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CHAPTER I

INTRODUCTION

slmple 1-designs are well known

m i
\\
7, Sarvate and Beam introduced a new

Sarvate-Beam group divisible: d;sgqns and res ricted simple 1-designs. So in this

"'.i-",..-__f

f o .
:
thesis, we are USI@v very new can.aeptia.mﬁ&ﬁ esigns with a new twist

and proving existen .and non-existen amilies of these new designs
| - f

we have developed. Flrst we recall deﬁmtlons of group divisible designs, t-designs

sl e BEINAN 2 7) 5

Definition 1. 1 1. Let m,n and®k be positive.integers suchithat m > k > 2.

A ol WARNLLI M) 30 VB &) iy e

following properties :

1. V is a finite set of mn elements called points,
2. ¢ is a partition of V into m nonempty subsets of size n called groups,
3. £ is a collection of k-subsets of V called blocks,

4. any two points from the same group do not occur together in a block, and



5. each pair of points of V from distinct groups is contained in exactly one

block.

Example 1.1.2. Let V = {1, 2,3,4,5, 6} be partitioned into three groups of size

two, 4 = {{1,2},{3,4},{5,6}}, and a collection & of 4 blocks of size three,

{{1,3,5},{1,4,6,},{2,3,6}, {2,450 Since each pair of points from distinct

groups is contained in exa

Definition 1.1.3. Le e Pos integers such that v > k > t. A

t-(v, k,r)-design is , isfying the ing properties :

1. V is a finite set

to save space, we de

. 1em)f the block {z1,z2,...,2x}.
Example 1. PT B il/ Wm ﬁ\ 9B, of 7 blocks of size
three is {{1 a 1, 6; ﬁ ,4,7},{3,5,6}}. Since
each pqr ﬂs m vel ﬁb{ﬁlﬁV , %) is a sim-
ple 2-(7¢3, 1)-design. On the other hand, a collection %, of cks of size three is

{2{1,2,3},{1,4,5},{1,4,7},{1,5,6},{1,6,7},{2,4,5},{2,4,6},{2,5,7},{2,6, 7},
{3,4,6},{3,4,7},{3,5,6},{3,5,7} }. Since each pair of points is contained in two
blocks, it follows that (V, %) is a 2-(7, 3, 2)-design.

Definition 1.1.5. Let v, k and t be positive integers. A t-Sarvate-Beam design

t-SB(v, k)-design, is a pair (V, %) such that the following properties are satisfied:



1. V is a finite set of v elements called points,
2. A is a collection of k-subsets of V' called blocks, and

3. each t-subset of V occurs in distinct number of times in blocks.

In case t = 1, it is simply called a S e-Beam design, SB(v, k)-design. A strict

t-SB(v, k)-design is a t-SB(v; #/hat exactly one t-subset of points
o ()

of V occurs 7 times for

maticians were working > restriction was pairs should come

same number of times. e first people who asked if all

pairs come with ..',':ﬁ;:.r.:;.-w_,.‘.‘.., equencies. 1 wion of such designs turned
out to be very intereging IO ointﬂ view and raised interesting

questions about count Staton who @wrote five papers on these types of de-

ign called }E;ilfu,ﬂt N e NIV e designs. 15— 3
CY W NRTD b i (1T

This thesis is organized as follows. In chapter II, we give necessary conditions
for the existence of t-Sarvate-Beam group divisible designs, study the first smallest
example for t = 2 in detail and show the complete construction of strict 1-Sarvate-
Beam group divisible designs. In chapter III, we give necessary conditions for the
existence of restricted simple 1-designs and we present many methods to construct

such designs.



CHAPTER II

t-SARVATE-BEAM GROUP DIVISIBLE DESIGNS

In this chapter w V% called a t-Sarvate-Beam group
divisible design and in ome of ies. We give the construction

of the first smallest ¢ technique. We finish with

§ ivisible designs.

the complete constr

2.1 Definitions

First, we introdtce ate-Beam group divisible de-
sign. Next, we present a cons ‘action for -‘ frict SBGDD(3, 2, 3), the first smallest

design when ¢t = 2%In of this sec présent a construction for an

infinite SBGDD (3,343

Definition 2.1.1. Qt m,n,k and t be posmve ngegers such that 2 < k and

<1 GBI WS sconin 0.

a triple (V, 9, %) such that the following properties are satisfied:
1 PR b SR b RAINLNAY

2. ¥ is a partition of V into m nonempty subsets of size n called groups,
3. A is a collection of k-subsets of V called blocks,
4. any two points from the same group do not occur together in a block, and

5. each t-subset of V' from different groups occurs in distinct number of times

in 4.



A strict --SBGDD(m,n,k) is a t-SBGDD(m,n, k) such that exactly one t-
subset of V from different groups occurs ¢ times for every positive integer i =
R

Denote by 2 = (V,¥4, %) the t-SBGDD(m,n, k) where parameters are not

mentioned.

The general term :-SBGDD. s\ us¢d dicate any t-SBGDD(m,n, k) and

We give a few examples of t-

\

SBGDDs now. For conveat Lset V umed to be {1,2,...,v} unless

Example 2.1.2. Le 3 “partitioned into four groups
of size two, ¥ d a collection of 9 blocks of
size four, = {{1,2 ,7 ~ 4,6,7,8},5{5,6,7,8}}. Since
single point occurs a differen: r-r" om 1 to 8 in blocks, (V,¥, %) is
a strict 1-SBGDD(4,2,4). .- ._,,-' 7

—

Example 2.1.3. Leg¥="152-345:0" be partitio & into three groups of size
two, & = {{1,2}, {%},
%, = {{1, 3% ,2{1,4¢55,2{1,4,6},5{243,5},5{2, 3,6},6{2,4,5},7{2,4,6}}, all

&) AN I LD . smber of e

i) PRI LIV i (A1 SN

three, &, = {{1,3,5},8{1,4,5},4{1,4,6},2{2,3,5},5{2,3,6},6{2,4,6} }, among

o) le@m of 28 blocks of size three,

twelve pairs lo

the twelve possible pairs of points from different groups, there is exactly one pair
which occurs ¢ times, for 1 = 1,2,...,12 in %,, so (V,¥,%,) forms a strict 2-
SBGDD(3,2,3).

Example 2.1.4. Let V = {1,2,3,4,5,6,7,8,9} be partitioned into three groups

of size three, ¥ = {{1,2,3},{4,5,6},{7,8,9}}, and a collection of 340 blocks of



size three, 2 = {{1,4,7},{1,4,8},16{1,4,9},2{1,5,7},20{1,6,7},10{1,6,9},
39{2,4,7},10{2,4,8},5{2,5,7},40{2, 5,8},6{2,6,7},50{2,6,8},60{2,6,9},
7{3,4,7},8{3,5,7},19{3,5,8},21{3,5,9},9{3,6, 7}, {3, 6,8}, 15{3, 6, 9}}. Sinceall
twenty-seven pairs of points from different groups come in distinct number of times
in 2 which are 1,2, 7,11, 15, 16, 18, 20, 21, 23, 24, 25, 26, 30, 35, 36, 45, 47, 48, 49, 50,
51, 59,60, 85,100 and 116, this implies ;ﬁ%/&ég, PB) is a 2-SBGDD(3, 3, 3).

For t = 2, it is s1mp1y ca,lled a Saivate—Beam group divisible design, de-

noted by SBGDD (m, f@ead of 2-SBGDD(m,n, k) and denote by b,d;, r;

the number of the blocks, ?numberif distinct t-subsets of points and the repli-

} r -
gra
s

‘he_'de§_igh, respectively.

cation number of the pointi7 i

If (V9,98) is a s BGDD(\;(L n, k), then we can easily obtain a t-

SBGDD(m,n, k) such that ach t-subs;t of V frem different groups occurs in

-i -l{r-h

distinct number of time, for eixample copﬂ?pct a new collection &' from % by

making s copies (for some pqsmve 1ntegef§ By 2) of each blocks in 8. Then each
t-subset of V fron»d«ilﬂ'grem groups still occurs in ehst.m.ct number of times in %’
from s, 2s, . (m)n siie (V,4,8)isa t-SBGDD(m n, k). Therefore, we focus

on constructions of a strlct t-SBGDD(m,n, k).
Remark 2.1.5. [5} A-strict ¢-SBGDD(n, 1, k) 'is a strict £-SB(m, k).
THe, proof of thefollowing theorem follows immedratély feom the definition.

Theorem 2.1.6. A strict k-SBGDD(m,n, k) exists for every positive integer m,n

and k where 2 < k <m.

