


SARVATEBEAM GROUP DIVISIBLE DESIGNS 

AND RESTRICTED SIMPLE 1-DESIGNS 

Mr. Chaiwoot Moolsombut 

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of Master of Science Program in Mathematics 

oepartment of Mathematics 

Faculty of Science 

Chulalongkorn University 

Academic Year 2009 

Copyright of Chulalongkorn University 



Thesis Title SARVATEBEAM GROUP DIVISIBLE DESIGNS 

AND RESTRICTED SIMPLE 1-DESIGNS 

BY Mr. Chaiwoot Moolsombut 

Field of Study Mathematics 

Thesis Adivsor Associate Professor Wanida Hemakul, Ph.D. 

Accepted by the Faculty of Science, Chulalongkorn University in 

Partial Fulfill~ncnt of the Requirements for the Master's Degrcc 

s& . . . . . . . . . . . . . . . . . . . . . . . . . . .  LC Dean of the Faculty of Science J 
(Professor Supot Hannongbua, Dr.rer.nat .) 

THESIS COMMITTEE 

. . . . . . . . . . . . . . . .  . . . . . . . .  a,. .B,. Chairman 

(Assistant Professor Sajee Pianskool, Ph.D.) 

.............. . . . . . . . .  7:. a. Thesis Advisor 

(Associate Professor Wanida Hemakul, Ph.D.) 

. .. . .  . . .  $&.l?5.? .4 ;GCLI~,C?.II~.  Examiner 

Meemark, Ph.D.) 

External Examiner 

(Thiradet Jiarasuksakun, Ph.D .) 



Cld yaauQ : 1lwulluuaP~~dsn~uc111~1am-!o~ im:: i-iiwuiluuou'i.r~iun"in'm 

(SARVATE-BEAM GROUP DIVISIBLE DESIGNS AND RESTRICTED SIMPLE 1- 

DESIGNS) o .dGn~ i jnu i~nu in  : 3n. RS. aQmi ~ U Y ~ I ,  43 W U ~  



# # 5072258923 : MAJOR MATHEMATICS 

KEYWORDS : GROUP DIVISIBLE DESIGNS / SARVATEBEAM DESIGNS 

/ SIMPLE 1-DESIGNS 

CHAIWOOT MOOLSOMBUT : SARVATEBEAM GROUP DIVISIBLE DE 

SIGNS AND RESTRICTED SIMPLE 1-DESIGNS. THESIS ADVISOR : AS 

SOC. PROF. WANIDA HEMAKUL, Ph.D., 43 pp. 

A t-Sarvate-Beam group divisible design and a restricted simple 1-design are 

defined. Some necessary conditions for existence and constructions of both designs 

are obtained. 

.... .. ......... Department : Mathematics.. Student's Signature : 

Field of Study : ... .Mathematics.. .. Advisor's Signature : 

......... Academic Year : 2009.. ......... 





CONTENTS 

page 

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv 

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi 

. . CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

CHAPTER 

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.1 Motivation and preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

. . . . . . . . . . . . . . . . . .  I1 t-SARVATEBEAM GROUP DIVISIBLE DESIGNS 4 

2.1 Definitions and basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

2.2 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

2.3 A strict SBGDD(3,2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2.4 A construction for strict 1-SBGDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

I11 RESTRICTED SIMPLE 1-DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

3.1 Definitions and basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

3.2 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

3.3 Restricted simple 1-designs with k 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

3.4 New restricted simple 1-designs from old . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

IV CONCLUSIONS AND OPEN PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . .  40 

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

4.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 



CHAPTER I 

INTRODUCTION 

1.1 Motivation and preliminary 

Group divisible designs and t-designs including simple 1-designs are well known 

combinatorial designs (see [lo]). In 2007, Sarvate and Beam introduced a new 

type of block designs called adesigns, which were renamed by Stanton as the 

Sarvate-Beam designs. These designs have been studied by several mathemati- 

cians including Sarvate, Beam and Stanton etc. (see [3], [4], [5], [6], [7], [8], and 

[9]). These designs motivate us to study two new families of designs called t- 

Sarvate-Beam group divisible designs and restricted simple 1-designs. So in this 

thesis, we are using a very new concept to modify old designs with a new twist 

and proving existence and non-existence of certain families of these new designs 

we have developed. First, we recall definitions of group divisible designs, t-designs 

and t-Sarvate-Beam designs (see [I] and [4]). 

Definition 1.1.1. Let m, n and k be positive integers such that m 2 k > 2. 

A group divisible design GDD(m, n, k), is a triple (V, 9', 99) satisfying the 

following properties : 

1. V is a finite set of mn elements called points, 

2. Y is a partition of V into m nonempty subsets of size n called groups, 

3. 93 is a collection of k-subsets of V called blocks, 

4. any two points from the same group do not occur together in a block, and 



5. each pair of points of V from hstinct groups is contained in exactly one 

block. 

Example 1.1.2. Let V = {I, 2,3,4,5,6} be partitioned into three groups of size 

two, Y = {{I, 21, {3,4), {5,6)}, and a collection I of 4 blocks of size three, 

{{1,3,5),{1,4,6,},{2,3,6),{2,4,5)}. Since each pair of points from distinct 

groups is contained in exactly one block, it follows that (V, Y, I) is a GDD (3,2,3). 

Definition 1.1.3. Let v, k, r and t be positive integers such that v > k 2 t. A 

t-(v, k, r)-design is a pair (V, I) satisfying the following properties : 

1. V is a finite set of v elements called points, 

2. I is a collection of k-subsets of V called blocks, and 

3. every set of t distinct points is contained in exactly r blocks. 

Note that we allow a t-(v, k, r)-design to contain repeated blocks. A t-(v, k, r)- 

design without repeated blocks is called a simple t-(v, k, r)-design. From now on, 

to save space, we denote c{xl, x2, . . . , sk) the c copies of the block {xl, x2,. . . , xk). 

Example 1.1.4. Let V = {I, 2,3,4,5,6,7} and a collection Il of 7 blocks of size 

t h e e  is {{I, 2,319 {I, 4751, {I, 6,717 {2,4,6), {2,5,7), {3,4,7), {3,5,6)}. Since 

each pair of points is contained in exactly one block, it follows that (V, 991) is a sim- 

ple 2-(7,3,l)-design. On the other hand, a collection I2 of 14 blocks of size three is 

{2{1,2,3), {1,4,5), {1,4,7), {1,5,6), {1,6,7), 1 2 ~ 4 ~ 5 1 ,  {2,4,6),{2,5,71, {2,6,7), 

{3,4,6), {3,4,7}, {3,5,6), {3,5,7) } . Since each pair of points is contained in two 

blocks, it follows that (V, B2) is a 2-(7,3,2)-design. 

Definition 1.1.5. Let v, k and t be positive integers. A t-Sarvate-Beam design 

t-SB(v, k)-design, is a pair (V, I) such that the following properties are satisfied: 



1. V is a finite set of v elements called points, 

2. 9 is a collection of k-subsets of V called blocks, and 

3. each t-subset of V occurs in distinct number of times in blocks. 

In case t = 1, it is simply called a Sarvate-Beam design, SB(v, k)-design. A strict 

t-SB(v, k)-design is a t-SB(v, k)-design such that exactly one t-subset of points 

of V occurs i times for every positive integer i = 1,2, . . . , ( y )  . 

Example 1.1.6. Let V = {I, 2,3,4,5} and a collection 9 of 14 blocks of size 

four is {{I, 2,3,4), 2{1,2,4,5), 4{1,3,4,5), 7{2,3,4,5)}. Since each 3-subset of 

V occurs in distinct number of times from 1 to 11, except 10 in 9, it follows that 

(V, 9) is a 3-SB(5,4). 

t-Sarvate-Beam designs are completely new in the sense that earlier mathe- 

maticians were working on designs where the restriction was pairs should come 

same number of times. Sarvate and Beam were the first people who asked if all 

pairs come with different frequencies. The construction of such designs turned 

out to be very interesting from combinatorial point of view and raised interesting 

questions about counting. Staton who wrote five papers on these types of de- 

sign called them Sarvate-Beam designs or Sarvate-Beam type designs. If k = 3, 

it is called Sarvate-Beam triple system and if k = 4, it is called Sarvate-Beam 

quadruple system etc. 

This thesis is organized as follows. In chapter 11, we give necessary conditions 

for the existence of t-Sarvate-Beam group divisible designs, study the first smallest 

example for t = 2 in detail and show the complete construction of strict 1-Sarvate- 

Beam group divisible designs. In chapter 111, we give necessary conditions for the 

existence of restricted simple 1-designs and we present many methods to construct 

such designs. 



CHAPTER I1 

t-SARVATEBEAM GROUP DIVISIBLE DESIGNS 

In this chapter we define a new design called a t-Sarvate-Beam group 

divisible design and investigate some of its properties. We give the construction 

of the first smallest case when t = 2 using Stanton's technique. We finish with 

the complete construction of 1-Sarvate-Beam group divisible designs. 

2.1 Definitions and basic results 

First, we introduce the definition of a t-Sarvate-Beam group divisible de- 

sign. Next, we present a construction for a strict SBGDD(3,2,3), the first smallest 

design when t = 2. In the rest of this section, we present a construction for an 

infinite SBGDD(3,3,3). 

Definition 2.1.1. Let m, n,  k and t be positive integers such that 2 5 k and 

t 5 k 5 m. A t-Sarvate-Beam group divisible design t-SBGDD(m, n, k), is 

a triple (V, 9,B) such that the following properties are satisfied: 

1. V is a finite set of mn elements called points, 

2. $f? is a partition of V into m nonempty subsets of size n called groups, 

3. 93 is a collection of k-subsets of V called blocks, 

4. any two points from the same group do not occur together in a block, and 

5. each t-subset of V from different groups occurs in distinct number of times 

in B .  



A strict t-SBGDD(m, n, k) is a t-SBGDD(m, n, k) such that exactly one t- 

subset of V from different groups occurs i times for every positive integer i = 

1,2, .  . . , (y)nt, 

Denote by !3 = (V, (B,B) the t-SBGDD(m, n, k) where parameters are not 

mentioned. 

The general term t-SBGDD is used to indicate any t-SBGDD(m, n,  k) and 

we allow a t-SBGDD to contain repeated blocks. We give a few examples of t- 

SBGDDs now. For convenience, a v-set V is assumed to be { 1,2, . . . , v) unless 

V is specified a s  other set. 

Example 2.1.2. Let V = {1,2,3,4,5,6,7,8) be partitioned into four groups 

of size two, (B = {{I, 81, {2,7), {3,6), {4,5)} and a collection of 9 blocks of 

size four, 33 = {{I, 2,3,4), {2,3,4,8}, {3,4,7,8), {4,6,7,8), 5{5,6,7,8)}. Since 

single point occurs a different number of times from 1 to 8 in blocks, (V, (B, 9) is 

a strict 1-SBGDD(4,2,4). 

