ratio pvMT03 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	5,820.2596	0.9370	
2	St. B 5 m. 30 D # 2	6,337.6929	3,852.6835	0.6079	
3	St. B 5 m. 30 D # 3	5,282.9348	3,620.3952	0.6853	
4	St. B 5 m. 60 D # 1	8,786.3905	5,493.2513	0.6252	
5	St. B 5 m. 60 D # 2	9,508.5596	3,886.1483	0.4087	
6	St. B 5 m. 60 D # 3	8,415.0986	2,596.0579	0.3085	
7	St. B 5 m. 90 D # 1	9,116.4300	6,099.8033	0.6691	
8	St. B 5 m. 90 D # 2	8,444.1335	4,196.7344	0.4970	
9	St. B 5 m. 90 D # 3	6,798.2050	3,697.5437	0.5439	
10	St. B 20 m. 30 D # 1	6,877.8125	1,863.8872	0.2710	
11	St. B 20 m. 30 D # 2	9,410.1542	2,387.3561	0.2537	
12	St. B 20 m. 30 D # 3	6,243.3234	5,684.5459	0.9105	
13	St. B 20 m. 60 D # 1	9,630.3849	6,049.8078	0.6282	
14	St. B 20 m. 60 D # 2	6,465.5505	1,783.8454	0.2759	
15	St. B 20 m. 60 D # 3	9,702.4652	2,678.8506	0.2761	
16	St. B 20 m. 90 D # 1	9,484.3576	6,467.3835	0.6819	
17	St. B 20 m. 90 D # 2	6,411.8919	1,909.4614	0.2978	
18	St. B 20 m. 90 D # 3	7,122.5406	2,615.3969	0.3672	
19	St. B 40 m. 30 D # 1	8,069.4263	4,739.1741	0.5873	
20	St. B 40 m. 30 D # 2	5,746.6361	1,711.3482	0.2978	
21	St. B 40 m. 30 D # 3	5,560.2206	2,017.2480	0.3628	
22	St. B 40 m. 60 D # 1	9,726.9608	6,706.7395	0.6895	
23	St. B 40 m. 60 D # 2	8,981.9906	8,478.9991	0.9440	
24	St. B 40 m. 60 D # 3	8,207.4043	3,422.4876	0.4170	
25	St. B 40 m. 90 D # 1	8,212.1626	7,130.6208	0.8683	
26	St. B 40 m. 90 D # 2	7,068.9784	3,827.8518	0.5415	
27	St. B 40 m. 90 D # 3	6,300.3348	3,965,4307	0.6294	

Table B87 Intensity of band and ratio pvMT03 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	4,354.2191	0.6806	
2	St. C 5 m. 30 D # 2	4,638.7242	1,856.8813	0.4003	
3	St. C 5 m. 30 D # 3	5,194.6838	3,140.1864	0.6045	
4	St. C 5 m. 60 D # 1	4,240.8082	4,322.2317	1.0192	
5	St. C 5 m. 60 D # 2	4,760.0214	3,253.4746	0.6835	
6	St. C 5 m. 60 D # 3	6,859.8407	6,576.5293	0.9587	
7	St. C 5 m. 90 D # 1	7,490.6541	2,157.3084	0.2880	
8	St. C 5 m. 90 D # 2	6,196.3638	4,394.4612	0.7092	
9	St. C 5 m. 90 D # 3	7,054.8009	3,910.4761	0.5543	
10	St. C 20 m. 30 D # 1	6,070.2033	3,268.8045	0.5385	
11	St. C 20 m. 30 D # 2	6,156.3653	3,768.9268	0.6122	
12	St. C 20 m. 30 D # 3	7,313.1038	5,786.8591	0.7913	
13	St. C 20 m. 60 D # 1	6,790.7105	3,580.0626	0.5272	
14	St. C 20 m. 60 D # 2	6,495.0784	2,231.0594	0.3435	
15	St. C 20 m. 60 D # 3	8,478.2315	5,579.5241	0.6581	
16	St. C 20 m. 90 D # 1	7,826.1923	3,335.5231	0.4262	
17	St. C 20 m. 90 D # 2	8,743.7875	4,644.6999	0.5312	
18	St. C 20 m. 90 D # 3	6,444.5242	2,254.2946	0.3498	
19	St. C 40 m. 30 D # 1	7,867.2218	3,894.2748	0.4950	
20	St. C 40 m. 30 D # 2	8,838.1920	3,450.4302	0.3904	
21	St. C 40 m. 30 D # 3	8,147.8342	2,071.9942	0.2543	
22	St. C 40 m. 60 D # 1	6,071.8885	2,542.9069	0.4188	
23	St. C 40 m. 60 D # 2	6,782.1438	2,830.8668	0.4174	
24	St. C 40 m. 60 D # 3	8,244.9591	6,195.2623	0.7514	
25	St. C 40 m. 90 D # 1	5,825.3692	2,924.3354	0.5020	
26	St. C 40 m. 90 D # 2	6,956.1669	3,276.3546	0.4710	
27	St. C 40 m. 90 D # 3	4,130.1569	2,088.6203	0.5057	

 Table B88 Intensity of band and ratio pvMT03 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT03	Ratio pvMT03 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	3,055.7677	0.5191	
2	St. D 5 m. 30 D # 2	5,534.5675	2,201.6510	0.3978	
3	St. D 5 m. 30 D # 3	6,681.7459	2,835.7330	0.4244	
4	St. D 5 m. 60 D # 1	6,595.9673	3,292.0473	0.4991	
5	St. D 5 m. 60 D # 2	5,854.2557	2,063.0397	0.3524	
6	St. D 5 m. 60 D # 3	9,043.0346	5,166.2856	0.5713	
7	St. D 5 m. 90 D # 1	4,098.3793	2,208.6166	0.5389	
8	St. D 5 m. 90 D # 2	5,600.8017	3,203.0985	0.5719	
9	St. D 5 m. 90 D # 3	6,774.3701	2,789.6856	0.4118	

จุฬาลงกรณ์มหาวิทยาลัย

Table B89 Intensity of band and ratio pvMT07 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	2,016.0939	0.2332	
2	St. A 5 m. 30 D # 2	7,689.3353	1,648.5935	0.2144	
3	St. A 5 m. 30 D # 3	7,713.9057	5,186.0588	0.6723	
4	St. A 5 m. 60 D # 1	6,176.4749	5,957.8277	0.9646	
5	St. A 5 m. 60 D # 2	7,136.0990	8,903.7107	1.2477	
6	St. A 5 m. 60 D # 3	7,796.3429	3,259.6510	0.4181	
7	St. A 5 m. 90 D # 1	5,140.0396	5,361.5753	1.0431	
8	St. A 5 m. 90 D # 2	7,953.7543	10,529.1799	1.3238	
9	St. A 5 m. 90 D # 3	9,351.6848	12,109.4966	1.2949	
10	St. A 20 m. 30 D # 1	6,883.0467	3,380.2642	0.4911	
11	St. A 20 m. 30 D # 2	4,268.5360	2,086.8873	0.4889	
12	St. A 20 m. 30 D # 3	7,396.9588	3,544.6226	0.4792	
13	St. A 20 m. 60 D # 1	5,039.6338	3,431.9906	0.6810	
14	St. A 20 m. 60 D # 2	4,557.2385	4,651.5733	1.0207	
15	St. A 20 m. 60 D # 3	4,663.9016	1,832.9133	0.3930	
16	St. A 20 m. 90 D # 1	8,836.0504	7,415.2135	0.8392	
17	St. A 20 m. 90 D # 2	8,711.9107	5,208.8514	0.5979	
18	St. A 20 m. 90 D # 3	8,086.6887	2,369.3998	0.2930	
19	St. A 40 m. 30 D # 1	7,256.2690	6,079.3021	0.8378	
20	St. A 40 m. 30 D # 2	7,004.6322	3,477.7999	0.4965	
21	St. A 40 m. 30 D # 3	9,850.4621	2,711.8322	0.2753	
22	St. A 40 m. 60 D # 1	7,594.5678	5,572.8938	0.7338	
23	St. A 40 m. 60 D # 2 🦯	7,557.3311	5,911.3444	0.7822	
24	St. A 40 m. 60 D # 3	7,425.0832	5,845.7680	0.7873	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

Table B90 Intensity of band and ratio pvMT07 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	3,636.8858	0.5855	
2	St. B 5 m. 30 D # 2	6,337.6929	5,899.1246	0.9308	
3	St. B 5 m. 30 D # 3	5,282.9348	1,696.3504	0.3211	
4	St. B 5 m. 60 D # 1	8,786.3905	4,929.1651	0.5610	
5	St. B 5 m. 60 D # 2	9,508.5596	10,995.6983	1.1564	
6	St. B 5 m. 60 D # 3	8,415.0986	4,109.0927	0.4883	
7	St. B 5 m. 90 D # 1	9,116.4300	6,069.7191	0.6658	
8	St. B 5 m. 90 D # 2	8,444.1335	4,700.0047	0.5566	
9	St. B 5 m. 90 D # 3	6,798.2050	5,058.5444	0.7441	
10	St. B 20 m. 30 D # 1	6,877.8125	1,854.9460	0.2697	
11	St. B 20 m. 30 D # 2	9,410.1542	2,377.9460	0.2527	
12	St. B 20 m. 30 D # 3	6,243.3234	4,438.3786	0.7109	
13	St. B 20 m. 60 D # 1	9,630.3849	6,853.9450	0.7117	
14	St. B 20 m. 60 D # 2	6,465.5505	1,371.9898	0.2122	
15	St. B 20 m. 60 D # 3	9,702.4652	2,038.4879	0.2101	
16	St. B 20 m. 90 D # 1	9,484.3576	5,909.7033	0.6231	
17	St. B 20 m. 90 D # 2	6,411.8919	1,381.7627	0.2155	
18	St. B 20 m. 90 D # 3	7,122.5406	1,752.8572	0.2461	
19	St. B 40 m. 30 D # 1	8,069.4263	2,689.5398	0.3333	
20	St. B 40 m. 30 D # 2	5,746.6361	1,238.4001	0.2155	
21	St. B 40 m. 30 D # 3	5,560.2206	2,756.7574	0.4958	
22	St. B 40 m. 60 D # 1	9,726.9608	3,970.5454	0.4082	
23	St. B 40 m. 60 D # 2	8,981.9906	2,223.0427	0.2475	
24	St. B 40 m. 60 D # 3	8,207.4043	1,428.0883	0.1740	
25	St. B 40 m. 90 D # 1	8,212.1626	7,662.7689	0.9331	
26	St. B 40 m. 90 D # 2	7,068.9784	5,878.5624	0.8316	
27	St. B 40 m. 90 D # 3	6,300.3348	3,874,7059	0.6150	

Table B91 Intensity of band and ratio pvMT07 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	5,074.5910	0.7932	
2	St. C 5 m. 30 D # 2	4,638.7242	992.2231	0.2139	
3	St. C 5 m. 30 D # 3	5,194.6838	4,274.7053	0.8229	
4	St. C 5 m. 60 D # 1	4,240.8082	3,837.0833	0.9048	
5	St. C 5 m. 60 D # 2	4,760.0214	3,964.1458	0.8328	
6	St. C 5 m. 60 D # 3	6,859.8407	5,043.3549	0.7352	
7	St. C 5 m. 90 D # 1	7,490.6541	6,068.1789	0.8101	
8	St. C 5 m. 90 D # 2	6,196.3638	4,418.6270	0.7131	
9	St. C 5 m. 90 D # 3	7,054.8009	3,573.9621	0.5066	
10	St. C 20 m. 30 D # 1	6,070.2033	1,975.2442	0.3254	
11	St. C 20 m. 30 D # 2	6,156.3653	1,755.7954	0.2852	
12	St. C 20 m. 30 D # 3	7,313.1038	5,100.1586	0.6974	
13	St. C 20 m. 60 D # 1	6,790.7105	1,667.1194	0.2455	
14	St. C 20 m. 60 D # 2	6,495.0784	2,337.5787	0.3599	
15	St. C 20 m. 60 D # 3	8,478.2315	4,195.0289	0.4948	
16	St. C 20 m. 90 D # 1	7,826.1923	4,858.5002	0.6208	
17	St. C 20 m. 90 D # 2	8,743.7875	2,100.2578	0.2402	
18	St. C 20 m. 90 D # 3	6,444.5242	1,580.8418	0.2453	
19	St. C 40 m. 30 D # 1	7,867.2218	6,239.4936	0.7931	
20	St. C 40 m. 30 D # 2	8,838.1920	2,092.8839	0.2368	
21	St. C 40 m. 30 D # 3	8,147.8342	1,418.5379	0.1741	
22	St. C 40 m. 60 D # 1	6,071.8885	2,451.2214	0.4037	
23	St. C 40 m. 60 D # 2	6,782.1438	2,734.5604	0.4032	
24	St. C 40 m. 60 D # 3	8,244.9591	8,574.7575	1.0400	
25	St. C 40 m. 90 D # 1	5,825.3692	1,444.6916	0.2480	
26	St. C 40 m. 90 D # 2	6,956.1669	2,217.6260	0.3188	
27	St. C 40 m. 90 D # 3	4,130.1569	1,023.0399	0.2477	