Proof. Suppose that an mn-set is partitioned into m groups of size n. Since the
number of different blocks of size k for which points comes from different groups

is (™)n* and equal to the number of k-subsets of points from different groups.
k

k

For all positive integer 7, 1 < ¢ < (TZ)" , we can take each k-subset of points



from different groups, i copies as 7 blocks. Therefore, we have constructed a strict

k-SBGDD(m, n, k). O

Example 2.1.7. Let V = {1, 2,3,4,5,6,7, 8} be partitioned into four groups of
size two, 4 = {{1,2},{3,4}, {5,6},{7, 8}} and a collection of 526 blocks of size
4138}5{145}6{146} 7{1,4,7},

three, = {{1,3,5},2{1,3,6},
8{1,4,8},9{1,5,7},10{1,5,8) 8} 13{2,3,5},14{2,3,6}, 15{2,
3,7},16{2,3,8},17{2,4 {2 4,8},21{2,5,7},22{2,5,
8},23{2,6,7},24{2,6, - 6 7},28{3,6,8},29{4,5,7},
30{4,5,8},31{4,6,7 from different groups oc-
cur in distinct numbe s, this implies that (V,¥, %)

forms a strict 3-SBGDDP(4

the existence of t-SBGDDs.

Let m,n,k and t b:

Theorem 2.2.1. If a §tnct t-SBGDD( m n, k) exists, then the number of blocks

in the design Fﬁ%&ﬂ"]ﬁﬂa&] ‘Mﬁﬂﬂ EL’] ﬂ@nﬂ )= 0 (mod 2)

cmdwhent—aJ m — 1)n%[m@n — 1)n? +&— (mod 4(k — 1)).

Proof. %rst since an mn—i @é Hloned u;g) %l fJ @s ;’ln the number

of distinct t-subsets from different m groups of size n in the design is (t>n .

m .
It follows that d; = (t )nt. Next, since the occurrence number of distinct ¢-
subsets from different groups in the design must occur 7 times for any integer ¢,

1 < i < d,, the sum of occurrence number of distinct ¢-subsets from different

dy(dy + 1)

groupsis 1 +2+---+d; = 5

. Also, looking at each block contains (':)



d 1
tuples, it follows that there must be a total of ———t(;t(:)_ ) blocks. Since the number
t
of blocks must be an integer, it follows that d;(d; + 1) = 0 (mod 2(’:)) O

The following corollaries are immediate from Theorem 2.2.1.

Corollary 2.2.2. If m = 2 (mod 3) and n = 1,2 (mod 3), then a strict SBGDD

(m,n,3) does not exist.

Proof. Since m = 2 (

n? = 1 (mod 3). ThM

and hence [m(m — 1

, m(m — 1) = 2(mod 3) and
— 1)n? + 2] = 2(med 3),

d 24). By Theorem 2.2.1, a

strict SBGDD(m, n, 0O
Corollary 2.2.3. If 3\ 2 hen k # 1 (mod 4).

Proof. Assume that k = '1,-.--.—' = hemwe have k?[k(k—1)k?4-2] = 2( mod 4).
If [k(k—1)k%] [k (k— 1)k2+2] ), then [k(k—1)k?|[k(k—1)k*+2] =
4k(k — 1)q for soms-inte ;,"_._._-.,.f;,.,.,..,__.ﬁ:_.-, is k > 2, it follows that

LY

S

k*[k(k — 1)k? + 2] = 0 (mod 4) which contradicts

the assumption. B;Iggeorem 2.2.1,a strlct SBGDD(k, k, k) does not exist. O

— )] ADEDINEUANT « - 25000 1 o
”‘“W"'mﬂimuwnwmaa

Proof. Assume that k = 0, 1(mod 4) and n = 1,3 (mod 4). Since k(k — 1) =
0(mod 4) and n?> = 1(mod 4), n*lk(k — 1)n* + 2] = 2(mod 4). If [k(k —
1)n?][k(k — 1)n? + 2] = 0 (mod 4k(k — 1)), then [k(k — 1)n?|[k(k — 1)n* + 2] =
4k(k — 1)q for some integer g. Since k(k — 1) # 0, as k > 2, it follows that
n?[k(k — 1)n? + 2] = 4q. Thus n?[k(k — 1)n* + 2] = 0 (mod 4) which contradicts

the assumption. By Theorem 2.2.1, a strict SBGDD(k, n, k) does not exist. O



Remark 2.2.5. A strict t-SBGDD(m,n, k) has the least number of blocks for
any other t-SBGDD(m, n, k).

Theorem 2.2.6. Let m,n,k and t be positive integers and k,m > 2. If a t-
SBGDD(m,n, k) ezists, then the sum of the replication numbers of points in group

is less than or equal to the number of bl?cks in the design.

/)

Proof. Suppose that the sum of replication’xfumk_)ers of points in group is greater
- ,
than the number of blg_gl_gg_ in-the design. It follows that there is a block in the

design containing tv:?/ﬁom th&x same group er there is a point occurs more
ck

than one time in a ich contradicts the defimition of such a design. Thus

the sum of replicati efs of p?ts in group is less than or equal to the
a0kl

number of blocks in

. O
"

5§
i

# i
Remark 2.2.7. Theorem 2.2.6-will be useful for the construction of strict 1-

s el
SBGDDs in Section 2.4. — =
e =
When t = 2, weépresent the first smallest examptg-.@f a strict SBGDD(3,2, 3)
Yy ¥
by enumeration in the next section. -
-\_"'. e

2.3 A strict SBGDD(3,213)

Stanten.(5}, suggested a~.method, to.censtruct a.strict-SB(6,3). We apply his
idea to gonstruct a strict SBGDD(3, 2, 3) as follows.

Let V = {1,2,3,4,5,6} be partitioned into three groups of size two, ¥ =
{{1,2},13,4},{5, 6}}. There are 12 pairs of points from different groups and the
sum of the number of times which pairs occur is 1+2+3+:-- 4+ 12 = 78, it
follows that, we need 26 triples. We let the frequencies F' of the various triples
be as follows. Note that, for any z,y,z € V, F(zyz) = s means s{z,y, z}.

Without loss of generality, suppose that F'(135) = 1, F/(136) = 0. Let F(145) =



10

a, F(146) = b, F(235) = ¢, F(236) = d, F(245) = e, F(246) = f. We can now

write the pair frequencies:

F(13) =1, F(14) =a+b, F(15)=1+a, F(16)=b,
F(23)=c+d, F(24)=e+ f, F(25) =¢c+e, F(26) = d+ f,
F(35) =1+c, '/ (45) =a+e, F(46)=0b+ f.

Let A= F(13) + F( 14)+n& a+b)

B = F(23) + F(24) +

C = F(35) + F(36
Thus A+ B = 2C T B = 52. If we attempted to assign
the pair frequencies in o : then v ;;ﬁ.ﬂlave A =10 and B = 42.
Since A = 2(1 +a+ 2% set @ = 2, b = 2, we have
that F'(13) = 1, F(14)
c+d+e+ f =21. Next, : T b, e =5, f = 6. This gives, F'(23) =

10, F(24) = 11, ng

ing B = {{1,3,5}, :}1 4,5},2{1,4,6},4(2,3,5},6{2,3,6},5{2,4,5},6{2,4,6}}
as the collectlo@rof twe 1x blocks of size three

ALANEDDI s v
ok whkitely! Mikitioh (1701} e

Fortran77 program

Obviously,

1. a,c, f are distinct positive integers and b, d, e are distinct integers, but
bd>2and e=0o0re>2anda,b,cde, f<11.

2. The sum of the replication numbers of points from each group is equal to
the number of triples because each block must have exactly one point from each
group. In general, this property is satisfied if the number of groups is equal to the

block size.