Example 2.1.3. Let V = {1,2,3,4,5,6) be partitioned into three groups of size 

two, Y = {{1,2), {3,4), {5,6)}. For the first collection of 28 blocks of size three, 

21 = {{I, 3,5), 2{1,4,5), 2{1,4,6), 5{2,3,5), 5{2,3,6), 6{2,4,5), 7{2,4,6)), all 

twelve pairs of points from different groups come in distinct number of times 

from 1 to 13, except 7 in B1, this implies that (V, (B, B1) is a 2-SBGDD(3,2,3), 

but the design is not strict. However, the second collection of 26 blocks of size 

three, 9% = {{l,3,5),8{1,4,5),4{1,4,6),2{2,3,5),5{2,3,6),6{2,4,6)), among 

the twelve possible pairs of points from different groups, there is exactly one pair 

which occurs i times, for i = 1,2 , .  . . ,12 in 94, SO (V,Y, B2) forms a strict 2- 

SBGDD(3,2,3). 

Example 2.1.4. Let V = {1,2,3,4,5,6,7,8,9) be partitioned into three groups 

of size three, (B = {{I, 2,3), {4,5,6), {7,8,9)}, and a collection of 340 blocks of 



size three, I = {{I, 4,7), {I, 4,8), 16{1,4,9), 2{1,5,7), 20{1,6,7), 10{1,6,9}, 

39{2,4,7), 10{2,4,8}, 5{2,5,7), 40{2,5,8), 6{2,6,7}, 50{2,6,8), 6,9), 

7{3,4,7), 8{3,5,7), 19{3,5,8),21{3,5,9), 9{3,6,7), {3,6,8), 15{3,6,9)). Since all 

twenty-seven pairs of points from different groups come in distinct number of times 

in 33 which are 1,2,7,11,15,16,18,20,21,23,24,25,26,30,35,36,45,47,48,49,50,  

51,59,60,85,100 and 116, this implies that (V, Q, 93) is a 2-SBGDD(3,3,3). 

For t = 2, it is simply called a Sarvate-Beam group divisible design, de- 

noted by SBGDD(m, n, k) instead of 2-SBGDD(rn, n, k) and denote by b, dt,r, 

the number of the blocks, the number of distinct t-subsets of points and the repli- 

cation number of the point i in the design, respectively. 

If (V,9?, I) is a strict t-SBGDD(m, n, k), then we can easily obtain a t- 

SBGDD(m, n, k) such that each t-subset of V from different groups occurs in 

distinct number of time, for example, construct a new collection 33' from 9J by 

making s copies (for some positive integer s 2 2) of each blocks in a. Then each 

t-subset of V from different groups still occurs in distinct number of times in B' 

from s, 29, . . . , (y)nts, i.e. (V, Q, 9') is a t-SBGDD(m, n,  k). Therefore, we focus 

on constructions of a strict t-SBGDD(m, n, k). 

Remark 2.1.5. [5] A strict t-SBGDD(m, 1, k) is a strict t-SB(m, k) 

The proof of the following theorem follows immediately from the definition. 

Theorem 2.1.6. A strict k-SBGDD(m, n, k) exists for every positive integer m, n 

and k where 2 5 k < m. 

Proof. Suppose that an mn-set is partitioned into rn groups of size n. Since the 

number of different blocks of size k for which points comes from different groups 

is (';)nk and equal to the number of k-subsets of points from different groups. 

For all positive integer i, 1 < i (';) nk, we can take each k-subset of points 



from different groups, i copies as i blocks. Therefore, we have constructed a strict 

k-SBGDD(m, n, k) . 

Example 2.1.7. Let V = {I, 2,3,4,5,6,7,8) be partitioned into four groups of 

size two, 9 = {{I, 21, {3,4), {5,6), 17,811 and a collection of 526 blocks of size 

three, 3 = {{I, 3,5), 2{1,3,6}, 3{1,3,7), 4{1,3,8}, 5{1,4,5), 6{1,4,6}, 7{1,4,7}, 

8{1,4,8}, 9{1,5,7}1 10{1,5,8}, 11{1,6,7}, 12{1, 6,8}7 13{2, 31 5},14{27 3, 61, 15{2, 

3,7), 16{2,3,8}, 17{2,4,5}, 18{2, 4,6},19{2,4,7}, 20{2,4, 81, 21{2,5,7}, 22{2,5, 

811 23{2,6,7}, 24{2,6,8}, 25{3,5,7}, 26{3,5, 81, 27{3,6,7}, 28{3,6,8}, 29{4, 5, 7}1 

30{4,5,8}, 31{4,6,7}, 32{4,6,8}). All triples of points from different groups oc- 

cur in distinct number of times from 1 to 32 in blocks, this implies that (V, $!I, 93) 

forms a strict 3-SBGDD(4,2,3). 

2.2 Necessary conditions 

In this section, we discuss necessary conditions for the existence of t-SBGDDs. 

Let m, n, k and t be positive integers and k, m 2 2. 

Theorem 2.2.1. If a strict t-SBGDD(m, n, k) exists, then the number of blocks 

in the design is 4(dt + 1) . In particular, when t = 1, mn(mn+ 1) = 0 (mod 2k) 
2 (2  

and when t = 2, [m(m - l)n2][m(m - l)n2 + 21 - 0 (mod 4k(k - 1)) 

Proof. First, since an mn-set is partitioned into m groups of size n, the number 

of distinct t-subsets from different m groups of size n in the design is ('I") nt. 

It follows that dt = (T) nt . Next, since the occurrence number of distinct t- 

subsets from different groups in the design must occur i times for any integer i, 

1 5 i 5 4, the sum of occurrence number of distinct t-subsets from different 

groups is 1 + 2 + + 4 = 
4(d, + 1) . Also, loolung at  each block contains (:) 

2 



tuples, it follows that there must be a total of dt (' + blocks. Since the number 
2(:) 

of blocks must be an integer, it follows that dt(dt + 1) F 0 (mod 2@)). 

The following corollaries are immediate from Theorem 2.2.1 

Corollary 2.2.2. If m - 2 (mod 3) and n = 1,2  (mod 3), then a strict SBGDD 

(m, n, 3) does not exist. 

Proof. Since m = 2 (mod 3) and n G 1,2  (mod 3), m(m - 1) F 2 (mod 3) and 

n2 - 1 (mod 3). This implies that [m(m - l)n2] [m(m - l )n2 + 21 = 2 (mod 3), 

and hence [m(m - l)n2] [m(m - l )n2 + 21 + 0 (mod 24). By Theorem 2.2.1, a 

strict SBGDD(m, n, 3) does not exist. 

Corollary 2.2.3. If a strict SBGDD(k, k, k) exists, then k + 1 (mod 4). 

Proof. Assume that k F 1 ( mod 4). Then we have k2 [k(k-1) k2+2] = 2 ( mod 4). 

If [k(k-l)k2][k(k-l)k2+2] = 0 ( mod 4k(k-I)), then [k(k-l)k2][k(k-l)k2+2] = 

4k(k - l)q for some integer q. Since k(k - 1) # 0, as k 2 2, it follows that 

k2 [k(k - l)k2 + 21 = 4q. Thus k2 [k(k - 1) k2 + 21 = 0 (mod 4) which contradicts 

the assumption. By Theorem 2.2.1, a strict SBGDD(k, k, k) does not exist. 

Corollary 2.2.4. If a strict SBGDD(k, n, k) exzsts, then k - 2,3 (mod 4) or 

n - 0,2  (mod 4). 

Proof. Assume that k = 0 , l  (mod 4) and n - 1 , 3  (mod 4). Since k(k - 1) = 
0 (mod 4) and n2 - 1 (mod 4), n2[k(k - l )n2 + 21 E 2 (mod 4). If [k(k - 

l)n2][k(k - 1)n2 + 21 = 0 (mod 4k(k - I)), then [k(k - l)n2][k(k - l)n2 + 21 = 

4k(k - l)q for some integer q. Since k(k - 1) # 0, as k 2 2, it follows that 

n2[k(k - 1)n2 + 21 = 4q. Thus n2[k(k - l)n2 + 21 = 0 (mod 4) which contradicts 

the assumption. By Theorem 2.2.1, a strict SBGDD(k, n ,  k) does not exist. 



Remark 2.2.5. A strict t-SBGDD(m,n, k) has the least number of blocks for 

any other t-SBGDD(m, n, k). 

Theorem 2.2.6. Let m,n ,  k and t be positive integers and k,m 2 2. If a t- 

SBGDD(m, n, k) exists, then the sum of the replication numbers of points in group 

is less than or equal to the number of blocks in the design. 

Proof. Suppose that the sum of replication numbers of points in group is greater 

than the number of blocks in the design. It follows that there is a block in the 

design containing two points from the same group or there is a point occurs more 

than one time in a block, which contradicts the definition of such a design. Thus 

the sum of replication numbers of points in group is less than or equal to the 

number of blocks in the design. 

Remark 2.2.7. Theorem 2.2.6 will be useful for the construction of strict 1- 

SBGDDs in Section 2.4. 

When t = 2, we present the first smallest example of a strict SBGDD(3,2,3) 

by enumeration in the next section. 

2.3 A strict SBGDD(3,2,3) 

Stanton [5] suggested a method to construct a strict SB(6,3). We apply his 

idea to construct a strict SBGDD(3,2,3) as follows. 

Let V = {1,2,3,4,5,6) be partitioned into three groups of size two, Y = 

{{I, 21, {3,4), 15,611. There are 12 pairs of points from different groups and the 

sum of the number of times which pairs occur is 1 + 2 + 3 + - .  + 12 = 78, it 

follows that, we need 26 triples. We let the frequencies F of the various triples 

be as follows. Note that, for any x ,y ,z  E V, F(xyz) = s means s{x, y,z). 

Without loss of generality, suppose that F(135) = 1, F(136) = 0. Let F(145) = 



a, F(146) = b, F(235) = c, F(236) = d,  F(245) = e ,  F(246) = f .  We can now 

write the pair frequencies: 

Let A = F(13)  + F(14)  + F(15) + F(16)  = 2(1+ a + b), 

B = F(23)  + F(24)  + F(25) + F(26) = 2(c + d + e + f ) ,  

C = F(35)  + F(36)  + F(45) + F(46)  = 1 + a  + b+ c +  d + e + f .  

Thus A + B = 2C and C = 26. Then A + B = 52. If we attempted to assign 

the pair frequencies exactly in order, then we would have A = 10 and B = 42. 

Since A = 2(1 + a + b), we get a + b = 4. We first set a = 2, b = 2, we have 

that F(13)  = 1, F(14)  = 4,  F(15) = 3,  F(16) = 2. Since B = 2(c + d + e + f ) ,  

c+d+e+ f = 21. Next, we assign c = 4 ,  d = 6 ,  e = 5,  f = 6. This gives, F(23) = 

10, F(24)  = 11, F(25)  = 9 ,  F(26) = 12, and F(35) = 5,  F(36) = 6 ,  F(45) = 

7, F(46) = 8. This implies that (V,Y,B) form a strict SBGDD(3,2,3)  by tak- 

ing 9 = { { I ,  3 , 5 ) ,  2{1 ,4 ,5) ,  2{1 ,4 ,6 ) ,  4{2 ,3 ,5 ) ,  6{2 ,3 ,6) ,  5{2 ,4 ,5) ,  6{2 ,4 ,6 ) }  

as the collection of twenty-six blocks of size three. 