 Table B92 Intensity of band and ratio pvMT07 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT07	Ratio pvMT07 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	2,758.4911	0.4686	
2	St. D 5 m. 30 D # 2	5,534.5675	2,620.0643	0.4734	
3	St. D 5 m. 30 D # 3	6,681.7459	3,834.6540	0.5739	
4	St. D 5 m. 60 D # 1	6,595.9673	2,419.4008	0.3668	
5	St. D 5 m. 60 D # 2	5,854.2557	1,307.2553	0.2233	
6	St. D 5 m. 60 D # 3	9,043.0346	5,679.0257	0.6280	
7	St. D 5 m. 90 D # 1	4,098.3793	1,997.1402	0.4873	
8	St. D 5 m. 90 D # 2	5,600.8017	2,727.0304	0.4869	
9	St. D 5 m. 90 D # 3	6,774.3701	1,693.5925	0.2500	

St. D 3 III. 90 D # 5

Table B93 Intensity of band and ratio pvMT08 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	1,986.6997	0.2298	
2	St. A 5 m. 30 D # 2	7,689.3353	1,603.9953	0.2086	
3	St. A 5 m. 30 D # 3	7,713.9057	2,021.0433	0.2620	
4	St. A 5 m. 60 D # 1	6,176.4749	4,791.7092	0.7758	
5	St. A 5 m. 60 D # 2	7,136.0990	8,921.5510	1.2502	
6	St. A 5 m. 60 D # 3	7,796.3429	2,472.2203	0.3171	
7	St. A 5 m. 90 D # 1	5,140.0396	6,912.8392	1.3449	
8	St. A 5 m. 90 D # 2	7,953.7543	10,598.3776	1.3325	
9	St. A 5 m. 90 D # 3	9,351.6848	4,907.7642	0.5248	
10	St. A 20 m. 30 D # 1	6,883.0467	1,077.1968	0.1565	
11	St. A 20 m. 30 D # 2	4,268.5360	670.5870	0.1571	
12	St. A 20 m. 30 D # 3	7,396.9588	1,874.3894	0.2534	
13	St. A 20 m. 60 D # 1	5,039.6338	3,074.1766	0.6100	
14	St. A 20 m. 60 D # 2	4,557.2385	4,086.0200	0.8966	
15	St. A 20 m. 60 D # 3	4,663.9016	1,542.8187	0.3308	
16	St. A 20 m. 90 D # 1	8,836.0504	2,795.7264	0.3164	
17	St. A 20 m. 90 D # 2	8,711.9107	1,798.1384	0.2064	
18	St. A 20 m. 90 D # 3	8,086.6887	1,435.3872	0.1775	
19	St. A 40 m. 30 D # 1	7,256.2690	5,223.0624	0.7198	
20	St. A 40 m. 30 D # 2	7,004.6322	1,099.7273	0.1570	
21	St. A 40 m. 30 D # 3	9,850.4621	2,095.1933	0.2127	
22	St. A 40 m. 60 D # 1	7,594.5678	1,216.6498	0.1602	
23	St. A 40 m. 60 D # 2	7,557.3311	1,163.0733	0.1539	
24	St. A 40 m. 60 D # 3	7,425.0832	1,922.3540	0.2589	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B94 Intensity of band and ratio pvMT08 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	3,626.9473	0.5839	
2	St. B 5 m. 30 D # 2	6,337.6929	2,471.0665	0.3899	
3	St. B 5 m. 30 D # 3	5,282.9348	1,188.1320	0.2249	
4	St. B 5 m. 60 D # 1	8,786.3905	4,758.7091	0.5416	
5	St. B 5 m. 60 D # 2	9,508.5596	2,259.2338	0.2376	
6	St. B 5 m. 60 D # 3	8,415.0986	2,141.6426	0.2545	
7	St. B 5 m. 90 D # 1	9,116.4300	6,115.3012	0.6708	
8	St. B 5 m. 90 D # 2	8,444.1335	2,660.7465	0.3151	
9	St. B 5 m. 90 D # 3	6,798.2050	3,356.2738	0.4937	
10	St. B 20 m. 30 D # 1	6,877.8125	1,785.4801	0.2596	
11	St. B 20 m. 30 D # 2	9,410.1542	2,312.0749	0.2457	
12	St. B 20 m. 30 D # 3	6,243.3234	4,244.8356	0.6799	
13	St. B 20 m. 60 D # 1	9,630.3849	2,496.1958	0.2592	
14	St. B 20 m. 60 D # 2	6,465.5505	1,339.0155	0.2071	
15	St. B 20 m. 60 D # 3	9,702.4652	2,004.5293	0.2066	
16	St. B 20 m. 90 D # 1	9,484.3576	2,051.4666	0.2163	
17	St. B 20 m. 90 D # 2	6,411.8919	1,543.9836	0.2408	
18	St. B 20 m. 90 D # 3	7,122.5406	1,601.8594	0.2249	
19	St. B 40 m. 30 D # 1	8,069.4263	2,539.4485	0.3147	
20	St. B 40 m. 30 D # 2	5,746.6361	1,383.7900	0.2408	
21	St. B 40 m. 30 D # 3	5,560.2206	1,608.5718	0.2893	
22	St. B 40 m. 60 D # 1	9,726.9608	2,173.9757	0.2235	
23	St. B 40 m. 60 D # 2	8,981.9906	2,289.5094	0.2549	
24	St. B 40 m. 60 D # 3	8,207.4043	1,275.4306	0.1554	
25	St. B 40 m. 90 D # 1	8,212.1626	6,209.2161	0.7561	
26	St. B 40 m. 90 D # 2	7,068.9784	1,533.2614	0.2169	
27	St. B 40 m. 90 D # 3	6,300.3348	3,354.2983	0.5324	

Table B95 Intensity of band and ratio pvMT08 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	4,182.1232	0.6537	
2	St. C 5 m. 30 D # 2	4,638.7242	940.7333	0.2028	
3	St. C 5 m. 30 D # 3	5,194.6838	1,822.8146	0.3509	
4	St. C 5 m. 60 D # 1	4,240.8082	3,351.0866	0.7902	
5	St. C 5 m. 60 D # 2	4,760.0214	1,940.6607	0.4077	
6	St. C 5 m. 60 D # 3	6,859.8407	4,601.5812	0.6708	
7	St. C 5 m. 90 D # 1	7,490.6541	1,773.7869	0.2368	
8	St. C 5 m. 90 D # 2	6,196.3638	1,886.1731	0.3044	
9	St. C 5 m. 90 D # 3	7,054.8009	3,538.6881	0.5016	
10	St. C 20 m. 30 D # 1	6,070.2033	1,683.8744	0.2774	
11	St. C 20 m. 30 D # 2	6,156.3653	1,192.4879	0.1937	
12	St. C 20 m. 30 D # 3	7,313.1038	2,180.7676	0.2982	
13	St. C 20 m. 60 D # 1	6,790.7105	1,571.3704	0.2314	
14	St. C 20 m. 60 D # 2	6,495.0784	1,932.9353	0.2976	
15	St. C 20 m. 60 D # 3	8,478.2315	3,418.4229	0.4032	
16	St. C 20 m. 90 D # 1	7,826.1923	2,254.7260	0.2881	
17	St. C 20 m. 90 D # 2	8,743.7875	1,997.0811	0.2284	
18	St. C 20 m. 90 D # 3	6,444.5242	1,569.8861	0.2436	
19	St. C 40 m. 30 D # 1	7,867.2218	2,006.9283	0.2551	
20	St. C 40 m. 30 D # 2	8,838.1920	1,990.3608	0.2252	
21	St. C 40 m. 30 D # 3	8,147.8342	1,152.1038	0.1414	
22	St. C 40 m. 60 D # 1	6,071.8885	2,417.2188	0.3981	
23	St. C 40 m. 60 D # 2	6,782.1438	2,695.9022	0.3975	
24	St. C 40 m. 60 D # 3	8,244.9591	3,121.5415	0.3786	
25	St. C 40 m. 90 D # 1	5,825.3692	1,273.4257	0.2186	
26	St. C 40 m. 90 D # 2	6,956.1669	2,173.1065	0.3124	
27	St. C 40 m. 90 D # 3	4,130.1569	900.7872	0.2181	

 Table B96 Intensity of band and ratio pvMT08 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT08	Ratio pvMT08 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	2,611.3245	0.4436	
2	St. D 5 m. 30 D # 2	5,534.5675	1,979.7148	0.3577	
3	St. D 5 m. 30 D # 3	6,681.7459	2,378.0334	0.3559	
4	St. D 5 m. 60 D # 1	6,595.9673	1,881.8295	0.2853	
5	St. D 5 m. 60 D # 2	5,854.2557	1,218.2706	0.2081	
6	St. D 5 m. 60 D # 3	9,043.0346	3,259.1097	0.3604	
7	St. D 5 m. 90 D # 1	4,098.3793	2,043.8618	0.4987	
8	St. D 5 m. 90 D # 2	5,600.8017	916.2912	0.1636	
9	St. D 5 m. 90 D # 3	6,774.3701	1,593.3318	0.2352	

St. D 3 III. 90 D # 5

Table B97 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Field study (Station A)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11 /AT	Remark
1	St. A 5 m. 30 D # 1	8,645.3427	4,979.7174	0.5760	
2	St. A 5 m. 30 D # 2	7,689.3353	3,853.1259	0.5011	
3	St. A 5 m. 30 D # 3	7,713.9057	5,433.6752	0.7044	
4	St. A 5 m. 60 D # 1	6,176.4749	5,426.0332	0.8785	
5	St. A 5 m. 60 D # 2	7,136.0990	8,679.6372	1.2163	
6	St. A 5 m. 60 D # 3	7,796.3429	6,097.5198	0.7821	
7	St. A 5 m. 90 D # 1	5,140.0396	5,520.4025	1.0740	
8	St. A 5 m. 90 D # 2	7,953.7543	9,489.6242	1.1931	
9	St. A 5 m. 90 D # 3	9,351.6848	6,331.0906	0.6770	
10	St. A 20 m. 30 D # 1	6,883.04 <mark>6</mark> 7	2,987.9306	0.4341	
11	St. A 20 m. 30 D # 2	4,268.5360	1,855.1058	0.4346	
12	St. A 20 m. 30 D # 3	7,396.9588	1,918.0314	0.2593	
13	St. A 20 m. 60 D # 1	5,039.6338	3,227.3815	0.6404	
14	St. A 20 m. 60 D # 2	4,557.2385	4,168.5060	0.9147	
15	St. A 20 m. 60 D # 3	4,663.9016	1,499.9108	0.3216	
16	St. A 20 m. 90 D # 1	8,836.0504	7,139.5288	0.8080	
17	St. A 20 m. 90 D # 2	8,711.9107	3,446.4319	0.3956	
18	St. A 20 m. 90 D # 3	8,086.6887	1,415.1705	0.1750	
19	St. A 40 m. 30 D # 1	7,256.2690	5,986.4219	0.8250	
20	St. A 40 m. 30 D # 2	7,004.6322	5,807.5405	0.8291	
21	St. A 40 m. 30 D # 3	9,850.4621	3,886.9923	0.3946	
22	St. A 40 m. 60 D # 1	7,594.5678	1,319.1764	0.1737	
23	St. A 40 m. 60 D # 2	7,557.3311	2,087.3349	0.2762	
24	St. A 40 m. 60 D # 3	7,425.0832	1,537.7347	0.2071	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B98 Intensity of band and ratio pvMT11 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11 /AT	Remark
1	St. B 5 m. 30 D # 1	6,211.5898	6,148.2316	0.9898	
2	St. B 5 m. 30 D # 2	6,337.6929	6,513.2470	1.0277	
3	St. B 5 m. 30 D # 3	5,282.9348	1,258.3951	0.2382	
4	St. B 5 m. 60 D # 1	8,786.3905	6,691.7150	0.7616	
5	St. B 5 m. 60 D # 2	9,508.5596	7,219.8493	0.7593	
6	St. B 5 m. 60 D # 3	8,415.0986	2,162.6803	0.2570	
7	St. B 5 m. 90 D # 1	9,116.4300	7,677.8573	0.8422	
8	St. B 5 m. 90 D # 2	8,444.1335	2,691.9898	0.3188	
9	St. B 5 m. 90 D # 3	6,798.2050	1,655.3629	0.2435	
10	St. B 20 m. 30 D # 1	6,877.8125	2,246.9813	0.3267	
11	St. B 20 m. 30 D # 2	9,410.1542	3,198.5114	0.3399	
12	St. B 20 m. 30 D # 3	6,243.3234	6,057.2723	0.9702	
13	St. B 20 m. 60 D # 1	9,630.3849	4,881.6421	0.5069	
14	St. B 20 m. 60 D # 2	6,465.5505	4,197.4354	0.6492	
15	St. B 20 m. 60 D # 3	9,702.4652	6,295.9297	0.6489	
16	St. B 20 m. 90 D # 1	9,484.3576	2,330.3067	0.2457	
17	St. B 20 m. 90 D # 2	6,411.8919	1,669.6566	0.2604	
18	St. B 20 m. 90 D # 3	7,122.5406	1,614.6799	0.2267	
19	St. B 40 m. 30 D # 1	8,069.4263	2,718.5897	0.3369	
20	St. B 40 m. 30 D # 2	5,746.6361	1,496.4240	0.2604	
21	St. B 40 m. 30 D # 3	5,560.2206	1,517.3842	0.2729	
22	St. B 40 m. 60 D # 1	9,726.9608	3,791.5693	0.3898	
23	St. B 40 m. 60 D # 2	8,981.9906	3,847.8848	0.4284	
24	St. B 40 m. 60 D # 3	8,207.4043	4,510.7894	0.5496	
25	St. B 40 m. 90 D # 1	8,212.1626	8,578.4250	1.0446	
26	St. B 40 m. 90 D # 2	7,068.9784	6,312.5977	0.8930	
27	St. B 40 m. 90 D # 3	6,300.3348	3,242,7823	0.5147	