11

3. There is at most one group that its points have thé same replication num-
ber. Suppose that V = { 1,2,3,4,5, 6} is partitioned into three groups of size two,
¢ = {{1,2},{3,4},{5,6}}. If there are two groups such that its points have the
same replication number, say {1,2},{3,4}. Then F(1) = F(2) = F(3) = F(4) =
13. This implies that, F(1) = 1+a+b = 13,a+ b = 12 or F(14) = 12, and
F3)=14c+d=13,c+d=120r F(2’3y7;’1"2‘ Therefore F'(14) = F(23) which

-

is not allowed for a strict design. 2 —r

DID(3,2,3) is obtained using a Fortran77 pro-

3

E1;()_'vefr__ii’§r an infinite SBGDD(3, 3, 3). Basically,

This method can alsobe us
we assign the copy number o var‘i_ous&blocks as a variable and apply certain
o *,
alid --I'IJ
Fibonacci numbers. We illustrate this process now. Let V = {1,2,3,4,5,6,7,8,9}
ri

The 56 solutions of iﬂ}?ﬁ..-S

gram as shown in Table 2

" *

be partitioned into three groups-of size ‘tﬁgﬁ, 4 ={{1,2,3},{4,5,6},{7,8,9}}.
el e

ey gy
There are 27 pairs of points of V frem diﬁjr'ent groups. Let the frequencies F' of
L refe-

the various triples belas follows: y | y
L -l
'I"j i '_"LJI

F(147) =T, F(148‘), ="T9% F(149) =T, F(1§7) = T4, F(158) = Ts,
=i i

F(159) = 25, F(167)¢ m=z,, F(168) &5, F(169) =z, F(247) = 10,
F(248) = z1,, F(249) Pz, | IP(257) € 2,5 FF(2568)! L1, F(259) = 215,
F(267)= @&, ~FI(68) <= o F(269))2 Tiei B(340)] = 170, 0 F(348) = zp0,
F(349) = z9;, F(357) =9, F(358) =xy3, F(359) = xo4, F(367) = x5,

F(368) = x96, F(369) = o7,

where z, is a positive integer, fori = 3, ..., 27, define z; = z;_14+x;_2 and 7, = x;.
We can now write the pair frequencies:
F(14) = 4z,, F(15) = 16z, F(16) = 68z, F(17) = 17z, F(18) = 27z;, F(19) =

44z, F(24) = 288z, F(25) = 1220z;, F(26) = 5168z, F(27) = 1275z,, F(28) =



12

20631, F(29) = 3338z, F(34) = 21892z, F(35) = 92736z, F(36) = 392836z,
F(37) = 96917z, F'(38) = 156815z, F'(39) = 253732z, F(47) = 4237z, F(48) =
68551, F'(49) = 11092z, F(57) = 17947z,, F(58) = 29039z, F'(59) = 46986z,

F(67) = 76025z, F(68) = 123011z, F(69) = 199036z;. All 27 pairs of points
from different groups come in distinct number of times, it follows that the design
is a SBGDD(3, 3, 3) with 514228z blocks." é)ﬁ)e 7 is a variable, we set a variable

as the copy number for the block. Therﬁfore, W’éfhtain the desired result.

24 A constructiﬁf// stricﬁ 1-SBGDDs

'
In this section we considern a fey sB'ec’I'al cases and introduce several construc-

e

esent a.rconitructmn of a strict 1-SBGDD(m, n, k).

ad

tions of the design. Now, we

Suppose that an mn-set is pa “1t‘10ned mﬁ? m groups of size n. Recall if such a

design exists, any two points in/ };ﬁgasame g;gmp do not occur in the same block
and there are exactly an_-nz bloeks it f@[qw.s that for each group, the sum of
the replication numbers Lf'—‘j-';—‘k'ﬂ For each point
i, a property of the rep‘]T‘lcatlon number of the point 7 would be chosen one in
{1,2,...,mn}. - N

From this observation, it follows that we c¢an allocate a point in group such

that the sum of points in group is notigreater than-number of blogks in the design.

The following lemma is useful for the existence ofra strict 1-SBGDD.

Lemma 2.4.1. Let m and n be positive integers such that 2 < m,n.
(i) if n is even, then we can partition an mn-set into m groups of size n such
. o - n(mn+1
that the sum of points in each group is 42—2,
(1) if n and m are odd, then we can partition an mn-set into m groups of size
n(mn+1

n such that the sum of points in each group is J———z, and

(113) if n is odd and m is even, then we can partition an mn-set into m groups
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n(mn+1)+1 n(mn+1)-1
2 2 :

of size n such that the sum of points in each group is or

Proof. Let V = {1,2,...,mn}.

(i) When n is even. LetH1={1,2,...,2} H, = {2+1,g+2 M},
H,,, = {3(—2—"-2“_—11+1,M_—11+2,...,mn}. In fact, for « = 1,2,...,2m, H; =
{36-D+jl1i=1,.

a partition on V into 2m groups

n

i ! ine to check that {Hl,HQ,...,Hzm} is

the sum of points in each group

each group H; U H, ~ : ton, o 2n 2 _tin ﬂ%ﬂl
(ii) When n and : - Fitst; Since 3 is even, by (i) we can partition

X1, X2, ..., X, such that the

. ‘f:;:_quw %ﬂa&ﬁ”ﬂmﬁf} "
A SN RY weN (1R EiE:

Yooy = {m(n—3)+m—1,m(n—3)+m+%{m(n—3)+2m+1}.

In fact, for any integer i, 1 < i < m,

ifiis odd, Y; = {m(n—3)+i,m(n—3)+m+gm_Ti’Lzl,m(n—3)+3m—ﬁi—le},
if 7 is even, Y; = {m(n—3)+z',m(n-—3)+2m—gi;—zl,m(n—3)+2m+m—_2ﬂ}.
Note that the sum of points in Y] is 611;_11:29_7n_+3. Therefore, ¥ = {X1 UY;, XoU

Vs, « o0 583 L) Ym} is the required partition on V and the sum of points in each
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group X; UY; is £=3mn=9)+1) 4 6mn-9m+3 _ n(matl)

(ili) When n is odd and m is even. First, since n — 3 is even, by (i) we can
partition {1,2,...,m(n — 3)} into m groups of size n — 3, say X1, Xa,..., Xm
such that the sum of points in X is (n_—SMn_—Qﬂ_ Next, we partition {m(n —
3)+1,mn—-3)+2,...,m(n—3) + 3m} into m groups of size 3 as follows.

—3) +3m},

ifiisodd, Y; = { ,m(n—3)+3m—(i—;12},

I i |
if 4 is even, ¥; = {m( 3)+z‘m(n—3)+2m—’ ym(n —3) +3m — 7},

WAL L1 DAL A e

Note that whehl i is odd, the sum of points 1n Y, is émn-9mi4 and when i is even,

o R IR BV B

Ym} is the required partition on V' and the sum of points in each group X; UY;

)

6mn—9m+2 _ n(mn+l)-1
2 - 2

, when 1 is even. a
We illustrate the application of the above lemma in the following examples.

Example 2.4.2. Let n = 4,m = 3 and V = {1,2,...,12}. Using Lemma

2.4.1 (i), we get Hy = {1,2},H, = {3,4},H; = {5,6},H, = {7,8},Hs =
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{9,10}, Hs = {11,12}. Therefore, ¥ = {H, U He,H, U H;, H; U Hy} is the

required partition on V with the sum of points in group is 26.

Example 2.4.3. Let n =5 m =3 and V = {1, 2,0, 15}. Using Lemma 2.4.1
(i), we get X; = {1,6}, Xp = {2,5}, Xy = {3,4} are three groups of size two
and Y, = {7, 15, 11}, ¥ = {8, 12, 13}, )= {9, 14, 10} are three groups of size
three. Therefore, ¥ = {X 1UY;, XU Yz,f X;Q)@} is the required partition on V'

with the sum of points-in-greup is 40.

-

Example 2.4.4. Let:"/ia,/ 74 dnd V. = {1,2,4..,20}. Using Lemma 2.4.1

(iii), we get X; = {1% == {2,7}1 XNy = {3,6}, X, = {4,5} are four groups
of size two and Y; (20, 16} 7 var=.{10,16,17), v; = {11,19,14}, YV, =
¥ .- i

{12,13,18} are four groups of si_zé;thre’e_._ Therefore, 4 = {X; UY;, X, UY,, X3 U

i

Y3, Xy U YZ;} is the required partition q‘x};_}/ with the sum of points in group are

.
it

+
s
-l

S

—a
—

53,52, 53 and 52, respectivel’y’f."“;'

ot

‘_IF_ - g "
<= LfE—
Now, we prove the existence of a strict 1—SBGED4(7_7}, n, k).
Y ¥
Theorem 2.4.5. Lét m,n and k be positive integers and 2 < k < m.

Sl

If mn(mn + 1) = 0 med 2k, then a strict, 1-SBGDD(m,n, k) exists.

Proof. Let V' = {1,2;...;mn} be partitioned 'into m groups of size n, say ¥ =
{Gl,Gz, ae ,Gm} bysLemma 2.4: 15 Sinee _"ﬂ'z’;ciﬂl isjan, integer; b = M;’Z’—HZ
For conyenience, call points in G;, a;1, @, ...,a:,, for all i+ = 1,2, ... m. First,
place point a;; of G; in ay; different blocks, say that Bj, Bs,...,B,,,. Then
continue placing point aq; of G in ay, different blocks, say that By, 11, Baj;+2, - - -
B,,,+a,; Where the subscripts are added modulo b. The same argument is applied
to other points of G; and G,, G3, ..., G, respectively. Let & = {Bl, B,, ... ,Bb},
claim that(V,¥, %) is a strict 1-SBGDD(m,n, k).