Obviously, we obtained other systems of different assignments of a,  b, . . . , f by 

using a Fortran77 program. The following properties are useful for helping the 

Fortran77 program: 

1. a ,  c,  f  are distinct positive integers and b, d ,  e are distinct integers, but 

b , d L 2 a n d e = O o r e > 2 a n d a , b , c , d , e ,  f  < 11. 

2. The sum of the replication numbers of points from each group is equal to 

the number of triples because each block must have exactly one point from each 

group. In general, this property is satisfied if the number of groups is equal to the 

block size. 



3. There is at most one group that its points have the same replication num- 

ber. Suppose that V = {1,2,3,4,5,6) is partitioned into three groups of size two, 

Y = {{I, 21, {3,4), {5,6)}. If there are two groups such that its points have the 

same replication number, say {1,2), {3,4). Then F(l) = F(2) = F(3) = F(4) = 

13. This implies that, F ( l )  = 1 + a + b = 13,a + b = 12 or F(14) = 12, and 

F(3) = 1 + c + d = 13, c + d = 12 or F(23) = 12. Therefore F(14) = F(23) which 

is not allowed for a strict design. 

The 56 solutions of a strict SBGDD(3,2,3) is obtained using a Fortran77 pro- 

gram as shown in Table 2.1. 

This method can also be used to verify an infinite SBGDD(3,3,3). Basically, 

we assign the copy number of various blocks as a variable and apply certain 

Fibonacci numbers. We illustrate this process now. Let V = {I, 2,3,4,5,6,7,8,9) 

be partitioned into three groups of size three, I = {{I, 2,3), {4,5,6), {7,8,9}). 

There are 27 pairs of points of V from different groups. Let the frequencies F of 

the various triples be as follows: 

where x1 is a positive integer, for i = 3, . . . ,27, define xi = Xi-l+xi-2 and x2 = XI. 

We can now write the pair frequencies: 

F(14) = 4x1, F(15) = 16x1, F(16) = 68x1, F(17) = 17x1, F(18) = 27x1, ~ ( 1 9 )  = 

44x1, F(24) = 288x1, F(25) = 1220x1, F(26) = 5168x1, F(27) = 1275x1, ~ ( 2 8 )  = 



2063x1, F(29) = 3338x1, F(34) = 21892x1, F(35) = 92736x1, F(36) = 392836x1, 

F(37) = 96917x1, F(38) = 156815x1, F(39) = 253732x1, F(47) = 4237x1, F(48) = 

6855x1, F(49) = 11092x1, F(57) = 17947x1, F(58) = 29039x1, ~ ( 5 9 )  = 46986x1, 

F(67) = 76025x1, F(68) = 123011x1, F(69) = 1 9 9 0 3 6 ~ ~ .  All 27 pairs of points 

from different groups come in distinct number of times, it follows that the design 

is a SBGDD(3,3,3) with 5 1 4 2 2 8 ~ ~  blocks. Since xl is a variable, we set a variable 

as the copy number for the block. Therefore, we obtain the desired result. 

2.4 A construction for strict 1-SBGDDs 

In this section we consider a few special cases and introduce several construc- 

tions of the design. Now, we present a construction of a strict 1-SBGDD(m, n, k). 

Suppose that an mn-set is partitioned into m groups of size n. Recall if such a 

design exists, any two points in the same group do not occur in the same block 

and there are exactly blocks, it follows that for each group, the sum of 

the replication numbers of points in group is at  most v. For each point 

i,  a property of the replication number of the point i would be chosen one in 

{1,2, .  . . ,mn). 

From this observation, it follows that we can allocate a point in group such 

that the sum of points in group is not greater than number of blocks in the design. 

The following lemma is useful for the existence of a strict 1-SBGDD. 

Lemma 2.4.1. Let m and n be positive integers such that 2 5 m, n. 

( i )  if n i s  even, then we can partition an  mn-se t  into m groups of size n such 

n mn+l that the s u m  of points in each gmup is 9, 
(ii) i f  n and rn are odd, then we can partition an  mn-se t  in to  m groups of size 

n such that the s u m  of points in each gmup is v, and 

(iii) i f  n i s  odd and m is even, then we can partition an  mn-se t  into m groups 



n mn+l)+l n(mn+l)-1 of size n such that the sum of points in each group is ( 
Or 2 

Proof. Let V = { l , 2 , .  . . ,mn) .  

(i) When n is even. Let Hl = {1,2,. . . , Q } ,  H2 = {f  + 1, f + 2 , .  . . , n ) ,  . . . , 
n(2m-1 n(2m-1 

Hzm = {, + 1, + 2 , .  . . , mn). In fact, for i = 1 ,2 , .  . . ,2171, Hi = 

( 2  - 1 + j 1 j = 1 . .  , } It is routine to check that { H ~ ,  H ~ ,  . . . , H2m) is 

a partition on V into 2m groups of size f and the sum of points in each group 
n - 
2 2n2i - n2 + 2n 

Hi is C [;(i - 1) + j ]  = 
8 

. Therefore, Y = {HI U H2mr H2 U 
j=1 

Hh-l,. . . , Hm U Hm+1} is the required partition on V and the sum of points in 

2n2i-n2 2n 2n2(2m+l-1)-n2+2n - n mn+l each group Hi U is , + + 8 
- 

(ii) When n and m are odd. First, since n - 3 is even, by (i) we can partition 

{I, 2, . . . , m(n - 3)) into m groups of size n - 3, say XI,  X2, . . . , Xm such that the 

sum of points in Xi is (n-3)(m(n-3)+1) 
2 . Next, we partition {m(n - 3) + 1, m(n - 

3) + 2, . . . , m(n - 3) + 3m) into m groups of size 3 a s  follows. 

~ = { m ( n - 3 ) + 1 , m ( n - 3 ) + m + ~ , m ( n - 3 ) + 3 m ) ,  

f i  = {m(n- 3) + 3 , m ( n -  3) + m +  F , m ( n - 3 )  + 3 m -  l) ,  

Ym = {m(n - 3) + m,m(n - 3) + m + 1,m(n - 3) + 2m+ y), and 

& =  { m ( n - 3 ) + 2 , m ( n - 3 ) + 2 m , m ( n - 3 ) + 2 m + ~ }  

~ = { m ( n - 3 ) + 4 , m ( n - 3 ) + 2 m - l , m ( n - 3 ) + 2 m + ~ } ,  

Y,-l = {m(n-  3) + m -  l , m ( n - 3 )  + m +  y , m ( n -  3) + 2 m +  1). 

In fact, for any integer i, 1 5 i 5 m, 

i f i  is odd, Y, = {m(n-3)  + i , m ( n - 3 ) + m +  v , m ( n - 3 ) + 3 m -  F}, 
if i is even, Y, = {m(n - 3) + i, m(n - 3) + 2m - q, m(n - 3) + 2m + -1. 
Note that the sum of points in Y; is 6mn-:m+3. Therefore, Y = {XI U &, X2 U 

Y2, . . . , Xm U Y,) is the required partition on V and the sum of points in each 



group xi u Y ,  is (n-3)(m(n-3)+1) + 6mn-9m+3 - n(mn+l) 
2 2 2 .  

(iii) When n is odd and m is even. First, since n - 3 is even, by (i) we can 

partition {I, 2, .  . . , m(n - 3)) into m groups of size n - 3, say XI,  X2 , .  . . , Xm 

such that the sum of points in Xi is (n-3)(m(n-3)+1) 
2 . Next, we partition {m(n - 

3) + 1, m(n - 3) + 2, . . . , m(n - 3) + 3m} into m groups of size 3 as follows. 

& = {m(n - 3) + 1, m(n - 3) + m + + 1, m(n - 3) + 3m}, 

& = {m(n -3 )+3 ,m(n -3 )+m+y ,m(n-3 )+3m-  11, 

Ym-I = { m ( n - 3 ) + ( m -  l ) , m ( n - 3 ) + ( m + 2 ) , m ( n - 3 ) + 2 m + ~ + l } ,  

and Ym = {m(n - 3) + m , m ( n  - 3) + m +  l , m ( n  - 3) + 2 m +  71, 
& =  { m ( n - 3 ) + 2 , m ( n - 3 ) + 2 m , m ( n - 3 ) + 2 m + ~ - l } ,  

Y4 = {m(n-3) +4,m(n - 3) + 2 m -  l , m ( n -  3) + 2 m +  7 - 21, 

Ym-? = {m(n- 3) + m -  l , m ( n -  3) +m+:  +2 ,m(n  - 3) + 2 m +  1). 

In fact, for any integer i ,  1 5 i 5 m - 1, 

m-r+3 if i is odd, Y ,  = {m(n-3 )+ i ,m(n-3 )  + m +  w , m ( n - 3 )  + 3 m -  y}, 
if i is even, Y ,  = {m(n - 3) + i, m(n - 3) + 2m - y, m(n - 3) + 3m - v}, 
and Ym = {m(n -3) + m , m ( n -  3) + m +  l , m ( n -  3) + 2 m +  y}. 

Note that when i is odd, the sum of points in Y,  is 6mn-:m+4 and when i is even, 

the sum of points in Y ,  is 6mn-:m+2. Therefore, (Q = {XI U K ,  X2 U Y2, . . . , Xm U 

Y,) is the required partition on V and the sum of points in each group Xi U Y,  

is (n-3)("("-3)+1) + 6mn-9mf4 - - n(mn+l)+l , when i is odd and (n-3)(m(n-3)+'1 2 2 2 2 + 
6mn-9m+2 - n(mn+l -1 

2 
- , when i is even. 

We illustrate the application of the above lemma in the following examples. 

Example 2.4.2. Let n = 4 ,m = 3 and V = {1,2, .  . . ,121. Using Lemma 

2.4-1 (i), We get HI = {1,2), HZ = {3,4), ~3 = {5,6), H* = {7,8}, H5 = 



{9,10), H6 = {ll, 12). Therefore, Y = {HI U H6, Hz U HS, H3 U ~ 4 )  is the 

required partition on V with the sum of points in group is 26. 

Example 2.4.3. Let n = 5, m = 3 and V = {I, 2, . . . ,151. Using Lemma 2.4.1 

(ii), we get XI = {I, 61, X2 = {2,5), X3 = {3,4) are three groups of size two 

and K = {7,15,11), 6 = {8,12,13), & = {9,14,10) are three groups of size 

three. Therefore, Y = {xl U &, X2 U &, X3 U &) is the required partition on V 

with the sum of points in group is 40. 

Example 2.4.4. Let n = 5, m = 4 and V = {I, 2, . . . ,201. Using Lemma 2.4.1 

(iii), we get X1 = {I, 81, X2 = {2,7), X3 = {3,6), X4 = {4,5) are four groups 

of size two and K = {9,20,15), Y2 = {lo, 16,17), = {ll, 19,14), Y4 = 

{12,13,18) are four groups of size three. Therefore, Y = {xl U Yl, X2 U fi, X3 U 

&, X4 U &) is the required partition on V with the sum of points in group are 

53,52,53 and 52, respectively. 