Table B99 Intensity of band and ratio pvMT11 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11 /AT	Remark
1	St. C 5 m. 30 D # 1	6,397.6185	3,653.0402	0.5710	
2	St. C 5 m. 30 D # 2	4,638.7242	933.7752	0.2013	
3	St. C 5 m. 30 D # 3	5,194.6838	1,015.5607	0.1955	
4	St. C 5 m. 60 D # 1	4,240.8082	4,365.9121	1.0295	
5	St. C 5 m. 60 D # 2	4,760.0214	2,843.1608	0.5973	
6	St. C 5 m. 60 D # 3	6,859.8407	4,568.6539	0.6660	
7	St. C 5 m. 90 D # 1	7,490.6541	2,462.1780	0.3287	
8	St. C 5 m. 90 D # 2	6,196.3638	4,779.2554	0.7713	
9	St. C 5 m. 90 D # 3	7,054.8009	3,680.4896	0.5217	
10	St. C 20 m. 30 D # 1	6,070.2033	1,680.2323	0.2768	
11	St. C 20 m. 30 D # 2	6,156.3653	1,248.5109	0.2028	
12	St. C 20 m. 30 D # 3	7,313.1038	2,072.5336	0.2834	
13	St. C 20 m. 60 D # 1	6,790.7105	4,132.8264	0.6086	
14	St. C 20 m. 60 D # 2	6,495.0784	2,144.0254	0.3301	
15	St. C 20 m. 60 D # 3	8,478.2315	2,089.0362	0.2464	
16	St. C 20 m. 90 D # 1	7,826.1923	2,230.4648	0.2850	
17	St. C 20 m. 90 D # 2	8,743.7875	2,261.1435	0.2586	
18	St. C 20 m. 90 D # 3	6,444.5242	2,217.5608	0.3441	
19	St. C 40 m. 30 D # 1	7,867.2218	6,105.7508	0.7761	
20	St. C 40 m. 30 D # 2	8,838.1920	2,451.7145	0.2774	
21	St. C 40 m. 30 D # 3	8,147.8342	1,161.0664	0.1425	
22	St. C 40 m. 60 D # 1	6,071.8885	2,438.4704	0.4016	
23	St. C 40 m. 60 D # 2	6,782.1438	2,727.1000	0.4021	
24	St. C 40 m. 60 D # 3	8,244.9591	7,130.2407	0.8648	
25	St. C 40 m. 90 D # 1	5,825.3692	1,354.3983	0.2325	
26	St. C 40 m. 90 D # 2	6,956.1669	2,494.4814	0.3586	
27	St. C 40 m. 90 D # 3	4,130.1569	961.0875	0.2327	

 Table B100 Intensity of band and ratio pvMT11 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity pvMT11	Ratio pvMT11 /AT	Remark
1	St. D 5 m. 30 D # 1	5,886.6648	3,157.0183	0.5363	
2	St. D 5 m. 30 D # 2	5,534.5675	3,529.9472	0.6378	
3	St. D 5 m. 30 D # 3	6,681.7459	2,393.4014	0.3582	
4	St. D 5 m. 60 D # 1	6,595.9673	4,788.6723	0.7260	
5	St. D 5 m. 60 D # 2	5,854.2557	1,361.6999	0.2326	
6	St. D 5 m. 60 D # 3	9,043.0346	5,315.4957	0.5878	
7	St. D 5 m. 90 D # 1	4,098.3793	3,872.5586	0.9449	
8	St. D 5 m. 90 D # 2	5,600.8017	2,197.7546	0.3924	
9	St. D 5 m. 90 D # 3	6,774.3701	1,821.6281	0.2689	

St. D 3 III. 90 D # 5

Table B101 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Field study (Station A)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	St. A 5 m. 30 D # 1	6,219.9019	7,303.4089	1.1742	
2	St. A 5 m. 30 D # 2	7,301.4196	8,892.3989	1.2179	
3	St. A 5 m. 30 D # 3	5,203.9182	7,369.2686	1.4161	
4	St. A 5 m. 60 D # 1	6,684.5605	10,252.1105	1.5337	
5	St. A 5 m. 60 D # 2	6,299.7082	7,948.9718	1.2618	
6	St. A 5 m. 60 D # 3	5,222.4057	6,624.0993	1.2684	
7	St. A 5 m. 90 D # 1	5,299.2442	6,573.7125	1.2405	
8	St. A 5 m. 90 D # 2	5,846.1392	7,252.1357	1.2405	
9	St. A 5 m. 90 D # 3	6,074.7481	8,757.3569	1.4416	
10	St. A 20 m. 30 D # 1	4,136.2214	5,535.0915	1.3382	
11	St. A 20 m. 30 D # 2	4,257.1817	4,222.2728	0.9918	
12	St. A 20 m. 30 D # 3	6,541.1773	8,582.0246	1.3120	
13	St. A 20 m. 60 D # 1	6,177.6296	9,123.1234	1.4768	
14	St. A 20 m. 60 D # 2	5,078.5851	5,320.3258	1.0476	
15	St. A 20 m. 60 D # 3	5,443.9536	7,292.7203	1.3396	
16	St. A 20 m. 90 D # 1	7,280.8103	10,341.6629	1.4204	
17	St. A 20 m. 90 D # 2	5,980.8988	6,876.2394	1.1497	
18	St. A 20 m. 90 D # 3	7,261.3551	7,642.5763	1.0525	
19	St. A 40 m. 30 D # 1	7,380.7814	10,277.7381	1.3925	
20	St. A 40 m. 30 D # 2	6,096.7337	9,061.5753	1.4863	
21	St. A 40 m. 30 D # 3	5,639.7238	5,621.6767	0.9968	
22	St. A 40 m. 60 D # 1	6,316.7835	7,849.8668	1.2427	
23	St. A 40 m. 60 D # 2	5,995.6228	7,395.0012	1.2334	
24	St. A 40 m. 60 D # 3	6,140.2103	7,968.7650	1.2978	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

Table B102 Intensity of band and ratio HSP71 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	St. B 5 m. 30 D # 1	5,396.1974	6,996.1700	1.2965	
2	St. B 5 m. 30 D # 2	3,817.0966	4,982.0744	1.3052	
3	St. B 5 m. 30 D # 3	5,123.0797	6,686.6436	1.3052	
4	St. B 5 m. 60 D # 1	6,868.0082	4,943.5923	0.7198	
5	St. B 5 m. 60 D # 2	5,818.1178	6,661.1630	1.1449	
6	St. B 5 m. 60 D # 3	6,427.7295	8,849.0552	1.3767	
7	St. B 5 m. 90 D # 1	7,703.6697	10,779.7450	1.3993	
8	St. B 5 m. 90 D # 2	6,271.8660	9,280.4801	1.4797	
9	St. B 5 m. 90 D # 3	7,095.3268	8,459.0486	1.1922	
10	St. B 20 m. 30 D # 1	7,593.7272	9,476.2122	1.2479	
11	St. B 20 m. 30 D # 2	6,192.2819	7,784.3176	1.2571	
12	St. B 20 m. 30 D # 3	3,760.2508	5,846.4379	1.5548	
13	St. B 20 m. 60 D # 1	4,913.4242	6,362.8843	1.2950	
14	St. B 20 m. 60 D # 2	2,476.4540	3,225.8290	1.3026	
15	St. B 20 m. 60 D # 3	5,571.4229	3,246.4681	0.5827	
16	St. B 20 m. 90 D # 1	4,689.4389	5,427.0877	1.1573	
17	St. B 20 m. 90 D # 2	2,940.2739	4,497.7369	1.5297	
18	St. B 20 m. 90 D # 3	4,969.7610	3,967.8572	0.7984	
19	St. B 40 m. 30 D # 1	5,065.1371	5,499.7259	1.0858	
20	St. B 40 m. 30 D # 2	6,426.4750	9,946.8980	1.5478	
21	St. B 40 m. 30 D # 3	4,184.6514	3,081.1588	0.7363	
22	St. B 40 m. 60 D # 1	3,999.8202	6,503.7077	1.6260	
23	St. B 40 m. 60 D # 2	4,713.6396	6,846.5615	1.4525	
24	St. B 40 m. 60 D # 3	5,130.6352	7,612.3235	1.4837	
25	St. B 40 m. 90 D # 1	4,979.9545	7,851.3963	1.5766	
26	St. B 40 m. 90 D # 2	5,211.4594	9,367.5984	1.7975	
27	St. B 40 m. 90 D # 3	4.304.1422	6.115.7557	1.4209	

Table B103 Intensity of band and ratio HSP71 expression gene in gill of mussel*P.viridis* Field study (Station C)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	St. C 5 m. 30 D # 1	3,465.6779	5,624.7952	1.6230	
2	St. C 5 m. 30 D # 2	8,349.7759	10,123.2684	1.2124	
3	St. C 5 m. 30 D # 3	8,043.1744	9,751.5446	1.2124	
4	St. C 5 m. 60 D # 1	6,662.6896	8,820.7348	1.3239	
5	St. C 5 m. 60 D # 2	7,111.4199	7,968.3460	1.1205	
6	St. C 5 m. 60 D # 3	5,695.2721	7,946.6132	1.3953	
7	St. C 5 m. 90 D # 1	4,820.8724	6,135.0422	1.2726	
8	St. C 5 m. 90 D # 2	4,820.8724	6,435.8646	1.3350	
9	St. C 5 m. 90 D # 3	3,832.6951	5,363.8568	1.3995	
10	St. C 20 m. 30 D # 1	3,438.3661	4,122.9448	1.1991	
11	St. C 20 m. 30 D # 2	5,110.1621	5,884.3517	1.1515	
12	St. C 20 m. 30 D # 3	2,888.1521	2,310.8105	0.8001	
13	St. C 20 m. 60 D # 1	6,198.7622	8,959.0710	1.4453	
14	St. C 20 m. 60 D # 2	7,118.3303	8,388.2404	1.1784	
15	St. C 20 m. 60 D # 3	6,703.1268	8,967.4430	1.3378	
16	St. C 20 m. 90 D # 1	4,335.6905	5,859.6858	1.3515	
17	St. C 20 m. 90 D # 2	6,068.3682	8,195.3312	1.3505	
18	St. C 20 m. 90 D # 3	3,125.2484	4,737.5641	1.5159	
19	St. C 40 m. 30 D # 1	6,678.9333	8,526.3263	1.2766	
20	St. C 40 m. 30 D # 2	5,276.2048	6,196.9026	1.1745	
21	St. C 40 m. 30 D # 3	6,570.1450	6,750.1670	1.0274	
22	St. C 40 m. 60 D # 1	3,248.5385	3,982.7082	1.2260	
23	St. C 40 m. 60 D # 2	4,405.3606	4,821.6672	1.0945	
24	St. C 40 m. 60 D # 3	4,949.5030	7,220.3349	1.4588	
25	St. C 40 m. 90 D # 1	6,092.1961	6,980.4383	1.1458	
26	St. C 40 m. 90 D # 2	7,360.4159	7,611.4060	1.0341	
27	St. C 40 m. 90 D # 3	4,260.4792	6,052.0107	1.4205	

Table B104 Intensity of band and ratio HSP71 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity HSP71	Ratio HSP71 /AT	Remark
1	St. D 5 m. 30 D # 1	4,009.9779	6,096.3694	1.5203	
2	St. D 5 m. 30 D # 2	4,351.0668	5,046.3673	1.1598	
3	St. D 5 m. 30 D # 3	4,847.1662	4,364.8732	0.9005	
4	St. D 5 m. 60 D # 1	3,971.5049	5,665.7488	1.4266	
5	St. D 5 m. 60 D # 2	4,500.8802	5,627.4505	1.2503	
6	St. D 5 m. 60 D # 3	4,263.2821	5,441.2269	1.2763	
7	St. D 5 m. 90 D # 1	4,276.7157	5,458.3723	1.2763	
8	St. D 5 m. 90 D # 2	3,716.7096	4,068.6821	1.0947	
9	St. D 5 m. 90 D # 3	4,827.5104	4,762.8217	0.9866	