To see this, each point a;; occurs in a;; blocks. Since mn(mn+1) =0 mod 2k
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and each point come in only one time in a block, it follows that the size of block
is k and there are exactly M—%ﬂ—) blocks. Since 2 < k < m and the sum of the
replication numbers of points in each group is equal to the sum of points in such
group which is at most m—"('z"k—’”—ll, it follows that any two points in a block come

from different groups. This completes the proof. O

Example 2.4.6. To illustrate the method/ heorem 245 let m=4, n=2
and V = {1,2,3,4,5,6,78)-b6 part;ﬂxoned mt,affour groups of size two, ¥ =

{Gl,Gz,G3,G4}. Usingjlwmﬁl /

and G4 = {4,5}. Next,

A2 (1)1 let Gy=41,8},G, = {2,7},G;s = {3,6}

oing to'construct a collection & of blocks of size

three for a strict 1-SBG
First, for the group
in one block and eight differen blocks reé?‘éc‘blvely, 2 ={{1,, },{8,, },{8 ., },

{8, }.{8,, }, {8, }, {8 },{8 }{S,f};‘{,,}{,,}{,,}} Second, for

the group G; = {2, 7}, we contmue placmg ; points 2 and 7 in two and seven differ-

ent blocks, respectweig’ Z={0 7 Y {87 L I% 7==L,{15 T BT 18T )
{8,,}.{8,, },{8,, } {2, 312, S Thlrd'for the group G; = {3, 6},

we continue placing pomts 3 and 6 in three and six dlfferent blocks, respectively,

%: {{13716}){83736}5{877)6}5{837$ }){8377 }){8) 73 }1{8)3a }’{8a3> }’{8’31 }1
{2,6, },{2,6, },{7,6, }}. Finally, for the group.G4 = {4,5}, we continue placing

points 4'and 5 in four and fivedifferent.blocks, respectively. Then the collection
of 12 blocks of size three as follows: {{1,7,6},{8,7,6},{8,7,6},{8,7,4},{8,7,4},
{8,7,4},{8,3,4},{8,3,5},{8,3,5},{2,6,5},{2,6,5},{7,6,5} } = {{1,6,7},2{2,5,
6}, {3,4,8},2{3,5,8},3{4,7,8},{5,6,7},2{6,7,8} }. Therefore, (V,¥, B) is astrict
1-SBGDD(4, 2, 3).
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Table 2.1: The 56 solutions of a strict SBGDD(3, 2, 3).
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Table 2.1: (Continued)The 56 solutions of a strict SBGDD(3, 2, 3).
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CHAPTER III

RESTRICTED SIMPLE 1-DESIGNS

In this chapter, wa@‘: 1on of a restricted simple 1-design

which generalize the n

erties. Next, we pr

1-designs by many i

and then develop a new des;gga.ll iare
e ,—f‘ar" 24 '?*"-‘J-

general term a rqs‘hlctod unple 1- ‘(’.llzl is

U I
Definition 3.1.1. Le6t v,k and r be posmve integers such that 2 < k < wv. A

st 641 ) B P s s

1. is a ﬁmte set of v elements calle ’Tdhts

Q:W’]ﬂ\‘lﬂifuﬂm MUY

2. is a collection of different k-subsets of V' called blocks, and

3. each point of V is contained in exactly 7 blocks.

Denote by 2 = (V, %) the simple 1-(v, k, r)-design where parameters are not

mentioned in the design.

Example 3.1.2. Let V = {1,2, 3,4,5,6} and a collection of six blocks of size
three & = {{1,3,5},{1,3,6},{1,4,5},{2,3,6},{2,4,5},{2,4,6} }, each point oc-



20

cur three times in blocks and no repeated block, this implies that (V, %) is a simple

1-(6,3,3)-design.
We introduce the definition of a restricted simple 1-design as follows.

Definition 3.1.3. Let v,k and 7 be positive integers such that 2 < k < v. A

restricted simple 1-(v, k,7) @‘WV P, B) satisfying the following

properties : "'--_._.; _.-—-"'

1. (V, %) is a simple 1-(v, k&
2. & is a partition ' empty su t: d parts, and

3. any two points part, cCL ther in a block.

one is a simple 1-(v,

Naturally for the sﬂae v-set, we can have many &'titions and for certain

L iﬁﬂ'ﬁf {1 I
eeamdB AT DU 1) b

non—emste%ce of a restricted simple 1-(6,3,3)-design in each of the possible cases:

(1) V' can be partitioned into & = {{1,2},{3,4},{5,6}} (each part of the
same size 2) or {{1,2},{3,4}, {5}, {6}} or {{1,2}, {3}, {4}, {5}, {6}} or { {1}, {2},
{3}, {4}, {5}, {6}}. For the first partition 2 = {{1,2},{3,4}, {5,6}}, and a col-
lection of blocks of size three, = {{1,3,5},{1,3,6},{1,4,5},{2,3,6},{2,4,5},

{2,4, 6}}, all six points occur three times in blocks, no repeated block and any
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two points from the same part do not occur together in a block, this implies that
(V, P, B) forms a restricted simple 1-(6,3,3)-design. Interestingly, for all other
partitions given above the same blocks give a restricted simple 1-(6, 3, 3)-design.

(2) On the other hand, if V is partitioned into & = {{1,2,3},{4,5,6}}, a

restricted simple 1-(6,3,3)-design not exist, because each block must have

0
[ /t this partition has only two parts.
ioned 1& ate-o*= {{1},{2},{3},{4,5,6}}, a re-

scause each element occurs three

three points that come fro

(3) Lastly suppose

stricted simple 1-(6,3(

times in blocks and eac es. e \ e number of blocks is —(—1 =6

take care of the three points

the replication number of the

but the design needs

from {4,5,6}.

point i in the design. Sum scussion, we obtain the following

necessary conditions.

¥’

3.2 Necessargﬂc O m
RN R <0

Theartnf 4 2h 14 ASRUURAIRYANE v

tztzoned into m parts P = {Pl, ) o T o % } where |P;| = p; for alli=1,2,.
and B is a collection of b blocks of size k. Without loss of generality, suppose that

P1=>p2 >+ 2 Pm. Then
1. vr = bk,

2. ;ir < b,
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3. k < min{2,m},

4' b S Z pa1pa2 te 'pak;
{a1,02,...,0 }C{1,...,m}
5.7 S Z PoyPasy * pak_u and

{a1,02,...,0_1}C{2,...,m}

6. forallj=1,....m, Y ri=p

VieP; @

;e e r; 18 the replication number of i for
iev. /

Proof. 1. It follows from @
2. Since each point M ¥
of distinct blocks is at |
3. Since each block different parts, k < m.
From 1. and 2., it follow.
at each point comes from

4. Since the number

different parts is (eiDor, Doty AR follows that the maximum

number of blocks is

5. Apply 2. and 4 e t.)ll

6. Since each point & P; is contained in exactly r mocks the sum of replica-

“°““”“b“°“ﬁﬁ“ﬁr%?1ﬁﬁn‘3’wmm °
2 “ﬁ“ﬁ"‘r&m‘itﬁeﬂm’f%ﬁﬁas

There are many ways to construct such a restricted simple 1-design. We first

present a construction for a restricted simple 1-(v, k, 1)-design as follows.

Theorem 3.3.1. Let v,k and m be integers such that 2 < k <m < v and
k dividesv. LetV = {1, 2t ,'u} be partitioned into m parts P = {Pl, ) o TP ,Pm}
of size p1, P2, . . ., Pm, Tespectively such that py > py > -+ > p,, and pr1k <v. Then

a restricted simple 1-(v, k,1)-design exists.
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Proof. Without loss of generality, suppose that P, = {1,2,...,p1}, P, = {p1 +
1,p1+2,...,p1-|-p2},...,Pm={p1+p2+---+pm_1+1,...,p1+p2+---+pm}.
For any integer i, 1 <1 < 7, let B; = {z (- z+3'—’ ...,i+£k——,})ﬂ}, note that
B; CV and B;N B, # @ for ¢ # j. Finally, deﬁne.@z{B,- : i=1,2,...,%}. It

is not difficult to see that each poi occurs in exactly one time in a block of

2, all blocks of # are diff k of Z contains exactly k points.

a. block B; comes from different
parts of the partitioy 5 h z > y. This implies that
there is a positive inte \\\\ ote that for any integer 1,

1<i<m,if aandb

Thus we need only to sh

\ mce p; < 7, it follows that
lz -yl = [%] >p — z and y comes from different

parts. Therefore (V, .k, 1)-design. O

3.1, let v =15k =3 and V

I

{1,2,...,15} be partitioned das # = {P,, P, P;, P} where P =
{1,2,3,4,5}, P, &= Jfand P, = {14,15}. We
obtain B; = {1,6,9}, = {:ms, 13}, By = {4,9,14} and

Bs = {5,10,15}. Set &= {{1,6,11},{2,7,12},{3,8,13},{4,9,14},{5,10,15} }.

v N HE 0
L HCAELE /R P) (1)

designs‘from old.