Now, we prove the existence of a strict 1-SBGDD(m, n, k). 

Theorem 2.4.5. Let m, n and k be positive integers and 2 5 k 5 m. 

If mn(mn + 1) = 0 mod 2k, then a strict 1-SBGDD(m, n, k) exists. 

Proof. Let V = {1,2, . . . , mn) be partitioned into m groups of size n,  say = 

{ G ~ ,  G2, . . . , G,) by Lemma 2.4.1. Since is an integer, b = v. 
For convenience, call points in Gi, ail, ai2, . . . , sin, for all i = 1,2, .  . . , m. First, 

place point all of GI in all different blocks, say that B1, B2, . . . , Ball. Then 

continue placing point a12 of G1 in a12 different blocks, say that . . , 

Ball+,,, where the subscripts are added modulo b. The same argument is applied 

to other points of G1 and G2, G3, . . . , G,, respectively. Let B = {B1, B2, . . . , Bb}, 

claim that (V, Y, 9?) is a strict 1-SBGDD(m, n, k). 

To see this, each point aij occurs in aij blocks. Since mn(mn + 1) E 0 mod 2k 



and each point come in only one time in a block, it follows that the size of block 

is k and there are exactly blocks. Since 2 5 k 5 m and the sum of the 

replication numbers of points in each group is equal to the sum of points in such 

mn(mn+l group which is at  most 4, it follows that any two points in a block come 

from different groups. This completes the proof. 0 

Example 2.4.6. To illustrate the method in Theorem 2.4.5, let m = 4, n = 2 

and V = {1,2,3,4,5,6,7,8} be partitioned into four groups of size two, Y = 

{GI, G2, G3, ~ 4 ) .  Using Lemma 2.4.2 (i), let GI = {1,8}, Gz = {2,7}, G3 = {3,6} 

and G4 = {4,5}. Next, we are going to construct a collection 93 of blocks of size 

three for a strict 1-SBGDD(4,2,3) as follows : 

First, for the group GI = {1,8}, we place point 1 and continue placing point 8 

in one block and eight different blocks, respectively, I = {{I, , }, {8, , }, {8, , }, 

8 ,  , , 8 , 8 ,  9 8 ,  , }, {8 , 1, {8, , 1, { , , 1, { , , 1, { , , }}. Second, for 

the group Gz = {2,7}, we continue placing points 2 and 7 in two and seven differ- 

ent blocks, respectively, 3 = {11,7, }, {8, 7, }, {8,7, }, {8,7, }, {8,7, }, {8,7, }, 

{8, 1, {8, , }, {8, , 1, {2, , 1, {2, , 1, {7, , I}. Third, for the group G3 = {3,6), 

we continue placing points 3 and 6 in three and six different blocks, respectively, 

B= {11,7,6},{8,7,6},{8,7,6},{8,7, },{8,7, },{8,7, },{8,3, },{8,3, },{8,3, 1, 
{2,6, }, {2,6, }, {7,6, }}. Finally, for the group G4 = {4,5}, we continue placing 

points 4 and 5 in four and five different blocks, respectively. Then the collection B 

of 12 blocks of size three as follows: {{I, 7,6}, {8,7,6}, {8,7,6}, {8,7,4}, {8,7,4}, 

{8, 7,4}, {8,3,4}, {8,3,5}, {8,3,5), {2,6,5), {2,6,5), {7,6,5)} = {{I, 6,7}, 2{2,5, 

61, {3,4,8}, 2{3,5,8}, 3{4,7,8}, {5,6,7}, 2{6,7,8}}. Therefore, (V, O, 8) is astrict 

1-SBGDD(4,2,3). 





Table 2.1: (Continued)The 56 solutions of a strict SBGDD(3,2,3). 

1 0 2 4 3 0 6  1 1 2 1 1 2  

9 3 7 4 0 2 1 1 2 1 0 3 1 1 2 7 6 8 4 9 5  

7  6  4 9 5  3 1 0 8  



CHAPTER I11 

RESTRICTED SIMPLE 1-DESIGNS 

In this chapter, we begin with the definition of a restricted simple 1-design 

which generalize the notion of a simple 1-design and investigate some of its prop 

erties. Next, we present simple yet powerful tool to construct restricted simple 

1-designs by many interesting methods. 

3.1 Definitions and basic results 

From Chapter I, we first recall the definition of a simple 1-(v, k, r)-design 

and then develop a new design called a restricted simple 1-(v, k, T)-design. The 

general term a restricted simple 1-design is used to indicate any restricted simple 

1-(v, k, r)-designs. 

Definition 3.1.1. Let v, k and r be positive integers such that 2 5 k 5 v. A 

simple 1-(v, k, r)-design is a pair (V, I) satisfying the following properties : 

1. V is a finite set of v elements called points, 

2. I is a collection of different k-subsets of V called blocks, and 

3. each point of V is contained in exactly T blocks. 

Denote by 9 = (V, 93) the simple 1-(v, k, r)-design where parameters are not 

mentioned in the design. 

Example 3.1.2. Let V = {1,2,3,4,5,6) and a collection of six blocks of size 

three I = {{I, 3,5), {1,3,6), {1,4,5), {2,3,6), {2,4,5), {2,4,6)}, each point oc- 



cur three times in blocks and no repeated block, this implies that (V, B) is a simple 

1-(6,3,3)-design. 

We introduce the definition of a restricted simple 1-design as follows. 

Definition 3.1.3. Let v, k and r be positive integers such that 2 5 k 5 v. A 

restricted simple 1-(v, k, r)-design is a triple (V, 9 ,B)  satisfying the following 

properties : 

1. (V, 3) is a simple 1-(v, k, r)-design, 

2. 9 is a partition of V into nonempty subsets called parts, and 

3. any two points from the same part do not occur together in a block. 

Denote by 9 = (V, 9 ,B)  the restricted simple 1-(v, k, r)-design where pa- 

rameters are not mentioned in the design. 

Remark  3.1.4. A restricted simple 1-(v, k, r)-design in which all parts are size 

one is a simple 1-(v, k, r)-design. 

Naturally for the same v-set, we can have many partitions and for certain 

partition a restricted simple 1-design may exist and for some other partition the 

design may not exist. The following example is instructive. 

Example 3.1.5. Let V = {1,2,3,4,5,6)  be given. We consider the existence or 

non-existence of a restricted simple 1-(6,3,3)-design in each of the possible cases: 

(1) V can be partitioned into 9 = {{I, 21, {3,4), 15,611 (each part of the 

same size2) or {{I, 21, {3,4), {5), 16)) or {{I, 21, {3), {4), 151, {6)) or {{l), {2), 

{3), {4}, {5},{6)}. For the first partition 9 = {{1,2), {3,4), {5,6)}, and a col- 

lection of blocks of size three, 9 = {{1,3,5), {1,3,6), {1,4,5), {2,3,6), {2,4,5), 

{2,4,6)), all six points occur three times in blocks, no repeated block and any 



two points from the same part do not occur together in a block, this implies that 

(V, 9,a) forms a restricted simple 1-(6,3,3)-design. Interestingly, for all other 

partitions given above the same blocks give a restricted simple 1-(6,3,3)-design. 

(2) On the other hand, if V is partitioned into 9 = {{1,2,3), {4,5,6)), a 

restricted simple 1-(6,3,3)-design does not exist, because each block must have 

three points that come from different parts but this partition has only two parts. 

(3) Lastly suppose V is partitioned into 9 = {{I), {2), {3), {4,5,6)}, a re- 

stricted simple 1-(6,3,3)-design does not exist, because each element occurs three 

times in blocks and each block have size three, so the number of blocks is = 6, 

but the design needs at least nine distinct blocks to take care of the three points 

from {4,5,6). 

Denote by b the number of the blocks and ri the replication number of the 

point i in the design. Summarizing the previous discussion, we obtain the following 

necessary conditions. 

3.2 Necessary conditions 

It is known that if a simple 1-(v, k, r)-design exists with b blocks, then b 5 (;) 

and vr = bk (see [2]). 

Theorem 3.2.1. In a restricted simple 1-(v, k, r)-design in which a v-set V is par- 

titioned into m parts 9 = {PI, P2, . . . , P,) where IPiI = pi for all i = 1,2, .  . . , m 

and B is a collection of b blocks of size k. Without loss of generality, suppose that 

pl 2 p2 2 2 p,. Then 

1. vr = blc, 



3. k < min{g, m), 

6. for all j = 1, . . . , m, r, = pjr where ri is the replication number of i for 
vie Pj 

i E V. 

Proof. 1. It follows from a property of a simple 1-(v, k, r)-design. 

2. Since each point in the part PI must occur r times in blocks, the number 

of distinct blocks is at least plr. 

3. Since each block must have k points that come from different parts, k 5 m. 

Rom 1. and 2., it follows that k 5 2. 
4. Since the number of distinct k-subsets such that each point comes from 

different parts is C palpal - - -pa,, it follows that the maximum 
, a z ,  ..., ak}C{l, . .  ., m) 

number of blocks is C Palpa,... Pa,. 
tal,(*z,...,ffk)C{l*...,m) 

5. Apply 2. and 4., the maximum number of r is obtained. 

6. Since each point i E Pj is contained in exactly r blocks, the sum of replica- 

tion number of i E Pj is r + r + . . . + r = pjr. - 
Pj 

3.3 Restricted simple 1-designs with k 2 2 

There are many ways to construct such a restricted simple 1-design. We first 

present a construction for a restricted simple 1-(v, k, 1)-design as follows. 

Theorem 3.3.1. Let v, k and m be integers such that 2 5 k 5 m 5 v and 

k divides v. Let V = {I, 2, . . . , v) be partitioned into m parts 9 = {PI, ~ 2 , .  . . , Pm) 

of size pl, pz, . . . , pm, respectively such that pl 2 pz 2 - - . 2 p, and pl k 5 v. Then 

a restricted simple 1-(v, k, 1)-design exists. 



Proof. Without loss of generality, suppose that PI = {I, 2, . . . , pl ), P2 = {pl + 
1 , ~  + 2 , .  . . ,p l  +p2), . . . , P, = { p l + p ~ + . . . + p m - l  + l , .  . . , p l + m + . . - + p r n ) .  

-1, note that F o r a n y i n t e g e r i , l < i < f , l e t B , = { i , i + f , i + ?  ,..., i +  

B, & V and Bi n Bj # 0 for i # j. Finally, define I = {B, : i = 1,2 , .  . . , f}. It 

is not difficult to see that each point in V occurs in exactly one time in a block of 

I, all blocks of I are different and every block of I contains exactly k points. 

Thus we need only to show that any two points in a block Bi comes from different 

parts of the partition 9 .  Let x and y E Bi in which x > y.  This implies that 

there is a positive integer s such that x - y = y .  Note that for any integer i, 

1 < i 5 m, if a and b E Pi then la - bl 5 pi - 1. Since pl < X ,  it follows that 

lx - yI = > pl - 1 > pi - 1, this forces that x and y comes from different 

parts. Therefore (V, 9,I) is a restricted simple 1-(v, k, 1)-design. 