จุฬาลงกรณ์มหาวิทยาลัย

Table B105 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Field study (Station A)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	St. A 5 m. 30 D # 1	6,219.9019	4,711.5757	0.7575	
2	St. A 5 m. 30 D # 2	7,301.4196	6,139.7637	0.8409	
3	St. A 5 m. 30 D # 3	5,203.9182	3,120.2694	0.5996	
4	St. A 5 m. 60 D # 1	6,684.5605	6,326.2681	0.9464	
5	St. A 5 m. 60 D # 2	6,299.7082	5,428.4586	0.8617	
6	St. A 5 m. 60 D # 3	5,222.4057	2,633.6592	0.5043	
7	St. A 5 m. 90 D # 1	5,299.2442	2,301.4618	0.4343	
8	St. A 5 m. 90 D # 2	5,846.1392	2,538.9783	0.4343	
9	St. A 5 m. 90 D # 3	6,074.7481	5,533.4880	0.9109	
10	St. A 20 m. 30 D # 1	4,136.2214	2,849.8565	0.6890	
11	St. A 20 m. 30 D # 2	4,257.1817	2,126.4623	0.4995	
12	St. A 20 m. 30 D # 3	6,541.1773	4,567.7041	0.6983	
13	St. A 20 m. 60 D # 1	6,177.6296	4,182.8730	0.6771	
14	St. A 20 m. 60 D # 2	5,078.5851	4,480.8357	0.8823	
15	St. A 20 m. 60 D # 3	5,443.9536	3,512.4389	0.6452	
16	St. A 20 m. 90 D # 1	7,280.8103	5,767.8579	0.7922	
17	St. A 20 m. 90 D # 2	5,980.8988	5,077.7831	0.8490	
18	St. A 20 m. 90 D # 3	7,261.3551	3,929.1193	0.5411	
19	St. A 40 m. 30 D # 1	7,380.7814	5,193.1178	0.7036	
20	St. A 40 m. 30 D # 2	6,096.7337	4,926.1608	0.8080	
21	St. A 40 m. 30 D # 3	5,639.7238	2,503.4734	0.4439	
22	St. A 40 m. 60 D # 1	6,316.7835	3,483.7061	0.5515	
23	St. A 40 m. 60 D # 2	5,995.6228	3,967.9032	0.6618	
24	St. A 40 m. 60 D # 3	6,140.2103	4,414.8112	0.7190	
25	St. A 40 m. 90 D # 1	NA	NA	NA	Lost of sample
26	St. A 40 m. 90 D # 2	NA	NA	NA	Lost of sample
27	St. A 40 m. 90 D # 3	NA	NA	NA	Lost of sample

 Table B106 Intensity of band and ratio CYP4 expression gene in gill of mussel

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	St. B 5 m. 30 D # 1	5,396.1974	4,536.5832	0.8407	
2	St. B 5 m. 30 D # 2	3,817.0966	3,395.3074	0.8895	
3	St. B 5 m. 30 D # 3	5,123.0797	4,556.9794	0.8895	
4	St. B 5 m. 60 D # 1	6,868.0082	5,340.5632	0.7776	
5	St. B 5 m. 60 D # 2	5,818.1178	3,583.3787	0.6159	
6	St. B 5 m. 60 D # 3	6,427.7295	3,382.2713	0.5262	
7	St. B 5 m. 90 D # 1	7,703.6697	3,598.3841	0.4671	
8	St. B 5 m. 90 D # 2	6,271.8660	6,184.0599	0.9860	
9	St. B 5 m. 90 D # 3	7,095.3268	3,104.9150	0.4376	
10	St. B 20 m. 30 D # 1	7,593.7272	5,440.1462	0.7164	
11	St. B 20 m. 30 D # 2	6,192.2819	4,611.3923	0.7447	
12	St. B 20 m. 30 D # 3	3,760.2508	3,846.3605	1.0229	
13	St. B 20 m. 60 D # 1	4,913.4242	3,330.8103	0.6779	
14	St. B 20 m. 60 D # 2	2,476.4540	1,059.4270	0.4278	
15	St. B 20 m. 60 D # 3	5,571.4229	2,156.6978	0.3871	
16	St. B 20 m. 90 D # 1	4,689.4389	2,282.8189	0.4868	
17	St. B 20 m. 90 D # 2	2,940.2739	1,481.3100	0.5038	
18	St. B 20 m. 90 D # 3	4,969.7610	2,482.3956	0.4995	
19	St. B 40 m. 30 D # 1	5,065.1371	2,742.2653	0.5414	
20	St. B 40 m. 30 D # 2	6,426.4750	5,727.2745	0.8912	
21	St. B 40 m. 30 D # 3	4,184.6514	2,863.5570	0.6843	
22	St. B 40 m. 60 D # 1	3,999.8202	1,641.1262	0.4103	
23	St. B 40 m. 60 D # 2	4,713.6396	4,033.9328	0.8558	
24	St. B 40 m. 60 D # 3	5,130.6352	2,778.2390	0.5415	
25	St. B 40 m. 90 D # 1	4,979.9545	4,899.2793	0.9838	
26	St. B 40 m. 90 D # 2	5,211.4594	3,904.4254	0.7492	
27	St. B 40 m. 90 D # 3	4.304.1422	3.010.3171	0.6994	
Table B107 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Field study (Station C)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	St. C 5 m. 30 D # 1	3,465.6779	4,001.1251	1.1545	
2	St. C 5 m. 30 D # 2	8,349.7759	6,793.3777	0.8136	
3	St. C 5 m. 30 D # 3	8,043.1744	6,543.9267	0.8136	
4	St. C 5 m. 60 D # 1	6,662.6896	3,923.6579	0.5889	
5	St. C 5 m. 60 D # 2	7,111.4199	6,597.9754	0.9278	
6	St. C 5 m. 60 D # 3	5,695.2721	5,585.3534	0.9807	
7	St. C 5 m. 90 D # 1	4,820.8724	3,258.4276	0.6759	
8	St. C 5 m. 90 D # 2	4,820.8724	4,367.7104	0.9060	
9	St. C 5 m. 90 D # 3	3,832.6951	1,610.1152	0.4201	
10	St. C 20 m. 30 D # 1	3,438.3661	2,361.8137	0.6869	
11	St. C 20 m. 30 D # 2	5,110.1621	4,254.2100	0.8325	
12	St. C 20 m. 30 D # 3	2,888.1521	2,229.9422	0.7721	
13	St. C 20 m. 60 D # 1	6,198.7622	5,790.2638	0.9341	
14	St. C 20 m. 60 D # 2	7,118.3303	6,237.0810	0.8762	
15	St. C 20 m. 60 D # 3	6,703.1268	6,030.8032	0.8997	
16	St. C 20 m. 90 D # 1	4,335.6905	2,929.1925	0.6756	
17	St. C 20 m. 90 D # 2	6,068.3682	3,229.5855	0.5322	
18	St. C 20 m. 90 D # 3	3,125.2484	3,508.4039	1.1226	
19	St. C 40 m. 30 D # 1	6,678.9333	5,356.5045	0.8020	
20	St. C 40 m. 30 D # 2	5,276.2048	4,630.9250	0.8777	
21	St. C 40 m. 30 D # 3	6,570.1450	5,359.2673	0.8157	
22	St. C 40 m. 60 D # 1	3,248.5385	3,121.8455	0.9610	
23	St. C 40 m. 60 D # 2	4,405.3606	2,923.3973	0.6636	
24	St. C 40 m. 60 D # 3	4,949.5030	4,451.5830	0.8994	
25	St. C 40 m. 90 D # 1	6,092.1961	4,103.7033	0.6736	
26	St. C 40 m. 90 D # 2	7,360.4159	3,986.4012	0.5416	
27	St. C 40 m. 90 D # 3	4,260.4792	3,473.9947	0.8154	

Table B108 Intensity of band and ratio CYP4 expression gene in gill of mussel

P.viridis Field study (Station D)

No.	Sample	Intensity AT	Intensity CYP4	Ratio CYP4 /AT	Remark
1	St. D 5 m. 30 D # 1	4,009.9779	4,335.9891	1.0813	
2	St. D 5 m. 30 D # 2	4,351.0668	3,858.9612	0.8869	
3	St. D 5 m. 30 D # 3	4,847.1662	4,437.0960	0.9154	
4	St. D 5 m. 60 D # 1	3,971.5049	4,871.4479	1.2266	
5	St. D 5 m. 60 D # 2	4,500.8802	3,573.2488	0.7939	
6	St. D 5 m. 60 D # 3	4,263.2821	4,050.1180	0.9500	
7	St. D 5 m. 90 D # 1	4,276.7157	4,062.8799	0.9500	
8	St. D 5 m. 90 D # 2	3,716.7096	3,323.1101	0.8941	
9	St. D 5 m. 90 D # 3	4,827.5104	4,003.4543	0.8293	

APPENDIX C

Blast X result for MT gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAF22487.1	metallothionein 2 [Perna viridis]	104	104	85%	4e-21	98%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	104	104	85%	4e-21	100%
AAD02054.1	metallothionein [Perna viridis]	99.4	99.4	85%	1e-19	90%
CAE11861.1	metallothionein [Mytilus edulis]	84.0	84.0	85%	5e-15	66%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	83.6	83.6	85%	7e-15	65%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	83.6	83.6	85%	7e-15	63%
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	82.4	82.4	85%	2e-14	65%
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	82.4	82.4	85%	2e-14	63%
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	81.6	81.6	83%	3e-14	64%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >gb AAT72936.1 metallothionein 10-III [Mytilus galloprovincialis]	81.3	81.3	85%	4e-14	63%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	79.7	79.7	85%	1e-13	63%
CAF34421.1	metallothionein, isoform MT-10a [Bathymodiolus azoricus]	79.3	79.3	85%	1e-13	61%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	79.3	79.3	85%	1e-13	60%
AAB29060.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	77.8	77.8	83%	4e-13	62%
CAE11855.1	metallothionein [Mytilus edulis]	76.6	76.6	85%	9e-13	62%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	75.1	75.1	82%	3e-12	83%
CAI94401.1	metallothionein [Bathymodiolus azoricus]	74.3	74.3	81%	4e-12	61%
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	73.6	73.6	81%	7e-12	70%
CAE11856.1	metallothionein [Mytilus edulis]	73.6	73.6	85%	7e-12	60%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	73.6	73.6	81%	7e-12	70%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	73.6	73.6	81%	7e-12	70%
P69153.2	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus calloprovincialic]	73.6	73.6	82%	7e-12	80%
P80258 1	RecName: Full=Metallothionein 20-III isoform B: Short=MT-20-IIIB	71.6	71.6	81%	3e-11	80%
100250.1	RecName: Full=Metallothionein 20-Lisoforms A and B: AltName:	/1.0	/1.0	0170	50 11	0070
P80251.1	Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]	71.2	71.2	81%	4e-11	81%
CAE11862.1	metallothionein [Mytilus edulis]	68.9	68.9	82%	2e-10	78%
ABI30643.1	metallothionein-10B [Mytilus galloprovincialis]	65.9	65.9	79%	2e-09	49%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	65.9	65.9	77%	2e-09	82%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	64.3	64.3	82%	4e-09	75%
ABH03633.1	metallothionein 10a [Laternula elliptica]	62.8	62.8	85%	1e-08	58%
ABH03634.1	metallothionein 10b [Laternula elliptica]	62.8	62.8	85%	1e-08	57%
CAE11857.1	metallothionein [Mytilus edulis]	62.8	62.8	79%	1e-08	47%
CAE11858.1	metallothionein [Mytilus edulis]	61.6	61.6	79%	3e-08	47%
AAS92877.1	metallothionein [Meretrix lusoria]	59.3	59.3	85%	1e-07	45%
AAK39563.1	metallothionein-like protein [Tegillarca granosa]	56.2	56.2	81%	1e-06	60%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAK15581.1	metallothionein [Crassostrea angulata]	56.2	56.2	83%	1e-06	59%
AAQ23908.1	metallothionein IB [Crassostrea virginica]	55.5	55.5	85%	2e-06	37%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	55.5	55.5	83%	2e-06	58%
ABC69708.1	metallothionein [Crassostrea ariakensis]	54.7	54.7	83%	4e-06	58%
P23038.3	RecName: Full=Metallothionein; Short=MT >emb CAA42522.1 metallothionein [Crassostrea virginica] >gb AAQ23904.1 metallothionein IA [Crassostrea virginica] >gb AAQ23905.1 metallothionein IA [Crassostrea virginica] >gb AAQ23906.1 metallothionein IA [Crassostrea virginica] >gb AAQ23907.1 metallothionein IA [Crassostrea virginica]	54.3	54.3	85%	5e-06	37%
ABP01350.1	metallothionein [Unio tumidus]	53.5	53.5	85%	8e-06	61%
CAB64869.1	metallothionein [Crassostrea gigas]	53.5	53.5	83%	8e-06	56%
CAB96402.1	metallothionein [Venerupis (Ruditapes) decussatus]	53.1	53.1	78%	1e-05	48%
CAB96403.1	metallothionein [Venerupis (Ruditapes) philippinarum]	53.1	53.1	78%	1e-05	60%
ACB05816.1	metallothionein [Cerastoderma glaucum]	52.4	52.4	81%	2e-05	41%
ABP57063.1	metallothionein [Venerupis philippinarum]	51.2	51.2	85%	4e-05	40%
AAM90257.1	metallothionein [Crassostrea virginica]	49.7	49.7	85%	1e-04	35%
ABS20116.1	metallothionein [Venerupis decussatus]	49.3	49.3	81%	1e-04	40%
CAC82788.1	metallothionein [Crassostrea gigas]	49.3	49.3	85%	1e-04	40%
ACH99846.1	metallothionein [Scapharca broughtonii]	48.9	48.9	82%	2e-04	36%
AAS75318.1	metallothionein [Tegillarca granosa]	48.1	48.1	82%	3e-04	36%
AAZ76545.1	metallothionein [Scapharca inaequivalvis]	47.4	47.4	82%	6e-04	37%
ABM55725.1	metallothionein [Corbicula fluminea]	47.0	47.0	85%	7e-04	54%
CAC83770.1	metallothionein [Ostrea edulis]	47.0	47.0	85%	7e-04	53%
Q94550.1	RecName: Full=Metallothionein; Short=MT >gb AAB07548.1 metallothionein [Dreissena polymorpha]	46.2	46.2	85%	0.001	44%
ACT53273.1	metallothionein [Pisidium coreanum]	45.4	45.4	78%	0.002	40%
AAQ23913.1	metallothionein IIE [Crassostrea virginica]	44.7	132	78%	0.004	55%
AAQ23911.1	metallothionein IIC [Crassostrea virginica]	44.7	88.6	78%	0.004	55%
AAQ23916.1	metallothionein IIH [Crassostrea virginica]	44.7	174	78%	0.004	53%
AAQ23914.1	metallothionein IIF [Crassostrea virginica]	43.9	131	36%	0.006	55%
AAQ23909.1	metallothionein IIA [Crassostrea virginica]	43.9	43.9	36%	0.006	55%
AAQ23915.1	metallothionein IIG [Crassostrea virginica]	43.9	175	36%	0.006	55%
AAQ23912.1	metallothionein IID [Crassostrea virginica]	43.9	131	36%	0.006	55%
AAK50565.1	metallothionein [Crassostrea rhizophorae]	43.9	43.9	32%	0.006	58%
ABN68955.1	metallothionein [Cerastoderma edule]	43.5	43.5	36%	0.008	51%
ACS44750.1	metallothionein [Hyriopsis cumingii]	43.1	43.1	85%	0.011	41%
ACU46012.1	metallothionein [Mactra veneriformis]	42.0	42.0	85%	0.024	34%
CAB96419.1	metallothionein [Venerupis pullastra]	41.2	41.2	31%	0.041	56%
ABP57066.2	metallothionein [Cerastoderma edule] >gb ACT66292.1 metallothionein 1 [Cerastoderma edule] >gb ACT66293.1 metallothionein 1 [Cerastoderma edule]	40.4	40.4	82%	0.070	43%
AAQ23910.1	metallothionein IIB [Crassostrea virginica]	39.7	39.7	36%	0.12	48%
AAK56498.1	putative metallothionein [Littorina littorea]	39.3	39.3	82%	0.16	44%
CAK22381.1	metallothionein IV [Crassostrea gigas]	38.1	38.1	85%	0.35	40%