Theorem 3.3.3. Let v, k and m be positive integers such that 2 < k < v. Suppose
that there exists a restricted simple 1-(v,k,1)-design. Then there also exists a

restricted simple 1-(v,k — 1,k — 1)-design.

Proof. Suppose that (V, 2, %) is a restricted simple 1-(v, k,1)-design. Let %'

be a collection of all subsets of size k — 1 of each block in &’. We claim that
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(V, 2, 4') is a restricted simple 1-(v,k — 1,k — 1)-design. Clearly, this design has
v points, every block contains £ — 1 points from different parts because any two
points z and y in a block B’ € 4, there is only one block B € % such that B
contain points x and y, it follows that x and y comes form different parts of &2.
point occurs in exactly £ — 1 blocks, let

@ size k such that z € B, it follows

slch - B’ C B. This implies that the

Hence, we just need to show that

z € V. There is exactly o
that we have k£ — 1 blo

replication number o

The proof is complete. a
Example 3.3.4. Fr 3 and we obtain a re-
stricted simple 1-(15 ign AV P 3), where, V = {1,2,...,15} , & =

{{1,2,3,4,5},{6,7,8 . | and a collection 4 of 5 blocks

of size three {{1,6, 11}, {
{{1,6},{1,11}, {6, 11},

{9, 14}, {5,10}, {¢ }'r"—---_-_'?t::-*_'_"_"-""‘"‘ a-oi-+2 blocks of size two. This im-

14},{5,10,15} }. Thus, let &' =
8},{3,13}, {8,13}, {4,9}, {4, 14},

plies that (V, 2, 2] forms 152, 2)-design.

Next, we ﬂ a ﬁ (v, k,r)-design when
the partitioniﬂ | ] g fthe e size m mth a rather nice result on
a res

“ﬂ“‘ﬁ“”l‘ﬁﬁﬂ’ifﬁﬁﬁﬂ NYIAY

Theorem 3.3.5. Let n and r be positive integers. Suppose that an 2n-set is
partitioned into two parts of the same size n. Then there exists a restricted simple

1-(2n,2,r)-design for allT =1,2,...,n

Proof. Let V = {z1,%s,...,2,} U Z, be partitioned into two parts of size n
and @ = {{z1,25,...,2,},Z,} where Z, denoted {1,2,...,n}, the set of in-

tegers modulo n. Each positive integer r, 1 < r < n, a collection £ of blocks
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for a restricted simple 1-(2n,2,r)-design constructed as follows. For each i €
{1,2,...,n}, define B; = (z;,1) be n base blocks, note that (a,b) can be regarded
as block {a,b}, the blocks are obtained by developing the second coordinates
(modulo n) of base blocks B; up to r times (keeping the first coordinates fixed),

a collection & of nr blocks that in every point of V exactly r times and

no such block contain two ' /)ﬂe part. The result (V, 2, %) is a

restricted simple 1-(2n,

Example 3.3.6. Suppe } U Z, is partitioned into two

parts of size four £ For the first, a restricted
simple 1-(8,2, 1)-desi /P Rher a collection %, of 4 blocks of size
two is {{z1, 1}, {z,

ple 1-(8,2,2)-design (14

e other hand, a restricted sim-
n %, of 8 blocks of size two
is {{xla 1}’ {1:1,2}, {m2a ) ‘.f,‘_ ‘ v ."‘1 3 ,},{.'14'4,4}, {$4, 1}} NeXt1 a re-
stricted simple 1-(8, 2, 3)__—_,_,_?_ Z3) wihere a collection % of 12 blocks of
size two is {{z1, 1 F{@rre it tdoretrtdoraretttot , {13, 3}, {23, 4}, {23, 1},
s 4 : ’ﬂ

{x4,4},{x4,1},{x4,ﬂ y e_ﬂ}estncted simple 1-(8,2,4)-
design where a collection. %, of 16 blocks of size two is {{z1,1}, {=1,2}, {z1,3},

z4), {xz,ﬂ{u&l@w&mﬁﬁﬁﬂﬂ 291}, (25,2}, (70,4},

{1:4,1} {:134,2} {.'134,

ﬁhow@xixfs]tgzegy a yst?ﬂtr] simple 1- r:r] gr -design for which

an mn-set is partitioned into m parts of the same size n. There are two solutions,
first solution, we construct new partitions on an mn-set from the original partition
in which points in a new part come from different original parts together as follows.

Recall that, a system of distinct representatives (SDR) for a collection of finite
nonempty sets A;, Ag,..., A, is a collection of distinct elements Tty Bag s 55 3 Bm

such that z; € A; for each i. The sets A, As, ..., A,, possess an SDR if and only
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if for each k < m, any k of the sets contain at least k elements in their union
(Hall’s condition). This condition is also sufficient to guarantee the existence of

an SDR proved by Philip Hall in 1935.

Lemma 3.3.7. Let m and n be positive integers such that m,n > 2. Suppose
> — {Pl,Pg,...,Pm} is a partition lon .an mn-set V, with each part of same
size n. It can be constructed at least n'® /ng artitions 4, %, ..., Lym-1 on

V where £, = {S1 , éz), jp— (')} withleach part af-szze m in which points in S()
—

come from different paw

Proof. Since P, N Pj=

-

Jor aJﬂizl,Z,...,nm’l and j=1,2,...,n

4, it follows that for each k < m, the union of
any k sets of P; contains \/ _fn‘poiXs, the Hall’s condition holds. Thus there

) has size m. Let B R P s Pt

..-'.":, L+

.
) and

fo all #=A »L"J,:, ,m and P! has size n — 1. Since

exists an SDR for &2,
where P/ = P, — RS

PINP =@ fori # j, it foll’dws that fer ‘ei%h k < m, the union of any k sets

of P! contains exa,ctlY k(n — 1') p*omts Aga’.fh S sa?sﬁes the Hall’s condition,

there exists an SDR ) as s@ﬁ m. Repeat this process
n — 1 times, to get tly,; last SDR for &, call it S¢ ).'_;nd S has size m. Thus
2 = {S(l) S ,...,S’,(;l)} is clearly a neéw partition_on_ V', with |Si(1)| = m,
for all 2 = 1,2,...,m~and points~in S’i(l) come from different parts of &. Let
U = PprxpPy X v X P, Bachsm-tuple in-%/-can /be,regarded as an m-subset,

it follows;that S,.(l) belongs to % foralli =1,2,...,n. For k =2,...,n™ ! let

U1 =Y — U?;ll.fj, by the same argument to obtain .?k:{ka), Sék), ey ,(lk)}
where Si(k) belongs to %1, for all i = 1,2,...,n. Hence, there are at least n™*
disjoint such partitions .4, %, ..., %m-1 on V. a

Example 3.3.8. Suppose that V = {1, 2,..., 12} is partitioned into four parts
of the same size three, # = {{1,2,3},{4,5,6},{7,8,9},{10, 11, 12}}. We obtain
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at least twenty-seven new partitions on V which have the required property as

follows:

£ ={{1,4,7,10},{2,5,8,11},{3,6,9,12} }
% ={{1,4,7,11},{2,5,8,12},{3,6,9,10} }

5,9, 10§53, 6,7,11}}
»‘ ,8,12}}
¥4 \

), 3,6, 8,10} }

6,8,11}}
\\ {3,4,9,12}}
,12},{3,4,9,10}}
0}, {3,4,9,11}}

W,

'. 7,12}}
4 ) 'LJ 7) 10}}
Lsed{1,5,8,12},{2,6,9,10}, {3,4,7,11}}

@@Eﬁldﬂﬁhﬂﬁﬂﬁmﬂaﬂ}
SV BBy atpw ]

Zo = {{1,6,7,10},{2,4,8,11},{3,5,9, 12} }
Zo = {{1,6,7,11},{2,4,8,12}, {3,5,9, 10} }
= {{1,6,7,12},{2,4,8,10}, {3,5,9, 11} }
P ={{1,6,8,10},{2,4,9,11},{3,5,7,12} }
Zs = {{1,6,8,11},{2,4,9,12},{3,5,7,10} }
Za = {{1,6,8,12},{2,4,9,10},{3,5,7,11} }
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Zs = {{1,6,9,10},{2,4,7,11},{3,5,8,12} }
£ = {{1,6,9,11},{2,4,7,12},{3,5,8,10} }
L = {{1,6,9,12},{2,4,7,10},{3,5,8,11} }.