Example 3.3.2. An illustration of Theorem 3.3.1, let v = 15, k = 3 and V = 

{ 1,2, . . . ,15) be partitioned into four groups 9 = {PI, P 2 ,  P3, P4) where PI = 

{1,2,3,4,5), P2 = {6,7,8,9), P3 = {10,11,12,13) and P4 = {14,15). We 

obtain B1 = {1,6,11), B2 = {2,7,12), Bg = {3,8,13), B4 = {4,9,14) and 

B5 = {5,10,15). Set I = {{1,6,11), {2,7,12), {3,8,13), {4,9,14), {5,10,15)}. 

Hence, (V, 9,B) is a restricted simple 1-(15,3,l)-design. 

This result provides another method to construct new restricted simple 1- 

designs from old. 

Theorem 3.3.3. Let v, k and m be positive integers such that 2 5 k < v. Suppose 

that there exists a restricted simple 1-(v, k, 1)-design. Then there also exists a 

restricted simple 1-(v, k - 1, k - 1)-design. 

Proof. Suppose that (V, 9 ,B) is a restricted simple 1-(v, k, 1)-design. Let 9' 

be a collection of all subsets of size k - 1 of each block in I t .  We claim that 



(V, P,B1) is a restricted simple 1-(v, k - 1, k - 1)-design. Clearly, this design has 

v points, every block contains k - 1 points from different parts because any two 

points x and y in a block B' E 9, there is only one block B E 93 such that B 

contain points x and y, it follows that x and y comes form different parts of 9 .  

Hence, we just need to show that every point occurs in exactly k - 1 blocks, let 

x E V. There is exactly one block B E 9J of size lc such that x E B, it follows 

that we have k - 1 blocks B' E B' such that x E B' & B. This implies that the 

replication number of any point of V is k - 1 and the number of blocks is lB'1 = v. 

The proof is complete. 

Example 3.3.4. From Example 3.3.2, v = 15, k = 3 and we obtain a re- 

stricted simple 1-(15,3,1)-design (V, 9, g) where V = { 1 2  } , 9 = 

{{I, 2,3,4,5), {6,7,8,9), {lo, 11,12,13), {14,15)} and a collection 93 of 5 blocks 

of size three {{I, 6, 111, {2,7,12), {3,8,13), {4,9,14), {5,10,15)}. Thus, let 93' = 

{{I, 61, {I, 111, {6,111, {2,71, {2,121, {7,121, {3, 81, {3, 131, {8,131, {4, 91, {4, 141, 

19,141, {5,10), 15,151, {lo, 15)) be a collection of 12 blocks of size two. This im- 

plies that (V, p,#) forms a restricted simple 1-(15,2,2)-design. 

Next, we present a construction for a restricted simple 1-(v, k, r)-design when 

the partition of a v-set is of the same size. We begin with a rather nice result on 

a restricted simple 1-(2n, 2, r)-design. 

Theorem 3.3.5. Let n and r be positive integers. Suppose that an 2n-set is 

partitioned into two parts of the same size n. Then there exists a restricted simple 

1 -(2n, 2, r) -design for all r = 1,2, . . . , n. 

Proof. Let V = {xl, x2, . . . , xn} U & be partitioned into two parts of size n 

and 9 = { i s l ,  x2, . . . , xn), 4) where i& denoted {I, 2, . . . , n),  the set of in- 

tegers modulo n. Each positive integer r, 1 5 r < n, a collection B of blocks 



for a restricted simple 1-(2n,2, r)-design constructed as follows. For each i E 

{1,2, . . . , n), define Bi = (xi, i) be n base blocks, note that (a, b) can be regarded 

as block {a, b ) ,  the blocks are obtained by developing the second coordinates 

(modulo n) of base blocks Bi up to r times (keeping the first coordinates fixed), 

a collection B of n r  blocks that contain every point of V exactly r times and 

no such block contain two points from the same part. The result (V, 9 , 9 7 )  is a 

restricted simple 1-(2n, 2, r)-design. 

Example 3.3.6. Suppose that V = {XI, x2,x3, 5 4 )  U Z4 is partitioned into two 

parts of size four 9 = {{XI, x2, x3, x4), {I, 2,3,4)}. For the first, a restricted 

simple 1-(8,2,1)-design (V, 9 , B 1 )  where a collection 971 of 4 blocks of size 

two is {Is1, I), {x2, 21, {x3, 31, 1x4, 4)). On the other hand, a restricted sim- 

ple 1-(8,2,2)-design (V, 9, B2) where a collection B2 of 8 blocks of size two 

is {{XI, I) ,  {XI, 21, {x2,2), {x2,3), {x3,3), {53,4), {24,4), {~4 ,1 ) ) .  Next, a re- 

stricted simple 1-(8,2,3)-design (V, 9,973) where a collection 973 of 12 blocks of 

size two is {{XI, 11, {XI, 2},{x1, 31, {x2,2), {52,3), { ~ 2 , 4 ) ,  {53,3), 41, 11, 
{x4, 4), {x4, I), {x4, 2)). Finally, (V, 9,984) is a restricted simple 1-(8,2,4)- 

design where a collection 2274 of 16 blocks of size two is {{XI, I), {XI, 2), {XI, 3), 

 XI,^), { ~ 2 , 2 ) ,  {~2,3},  {~2 ,4 ) ,  { ~ 2 , 1 ) ,  {~3 ,3 ) ,  {~374), {x3, 11, {x37 21, {~4,4}, 

{x4,1), {x4,2), {~4,3)}.  

We will show the existence of a restricted simple 1-(mn, m, r)-design for which 

an mn-set is partitioned into m parts of the same size n. There are two solutions, 

&st solution, we construct new partitions on an mn-set from the original partition 

in whch points in a new part come from different original parts together as follows. 

Recall that, a system of distinct representatives (SDR) for a collection of finite 

nonempty sets Al, A2,. . . ,Am is a collection of distinct elements xl, x2,. . . , xm 

such that xi E Ai for each i. The sets Al, A2, . . . , A, possess an SDR if and only 



if for each k 5 m, any k of the sets contain at least k elements in their union 

(Hall's condition). This condition is also sufficient to guarantee the existence of 

an SDR proved by Philip Hall in 1935. 

Lemma 3.3.7. Let m and n be positive integers such that m, n 2 2. Suppose 

9' = {PI, P2, . . . , pm} is a partition on an rnn-set V, with each part of same 

size n.  It can be constructed at least nm-I new partitions 21,  2 2 ,  . . . , LZnm-l on 

V where 9, ={Sf), St), . . . , s:) } with each part of size m in which points in s!) 
come from different parts of 9, for all i = 1,2, .  . . , nm-' and j = 1,2, .  . . , n .  

Proof Since Pi n Pj = 0 for i # j, it follows that for each k 5 m, the union of 

any k sets of Pi contains exactly Icn points, the Hall's condition holds. Thus there 

exists an SDR for 9, call it sf) and $) has size m. Let 9' = {e, 6,. . . ,PA} 

where c' = - S1c1), for all i = 1,2, .  . . , m and has size n - 1. Since 

P: n Pi = 0 for i # j, it follows that for each k 5 m, the union of any k sets 

of PI contains exactly k(n - 1) points. Again 9' satisfies the Hall's condition, 

there exists an SDR for 9', call it s?) and SF) has size m. Repeat this process 

n - 1 times, to get the last SDR for 9, call it and s'') has size n. Thus 

(1) (1) (1) = {s, , S, , . . . , Sn } is clearly a new partition on V, with IS,(')I = rn, 

for all i = 1,2 , .  . . , m and points in s!') come from different parts of P. Let 

% = PI x P2 x - - .  x Pm. Each m-tuple in % can be regarded as an rn-subset, 

it follows that s!') belongs to % for all i = 1,2, .  . . , n. For k = 2,.  . . ,nm-' , let 

(k) S ( k )  (k) %k-l = '% - U:Z?~L;, by the same argument to obtain 2 k = { S 1  , , . . . ,Sn } 

where s,(" belongs to %k-l, for all i = 1,2 , .  . . , n. Hence, there are at least nm-' 

disjoint such partitions Y1, 2 2 , .  . . , 2 n m - 1  on V. 

Example 3.3.8. Suppose that V = {I, 2, . . . ,121 is partitioned into four parts 

of the same size three, 9 = {{I, 2,3), {4,5,6), {7,8,9}, {lo, 11,12}}. We obtain 



at least twenty-seven new partitions on V which have the required property as 

follows: 



Theorem 3.3.9. Let rn, n and r be positive integers such that 2 5 rn and r 5 

nm-l . Suppose that B = {PI, P2, . . . , P,} is a partition set of the same size n 

on an mn-set V. Then there exists a restricted simple 1-(mn, m, r)-design. 

Proof. By Lemma 3.3.7, there are at least nm-' disjoint partitions TI, 9 2 ,  . . . ,Tnrn-l 

on V. For each r = 1,2 , .  . . , nm-' , let J C {1,2,. . . , nm-'1 and I JI = r, define 

a collection B ( J )  of blocks to be the union of r partition sets -Yi, for all i E J .  

Since all parts in each partition set Zi have size m, so every block must have 

size rn. Since each point occurs only one time in each partition set 9i, it follows 

that each point occurs r times in blocks and any two points in a block come from 

different parts of 9 .  Therefore, (V, 9, B(J)) is a restricted simple 1-(mn, m, r)- 

design. 

Example 3.3.10. From Example 3.3.8, let J1 = {2,5,6) and B(J1) = 9 2  U T 5  U 

9 6  = {{I, 4, 7, 111, {2,5,8,12), {3,6,9,10}, {I347 8,11), {2,5) 9,12), {3,6,7, lo}, 

{I, 4,8,12), {2,5,9,10), {3,6,7,11)}. Thus (V, 9, d(Jl)) is a restricted simple 

1-(12,4,3)-design. As another example, let J2 = {6,7, . . . , 18) and B(J2) = T6 U 

% U . . . U - % ,  = {{1,4,8,12),{2,5,9,10),{3,6,7,11),{1,4,9,10),{2,5,7,11), 

(37% 8,12), {1,4,9, 111, {2,5,7,12), {3,6,8, lo), {1,4,9,12), {2,5,7, lo), {3,6,8, 

111, {I, 5,7,101, {2,6,8,11), {3,4,9,12), {I, 5,7, ll), {2,6,8,12}, {3,4,9,10}, {I, 

5,77121, {2,6,8,10), {3,4,9,11), {1,5,8, 101, {2,6,9,11), {3,4,7,12), {1,5,8,11), 

{2,6, 9,12),{3,4,7, 101, {1,5,8,12), {2,6,9,10), {3,4,7, ll}, {1,5,9,10), {2,6,7, 

111, (374, 8,121, {1,5,9,11), {2,6,7,12), (3,478, lo), {1,5,9,12), {2,6,7,10), (3, 

4,8,11)}. Therefore, (V, 9, I(J2)) is a restricted simple 1-(12,4,13)-design. 



Second solution, we define a function to construct a matrix such that the 

columns of the matrix form blocks in a restricted simple l-(mn, m ,  r)-design as 

follows. 