Blast X result for pvMT01 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAF22487.1	metallothionein 2 [Perna viridis]	69.7	69.7	97%	1e-10	95%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	69.7	69.7	97%	1e-10	97%
AAD02054.1	metallothionein [Perna viridis]	64.7	64.7	97%	3e-09	86%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >gb AAT72936.1 metallothionein 10-III [Mytilus galloprovincialis]	60.8	60.8	49%	5e-08	92%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	59.7	59.7	49%	1e-07	92%
AAB29060.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	59.7	59.7	49%	1e-07	92%
CAE11861.1	metallothionein [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
CAE11856.1	metallothionein [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
CAE11855.1	metallothionein [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	59.7	59.7	49%	1e-07	92%
CAI94401.1	metallothionein [Bathymodiolus azoricus]	59.3	59.3	49%	1e-07	88%
CAF34421.1	metallothionein, isoform MT-10a [Bathymodiolus azoricus]	59.3	59.3	49%	1e-07	88%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	59.3	59.3	49%	1e-07	88%
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	58.5	58.5	49%	2e-07	88%
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	58.2	58.2	49%	3e-07	84%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	58.2	58.2	49%	3e-07	84%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	58.2	58.2	49%	3e-07	84%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	57.4	57.4	49%	6e-07	88%
P80251.1	RecName: Full=Metallothionein 20-I isoforms A and B; AltName: Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]	57.4	57.4	49%	6e-07	88%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	57.4	57.4	49%	6e-07	88%
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	56.6	56.6	49%	9e-07	88%
CAE11862.1	metallothionein [Mytilus edulis]	55.8	55.8	49%	2e-06	84%
P69153.2	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20- III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus galloprovincialis]	55.8	55.8	49%	2e-06	84%
P80258.1	RecName: Full=Metallothionein 20-III isoform B; Short=MT-20-IIIB	55.8	55.8	49%	2e-06	84%
ABI30643.1	metallothionein-10B [Mytilus galloprovincialis]	54.7	54.7	47%	4e-06	83%
CAE11857.1	metallothionein [Mytilus edulis]	51.6	51.6	47%	3e-05	79%
CAE11858.1	metallothionein [Mytilus edulis]	50.8	50.8	45%	5e-05	82%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	50.4	50.4	49%	7e-05	76%
AAK39563.1	metallothionein-like protein [Tegillarca granosa]	41.6	41.6	49%	0.031	52%
AAK50565.1	metallothionein [Crassostrea rhizophorae]	41.2	41.2	45%	0.041	56%
AAK15581.1	metallothionein [Crassostrea angulata]	41.2	41.2	45%	0.041	56%
CAB96419.1	metallothionein [Venerupis pullastra]	41.2	41.2	45%	0.041	56%
AAQ23914.1	metallothionein IIF [Crassostrea virginica]	39.7	118	45%	0.12	56%
AAQ23913.1	metallothionein IIE [Crassostrea virginica]	39.7	118	45%	0.12	56%
AAQ23909.1	metallothionein IIA [Crassostrea virginica]	39.7	39.7	45%	0.12	56%
AAQ23911.1	metallothionein IIC [Crassostrea virginica]	39.7	79.3	45%	0.12	56%
AAQ23915.1	metallothionein IIG [Crassostrea virginica]	39.7	158	45%	0.12	56%
AAQ23912.1	metallothionein IID [Crassostrea virginica]	39.7	118	45%	0.12	56%
AAQ23916.1	metallothionein IIH [Crassostrea virginica]	39.7	156	45%	0.12	54%
AAM90257.1	metallothionein [Crassostrea virginica]	39.7	39.7	45%	0.12	52%
AAS92877.1	metallothionein [Meretrix lusoria]	39.7	39.7	49%	0.12	53%
P23038.3	RecName: Full=Metallothionein; Short=MT >emb CAA42522.1 metallothionein [Crassostrea virginica] >gb AAQ23904.1 metallothionein IA [Crassostrea virginica] >gb AAQ23905.1	39.7	39.7	45%	0.12	56%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
	metallothionein IA [Crassostrea virginica] >gb AAQ23906.1 metallothionein IA [Crassostrea virginica] >gb AAQ23907.1 metallothionein IA [Crassostrea virginica]					
ABN68955.1	metallothionein [Cerastoderma edule]	39.3	39.3	45%	0.16	52%
CAB96402.1	metallothionein [Venerupis (Ruditapes) decussatus]	39.3	39.3	47%	0.16	53%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	39.3	39.3	45%	0.16	52%
CAB96403.1	metallothionein [Venerupis (Ruditapes) philippinarum]	39.3	39.3	45%	0.16	52%
ABP01350.1	metallothionein [Unio tumidus]	38.9	38.9	49%	0.20	60%
AAQ23908.1	metallothionein IB [Crassostrea virginica]	38.9	38.9	45%	0.20	52%
ABC69708.1	metallothionein [Crassostrea ariakensis]	38.5	38.5	45%	0.26	52%
CAB64869.1	metallothionein [Crassostrea gigas]	37.7	37.7	45%	0.45	47%
ACB05816.1	metallothionein [Cerastoderma glaucum]	35.8	35.8	45%	1.7	54%
ABS20116.1	metallothionein [Venerupis decussatus]	35.8	35.8	45%	1.7	54%
ABH03633.1	metallothionein 10a [Laternula elliptica]	35.8	35.8	45%	1.7	56%
ABH03634.1	metallothionein 10b [Laternula elliptica]	35.8	35.8	45%	1.7	56%
ACT53273.1	metallothionein [Pisidium coreanum]	35.4	35.4	45%	2.2	50%
AAQ23910.1	metallothionein IIB [Crassostrea virginica]	35.4	35.4	45%	2.2	47%
CAC82788.1	metallothionein [Crassostrea gigas]	34.3	34.3	45%	5.0	54%
XP_002592563.1	hypothetical protein BRAFLDRAFT_68885 [Branchiostoma floridae] >gb EEN48574.1 hypothetical protein BRAFLDRAFT_68885 [Branchiostoma floridae]	33.9	67.8	65%	6.5	40%
AAS75318.1	metallothionein [Tegillarca granosa]	33.5	33.5	43%	8.5	45%
AAX07723.1	unknown [Magnaporthe grisea]	33.5	33.5	39%	8.5	55%

Blast X result for pvMT02 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAF22487.1	metallothionein 2 [Perna viridis]	76.3	76.3	97%	1e-12	88%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	76.3	76.3	97%	1e-12	90%
AAD02054.1	metallothionein [Perna viridis]	71.2	71.2	97%	4e-11	71%
CAE11861.1	metallothionein [Mytilus edulis]	53.1	53.1	93%	1e-05	56%
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	52.8	52.8	93%	1e-05	54%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	52.8	52.8	93%	1e-05	54%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	52.8	52.8	93%	1e-05	52%
ABP01350.1	metallothionein [Unio tumidus]	51.6	51.6	97%	3e-05	62%
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	51.6	51.6	93%	3e-05	54%
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	51.6	51.6	93%	3e-05	53%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	51.6	51.6	93%	3e-05	53%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	51.6	51.6	93%	3e-05	53%
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	51.6	51.6	93%	3e-05	52%
P80258.1	RecName: Full=Metallothionein 20-III isoform B; Short=MT-20-IIIB	51.2	51.2	97%	4e-05	68%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	51.2	51.2	97%	4e-05	72%
CAE11856.1	metallothionein [Mytilus edulis]	50.4	50.4	93%	7e-05	51%
CAE11855.1	metallothionein [Mytilus edulis]	50.4	50.4	93%	7e-05	51%
AAK39563.1	metallothionein-like protein [Tegillarca granosa]	49.7	49.7	93%	1e-04	64%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	49.3	49.3	97%	1e-04	70%
P80251.1	RecName: Full=Metallothionein 20-I isoforms A and B; AltName: Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda class I	49.3	49.3	97%	1e-04	70%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
	metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]					
CAI94401.1	metallothionein [Bathymodiolus azoricus]	48.9	48.9	93%	2e-04	52%
ABH03633.1	metallothionein 10a [Laternula elliptica]	48.9	48.9	97%	2e-04	54%
ABH03634.1	metallothionein 10b [Laternula elliptica]	48.9	48.9	97%	2e-04	52%
CAF34421.1	metallothionein, isoform MT-10a [Bathymodiolus azoricus]	48.9	48.9	93%	2e-04	52%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	48.9	48.9	93%	2e-04	50%
AAB29060.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	48.9	48.9	93%	2e-04	52%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	48.9	48.9	93%	2e-04	52%
P69153.2	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus galloprovincialis]	48.9	48.9	97%	2e-04	68%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >gb AAT72936.1 metallothionein 10-III [Mytilus galloprovincialis]	48.1	48.1	93%	3e-04	52%
AAK56498.1	putative metallothionein [Littorina littorea]	47.8	47.8	95%	4e-04	46%
AAS92877.1	metallothionein [Meretrix lusoria]	46.6	46.6	91%	0.001	46%
ACS44750.1	metallothionein [Hyriopsis cumingii]	46.2	46.2	93%	0.001	43%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	45.8	45.8	97%	0.002	66%
ADB29127.1	metallothionein [Physa acuta]	45.4	45.4	97%	0.002	38%
CAE11862.1	metallothionein [Mytilus edulis]	45.1	45.1	97%	0.003	66%
ABM66449.1	metallothionein [Helix aspersa]	44.7	44.7	97%	0.004	34%
AAK84863.1	Cd-metallothionein isoform [Helix pomatia] >gb ACN66299.1 Cd- specific metallothionein [Helix pomatia] >gb ACS91928.1 cadmium- metallothionein [Biomphalaria glabrata]	44.3	44.3	97%	0.005	34%
P33187.1	RecName: Full=Cadmium-metallothionein; Short=CD-MT	44.3	44.3	97%	0.005	34%
ACC17831.1	metallothionein [Nesiohelix samarangae]	42.7	42.7	97%	0.014	46%
ABP57063.1	metallothionein [Venerupis philippinarum]	42.7	42.7	89%	0.014	41%
ABM55725.1	metallothionein [Corbicula fluminea]	42.7	42.7	97%	0.014	54%
AAQ23908.1	metallothionein IB [Crassostrea virginica]	42.7	42.7	97%	0.014	50%
ACB05816.1	metallothionein [Cerastoderma glaucum]	42.0	42.0	89%	0.024	41%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	41.6	78.9	93%	0.031	58%
CAA06552.1	metallothionein 10 IV [Mytilus edulis]	41.6	41.6	87%	0.031	48%
ABC69708.1	metallothionein [Crassostrea ariakensis]	41.2	41.2	97%	0.041	54%
CAB64869.1	metallothionein [Crassostrea gigas]	41.2	41.2	93%	0.041	56%
P23038.3	RecName: Full=Metallothionein; Short=MT >emb CAA42522.1 metallothionein [Crassostrea virginica] >gb AAQ23904.1 metallothionein IA [Crassostrea virginica] >gb AAQ23905.1 metallothionein IA [Crassostrea virginica] >gb AAQ23906.1 metallothionein IA [Crassostrea virginica] >gb AAQ23907.1 metallothionein IA [Crassostrea virginica]	41.2	41.2	97%	0.041	49%
ABL73910.1	cadmium-metallothionein [Helix aspersa]	40.8	40.8	97%	0.053	34%
AAK15581.1	metallothionein [Crassostrea angulata]	40.4	40.4	93%	0.069	56%
ABS20116.1	metallothionein [Venerupis decussatus]	40.0	40.0	93%	0.091	37%
CAC82788.1	metallothionein [Crassostrea gigas]	40.0	40.0	93%	0.091	37%
Q94550.1	RecName: Full=Metallothionein; Short=MT >gb AAB07548.1 metallothionein [Dreissena polymorpha]	40.0	40.0	89%	0.091	44%
ACU46012.1	metallothionein [Mactra veneriformis]	39.3	39.3	33%	0.15	64%
AAK84864.1	Cu-metallothionein isoform [Helix pomatia] >gb ACS91927.1 copper- metallothionein [Biomphalaria glabrata]	39.3	39.3	97%	0.15	37%
P55947.1	RecName: Full=Copper-metallothionein; AltName: Full=Cu-MT	39.3	39.3	97%	0.15	37%
P55946.1	RecName: Full=Metallothionein; Short=MT >gb AAB47141.1 metallothionein [Arianta arbustorum, Peptide Partial, 66 aa]	39.3	39.3	97%	0.15	30%
ACH99846.1	metallothionein [Scapharca broughtonii]	38.9	38.9	93%	0.20	31%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAZ94899.1	metallothionein IVC [Crassostrea virginica]	38.5	38.5	40%	0.26	47%
AAS75318.1	metallothionein [Tegillarca granosa]	38.5	38.5	93%	0.26	34%
AAB47142.1	metallothionein [Arianta arbustorum, Peptide Partial, 66 aa] >prf 2123233A metallothionein	38.5	38.5	97%	0.26	30%
CAC83770.1	metallothionein [Ostrea edulis]	38.5	38.5	93%	0.26	54%
AAZ94897.1	metallothionein IVA [Crassostrea virginica]	38.1	38.1	40%	0.34	47%
AAZ94898.1	metallothionein IVB [Crassostrea virginica]	38.1	38.1	40%	0.34	47%
CAK22381.1	metallothionein IV [Crassostrea gigas]	37.7	37.7	93%	0.45	36%
ABO16370.1	metallothionein [Argopecten irradians]	37.7	37.7	93%	0.45	33%
AAM90257.1	metallothionein [Crassostrea virginica]	37.7	37.7	97%	0.45	48%
ABI30643.1	metallothionein-10B [Mytilus galloprovincialis]	36.2	36.2	93%	1.3	35%
CAE11857.1	metallothionein [Mytilus edulis]	36.2	36.2	93%	1.3	35%
CAE11858.1	metallothionein [Mytilus edulis]	35.0	35.0	93%	2.9	35%