Theorem 3.3.9. Let m,n and r be positive integers such that 2 < m and r <

n™ . Suppose that P = {Pl, ) ' 1S a partition set of the same size n

on an mn-set V. Then t zmple 1-(mn,m,r)-design.

Proof. By Lemma 3.3 int partitions .4, %, ..., ZLm-1

on V. For each r =1 ;n™ 1} and |J| = r, define

a collection %(J) o ion sets .%;, for all 7 € J.

Since all parts in e ,, so every block must have

size m. Since each p 1 partition set .7, it follows

d a two points in a block come from

VT
different parts of &2. Therefotety. #4

that each point occurs
J)) is a restricted simple 1-(mn, m,r)-

design. O

a

‘I.

T

%= {{1, 4,711}, {2,;,&12}, {3,6,9, 18)}, {1,4,8,11},{2,5,9,12},{3,6, 7, 18},

(1,4,8,12}, {ﬂsw@ ’3 Bfl ﬂ}ﬂ QMW‘}}S a restricted simple

1-(12,4, 3) desﬂn As another example, let J, = {6,7,. nd B(Jy) = LU

0 R oM et ) ‘Hﬁlﬂﬁ fo) 25,7103,

{36812}{14911}{25712}{36810}{14912}{25710}{368

Example 3.3.10. rem 6} and B(J,) = LU LU

11},{1,5,7,10},{2,6,8,11},{3,4,9,12}, {1,5,7, 11}, {2, 6,8, 12}, {3,4,9, 10}, {1,

5,7,12},{2,6,8,10}, {3,4,9,11},{1,5,8,10}, {2,6,9,11},{3,4,7,12},{1,5,8, 11},
(2,6,9,12},{3,4,7,10}, {1,5,8,12},{2,6,9,10}, {3,4, 7,11}, {1,5,9, 10}, {2, 6,7,

11}, {3,4,8,12}, {1,5,9, 11}, {2,6,7,12}, {3,4, 8,10}, {1, 5,9, 12}, {2, 6,7, 10}, {3,

4,8,11}}. Therefore, (V, 2, %B(J;)) is a restricted simple 1-(12, 4, 13)-design.
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Second solution, we define a function to construct a matrix such that the
columns of the matrix form blocks in a restricted simple 1-(mn,m,r)-design as

follows.

Theorem 3.3.11. Let m,n and r be positive integers such that m > 2. Suppose

that P = {Pl,Pg, .. } s a et of the same size n on an mn-set V.

and r < n™ 1. Then there le 1-(mn,m,r )-design.

—J

———
Proof. For any 1nteg , twd? regarded as a column ma-
trix (p1; poj- - pnj) function 7 by 7(k, P;) =
(P;) = (Pet1); Pk st coordinates modulo 7,
(keeping the second 1,2,... ,n}, we construct
a matrix [P 7, (P2)], artition on P U P, and there
are n disjoint partitions‘on ot dach i, yim—2 € {1,2,...,n}, we

construct a matrix [P} 7;, ( W Py, for im—1 € {1,2,...,n}. All

rows [P1 i, () 7 artition on V. There are at

Y

i la as blocks. Clearly, each
i‘“ﬂﬂﬁﬁ;ﬁﬁ ni )01 —
" awwmnimw’nwmaa -

We illustrate the application of the above theorem in the following example.

least n™~! new disjout

Consider the rowsm P1 i, (P2) 73, (Ps

Example 3.3.12. Suppose that V = {1, 2y oy 12} is partitioned into four parts
of size three # = {P;, P,, P;, P,}, where P, = {1,2,3}, P, = {4,5,6}, P; =
{7,8,9} and P, = {10,11,12}.

Since P, = (p12 P22 p32)! = (4 5 6)%, we have m1(P;) = (p22 p32 p12)t =
(56 4)t and [P, r(P)] = [(1 2 3)* (5 6 4)f]. Next, since P3 = (p13 po3 p33)' =



30

(7 8 9)%, we have 71(P3) = (p2s pas p13)t = (8 9 7)t and [P, r(P,) mi(Ps)] =
[(1 2 3)t (5 6 4)t (8 9 7)t] Flna.lly, since P4 = (p14 P24 p34)t = (10 11 12)t,
we have 71(P;) = (p24 p3s pra)t = (11 12 10)* and [Py ry(P;) r1(Ps) m(Py)] =

1 5 8 11

[(123)(564)(897) (11 12 10)t 6 9 12|, thus {{1,5,8,11},{2,6,

7 10|

no le, [Py ro(Ps) 73(Ps) 73(Py)] =

4,8,11}} is a new partition on

NN

9 12}, {3, 4, 7, 10}}1sane
15 9 12]

2 6 7 10 ,thus

3 4 8 11

V, [Pyr3(Py) ro(Ps) r ,6,8,12},{2,4,9,10}, {3, 5,

1 6 9 10
7,11}} is a new partition on- 7 P)ri(P) = |2 4 7 11},
L7 ') 3 5 8 12

thus {{1,5,9,12}, {23, :

union of 4 new partitioms mentioned aboye,on V, that is 2 = {{1,5,8, 11}, {2, 6,

0,12}, 3,4 ﬂﬂlﬂ ANBNINHIMNT 012 c00m

{3,5, 1, llﬁl 6,9,10},{2,4,7,1¥},{3,5,8, 1? Therefore, Wé obtain a restricted

i AAAANADS AN INT TR 8

Finally, we present a construction for a restricted simple 1-(v, k, r)-design when

’ ew&nition on V.- Let 4 be the

the size of partition is arbitrary. Billington [2] gave an elegant proof for the
existence of a simple 1-(v, k,7)-design. From the idea in the proof by Billington,
we first introduce a new design as follows.

Definition 3.3.13. Let v,k and r be positive integers such that 2 < k < v and

T1,T2,...,Ty be nonnegative integers. A restricted simple (k;ri,7y,...,7,)-
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design is a triple (V, &2, #) satisfying the following properties :

—

V=412,...,0} called points,

2. £ is a partition of V into nonempty subsets called parts,

S

ts of V called blocks,

A is a collection of different, / V

e~

any two points from occur together in a block, and

5. each point i €

Denote by 2 = (k;r1,79,...,7,)-design where

parameters are not may be called the replication

number of point 1.

Remark 3.3.14. Ar ,T,)-design is a restricted simple

1-(v, k, )-design where r; =

Example 3.3.1 Let ed into four parts & =

{{1,2,3,4,5},1{6, ,' and a collection of blocks of
size three, & = {{1,6 .10}, 2,610}, {3,6, 10}, {4,6,10}, {5,6, 10}, {1,7,10},{1,8,

10}, {1,9, 10ﬂ1uﬁ'{a wﬂmwgﬂl}ﬂ .14}, {2,6,14}, {3,6,

14}, {4,6,14},%1,10,14}, {2, 10,14}, {3, 10, 14}, {4,10,14}}. Thus, (V, 2, B) form
. resﬂt%ﬂpﬂ@ﬂ EESREES R R
We first show the property of a restricted simple (k;71,72,...,7,)-design,

then construct a restricted simple (k;7y,r2,...,7,)-design certain property. Fi-

nally, we construct a restricted simple 1-(v, k, 7)-design.

Theorem 3.3.16. Let v, m and k be positive integers such that 2 < k <m < v

andry,T9,...,T, be nonnegative integers. LetV = {1, U v} be partitioned into



32

m parts P = {Pl, b, ... ,Pm}. Suppose that a restricted simple (k;r1,79,...,7y)-
design exists. If z,y € P, for some integer w, 1 < w < m with r, > r,, then

there exists a restricted simple (k;r1,79,...,7z —1,..., 7y +1,...,1,)-design.