Theorem 3.3.11. Let m ,  n and r be positive integers such that m 2 2. Suppose 

that 9 = { P I ,  P2, . . . , P,) is a partition set of the same size n on an mn-set V 

and r 5 nm-l. Then there exists a restricted simple 1-(mn,m,r)-design. 

Proof. For any integer k, 1 5 k 5 n ,  each part Pj regarded as a column ma- 

trix (pl j ~ 2 j  . . . where p ~ ,  . . . , p,j E Pj, defines a function r by r(k ,  Pj) = 

t 
rk(Pj) = ( P ( k + l ) j  p(k+2)j . . . P ( k ) j )  by developing the first coordinates modulo n ,  

(keeping the second coordinates fixed). For each il E { I ,  2, . . . , n ) ,  we construct 

a matrix [PI ri, (P2)], all rows of [PI Til  (P2)] form a partition on PI U P2 and there 

are n disjoint partitions on Pl U P2. For each i l ,  i2,  . . . , im-2 E {1,2 , .  . . , n ) ,  we 

construct a matrix [PI ril(Pz) ri2(P3) . rim-l(Pm)], for im-1 E { 1 , 2 , .  . . , n } .  All 

rows [PI T i ,  (P2) ri2 (P3) - - ( ~ m ) ]  form a new partition on V. There are at  

least nm-I new disjoint partitions on V. 

Consider the rows of [PI ril (P2) ri2 (P3) . . . rim-l ( P ~ ) ]  as blocks. Clearly, each 

block has size m. For each r = 1,2,.  . . , nm-I , we construct a restricted simple 

1-(mn, m, r)-design (V, 9, B) in which B is the union of r new partitions on 

v. 

We illustrate the application of the above theorem in the following example. 

Example 3.3.12. Suppose that V = { I ,  2 ,  . . . ,121 is partitioned into four parts 

of size three 9 = { P ~ ,  P2, P3, pa),  where PI = { I ,  2,3),  P2 = {4,5,6),  P3 = 

{7,8,9) and P4 = {10,11,12). 

Since P2 = ( ~ 1 2  p22 ~ 3 2 ) ~  = (4  5 6 ) t ,  we have rl(P2) = (p22 p32 ~ 1 2 ) ~  = 

( 5  6 4)t and [PI r1(P2)] = [ ( I  2 3)t (5 6 4)t].  Next, since P3 = (pI3 P23 p33)t = 



(7 8 9)', we have rl(P3) = (2323 p33 ~ 1 3 ) '  = (8 9 7)t and [PI rl(P2) r1(P3)] = 

[(I 2 3)' (5 6 4)' (8 9 7)']. Finally, since P4 = (p14 p24  P34)t = (10 11 12)t, 

we have rl(P4) = ( ~ 2 4  p34 ~14) '  = (11 12 10)' and [PI rl(P2) r1(P3) r1(P4)] = 

11 5 8 111 

[(I 2 3)' (5 6 4)' (8 9 7)' (11 12 lo)'] = 2 6 g 12 , thus {{I, 5,8,11), {2,6, l3 4 7 

9,12),{3,4,7,10)} is a new partition on V. Similarly, [PI r2 (P2) r3(P3) r3 (P4)] = 

2 6 7 10 , thus {{I, 5,9,12), {2,6,7, lo), {3,4,8,11)} is a new partition on I' : : ::I 
7,111) is a new partition on V and [PI r3(PZ) r3(P3) rl(P4)] = 2 4 7 11 , I I 

13 5 8 121 

thus {{I, 5,9,12), {2,6,7,10), {3,4,8, ll)} is a new partition on V. Let I be the 

union of 4 new partitions mentioned above on V, that is I = {{I, 5,8,11), {2,6, 

9, 121, {3,4,7,10), {I, 579,121, {2,6,7,10), {3,4,8,11), {1,6,8,12), {2,4,9, lo),  

{3,5,7,11), {I, 6,9,10), {2,4,7, ll), {3,5,8,12)). Therefore, we obtain a restricted 

simple 1-(12,4,4)-design (V, 9 , I ) .  

Finally, we present a construction for a restricted simple 1-(v, k, r)-design when 

the size of partition is arbitrary. Billington [2] gave an elegant proof for the 

existence of a simple 1-(v, k, r)-design. From the idea in the proof by Billington, 

we f i s t  introduce a new design as follows. 

Definition 3.3.13. Let v, k and r be positive integers such that 2 5 k 5 v and 

rl ,  7-2, . . . , r, be nonnegative integers. A restricted simple (k; rl, 7-2, . . . , rv)- 



design is a triple (V, 9, B) satisfying the following properties : 

1. V = {I, 2, . . . , v) called points, 

2. 9 is a partition of V into nonempty subsets called parts, 

3. I is a collection of different k-subsets of V called blocks, 

4. any two points from the same part do not occur together in a block, and 

5. each point i E V is contained in exactly ri blocks. 

Denote by 9 = (V, 9 , B )  the restricted simple (k; rl, r 2 ,  . . . , rv)-design where 

parameters are not mentioned in the design and ri may be called the replication 

number of point i. 

Remark  3.3.14. A restricted simple (k; rl, r2,  . . . , r,)-design is a restricted simple 

1-(v, k, r)-design where ri = r for all i E V. 

Example 3.3.15. Let V = {I, 2, .  . . ,151 be partitioned into four parts 9 = 

{{I, 2,3,4,5}, {6,7,8,9), {10,11,12,13), {14,15)} and a collection of blocks of 

size three, I = {{I, 6,101, {2,6, 101, {3,6,10), {4,6,10), {5,6,10), {I, 7,101, {I, 8, 

101, {I7 9, 101, {I, 6,111, {I, 6,121, {I, 6,131, {2,7,10}, {I, 6,141, {2,6,141, {3, 6, 

141, {4,6,14), {l, lo, 141, {2, lo, 141, {3, lo,  141, {4,10,14)}. Thus, (V, 9,B)  form 

a restricted simple (3; 9,4,3 ,3 ,1 ,12,2 ,1 ,1 ,13,1 ,1 ,  1,8,O)-design. 

We first show the property of a restricted simple (k; rl, 7-2, . . . , r,)-design, 

then construct a restricted simple (k; rl, r2, . . . , rv)-design certain property. Fi- 

nally, we construct a restricted simple 1-(v, k, r)-design. 

Theorem 3.3.16. Let v, m and k be positive integers such that 2 5 k 5 m 5 v 

and rl, r z ,  . . . , rv be nonnegative integers. Let V = {I, 2, . . . , v) be partitioned into 



m parts 9 = {P~,  P2, . . . , P ~ ) .  Suppose that a restricted simple (k; rl, 7-2, . . . , rv)-  

design exists. If x, y E P, for some integer w, 1 5 w 5 m with r, > r,, then 

there exists a restricted simple (k; rl,  r2, . . . , r, - 1, . . . , ry + 1, . . . , rv)-design. 

Proof. Let 8 = (V, 9,I) be a restricted simple (k; r1, r 2 ,  . . . , rv)-design. Let 

B1, B2, .  . . , Bi be all blocks of I which contain point x. Let Cl, C2, .  . . , Cj be all 

blocks of I which contain point y. First step, we set Bx = { ~ l ' ,  B2,,. . . , Biz} 

where BaX=Ba - {x) and 5P={ClY, CZY, . . . , Cjy ) where CbY=Cb - {Y). Second 

step, we can choose a block B E 97" - Cey which has property that if B*=B U {y) 

then B* $ {Cl, C2, .  . . , Cj) (note that, Isx - 55'7 1 r, - r, or there are at least 

r, - r, such B's) . Final step, let 9 = [[9 - ( B  U {x))] U B*, this implies that, 

8* = (V, 9,9) is a design with the replication number of x and y in 9" is 

changed to r, - 1 and r, + 1, respectively. For simple property, since y E B* and 

B* $ {Cl, C2,.  . . , Cj), it follows that B* is different from other blocks and for 

restriction property, since x and any points in B come from different parts and 

x, y E P,, it follows that y and any points in B* must come from different parts 

of 9. 

Example 3.3.17. An illustration of Theorem 3.3.16, from Example 3.3.15, con- 

sider points 6 ,7  in the part {6,7,8,9) such that r6 = 12 and 7-7 = 2. Let B1 = 

{1,6, lo), B2 = {2,6,10), Bg = {3,6,10), Bq = {4,6, lo), B5 = {5,6,10), B6 = 

{1,6,11), B7 = {1,6,12), Bt3 = {1,6,13), B9 = {1,6,14), Blo = {2,6,14), Bll = 

{3,6,14), Bl2 = {4,6,14) be all blocks in I which contain point 6. Let Cl = 

{1,7,10), C2 = {2,7,10) be all blocks in 33 which contain point 7. First step, we 

set @' = { B I ~ ,  ~ 2 ~ ,  . . . , BIZ6) where B16 = B1 - {6) = {I,  lo), B~~ = B2 - {6) = 

(2, lo) ,  . . . , ~ 1 2 ~  = B12 - (6) = (4,141 and V7 = {c17, c ~ ~ )  where c17 = Cl - 

(7) = { 1 , 1 0 ) , ~ 2 ~  = C2 - (7) = {2,10). Second step, we choose B = (3,101 E 

B~ - B~ since B* = B U (7) = {3,7,10) and {3,7,10) $ {Cl, C2). Final step, we 



delete B = {3,6,10} from 1 and replace it by B* = {3,7,10}. We obtain a re- 

stricted (3; 9 ,4 ,3 ,3 ,1 ,11,3,1 ,  1 , 1 3 , l , l ,  1,8,O)-design (V, 9, B*) where a collec- 

tion 9 of 20 blocks is {{1,6,10), {2,6,10), {3,7,10}, {4,6,10), {5,6,10}, {1,7, 

Theorem 3.3.18. Let v, m, k and r be positive integers such that 2 I k 5 m 5 

v. Let V = {1,2, .  . . , v} be partitioned into m parts 9 = {p1, p2,. . . , Pm) of 

size pl, p2, . . . , p,, respectively such that pl 2 p2 2 . . . 2 p,. Suppose that 

vr 0 (mod k), ~ 1 k  < v and r 5 pff1pff;..pa,-, for all {a l , az  , . . . ,  

{2,3, . . . , m}. Then there are nonnegative integers rl, 1-2, . . . , r, such that ri = 
i€Pj 

pjr for all j = 1,2,  . . . , rn and a restricted simple (k; rl, 7-2,. . . , r,)-design exists 

with y blocks where ri is the replication number of i for i E V. 

Proof Without loss of generality, suppose that PI = {l, 2, . . . ,PI}, P2 = + 
l ,p1+2,.  . . ,pl+p2), . . . , Pm = {pl+pz+. ..+p,-l+l,. . . ,pl+p2+.-.+pm}. For 

convenience in our construction, we make use of two subscripts to describe points 
i-1 

in each part of 9 by the formula : for i = 1, . . . , m, xij corresponds to pk + j 
k= 1 

where j = 1, .  . . , p i  Thus for i = 1 , .  . . , m, Pi = {xij E VI j = 1 , .  . . ,pi). First, 

construct a restricted (k; plr, 0, . . . , 0  , pzr, 0, . . . , 0  , . . . , pmr, 0, . . . , 0  )-design, - v v 
(pl - 1) terms ( p z  - 1) terms ( p ,  -1) terms 

say as follows. 