Blast X result for pvMT07 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	45.4	45.4	42%	0.002	76%
CAE11861.1	metallothionein [Mytilus edulis]	44.7	44.7	42%	0.004	76%
ACS44750.1	metallothionein [Hyriopsis cumingii]	43.5	43.5	42%	0.008	71%
ABP01350.1	metallothionein [Unio tumidus]	43.5	43.5	42%	0.008	71%
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	43.5	43.5	42%	0.008	71%
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	42.7	42.7	42%	0.014	71%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	42.7	42.7	42%	0.014	71%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	42.7	42.7	42%	0.014	71%
ABH03633.1	metallothionein 10a [Laternula elliptica]	42.4	42.4	42%	0.018	71%
ABH03634.1	metallothionein 10b [Laternula elliptica]	42.4	42.4	42%	0.018	71%
ABP57063.1	metallothionein [Venerupis philippinarum]	42.0	42.0	42%	0.024	61%
ACU46012.1	metallothionein [Mactra veneriformis]	41.6	41.6	38%	0.031	73%
ACB05816.1	metallothionein [Cerastoderma glaucum]	41.6	41.6	42%	0.031	61%
ABM55725.1	metallothionein [Corbicula fluminea]	41.6	41.6	42%	0.031	66%
CAC83770.1	metallothionein [Ostrea edulis]	41.6	41.6	42%	0.031	71%
AAD02054.1	metallothionein [Perna viridis]	41.2	41.2	42%	0.041	72%
AAF22487.1	metallothionein 2 [Perna viridis]	41.2	41.2	42%	0.041	72%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	41.2	41.2	42%	0.041	72%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	40.4	40.4	42%	0.070	66%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >gb AAT72936.1 metallothionein 10-III [Mytilus galloprovincialis]	40.0	40.0	42%	0.091	66%
CAI94401.1	metallothionein [Bathymodiolus azoricus]	39.7	39.7	42%	0.12	66%
CAF34421.1	metallothionein, isoform MT-10a [Bathymodiolus azoricus]	39.7	39.7	42%	0.12	66%
AAB29060.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	39.7	39.7	42%	0.12	66%
CAE11856.1	metallothionein [Mytilus edulis]	39.7	39.7	42%	0.12	66%
CAE11855.1	metallothionein [Mytilus edulis]	39.7	39.7	42%	0.12	66%
CAA06552.1	metallothionein 10 IV [Mytilus edulis]	39.7	39.7	42%	0.12	66%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	39.7	39.7	42%	0.12	66%
P80258.1	RecName: Full=Metallothionein 20-III isoform B; Short=MT-20-IIIB	39.3	39.3	42%	0.16	61%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	38.9	38.9	42%	0.20	68%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	38.9	38.9	42%	0.20	68%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	38.9	38.9	42%	0.20	68%
ABS20116.1	metallothionein [Venerupis decussatus]	38.5	38.5	42%	0.27	57%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	38.5	38.5	42%	0.27	61%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	38.5	38.5	40%	0.27	70%
AAK39563.1	metallothionein-like protein [Tegillarca granosa]	38.5	38.5	42%	0.27	61%
CAC82788.1	metallothionein [Crassostrea gigas]	38.5	38.5	42%	0.27	57%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	38.5	38.5	42%	0.27	61%
P69153.2	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20- III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus galloprovincialis]	38.5	38.5	42%	0.27	61%
P80251.1	RecName: Full=Metallothionein 20-I isoforms A and B; AltName: Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]	38.5	38.5	42%	0.27	61%
ABC69708.1	metallothionein [Crassostrea ariakensis]	38.1	38.1	42%	0.35	57%
AAS75318.1	metallothionein [Tegillarca granosa]	38.1	38.1	42%	0.35	65%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	38.1	76.2	42%	0.35	57%
AAK15581.1	metallothionein [Crassostrea angulata]	38.1	38.1	42%	0.35	57%
CAB64869.1	metallothionein [Crassostrea gigas]	37.7	37.7	42%	0.45	57%
ABP57066.2	metallothionein [Cerastoderma edule] >gb ACT66292.1 metallothionein 1 [Cerastoderma edule] >gb ACT66293.1 metallothionein 1 [Cerastoderma edule]	37.4	37.4	42%	0.59	57%
ADB29127.1	metallothionein [Physa acuta]	37.0	37.0	38%	0.77	70%
ACH99846.1	metallothionein [Scapharca broughtonii]	37.0	37.0	42%	0.77	57%
XP_002345698.1	PREDICTED: hypothetical protein, partial [Homo sapiens]	36.6	36.6	87%	1.0	39%
ABM66449.1	metallothionein [Helix aspersa]	36.2	36.2	38%	1.3	65%
AAK84863.1	Cd-metallothionein isoform [Helix pomatia] >gb ACN66299.1 Cd- specific metallothionein [Helix pomatia] >gb ACS91928.1 cadmium- metallothionein [Biomphalaria glabrata]	36.2	36.2	38%	1.3	65%
P33187.1	RecName: Full=Cadmium-metallothionein; Short=CD-MT	36.2	36.2	38%	1.3	65%
CAE11862.1	metallothionein [Mytilus edulis]	35.8	35.8	42%	1.7	61%
Q94550.1	RecName: Full=Metallothionein; Short=MT >gb AAB07548.1 metallothionein [Dreissena polymorpha]	35.8	35.8	42%	1.7	52%
AAS92877.1	metallothionein [Meretrix lusoria]	35.4	35.4	42%	2.2	54%
ABL73910.1	cadmium-metallothionein [Helix aspersa]	35.0	35.0	38%	2.9	65%
AAZ76545.1	metallothionein [Scapharca inaequivalvis]	35.0	35.0	36%	2.9	66%
XP_001135604.1	PREDICTED: hypothetical protein [Pan troglodytes]	34.7	34.7	71%	3.8	37%
ACC17831.1	metallothionein [Nesiohelix samarangae]	34.3	34.3	38%	5.0	60%
CAB96402.1	metallothionein [Venerupis (Ruditapes) decussatus]	34.3	34.3	36%	5.0	61%
CAB96403.1	metallothionein [Venerupis (Ruditapes) philippinarum]	34.3	34.3	36%	5.0	61%
AAQ23908.1	metallothionein IB [Crassostrea virginica]	33.9	33.9	42%	6.5	52%

Blast X result for pvMT08 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	45.1	45.1	45%	0.003	72%
CAE11861.1	metallothionein [Mytilus edulis]	44.3	44.3	45%	0.005	72%
ACS44750.1	metallothionein [Hyriopsis cumingii]	43.1	43.1	45%	0.011	68%
ABP01350.1	metallothionein [Unio tumidus]	43.1	43.1	45%	0.011	68%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	43.1	43.1	45%	0.011	68%
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	42.4	42.4	45%	0.018	68%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	42.4	42.4	45%	0.018	68%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	42.4	42.4	45%	0.018	68%
ABP57063.1	metallothionein [Venerupis philippinarum]	41.6	41.6	45%	0.031	59%
ACB05816.1	metallothionein [Cerastoderma glaucum]	41.2	41.2	45%	0.041	59%
ABM55725.1	metallothionein [Corbicula fluminea]	41.2	41.2	45%	0.041	63%
ACU46012.1	metallothionein [Mactra veneriformis]	40.8	40.8	45%	0.054	63%
AAD02054.1	metallothionein [Perna viridis]	40.8	40.8	45%	0.054	69%
AAF22487.1	metallothionein 2 [Perna viridis]	40.8	40.8	45%	0.054	69%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	40.8	40.8	45%	0.054	69%
ABH03633.1	metallothionein 10a [Laternula elliptica]	40.0	40.0	43%	0.091	66%
ABH03634.1	metallothionein 10b [Laternula elliptica]	40.0	40.0	43%	0.091	66%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	40.0	40.0	45%	0.091	63%
CAC83770.1	metallothionein [Ostrea edulis]	39.7	39.7	45%	0.12	63%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >eplAAT72936 11 metallothionein 10-III [Mytilus galloprovincialis]	39.7	39.7	45%	0.12	63%
CAI94401 1	metallothionein [Bathymodiolus azoricus]	393	393	45%	0.16	63%
CAF34421 1	metallothionein isoform MT-10a [Bathymodiolus azoricus]	39.3	39.3	45%	0.16	63%
AAK 39563 1	metallothionein-like protein [Tegillarca granosa]	39.3	39.3	45%	0.16	59%
1011059505.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common	57.5	57.5	1570	0.10	5770
AAB29060.1	sea mussels, cytosol, Peptide, 72 aa]	39.3	39.3	45%	0.16	63%
CAE11856.1	metallothionein [Mytilus edulis]	39.3	39.3	45%	0.16	63%
CAE11855.1	metallothionein [Mytilus edulis]	39.3	39.3	45%	0.16	63%
CAA06552.1	metallothionein 10 IV [Mytilus edulis]	39.3	39.3	45%	0.16	63%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	39.3	39.3	45%	0.16	63%
P80258.1	RecName: Full=Metallothionein 20-III isoform B; Short=MT-20-IIIB	38.9	38.9	45%	0.20	59%
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	38.5	38.5	45%	0.27	65%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	38.5	38.5	45%	0.27	65%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	38.5	38.5	45%	0.27	65%
ABS20116.1	metallothionein [Venerupis decussatus]	38.1	38.1	45%	0.35	54%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	38.1	38.1	45%	0.35	59%
CAC82788.1	metallothionein [Crassostrea gigas]	38.1	38.1	45%	0.35	54%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	38.1	38.1	45%	0.35	59%
	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20-		611			
P69153.2	III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus galloprovincialis]	38.1	38.1	45%	0.35	59%
P80251.1	RecName: Full=Metallothionein 20-I isoforms A and B; AltName: Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]	38.1	38.1	45%	0.35	59%
ABC69708.1	metallothionein [Crassostrea ariakensis]	37.7	37.7	45%	0.45	54%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	37.7	37.7	45%	0.45	63%
AAS75318.1	metallothionein [Tegillarca granosa]	37.7	37.7	45%	0.45	62%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	37.7	75.5	45%	0.45	54%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAK15581.1	metallothionein [Crassostrea angulata]	37.7	37.7	45%	0.45	54%
CAB64869.1	metallothionein [Crassostrea gigas]	37.4	37.4	45%	0.59	54%
ABP57066.2	metallothionein [Cerastoderma edule] >gb ACT66292.1 metallothionein 1 [Cerastoderma edule] >gb ACT66293.1 metallothionein 1 [Cerastoderma edule]	35.0	35.0	43%	2.9	52%
ADB29127.1	metallothionein [Physa acuta]	34.7	34.7	39%	3.8	65%
ACH99846.1	metallothionein [Scapharca broughtonii]	34.7	34.7	43%	3.8	52%
XP_001135604.1	PREDICTED: hypothetical protein [Pan troglodytes]	34.7	34.7	71%	3.8	37%
XP_002345698.1	PREDICTED: hypothetical protein, partial [Homo sapiens]	33.9	33.9	59%	6.6	44%
ABM66449.1	metallothionein [Helix aspersa]	33.9	33.9	39%	6.6	60%
AAK84863.1	Cd-metallothionein isoform [Helix pomatia] >gb ACN66299.1 Cd- specific metallothionein [Helix pomatia] >gb ACS91928.1 cadmium- metallothionein [Biomphalaria glabrata]	33.9	33.9	39%	6.6	60%
CAE11862.1	metallothionein [Mytilus edulis]	33.9	33.9	45%	6.6	54%
P33187.1	RecName: Full=Cadmium-metallothionein; Short=CD-MT	33.9	33.9	39%	6.6	60%
Q94550.1	RecName: Full=Metallothionein; Short=MT >gb AAB07548.1 metallothionein [Dreissena polymorpha]	33.5	33.5	43%	8.6	47%