Proof. Let 9 = (V, 2, 98) be a restricted simple (k;ry,7g,...,7,)-design. Let
By, By, ..., B; be all blocks of % which gontain point z. Let Cy,Cy,...,C; be all

blocks of % which contain peint . e set #B* = {Blz,Bzz, o ,Bf}
S —
'Co¥ vy G5#%F where CpY=Cy, — {y}. Second

N AS
i

property that if B*=B U {y}
— 1y or there are at least

' {z})] U B, this implies that,

changed to r, — 1 and 7§ + Spe 1'.“ A or simple property, since y € B* and

. number of z and y in Z* is

different from other blocks and for
n B come from different parts and
z,y € P,, it follows~ : .=-—_-.=—:,‘ ome from different parts

of 2. O

J y
Example 3. ; ‘;ﬁ ti f Tiﬂ 3’_ﬁ6 om Example 3.3.15, con-
sider points ﬁ ﬂ‘:ﬂ p 1%1,2‘,]8%! (ﬁ:ﬁj T6 ﬂind r; = 2. Let By =
(1,6, 2 6103, (346, 340} /Bom ﬁ’ 5,6,10}, Bs =
NI ) (1M1 N

{3,6,14}, B = {4,6,14} be all blocks in % which contain point 6. Let C; =

{1,7,10},Cy = {2,7,10} be all blocks in % which contain point 7. First step, we
set B° = {B:° B,°,..., B;,®} where B,®* = B, — {6} = {1,10}, B, = B, — {6} =
{2,10},...,B12° = Byy — {6} = {4,14} and €7 = {C,", Cy"} where C," = C; —
{7} = {1,10},Cy" = C, — {7} = {2,10}. Second step, we choose B = {3,10} €
B® — B" since B* = BU{7} = {3,7,10} and {3,7,10} ¢ {Cy, Cy}. Final step, we
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delete B = {3,6,10} from 2 and replace it by B* = {3,7,10}. We obtain a re-
stricted (3;9,4,3,3,1,11,3,1,1,13,1,1,1,8,0)-design (V, &, #*) where a collec-
tion %" of 20 blocks is {{1,6,10},{2,6,10}, {3,7, 10}, {4,6,10}, {5,6,10},{1,7,
10}, {1,8,10}, {1,9,10}, {1,6,11}, {1,6,12}, {1,6,13},{2,7,10}, {1,6, 14}, {2,6,
14}, {3,6,14}, {4,6, 14}, {1, 10,14 0,14}, {3,10,14},{4,10,14} }.

e integers such that 2 < k < m <

tia edﬁﬁs P = (P, P,... P} of

-« > pm. Suppose that

v. Let'V = {1,2,...,

size P1,P2, - Pm;

vr = 0 (mod k), p or all {al,az,...,ak_l} C

{2,3,...,m}. Thent L suchthatzriz
1EP;

ple (k;71,72,...,7y)-design exists

i forieV.

Proof. Without loss of at P = {1,2,....,m}, P> = {p1 +

L,p+2,...,01+9 +1,...,p1+p2+---+pn}. For

PR

convenience in ou n{' RStTUCTION; We ma “"'"_'1;"3 bscripts to describe points
i 1—1

in each part of &2 bﬂhe 0 m@w corresponds to Z P+ g
k=1

where j =1,. usfori=1,...qm, P, ={z;; € V|j=1,...,m}. First,

construct a r@ uﬂq ﬂﬂ m i W)ﬂ l] n ‘jpmr 0,...,0 )-design,
N —

(p1— ]"‘terms ( —1) terms (pm-l) terms

Let q:all :’tw ocks of smié g y y Ig . Place p@’lﬁ z11 in pir blocks

Bi,...,By,,. Then continue placing point z5; in por blocks Byri1, .-, Bpiripor

ur

where the subscripts are added modulo %*. The same argument is applied to

the points z31,...,Z,;. By this method, each point zi1,Z21,...,Zm1 occurs
1T, PaT, ..., P times, respectively and distributes evenly in each block. Since
the total of occurrence of z11,T91,...,Tm1 iS P17 + Por + -+ + pmr = (1 + P2 +

4 pp)r = vr and vr = 0 (mod k), it follows that 2, is clearly a restricted
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(k;par, 0,...,0 ,por, 0,...,0 ,...,pmr, 0,...,0 )-design, with ¥ blocks, but
N—— S—— N——
(p1—1) terms (p2—1) terms (pm—1) terms
2, might not be simple. Note that for all 7 = 1,2,...,m, Zri = pr +
1€EP;

040+ - +0=pyr
(pjfﬁrterm
Suppose 2, is not simple, let @, o, ..., o for some a positive integer [ be dif-

ferent collections of uy, g, . . . cks, respectively. Note that p;+uy+

o+ = Y. Without 1 rality, se that gy > o > ... > . Next,
construct a restricted si - B . 32955+ Smly - - - ,smpm)-design,
where s;; + -+ s;
Let {aay1, @ay1, &, where an,1 € P,,, for
t=1,...,k and { Without loss of generality, sup-

Since there are at . ted bl i S in 2, this implies that p; <

TPa,. Since there are s for which each point comes from

aak—l} C {2’37"'7m}

eated blocks by any different

Py, Poy,..., Pa, and 7 L 0, 0, . ..

it follows that hgf_.-“
k-subsets from the a, s ep cat1om1umber of each point in each
part Py, P, fis=ehanged from {r ,0 to st .,8W,,. such that

1)
sy + - ﬂ(l E] P} ,q{ar Qﬁpjy the same process to

a F.Tﬁl epeated blocks,
it foaﬁjﬁ iﬁf@ ﬂocks are :?] aﬁby erent new k-subsets

and the last design will be a required design with r; = sgll), Py = s§2, R s,(,ﬁ)pm,

as desired. O

Example 3.3.19. Let v = 15,k = 3 and r = 4. Let V = {1,2,...,15} be
partitioned into 4 parts & = {Pl,Pz,P3,P4} of size p; = 5,p2 = 4,p3 =

4,ps = 2, respectively. Note that vr = 0 (mod k), p1k < v and 7 < Py, Pa,
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for all {1, @} C {2,3,4}. Without loss of generality, suppose that P, =
{1,2,3,4,5} = {211, 12, T13, T14, T15 }, P2 = {6, 7, 8,9} = {21, T22, T23, Toa}, P3 =
{10,11,12,13} = {z31,Z32,%33,%34} and Py = {14,15} = {z41,z42}. First, we

construct a restricted (3;20,0,0,0,0,16,0,0,0, 16,0,0,0, 8,0)-design, say %; with

blocks are :

{5511,3321,3331} {-’1511,9321,3331} {-Qb\\!lyj/r 1,3321,11731} {5611,9521,1531}

{9311, o1, $31} {5011, 3721, xzuxsfgm 3331} {$11, T21, 1731}
T——

{5811, T21, $31} {3311, 5541}, {3311, Z21, $41},

{3311,11321,5841} {mu, 31, 41},{3311,1731,5041}-

Note that r1 + 7y + 73 +44 =95X%X4, r¢e+r7+rs+19 =
= L N

16+0+0+0 = 4 i$+0+0+0=4><4a.nd

ru+ris =8+0 = ) let @4 = 12{zyy, %91, Ta1 }

blocks are :

M 1 E LT R

{z11, T22, T31 }, {11, T23, T31 }, {5611,3524,1‘31} {$11,$21,$32} {$11,$21,l‘33}
o RWTRNE "E{Eﬂﬂ%‘i}’w I B o)
{$11,$21q,$41}, {z11, 231, 20 }, {211, Ta1, 24}, {211, T31, 2ar }, {201, T3, $41}~
Note that i + 7o+ 73+ 714 +7r5=154+24+14+14+1=5%x4, rg+r7+rs+79 =
1242+1+1=4x%x4, ro+r1+r2+m3=134+1+1+1=4x4 and
14+ 715 = 8+ 0 = 2 X 4. Again the design is not simple, let & = 4{:1:11, To1, x41}
be a collection of uy, = 4 repeated blocks. There are forty 3-subsets for which

each point comes from P, P, and P;, then replace all repeated blocks with any
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different 3-subsets from the forty 3-subsets.

We obtain a restricted (3;12,3,2,2,1,12,2,1,1,13,1,1,1, 8,0)-design with
blocks are :
1%, %2, T}, {®12, 721, 31}, {213, Ta1, T31}, {T14, T2, 31}, {T15, T2, T3},

{3311, T22, $31}, {1311, T23, 1531}, {1311, 2

{3?11, T21, 9334}, {3312, T2, T31 12, T21, 3341}, {3313, T21, $41},

{Z14: 221, Tar }, { #1215 T3 m 55%!31, Ta}, {z11, 31, Ta1 }-
E—

=5X4, Te + 77+ 78+ 79 =

,’131}, {5511, Z21, xsz}, {3511, T21, 1533},

+1+4141=4x4and

Ta+7s=8+0= ple, let.%—4{$11,$31,$41}

be a collection of

-'ﬂ'f .
il

each point comes from £, 3:#% P

different 3-subsets from the forty fﬂ
!;

We obtain a restricted sim ur""’"—:

.-" e

L

Y
,\ are forty 3-subsets for which
\ e all repeated blocks with any

3.1,12,2,1,1,13,1,1, 1, 8,0)-design with

blocks are :

e e
; N,
{3311, T21, 5531}, {xl T . ﬁr 1}, {3315,2721, 3331},

{3311, T22, 3331}, {5611, 23, 1731}, {$11, T4, 9331}, {ﬂvu, 332 ) 5632}, {3511, Ta1, J333},

oA Y HR B A=)

{3514,3321,5641}“5811,5331,5641} {371&, T31,Za1}, {x13,x31,x41} {$14,$31,$41}
AR TF IR 41910 QY PRES 0. 070
{1,8, 18}, {1,9,10},{1,6,11},{1,6,12},{1,6,13},{2,7,10},{1,6,14},{2,6, 14},
{3,6,14},{4,6,14},{1,10,14},{2, 10,14}, {3, 10, 14}, {4, 10, 14}.

Note that r{+7o+7r3+74+75 = 94+44+34+3+1 = 5x4, re+r7+rg+reg = 124241+
1=4x4, rig+r11+r2+r3=13+1+1+1=4x4and ri4+75 =8+0=2x4.
Therefore, we obtain a restricted simple (3;9,4,3,3,1,12,2,1,1,13,1,1,1,8,0)-

design.
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Now, we are ready to show the existence of a restricted simple 1-(v, k, r)-design.

Theorem 3.3.20. Let v, m, k and r be positive integers such that2 < k <m < v
Let V = {1, Dy ,v} be partitioned into m parts P = {Pl, P, ... ,Pm} of size
P1, P2, - - -, Pm, TesSpectively such that py > py > -+ > pn. Suppose that vr =

0 (mod k), pik < v and there ewist

and 1% E r; 15 a constant.z,
]
iGPj

qﬁﬁﬂéV.MmiﬂEﬂﬁ
Proof. Let (V, 9,/
i=1...,m ) m

‘iGPj
In order to change

restricted simple (k;r1,72,...,1y)-design
&ﬂ'whem r; s the replication number
J

.‘WL(U, k,r)-design.

r,)-design and for each
= (pr1+p2t - +Pm)r = vr.

all 7 € V, any two points

are considered at a timg, hy. rem;3.3.16 ar is theorem may be applied
v "
Z|r — r;| times. Since it follows that Z# is transformed
i=1

. [ _
Example 3.3.21. Fiom Ex: ts n_ﬂestricted simple (3;9,4, 3, 3,

1,12,2,1,1,13,1,1,1, ﬂdemgn say ( 9’ ZB) where a collection Z of twenty

S RS W DS 50100 1710

{1,8,10}, {1, 9 10}, {1,6,11}, {1¢6, 12}, {1, 6,43}, {2, 7, 10}, f16, 14}, {2, 6, 14},
{3, 6,9}1&3 aﬂlmim,u m&%m}&lﬂﬂa‘lﬁj Since for all j =

12,3, 4 5, ZT‘ = 4p;, Theorem 3.3.16 may be applied 2Z:|4— 7:|=26 times

’L€P i=1
to change the replication number 7; to 4 for all ¢ € V. For the last transforma-

tion, we obtain a restricted simple (3;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)-design, say
(V, 2, B') where a collection &' of twenty blocks of size three is {{1,8,11},{2,8,
11}, {3,8,11}, {4,7, 12}, {5,7, 12}, {3,7, 12}, {4, 8, 13}, {5,9, 13}, {5,9,11}, {5, 9,
12}, {1,9,13}, {2,7, 13}, {1,6, 15}, {2, 6, 15}, {3,6, 15}, {4,6, 15}, {1,10, 14}, {2,
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10,14}, {3,10,14},{4,10,14}}. Therefore, (V, P, #') is a restricted simple 1-
(15, 3,4)-design.

3.4 New restricted simple 1-designs from old

We give two simple method{s\f ’Wuctmg new restricted simple 1-designs
from the existing one. Thg\.st co

and the second const@y b&caﬂi@ment construction.
hp! m simple 1-(v1, k,r)-design,

ay be called a sum construction

Q

Theorem 3.4.1. D

(Vi, P, %) and a res
Vo = @. Then the

Proof. (V1UV,, #UZ.

2 -”{1‘,12, @e partitioned into four parts &, =

zjs 9% {‘Ie’ 11, 12{1%4&?4

4,7,12},{5,7,12},{3,7,12},

Example 3.4.2. Let

{{1,2,3,4,5}, {6, a collection %, of twenty

blocks of size three
{4,8,13},{5,9, 13},;«:15 9,11},15,9,12 13}, {,7,13}, {1, 6, 15}, {2,6, 15,

{3,6,15}, {4 }‘i 14}}. It follows that
(W1, &4, @1)@13 Tﬁ ﬂj?] fﬁa ﬂfl et Vo = {16,17,18, 19,
20, 21@@ qﬁb m?ﬁﬁ{ﬁ ﬂjﬁiﬂm, 21}} and a
collection 2ofelght ks of size three be 1},{16,19, 20},

{16,19,21},{17,19,21}, {17, 19,20}, {17, 18,21}, {17, 18,20} }. It follows that (V},
Py, B;) forms a restricted simple 1-(6,3,4)-design. Therefore, (V3 U Vo, £, U

Py, 9B, U By) is a restricted simple 1-(21, 3, 4)-design.

Recall that, any partition set & on a set X is a refinement of a partition set

Z on X, if every element of & is a subset of some element of &.
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Theorem 3.4.3. Suppose that there erists a restricted simple 1-(v, k,r)-design,
(V, P ,%B). Then there also exists a restricted simple 1-(v,k,r)-design with any

refinement of 2.

Proof. Since each point in a block comes from different parts in &2, also it comes

from different parts in the refinemer : O

Example 3.4.4. From Exam ’  is a restricted simple 1-(6,3,3)-
design where V = {1,2 6% is parti hree parts # = {{1,2},{3,4},
{5,6}} and a collection'?® of %’:\\\ {1.8,5)41,3, 8} {1,4,5},
{2,3,6},{2,4,5},{ 6 L4 ¢refore, \\Q‘ ms a restricted simple 1-
(6,3, 3)-design with Cafldhcn ) ¢ \ - {{1,2},{3,4},{5},{6}},

Z = {{1,2},{3}, {4 \\ {3},{4},{5}.{6}}.

; Y]

ﬂ'lJEl’J“ﬂWlﬁWEl']ﬂ‘i
ammmm NN Y



CHAPTER IV

CONCLUSIONS AND OPEN PROBLEMS

From our work, t s\; clu follows

d a construction for an infinite
SBGDD(3, 3, 3).
2. Imn(mn+1) = -GDD(m n, k) exists for every
positive integer m,n a
3. A strict k-SBGDD(m, ositive integer m,n and k where
2<k<m.
4. Let v,k and .: ) <.m < v and k divides wv.
Let V = {1,2,.. . = {P,,P,,..., Py} of size
P1, P2, - - -, Pm, F€SPEC yely such that p; > pg > -+ 2 py and p1k < v. Then there

exist amtrﬂw"] Bﬂﬁ)}%ﬁ aw ﬁs’] ﬂ(fa.lmple 1-(v,k—1,k—1)-

design.

5. LeQz Wr]ba)hgtﬂitm gduwoq @%E q ap%]ltloned into two
parts of the same size n. Then there exists a restricted simple 1-(2n, 2, r)-design
feralle = 1,2,

6. Let m,n and r be positive integers such that 2 < m and r < n™"!. Suppose
that 2P = {Pl, P,... ,Pm} is a partition set of the same size n on an mn-set V.
Then there exists a restricted simple 1-(mn, m, r)-design.

7. Let v,m, k and r be positive integers such that 2 < k <m < wv.
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Let V = {1,2,...,’0} be partitioned into m parts & = {Pl,Pz,...,Pm} of
size pi, D2, ..., Pm, respectively such that p; > po > --- > p,,. Suppose that
vr = 0 (mod k), pik < v and 7 < PayPay * * Py, for all {an,an,... 051} C
{ 2,3.... ,m}. Then there exists a restricted simple 1-(v, k, 7)-design.

8. There are 2 simple methods of constructing new restricted simple 1-designs

8.1 (sum constructio @e a restricted simple 1-(vy, k,7)-

, e&ha
— —

from old as follows.

deSign) (V'la yl)'@l) )-design (‘/2, 92;'@2) where

VinV, = @. Then (W} 8,) is" icted simple 1-(v; +vy, &, 7)-
design.
8.2 (refinement Con ion). Suppes at exists a restricted simple

a restricted simple 1-(v, k, 7)-

There are open @b ns d.lﬁmsed as follows.

1. To investigate some necessary conditions for existence and constructions of a

csnaonnff bdt b HREE H I EI 11

2. To investigate some necessary conditions«for existence and constructions of
a restaqtms’i:ll}a ﬂ(ﬂjmguwu;]hgsm (E_L:ltﬁﬂ arbitrary and

T > PayPay " Pay_, + 1 for some {1, as,...,6_1} € {2,3,...,m}.
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