Let call all blocks of size k as B1, B2, .  . . , B y .  Place point xll in plr blocks 

BI,  . . . , BPI,. Then continue placing point x21 in pzr blocks . . . , Bpi,+,,, 

where the subscripts are added modulo y.  The same argument is applied to 

the points xsl , .  . . , xml. By this method, each point x11, x 2 ~ ,  . . . , xml occurs 

plr, pzr, . . . , pmr times, respectively and distributes evenly in each block. Since 

the total of occurrence of xll ,  xzl , .  . . , xml is plr  + pzr + . . + p,r = (pl + p2 + 
+ p,)r = vr and vr = 0 (mod k), it follows that g1 is clearly a restricted 



(k; plr, 0, . . . , 0 , pzr, 0, . . . , 0  , . . . , pmr, 0, .  . . , 0  )-design, with blocks, but - v v 
(pl -1) terms ( p ~  - 1) terms (pm-1) terms 

g1 might not be simple. Note that for all j = 1,2 , .  . . , rn, ri = pjr + 
i€Pj 

O + O + . . - + O  =p j r .  - 
(pj-1) terms 

Suppose 91 is not simple, let dl, d2 2, . . . , 4 for some a positive integer I be dif- 

ferent collections of pl,p2, . . . , pl repeated blocks, respectively. Note that pl +p2+ 

. + p~ = Without loss of generality, suppose that p1 > p2 > . . . > pl. Next, 

construct a restricted simple (k; sll,  . . . , slpl, ~ 2 1 ,  . . . , . . . , Sml, . . . , smpm)-design, 

where sil + . + sipi = pir, for i = 1, . . . , m as follows. 

Let {aall, a,,l,. . . , aakl) be p1 repeated blocks in dl, where a,,l E Pa,, for 

2 = 1, . . . , Ic and { a ,  a ,  . . . , a }  1 ,  . . . , m}. Without loss of generality, sup- 

pose that Pa, > pa, > . - - > pa, 

Since there are at most rp,, repeated blocks in 91, this implies that p1 5 

rp,,. Since there are palpa, . - . pa, k-subsets for which each point comes from 

Pa,, Pa,, . . . , Pa, and r 5 palpa, . . .pa,-, for all {al, a 2 ,  . . . , ab-I}  G {2,3, . . . , rn} 

it follows that p1 5 palpa, . . -pa,. Replace p1 repeated blocks by any different 

Ic-subsets from the Pa,, Pa, . . . , Pa,. The replication number of each point in each 

part Pal, Pa,, . . . , Pa, is changed from pir, 0 , .  . . , 0 to s(')il,. . . , s " ) ~ ~ ,  such that 

s('),l + . . . + s(')ipi = par, for all i = 1, . . . , k. An apply the same process to 

d2, 4, until 4 .  Since dl, d2, . . . ,4  are different collections of repeated blocks, 

it follows that each time the repeat blocks are replaced by different new k-subsets 

( 1 )  (1) ( 1 )  and the last design will be a required design with r l  = sll , r2 = s12, . . . , r, = smpm, 

as desired. 

Example 3.3.19. Let v = 15, k = 3 and r = 4. Let V = {1,2,. . . ,151 be 

partitioned into 4 parts B = {PI, P2, P3, P4} of size pl = 5 , ~  = 4,p3 = 

4,p4 = 2, respectively. Note that vr - 0 (mod k), plk 5 v and r 5 palpa, 



for all {al,  a 2 )  G {2 ,3 ,4 ) .  Without loss of generality, suppose that PI = 

{ I ,  2 ,3 ,4 ,  5 )  = { ~ 1 1 , x 1 2 ,  x 1 3 7 5 1 4 ,  ~ 1 5 ) ~  p 2  = ( 6 ,  7, 879) = { ~ 2 1 , X 2 2 , X 2 3 , ~ 2 4 ) ,  p 3  = 

{10,11,12,13) = {x3i,  2 3 2 ,  x33, x34) and P4 = (14,151 = { x ~ ~ ,  x ~ ~ ) .  First, we 

construct a restricted (3;  20,0,0,0,0,16,  0,0,0,16,0,0,0,8,0)-design, say g1 with 

blocks are : 

{ ~ l l , x 2 1 , ~ 3 1 ) ,  ( 5 1 1  2 2 1 ,  ~ 3 1 ) ,  { ~ 1 1 , ~ 2 1 ,  x 3 1 ) ,  { ~ 1 1 , ~ 2 1 ,  5 3 1 1 ,  ( ~ 1 1 ,  ~ 2 1 ,  5 3 1 1 ,  

{ ~ 1 1 , ~ 2 1 , ~ 3 1 ) ,  { ~ 1 1 , ~ 2 1 , ~ 3 1 ) ,  { ~ l l r ~ 2 1 , ~ 3 1 ) ,  { ~ 1 1 , ~ 2 1 , ~ 3 1 ) ,  { x 1 1 , x 2 1 , x 3 1 ) ,  

{ ~ 1 1 , x 2 1 ,  ~ 3 1 1 ,  ( 5 1 1  5 2 1 ,  x 3 1 ) ,  ( ~ 1 1 ,  ~ 2 1 , ~ 4 1 ) ,  ( 2 1 1  x 2 1 , ~ 4 1 ) ,  ( ~ 1 1 ,  ~ 2 1 ,  ~ 4 l ) ,  

{ ~ l l , X 2 1 , ~ 4 1 ) ,  { ~ 1 1 , x 3 1 , ~ 4 1 ) ,  { ~ l l , x 3 1 , ~ 4 1 ) ,  ( ~ 1 1 , 5 3 1 ,  ~ 4 1 ) ~  ( ~ 1 1 ,  5 3 1 ,  ~ 4 1 ) .  

Note that rl + r2 + r 3  + r 4  + 7-5 = 20 + 0 + 0 + 0 + 0 = 5 x 4,  r g  + r 7  + r g  + r g  = 

1 6 + O + O + O  = 4 x 4, r l o + r l l + r 1 2 + r 1 3  = 1 6 + O + O + O  = 4 x 4  and 

r14 + r15 = 8 + 0 = 2 x 4. Since g1 is not simple, let .dl = 1 2 { 5 1 1 , 2 2 1 ,  2 3 1 )  

be a collection of p1 = 12 repeated blocks. There are eighty %subsets for which 

each point comes from PI, P2 and P3, then replace all repeated blocks with any 

different 3-subsets from the eighty 3-subsets. 

We obtain a restricted (3; 15,2,1,1,1,12,2,1,1,13,1,1,1,8,0)-design with 

blocks are : 

{ x 1 1 , x 2 1 ,  x 3 1 ) ,  ( ~ 1 2 , X 2 1 , ~ 3 1 ) ,  ( 2 1 3 ,  x 2 1 ,  x 3 1 ) ,  ( ~ 1 4 ,  x 2 1 ,  ~ 3 1 1 ,  ( 2 1 5 ,  x 2 1 ,  ~ 3 1 1 7  

( ~ 1 1 ,  2 2 2 ,  x 3 1 ) ,  { ~ 1 1 , x 2 3 , ~ 3 1 ) ,  ( ~ 1 1 ,  x 2 4 ,  x 3 1 ) ,  ( ~ 1 1 ,  x21, x 3 2 ) ,  ( ~ 1 1 ,  x217 ~ 3 3 ) 7  

{ ~ 1 1 , x 2 1 , ~ 3 4 )  ( 5 1 2  , 2 2 2 ,  ~ 3 1 ) ,  ( 2 1 1 ,  x 2 1 , ~ 4 1 )  , ( 5 1 1  2 2 1 , 5 4 1 )  ( ~ 1 1  7 %217 x 4 1 ) ,  

( x l l , x 2 1 ,  ~ 4 1 ) ,  { ~ l l , x 3 1 , ~ 4 1 ) ,  { ~ 1 1 , x 3 1 , ~ 4 1 ) ,  ( ~ 1 1 ,  x 3 1 , ~ 4 1 ) ,  ( ~ 1 1 ,  x31, ~ 4 1 ) .  

Note that rl + r2 + r 3  + r 4  + r5 = 15 + 2 + 1 + 1 + 1 = 5 x 4,  r6 + 7-7 + r 8  + r g  = 

1 2 + 2 + 1 + 1  = 4 x 4 ,  r l o + r l l + r 1 2 + r 1 3  = 1 3 + 1 + 1 + 1  = 4 x 4 a n d  

r l 4  + r15 = 8 + 0 = 2 x 4. Again the design is not simple, let d2 = 4{x l l ,  x 2 1 ,  ~ 4 1 )  

be a collection of p2 = 4 repeated blocks. There are forty %subsets for which 

each point comes from PI, P2 and P4, then replace all repeated blocks with any 



different 3-subsets from the forty 3-subsets. 

We obtain a restricted (3; 12,3,2,2,1,12,2,1,1,13,1,1,1,8,0)-design with 

blocks are : 

( ~ 1 1 ,  2 2 1  , 231) 1 ( 2 1 2  x21, x31} 7 {x13, x211 231) I ix147 x211x31) , { ~ 1 5 ,  x21 1 ~ 3 1 1 ,  

{xll, ~ 2 2 ,  x31), ( ~ 1 1 ,  ~ 2 3 ,  ~ 3 1 1 ,  {xll, ~ 2 4 ,  x31)l { ~ 1 1 1 ~ 2 1 ,  ~ 3 2 1 1  { ~ 1 1 ,  ~ 2 1 1 ~ 3 3 1 ,  

(511 , x21, x34), ( ~ 1 2  x22 9 x31}, {xll, x21, ~ 4 1 1 7  { ~ 1 2 ?  x21 7 ~ 4 1 )  1 { ~ 1 3 ,  x21 1 '411 1 

( ~ 1 4 7  5 2 1  5 4 1 )  1 {xll 231, ~ 4 1 )  1 {xll x31, ~ 4 1 )  , {xll x311 ~ 4 1 ) ~  {xll x311 ~ 4 1 ) .  

Note that rl + rz + r3 + r 4  + r g  = 12 + 3 4- 2 + 2 + 1 = 5 X 4, r6 4- r7 f r8 + r g  = 

1 2 + 2 + 1 + 1  = 4 x 4 ,  r l o + r l l + r l ~ + r 1 3  = 1 3 + 1 + 1 + 1  = 4 x 4 a n d  

7-14 + r15 = 8 + 0 = 2 x 4. Again the design is not simple, let d3 = 4{xl1, 231, ~ 4 1 )  

be a collection of p3 = 4 repeated blocks. There are forty 3-subsets for which 

each point comes from PI, P3 and P4, then replace all repeated blocks with any 

different 3-subsets from the forty 3-subsets. 

We obtain a restricted simple (3; 9,4,3,3,1,12,2,1,1,13,1,1,1,8,O)-design with 

blocks are : 

{xllrx21jx3l), { ~ 1 2 , ~ 2 1 , ~ 3 1 } ,  { ~ ; 1 3 , ~ 2 1 > ~ 3 1 } ,  { ~ 1 4 > ~ 2 1 1 ~ 3 1 ) >  {x15,x21,x31}1 

{xll, ~ 2 2 ,  ~ 3 1 ) ~  {xll1 ~ 2 3 ,  x31)j {xll, ~ 2 4 1 ~ 3 1 } ,  { ~ 1 1 ,  ~ 2 1 ,  ~ 3 2 } >  { ~ 1 1 ?  ~ 2 1 1  ~ 3 3 1 1  

(211 2 2 1  ~ 3 4 } ,  ( 2 1 2  x227 x31}, {xllj x217 ~ 4 1 )  1 { ~ 1 2 >  x21 7 ~ 4 1 ) ~  '21 7 ~ 4 1 I l  

( ~ 1 4 ,  x21, ~ 4 1 ) ~  {x11,x31, ~ 4 1 ) ,  (212 ,  ~ 3 1 ,  ~ 4 1 1 ,  (213, 531, 5 4 1 1 ,  (214,  ~ 3 1 , ~ 4 1 ) ,  

which correspond to  {1,6,10), {2,6, lo), {3,6,10), {4,6,10), {5,6,10), {1,7,10), 

{1,8, lo}, {1,9, lo}, {1,6,11},{1,6, 12},{l16, ~ 3 ) , { ~ , 7 , ~ ~ } 1 { ~ , 6 ~ ~ 4 ~ 1  {2,6,14}, 

{3,6,14), {4,6,14}, (1, 10, 141, {2, 10, 141, {3, 10,14}, {4, 10,141. 

Note that r1+r2+r3+r4+r5 = 9+4+3+3+1 = 5 x 4 ,  r~+r7+r~+rg  = 12+2+1+ 

1 = 4 x 4 ,  rlo+rll+r12+r13 = 13+1+1+1 = 4 x 4  andr14+r15 = 8+0  = 2 x 4 .  

Therefore, we obtain a restricted simple (3; 9 , 4 , 3 , 3 , 1 , 1 2 , 2 , 1 , 1 , 1 3 , 1 ,  1,1,8,0)-  

design. 



Now, we are ready to show the existence of a restricted simple 1-(v, k, r)-design. 

Theorem 3.3.20. Let v, m, k and r be positive integers such that 2 < k < m 5 v. 

Let V = {l, 2, . . . , v) be partitioned into r n  parts 9 = {p1, ~ 2 ,  . . . , Pm} of site 

pi, p2, . . . , p,, respectively such that pl 2 p, 2 . . - 2 p,. Suppose that vr = 
0 (mod k), plk 5 v and there exists a restricted simple (k; rl, 1-2,. . . ,I-,)-design 

and ri is a constant r, for all j = 1, . . . , m where ri is the replication number 
Pj 

i€Pj 

of i for i E V. Then there exists a restricted simple 1-(v, k, r )  -design. 

Proof. Let (V, 9 ,B)  be a restricted simple (k; rl, 7-2, . . . , rv)-design and for each 

j = 1, . . . , m, C ri = rpj and bk = rp1+rm+. .+rprn = (pl+p2+ - -+pm)r = vr. 
i€Pj 

In order to change the replication number ri to r for all i E V, any two points 

are considered at a time, by Theorem 3.3.16 and this theorem may be applied 
v 

ixlr - ril times. Since vr = rl + r2 + - - + rv, it follows that B is transformed 
i=l 

into a restricted simple (k; r, r, . . . , r)-design, say 937'. Hence, (V, 9,B') forms a 

restricted simple 1-(v, k, r)-design and so the proof is complete. 

Example 3.3.21. From Example 3.3.19, we obtain a restricted simple (3; 9,4,3,3, 

1,12,2,1,1,13,1,1,1,8,0)-design, say (V, 9 , 9 3 7 )  where a collection B of twenty 

blocks of size three is {{I, 6,101, {2,6,10), {3,6, 101, {4,6,10), {5,6,10), {I, 7,101, 

{3,6,14), {4,6,14), (1, lo, 141, {2, lo ,  141, {3, lo ,  141, {4, lo ,  14)). Since for all j = 
15 

1,2,3,4,5,  C ri = 4pj, Theorem 3.3.16 may be applied $ E l 4  - ril=26 times 
i€Pj i=l 

to change the replication number ri to 4 for all i E V. For the last transforma- 

tion, we obtain a restricted simple (3; 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)-design, say 

(V, 9, B')  where a collection 9' of twenty blocks of size three is {{1,8,11), {2,8, 



10,14),{3,10,14},{4,10,14)}. Therefore, (V, 9,9') is a restricted simple 1- 

(15,3,4)-design. 

3.4 New restricted simple 1-designs from old 

We give two simple methods of constructing new restricted simple 1-designs 

from the existing one. The first construction may be called a sum construction 

and the second construction may be called a refinement construction. 

Theorem 3.4.1. Suppose that there m a reshided simple 1-(vl, k, r)-design, 

(&, PI, B l )  and a restricted simple I-(%, k, ?)--dedign (h, 9 2 , g 2 )  where K fl 

= 0. Then there exists a restricted simple 1 - (vl + Q, k, r)-design. 

Proof. (& Uh ,  91 U 9 2 ,  B 1 ~ 9 3 2 )  is a restricted simple 1-(VI +v2, k, r)-design. 

Example 3.4.2. Let = {1,2, . . . ,151 be partitioned into four parts p1 = 

{{I, 2,3,4,5), {6,7,8,9), {10,11,12,13), {14,15)) and a collection Bl of twenty 

blocks of size three be {{I, 8,111, {2,8,11), {3,8,11), {4,7,12), {5,7,12), {3,7,12), 

{4, 8, 13), 15> 9, 13), {5> 9> ''17 { 5 7  '7 12}> '9 13), {2> 79 1 3 ) 7  {'I 6, 15}> {21 6, 15)> 

{3,6,15), {4,6,15), {I, 10,14),{2, lo, 14),{3, lo, 14),{4,10,14)}. It follows that 

(Vl, 91 ,  Bl) forms a restricted simple 1-(15,3,4)-design. Let V2 = {16,17,18,19, 

20,211 be partitioned into three parts 9 2  = {{16,17), {18,19), {20,21)} and a 

collection B2 of eight blocks of size three be {{16,18,20), {16,18,21), {16,19,20), 

{16,19,21), {17,19,21), {17,19,20), {17,18,21), {17,18,20)}. It follows that (b, 

9 ' 2 ,  B2) forms a restricted simple 1-(6,3,4)-design. Therefore, (& U &, U 

9 2 ,  B1 U 932) is a restricted simple 1-(21,3,4)-design. 

Recall that, any partition set d on a set X is a refinement of a partition set 

9' on X, if every element of d is a subset of some element of 9. 



Theorem 3.4.3. Suppose that there exzsts a restricted simple 1 -(v, k ,  r )  -design, 

(V, 9,9?). Then  there also exists a restricted simple 1 -(v, k, r )  -design with any 

refinement of 9. 

Proof. Since each point in a block comes from different parts in 9, also it comes 

from different parts in the refinement of 9. 

Example 3.4.4. From Example 3.1.5, (V, 9 ,B)  is a restricted simple 1-(6,3,3)- 

design where V = {1 ,2 ,3 ,4 ,5 ,6}  is partitioned into three parts 9 = {{I, 21, {3,4), 

{5,6)} and a collection I of six blocks of size three is {{I, 3,5),  {I, 3,6), {I, 4,5),  

{2,3,6),  {2,4,5),  {2,4,6)}. Therefore, (V, 9, d)  forms a restricted simple 1- 

(6,3,3)-design with each refinement of 9, i.e., = {{I, 2),{3,4}, {5), (611, 

352 = {{I, 21, {3), {4), {5), {6)} and 353  = {{I), {2}, {3), {4h {51, {61}. 



CHAPTER IV 

CONCLUSIONS AND OPEN PROBLEMS 

4.1 Conclusions 

From our work, the results can be concluded as follows. 

1. The 56 solutions of a strict SBGDD(3,2,3) and a construction for an infinite 

SBGDD(3,3,3). 

2. If mn(mn + 1) - 0 mod 2k, then a strict 1-SBGDD(m, n, k) exists for every 

positive integer m, n and k where 2 5 k 5 m. 

3. A strict k-SBGDD(m, n,  k) exists for every positive integer m, n and k where 

2 5 k 5 m .  

4. Let v, k and m be integers such that 2 5 k 5 m 5 v and k dvides v. 

Let V = {1,2,. . . , v) be partitioned into m parts 9 = {p1, ~ 2 , .  . . , Pm) of size 

pl, pa, . . . , p,, respectively such that pl 2 pz 2 . . . 2 pm and plk < v. Then there 

exist a restricted simple 1-(v, k, 1)-design and a restricted simple 1-(v, k- 1, k- 1)- 

design. 

5. Let n and r be positive integers. Suppose that an 2n-set is partitioned into two 

parts of the same size n. Then there exists a restricted simple 1-(2n, 2, r)-design 

for all r = 1,2 , .  . . , n. 

6. Let m, n and r be positive integers such that 2 5 m and r 5 nm-l. Suppose 

that 9' = {PI, Pz, . . . , P,) is a partition set of the same size n on an mn-set V. 

Then there exists a restricted simple 1-(mn, m, r)-design. 

7. Let v, m, k and r be positive integers such that 2 5 k 5 m 5 v. 



Let V = {I, 2, .  . . , v} be partitioned into m parts d = {P,, ~ 2 , .  . . , P,} of 

size pl, p2, . . . , pm, respectively such that pl 2 pa 2 . . . 2 p,. Suppose that 

v r  = 0 (mod k), plk <_ v and r < pfflpff2. - .pm,-, for all {al, a 2 , .  . . , ar-1) C 

{2,3, . . . , m). Then there exists a restricted simple l-(v, k, r)-design. 

8. There are 2 simple methods of constructing new restricted simple l-designs 

from old as follows. 

8.1 (sum construction). Suppose that there are a restricted simple l-(vl, k, r)- 

design, (fi , 9 1 ,  931) and a restricted simple 1-(v2, k, r)-design (h, 9 2 ,  9 3 2 )  where 

Knh = 0. Then (&u&, 9 1  u d 2 ,  B 1 U B 2 )  is a restricted simple l-(vl +v2, k, r)- 

design. 

8.2 (refinement construction). Suppose that there exists a restricted simple 

1-(v, k, r)-design, (V, 9, B). Then there also exists a restricted simple l-(v, k, r)- 

design with any refinement of 9. 

4.2 Open problems 

There are open problems that can be further discussed as follows. 

1. To investigate some necessary conditions for existence and constructions of a 

t-SBGDD(m, n, k) for some t ,  2 5 t _< k - 1. 

2. To investigate some necessary conditions for existence and constructions of 

a restricted simple l-(v, k, r)-design when the size of partition is arbitrary and 

r > pff,pa2 - - - pa,-, + 1 for some {al, a 2 ,  . . . , a k - 1 )  E {2,3, . . . , m). . 
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