Blast X result for pvMT11 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
AAF22487.1	metallothionein 2 [Perna viridis]	82.4	82.4	100%	2e-14	96%
Q9U568.2	RecName: Full=Metallothionein; Short=MT >gb AAF22486.1 AF092971_1 metallothionein 1 [Perna viridis]	82.4	82.4	100%	2e-14	98%
AAD02054.1	metallothionein [Perna viridis]	77.4	77.4	100%	5e-13	87%
P80248.2	RecName: Full=Metallothionein 10-III; Short=MT-10-III >emb CAA06551.1 metallothionein 10 III [Mytilus edulis] >gb AAT72936.1 metallothionein 10-III [Mytilus galloprovincialis]	68.6	68.6	54%	2e-10	89%
CAE11861.1	metallothionein [Mytilus edulis]	67.4	67.4	54%	5e-10	89%
CAE11855.1	metallothionein [Mytilus edulis]	67.4	67.4	54%	5e-10	89%
P80246.2	RecName: Full=Metallothionein 10-Ia; Short=MT-10-Ia >emb CAA06548.1 metallothionein 10 Ia [Mytilus edulis]	67.4	67.4	54%	5e-10	89%
O62554.3	RecName: Full=Metallothionein 10-Ib; Short=MT-10-Ib >emb CAA06549.1 metallothionein 10 Ib [Mytilus edulis]	67.4	67.4	54%	5e-10	89%
P80249.2	RecName: Full=Metallothionein 10-IV; Short=MT-10-IV >emb CAA07546.1 metallothionein 10IV [Mytilus edulis]	67.4	67.4	54%	5e-10	89%
CAF34421.1	metallothionein, isoform MT-10a [Bathymodiolus azoricus]	67.0	67.0	54%	7e-10	86%
CAF34422.1	metallothionein, isoform MT-10b [Bathymodiolus azoricus] >emb CAF34423.1 metallothionein, isoform MT-10c [Bathymodiolus azoricus]	67.0	67.0	54%	7e-10	86%
P80247.3	RecName: Full=Metallothionein 10-II; Short=MT-10-II >emb CAA06550.1 metallothionein 10 II [Mytilus edulis]	66.2	66.2	54%	1e-09	86%
AAB29061.1	MT-10-I=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	65.5	65.5	52%	2e-09	89%
AAB29060.1	MT-10-IV=10 kda class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 72 aa]	65.5	65.5	52%	2e-09	89%
P80252.2	RecName: Full=Metallothionein 20-II; Short=MT-20-II >emb CAA06553.1 metallothionein 20 II [Mytilus edulis] >gb ABM30215.1 metallothionein 20-II [Mytilus sp. KL-2006]	64.7	64.7	54%	3e-09	86%
ABM30214.1	metallothionein 10 [Mytilus sp. KL-2006]	64.3	64.3	54%	4e-09	86%
CAE11856.1	metallothionein [Mytilus edulis]	64.3	64.3	54%	4e-09	86%
CAE11862.1	metallothionein [Mytilus edulis]	63.2	63.2	54%	1e-08	82%
P69153.2	RecName: Full=Metallothionein 20-III isoform A; Short=MT-20-IIIA >sp P69154.2 MT23A_MYTGA RecName: Full=Metallothionein 20- III isoform A; Short=MT-20-IIIA; Short=MT-I >gb AAG28538.1 AF199020_1 metallothionein isoform [Mytilus galloprovincialis]	63.2	63.2	54%	1e-08	82%
P80251.1	RecName: Full=Metallothionein 20-I isoforms A and B; AltName: Full=MT-20-IA and MT-20-IB >gb AAB29062.1 MT-20-I=20 kda	62.8	62.8	52%	1e-08	85%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
	class I metallothionein [Mytilus edulis=common sea mussels, cytosol, Peptide, 71 aa]					
ABI30643.1	metallothionein-10B [Mytilus galloprovincialis]	62.4	62.4	52%	2e-08	82%
CAI94401.1	metallothionein [Bathymodiolus azoricus]	62.0	62.0	49%	2e-08	88%
P80258.1	RecName: Full=Metallothionein 20-III isoform B; Short=MT-20-IIIB	61.2	61.2	52%	4e-08	82%
CAE11860.1	metallothionein [Bathymodiolus thermophilus]	60.8	60.8	49%	5e-08	84%
CAE11859.1	metallothionein [Bathymodiolus thermophilus]	60.8	60.8	49%	5e-08	84%
CAD56896.1	metallothionein 10 [Bathymodiolus sp. FD-2002]	60.8	60.8	49%	5e-08	84%
CAE11857.1	metallothionein [Mytilus edulis]	59.3	59.3	52%	1e-07	78%
CAE11858.1	metallothionein [Mytilus edulis]	58.5	58.5	50%	2e-07	81%
CAF34424.1	metallothionein [Bathymodiolus azoricus] >emb CAF34425.1 metallothionein [Bathymodiolus thermophilus]	57.4	57.4	47%	5e-07	88%
AAT72935.1	metallothionein 20-IV [Mytilus galloprovincialis]	54.7	54.7	54%	4e-06	72%
AAK15581.1	metallothionein [Crassostrea angulata]	45.4	45.4	50%	0.002	55%
ABH03633.1	metallothionein 10a [Laternula elliptica]	44.7	44.7	50%	0.004	62%
ABH03634.1	metallothionein 10b [Laternula elliptica]	44.7	44.7	50%	0.004	62%
AAK39563.1	metallothionein-like protein [Tegillarca granosa]	44.3	44.3	49%	0.005	53%
AAQ23914.1	metallothionein IIF [Crassostrea virginica]	43.9	131	50%	0.006	55%
AAQ23913.1	metallothionein IIE [Crassostrea virginica]	43.9	131	50%	0.006	55%
AAQ23909.1	metallothionein IIA [Crassostrea virginica]	43.9	43.9	50%	0.006	55%
AAQ23911.1	metallothionein IIC [Crassostrea virginica]	43.9	87.8	50%	0.006	55%
AAQ23915.1	metallothionein IIG [Crassostrea virginica]	43.9	175	50%	0.006	55%
AAQ23912.1	metallothionein IID [Crassostrea virginica]	43.9	131	50%	0.006	55%
AAQ23916.1	metallothionein IIH [Crassostrea virginica]	43.9	173	50%	0.006	53%
AAK50565.1	metallothionein [Crassostrea rhizophorae]	43.9	43.9	45%	0.006	58%
AAM90257.1	metallothionein [Crassostrea virginica]	43.9	43.9	50%	0.006	51%
AAS92877.1	metallothionein [Meretrix lusoria]	43.9	43.9	54%	0.006	52%
P23038.3	RecName: Full=Metallothionein; Short=MT >emb CAA42522.1 metallothionein [Crassostrea virginica] >gb AAQ23904.1 metallothionein IA [Crassostrea virginica] >gb AAQ23905.1 metallothionein IA [Crassostrea virginica] >gb AAQ23906.1 metallothionein IA [Crassostrea virginica] >gb AAQ23907.1 metallothionein IA [Crassostrea virginica]	43.9	43.9	50%	0.006	55%
ABN68955.1	metallothionein [Cerastoderma edule]	43.5	43.5	50%	0.008	51%
AAQ23908.1	metallothionein IB [Crassostrea virginica]	43.5	43.5	50%	0.008	51%
CAB85588.1	metallothionein [Crassostrea gigas] >emb CAC48045.1 metallothionein [Crassostrea gigas]	43.5	43.5	50%	0.008	51%
ABP01350.1	metallothionein [Unio tumidus]	43.1	43.1	54%	0.011	58%
ABC69708.1	metallothionein [Crassostrea ariakensis]	42.7	42.7	50%	0.014	51%
CAB64869.1	metallothionein [Crassostrea gigas]	42.0	42.0	50%	0.024	48%
CAB96402.1	metallothionein [Venerupis (Ruditapes) decussatus]	42.0	42.0	47%	0.024	54%
CAB96403.1	metallothionein [Venerupis (Ruditapes) philippinarum]	42.0	42.0	45%	0.024	54%
CAB96419.1	metallothionein [Venerupis pullastra]	41.2	41.2	43%	0.040	56%
AAQ23910.1	metallothionein IIB [Crassostrea virginica]	39.7	39.7	50%	0.12	48%
ACB05816.1	metallothionein [Cerastoderma glaucum]	38.5	38.5	45%	0.26	56%
ABS20116.1	metallothionein [Venerupis decussatus]	38.5	38.5	45%	0.26	56%
CAC82788.1	metallothionein [Crassostrea gigas]	38.5	38.5	50%	0.26	53%
ACT53273.1	metallothionein [Pisidium coreanum]	38.1	38.1	98%	0.34	37%
AAS75318.1	metallothionein [Tegillarca granosa]	37.7	37.7	49%	0.45	46%
Q94550.1	RecName: Full=Metallothionein; Short=MT >gb AAB07548.1 metallothionein [Dreissena polymorpha]	37.0	37.0	54%	0.76	51%
ABP57063.1	metallothionein [Venerupis philippinarum]	36.6	36.6	50%	1.00	50%
ACH99846.1	metallothionein [Scapharca broughtonii]	36.2	36.2	54%	1.3	44%
ABM55725.1	metallothionein [Corbicula fluminea]	36.2	36.2	50%	1.3	50%
AAZ76545.1	metallothionein [Scapharca inaequivalvis]	35.8	35.8	54%	1.7	41%
CAC83770.1	metallothionein [Ostrea edulis]	35.0	35.0	49%	2.9	46%
ACH73074.1	metallothionein 1 [Epinephelus coioides]	34.7	34.7	43%	3.8	47%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
XP_002107650.1	expressed hypothetical protein [Trichoplax adhaerens] >gb EDV28448.1 expressed hypothetical protein [Trichoplax adhaerens]	34.7	34.7	49%	3.8	46%
ABF50549.1	metallothionein 1 [Anguilla anguilla]	34.7	34.7	43%	3.8	47%
CAE45770.1	metallothionein [Trichoplax adhaerens]	34.7	34.7	49%	3.8	46%
O93571.1	RecName: Full=Metallothionein; Short=MT >gb AAC36348.1 metallothionein [Ictalurus punctatus]	34.7	34.7	43%	3.8	47%
P51902.1	RecName: Full=Metallothionein; Short=MT >gb AAA74418.1 metallothionein [Gadus morhua]	34.7	34.7	43%	3.8	47%
XP_002592563.1	hypothetical protein BRAFLDRAFT_68885 [Branchiostoma floridae] >gb EEN48574.1 hypothetical protein BRAFLDRAFT_68885 [Branchiostoma floridae]	33.9	67.8	62%	6.5	40%
AAX07723.1	unknown [Magnaporthe grisea]	33.5	33.5	37%	8.4	55%

Blast X result for heat shock protein HSP71 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
ABJ98722.1	heat shock protein 71 [Perna viridis] >gb ABQ11278.1 heat shock protein 71 [Perna viridis]	221	221	98%	2e-56	100%
CAH04109.1	heat shock cognate 71 [Mytilus galloprovincialis]	217	217	98%	4e-55	98%
ABM92345.1	heat shock protein 70 [Laternula elliptica]	215	215	98%	2e-54	95%
ABJ97378.1	heat shock protein 70 [Pinctada fucata]	214	214	98%	2e-54	96%
ABE77386.1	HSP70 [Chlamys farreri]	214	214	98%	3e-54	95%
AAS17724.1	heat shock protein 70 [Mizuhopecten yessoensis]	214	214	98%	3e-54	95%
AAO38780.1	heat shock protein 70 [Chlamys farreri]	214	214	98%	3e-54	95%
AAR11487.1	heat shock protein 70 [Mizuhopecten yessoensis]	214	214	98%	3e-54	95%
ACO36047.1	heat shock cognate protein 70 [Haliotis diversicolor]	213	213	98%	4e-54	95%
ABJ97377.1	heat shock protein 70 [Pteria penguin]	213	213	98%	4e-54	95%
CAK95236.1	71kDa heat shock protein [Haliotis tuberculata]	213	213	98%	4e-54	95%
ABC54952.1	heat shock protein 70 [Haliotis discus hannai]	213	213	98%	4e-54	95%
ACF31553.1	heat shock protein 70 [Pinctada fucata]	213	213	98%	8e-54	95%
AAW52766.1	HSP70 [Mytilus galloprovincialis]	213	213	98%	8e-54	96%
AAO41703.1	heat shock protein 70 [Crassostrea ariakensis]	211	211	98%	3e-53	93%
CAC83009.1	heat shock protein 70 [Crassostrea gigas]	211	211	98%	3e-53	93%
AAD31042.1	heat shock protein 70 [Crassostrea gigas] >dbj BAD15287.1 71kDa heat shock connate protein [Crassostrea gigas]	211	211	98%	3e-53	93%
ABU63809.1	heat shock protein 70 form 2 [Paralvinella grasslei]	210	210	98%	5e-53	94%
CAC83683.1	HSC70 protein [Crassostrea gigas]	209	209	98%	8e-53	93%
AAY40792.1	heat shock cognate protein 70 [Oligocottus maculosus]	209	209	98%	8e-53	93%
NP_001036892.1	heat shock cognate protein [Bombyx mori] >dbj BAB92074.1 heat shock cognate protein [Bombyx mori]	209	209	98%	8e-53	91%
XP_002724720.1	PREDICTED: heat shock cognate 71 kDa protein-like [Rattus norvegicus]	209	209	98%	1e-52	93%
XP_002716475.1	PREDICTED: heat shock 70kDa protein 8 [Oryctolagus cuniculus]	209	209	98%	1e-52	93%
ACJ03596.1	heat shock protein 70 [Ctenopharyngodon idella]	209	209	98%	1e-52	93%
ACJ03595.1	heat shock protein 70 [Hypophthalmichthys molitrix]	209	209	98%	1e-52	93%
ACC93993.2	heat shock cognate 70 [Megalobrama amblycephala] >gb ACS74754.1 heat shock cognate 70 [Megalobrama amblycephala]	209	209	98%	1e-52	93%
3FZF_A	Chain A, Crystal Structure Of Hsc70BAG1 IN COMPLEX WITH ATP >pdb 3FZH A Chain A, Crystal Structures Of Hsc70BAG1 IN COMPLEX WITH SMALL Molecule Inhibitors >pdb 3FZK A Chain A, Crystal Structures Of Hsc70BAG1 IN COMPLEX WITH SMALL Molecule Inhibitors >pdb 3FZL A Chain A, Crystal Structures Of Hsc70BAG1 IN COMPLEX WITH SMALL Molecule Inhibitors >pdb 3FZM A Chain A, Crystal Structures Of Hsc70BAG1 IN COMPLEX WITH SMALL Molecule Inhibitors	209	209	98%	1e-52	93%
XP_002195736.1	PREDICTED: similar to heat shock protein 70B [Taeniopygia guttata]	209	209	98%	1e-52	93%

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
3CQX_A	Chain A, Chaperone Complex >pdb 3CQX B Chain B, Chaperone Complex	209	209	98%	1e-52	93%
XP_002407132.1	heat shock protein, putative [Ixodes scapularis] >gb EEC03688.1 heat shock protein, putative [Ixodes scapularis]	209	209	98%	1e-52	90%
ACA53150.1	heat shock cognate 70 protein [Pteromalus puparum]	209	209	98%	1e-52	91%
BAG53212.1	unnamed protein product [Homo sapiens]	209	209	98%	1e-52	93%
ACD84945.1	heat shock cognate protein 70 [Macrocentrus cingulum]	209	209	98%	1e-52	91%
3C7N_B	Chain B, Structure Of The Hsp110:hsc70 Nucleotide Exchange Complex	209	209	98%	1e-52	93%
2QW9_A	Chain A, Crystal Structure Of Bovine Hsc70 (1-394aa)in The Apo State >pdb 2QW9 B Chain B, Crystal Structure Of Bovine Hsc70 (1- 394aa)in The Apo State >pdb 2QWL A Chain A, Crystal Structure Of Bovine Hsc70 (1-394aa)in The Adp State >pdb 2QWL B Chain B, Crystal Structure Of Bovine Hsc70 (1-394aa)in The Adp State >pdb 2QWM A Chain A, Crystal Structure Of Bovine Hsc70 (1- 394aa)in The AdpVi State >pdb 2QWM B Chain B, Crystal Structure Of Bovine Hsc70 (1-394aa)in The AdpVi State	209	209	98%	1e-52	93%
BAF94143.1	heat shock protein 70B [Alligator mississippiensis]	209	209	98%	1e-52	93%
NP_001166228.1	heat shock cognate 70 [Nasonia vitripennis]	209	209	98%	1e-52	91%
XP_001510947.1	PREDICTED: similar to heat shock protein [Ornithorhynchus anatinus]	209	209	98%	1e-52	93%
EDL95233.1	rCG57965, isoform CRA_b [Rattus norvegicus]	209	209	98%	1e-52	93%
Q5NVM9.2	RecName: Full=Heat shock cognate 71 kDa protein; AltName: Full=Heat shock 70 kDa protein 8	209	209	98%	1e-52	93%
EDL25524.1	mCG5074, isoform CRA_a [Mus musculus]	209	209	98%	1e-52	93%
P19120.2	RecName: Full=Heat shock cognate 71 kDa protein; AltName: Full=Heat shock 70 kDa protein 8 >gb ABQ12927.1 heat shock 70kDa protein 8 [Bos taurus]	209	209	98%	1e-52	93%
XP_001380093.1	PREDICTED: similar to heat shock protein [Monodelphis domestica]	209	209	98%	1e-52	93%
BAE87166.1	unnamed protein product [Macaca fascicularis]	209	209	98%	1e-52	93%
BAD96348.1	heat shock 70kDa protein 8 isoform 2 variant [Homo sapiens]	209	209	98%	1e-52	93%
AAH07276.2	HSPA8 protein [Homo sapiens]	209	209	98%	1e-52	93%
BAD12572.1	heat shock protein [Numida meleagris] >dbj BAF37041.1 heat shock protein 70kDa [Coturnix japonica] >dbj BAF38392.1 heat shock protein 70kDa [Coturnix japonica]	209	209	98%	1e-52	93%
AAQ97970.1	heat shock 70kDa protein 8 [Danio rerio]	209	209	98%	1e-52	93%
CAC83010.1	heat shock protein 70 [Ostrea edulis]	209	209	98%	1e-52	93%
BAB69718.1	hypothetical protein [Macaca fascicularis]	209	209	98%	1e-52	93%
AAH66191.1	Heat shock protein 8 [Mus musculus]	209	209	98%	1e-52	93%
AAO43731.1	heat shock cognate 70 kDa protein [Carassius gibelio]	209	209	98%	1e-52	93%
AAH45841.1	Heat shock protein 8 [Danio rerio] >gb AAI65717.1 Hspa8 protein [Danio rerio]	209	209	98%	1e-52	93%
ABB29585.1	cytoplasmic heat shock 70 kDa protein [Platynereis dumerilii]	209	209	98%	1e-52	93%
AAI06170.1	Hspa8 protein [Mus musculus]	209	209	98%	1e-52	93%
XP_859437.1	PREDICTED: similar to heat shock protein 8 isoform 3 [Canis familiaris]	209	209	98%	1e-52	93%
NP_001103873.1	heat shock protein 8 [Danio rerio] >gb AAH63228.1 Heat shock protein 8 [Danio rerio] >gb AAH66491.1 Heat shock protein 8 [Danio rerio] >emb CAK03640.1 heat shock 70kDa protein 8 [Danio rerio] >gb AAI54756.1 Similar to Heat shock protein 8 [Danio rerio]	209	209	98%	1e-52	93%
AAA37869.1	neat snock protein /0 cognate [Mus musculus] >gb AAB18391.1 heat shock 70 protein [Mus musculus]	209	209	98%	1e-52	93%

Blast X result for Cytochrome P450 CYP4 gene

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
ABZ81919.1	cytochrome P450 family 4 [Perna viridis]	249	249	99%	6e-65	100%
AAC32835.1	cytochrome p450 CYP4Y1 [Mytilus galloprovincialis]	167	167	95%	3e-40	61%
ACM16804.2	CYP450 family 4 [Venerupis philippinarum]	142	142	99%	1e-32	55%
AAR88241.2	CYP4BB1 [Neanthes virens]	140	140	98%	4e-32	55%
ACD75826.1	cytochrome P450 family 4 [Cyphoma gibbosum]	136	136	99%	9e-31	52%
ACD75825.1	cytochrome P450 family 4 [Cyphoma gibbosum]	133	133	99%	8e-30	50%
NP_001071376.1	cytochrome P450, family 4, subfamily A, polypeptide 11 [Bos taurus] >gb AAI18406.1 Cytochrome P450, family 4, subfamily A, polypeptide 11 [Bos taurus]	133	133	99%	8e-30	50%
XP_002609390.1	hypothetical protein BRAFLDRAFT_59660 [Branchiostoma floridae] >gb EEN65400.1 hypothetical protein BRAFLDRAFT_59660 [Branchiostoma floridae]	132	132	97%	1e-29	50%
XP_002609363.1	hypothetical protein BRAFLDRAFT_236272 [Branchiostoma floridae] >gb EEN65373.1 hypothetical protein BRAFLDRAFT_236272 [Branchiostoma floridae]	132	132	97%	2e-29	51%
BAF64511.1	cytochrome 4A35 [Balaenoptera acutorostrata]	132	132	99%	2e-29	50%
NP_001092460.1	cytochrome P450, family 4, subfamily A, polypeptide 22 [Bos taurus] >gb AAI42396.1 CYP4A22 protein [Bos taurus]	131	131	99%	3e-29	50%
CAE52533.1	fatty acid hydroxylase [Sus scrofa]	131	131	99%	3e-29	49%
XP_002606950.1	hypothetical protein BRAFLDRAFT_200913 [Branchiostoma floridae] >gb EEN62960.1 hypothetical protein BRAFLDRAFT_200913 [Branchiostoma floridae]	130	130	97%	4e-29	51%
AAR88242.2	CYP342A1 [Neanthes virens]	130	130	97%	5e-29	51%
NP_067010.3	cytochrome P450, family 4, subfamily F, polypeptide 11 [Homo sapiens] >ref NP_001122404.1 cytochrome P450, family 4, subfamily F, polypeptide 11 [Homo sapiens]	130	130	99%	7e-29	47%
BAF82113.1	unnamed protein product [Homo sapiens]	130	130	99%	7e-29	47%
EAW84511.1	cytochrome P450, family 4, subfamily F, polypeptide 11, isoform CRA a [Homo sapiens]	130	130	99%	7e-29	47%
AAG15889.1	CYP4F11 [Homo sapiens]	130	130	99%	7e-29	47%
EAW84512.1	cytochrome P450, family 4, subfamily F, polypeptide 11, isoform CRA_b [Homo sapiens] >gb EAW84513.1 cytochrome P450, family 4, subfamily F, polypeptide 11, isoform CRA_b [Homo sapiens]	130	130	99%	7e-29	47%
Q9HBI6.2	RecName: Full=Cytochrome P450 4F11; AltName: Full=CYPIVF11 >gb AAH16853.1 CYP4F11 protein [Homo sapiens] >gb ABM82393.1 cytochrome P450, family 4, subfamily F, polypeptide 11 [synthetic construct] >gb ABM85576.1 cytochrome P450, family 4, subfamily F, polypeptide 11 [synthetic construct]	130	130	99%	7e-29	47%
XP_001172581.1	PREDICTED: similar to cytochrome P450, family 4, subfamily F, polypeptide 11 isoform 6 [Pan troglodytes]	129	129	99%	1e-28	48%
XP_001172556.1	PREDICTED: similar to cytochrome P450, family 4, subfamily F, polypeptide 11 isoform 5 [Pan troglodytes] >ref[XP_001172593.1] PREDICTED: similar to cytochrome P450, family 4, subfamily F, polypeptide 11 isoform 7 [Pan troglodytes]	129	129	99%	1e-28	48%
Q8SPK0.1	RecName: Full=Cytochrome P450 4A25; AltName: Full=CYPIVA25; AltName: Full=Fatty acid omega-hydroxylase	129	129	99%	1e-28	49%
1 9	>emb CAC85663.1 cytochrome P450 [Sus scrofa]					
AAZ29444.1	cytochrome P450 4F45 [Macaca fascicularis]	128	128	99%	2e-28	48%
AAZ09199.1	cytochrome P450 family 4 subfamily A [Bos taurus]	128	128	99%	2e-28	49%
CAE52532.1	taurochenodeoxycholic acid 6 alpha-hydroxylase [Sus scrofa]	128	128	99%	2e-28	47%
NP_999590.1	taurochenodeoxycholic 6 alpha-hydroxylase [Sus scrofa] >sp Q9GJX5.1 CP4AL_PIG RecName: Full=Taurochenodeoxycholic 6 alpha-hydroxylase; AltName: Full=Cytochrome P450 4A21; AltName: Full=CYPIVA21 >emb CAC19358.1 cytochrome P450 [Sus scrofa]	128	128	99%	2e-28	47%

BIOGRAPHY

Mr. Chatree Ritthong was born on July 10, 1978 in Bangkok, Thailand. He graduated with the degree of Master of Science in Marine Biology from Chulalongkorn University. He has carried out this research as apart of studied for a doctoral degree of Doctor of Philosophy Program in Environmental Management at graduate school, Chulalongkorn University. Under the management of National Center of Excellence for Environmental and Hazardous Waste Management.

Publications from this thesis as of May 2010, 2 papers have been produced from these studies as follows.

- Chatree Ritthong, Narongsak Puanglarp, Wantaka Boonprasetpol, Somkiat Piyatiratitivorakul, and Piamsak Menasvate. 2008. Use of Metallothionein in green mussel, *Pernaviridis*, As biomarker for determining mercury contamination. **Proceeding of 2008 International Conference on Environmental Quality Concern, Control and Conservation (EQC 2008).** pp. IIA-1_51 – IIA-1_59. Chia Nan University, Taiwan, May 23-24, 2008.
- Chatree Ritthong, Narongsak Puanglarp, Somkiat Piyatiratitivorakul, and Piamsak Menasvate 2009. Expression analysis of various subunit of Metallothionein gene in green mussel, *Perna viridis*, Located at Petroleum Platforms in the Gulf of Thailand. The 35th Congress on Science and technology of Thailand (STT35) pp. 88. The Tide Resort, Chonburi, Thailand, Oct 15-17, 2009.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย