CHAPTER VI

6.1 Summary
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Then, some 51m;#e exa“plea which a be evaluated exactly by path
parbl and the harmonic osc1llator : .
,] &I 1 i I j mﬁu !? nﬁ ﬁHtQm |
has been Teviewed 1n ation

space and_phase_space,path‘integral formallsm. -The path integral
. form of the two dimensional hydrogen'atqm problem is non gauséian'

"and can be reduced to a gaussian integral by using the two key steps,
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i) the reparameterization of path by a new time ii) the
transformation of coordinates from Cartesian to parabolic. After
using these two key steps we obtain the integral representation

of the Green's function

- N OOLe%
G'#E) = 2 ) e Mw iM [(u+u)coswm_2a'-'11}}dc (6.3)
°© zniﬁsin(wo) h2sin(we)
E\R%
where M = 4dmglandy o = (.= Eh)
In chaptery IIT, the three dimensional hydrogen atom problem

has been reviewad . /Again, sgimilar to the case of two dimensions,

the path integral imust be,transformed into a gaussian integral by

using the two key steps, the rescaling of time and the transformation

of coordinates. But the transformation of coordinates is different

from that used in two dimensions . J1n this problem we used the four
dimensional KS transformation §dhich transforméd the variables x(x, y, z)
in R3 into jthe variables ﬁ(u1, uz, u3, u4) in R4. Then, the

Coulomb path integral is reduced to the four dimensional harmonic

oscillator path integral and we obtained the integral representation

of the. Green's function
Cand Acém 2

GR'ZLE) = 2 ff e F(d)eip{ nF(é)[(t'l*+1‘1’)coscwo)— G’-ii']}

1d$ﬂdd (6.4)
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)
In chapter IV, we consider the energy spectrum of the
hydrogen atom from the exact Green's function. For the two

dimensional Green's function we simplify the o -integration by
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. : . . ' i 2 .
transforming the parabolic coordinates (u, u”) into polar
coordinates

(r,@ ). After carrying out the ¢ -integration we obtained

the Green's function in the form

G(¥ie' v e (6.5)
where G— YW e iky) (6.6)
b N .
From th ShrkC e get the energy lewvels
of the hydrogen a i mension:
(6.7)

where n

ction,we must perform two

> _the oscillator
-l
propagator obtdir

c

ito the three

the last step 1s "1 integration ove

' to get the Green's function
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transfor 3

dimensional phy H al space by e imina ing the a jJIlar variable ;
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where p = - T—

The discrete energy spectrum arises form the poles of the
gamma function in (6.8), that is P+l = -n, n = 1, 2,,3 ...

results in

4
E - -
n .252n2

( = Jve 290 ) ' (6..9)

which equivalent to the' Bohr's energy levels of the hydrogen atom

in three dimensions.

In chapter 4V, we ‘have considered the wave functions of the
hydrogen atom ingthree dimensions idnd we have shown to derived the
wave functions from the Coulomb Green's function. The residues of the

»
Green's function which represent the wave functions 1#%(?31£¥§3 can

be found from the formula

Re s GO ¥t bm oy sten) ' (6.10)
E>f,

By using this fermula, the ground state and the. excited state wave

functions_of the hydregen atom can Bé. found,

*
Vim(E-ENGEED = AR YEIWI) (6.11)
E-Eq
and
him(E-E)GEIE) = in] WA + Lp(r,u(,,)
E-» Eg 200 200 216 20
*

FWEWa + W g prv} (6.12)

21-1
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5\

"or in the general form

YearS

Oim (E-En)GEXE) = iR
E-Epn . :

where

img
in-0-1)1 e Fcose)

(6.14)

6.2 Discussion

As seen 1h e two key steps of

Duru and Kleinert, th drogen atom problem

F ] -!-J‘:'I | - .
can be performed exactly+ The de o} agral representation of
P y

the Green's function -m; .-..'->“

G(';(\u, —><Ll. E) v“i- !'.‘ (tl2" + u2')COS(w0)

)

¢ T AgN (6.15)

ﬂ‘iJEl’J‘V]EI‘Vl‘ﬁ‘WEﬂﬂ‘ﬁ

llow1ng Ho and Inomata s procedure, they transformed

AT sian vpAdy-

reduced (6.15) into the form
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.2 .
&/‘exp { l: 0}'F4(o)exp { -an(o)V cos(wo)}

L
4

(6.16)

where vV = r' ﬂ-} . In this thesis
we follow Ho a“ . ive at Eq.(6.16).
\ .

In deed they sti

ting the
o-integration. function Io

into the spherica n using the relation,

@©
z (2£+1)Jz£+1 (6.17)
£2=0
they could perform tk ~integrat and the result is (5)
G(R" R ; (6.18)

\7 )
where Gz(r",rl‘m) = 2+1 )!‘1 Mp’ig%kr')w_P 2(%21kr")

ﬂummﬂmwmm o
i ma KRETTEI ALk T TRF-Y T

th t is , P+ 2+1 = -n, results in

E = - (6.20)
2n ' n
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But they did not show how to find the eigen functions from the exact

Green's function in Eqg. (6.18) -

,#f re, after using the
transformation of vari om- (u1/‘é ’ u4) to (r, 9, ¢, a),
they also obtained the f ctirm-esame result as that
obtained by Ho M Sve l_.k.;_-‘ further

transformation, by i bstituting

Following Duru a

"N

»ybta

ed the final

p = exp{ -5~

expression of the

(6.21)

where Po = We. see that

from this integral ion; its gives no

- :
informations f&-' he energy spect ';_.ﬁ ion of the

hydrogen atom. m m

In this refaﬁh, we follow ﬂ and Inomata's procedure,

but inst uﬁg’%%ﬁt‘ﬁ w Elﬂ ﬂ ﬁrfom the

RUANIUNANINA Y.

for completing the o-integration and we obtain the Green's function

in a closed form
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P,%(—ika) W—P,%(-ikb)
-L" = . - _n_\_J:-_ I‘( P+1 ) N
G(X",X';E) = > ah I%—,;:?d—-l— det : (6-23)
(—lka) _p’%( ikb)

he hydrogen atom
which corresponds

From this Green's fu ]
can be found from WK

to

E = (6.24)

n
and we can verify
Res G(X",X';E) = i E~E.) G&X (6.25)
represent the usual’| spherical wa e function ( of the

pres C—— Prom”

hydrogen atom. Lv:ii- 2 ed from the
Schroedinger's e tion. Furthermore, e Green@function in Eq. (6.23)
corresponds to the g' 's function t obtained by Hostler without

ik %‘Iﬂ%‘l?ﬁﬁ B 1 I

obtained t Green's function 1n the form

9 W'] ANN I NNIINYIGE

WRE B ]"(P+1) )
G‘( % - - et (6.26)
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which still contains all jnformations about the energy spectrum and
the wave function of the hydrogen atom in three dimensions. Strictly
speaking, however, all expressions of /' G(X, %x';e), Eq. (6.18), (6.21)
and (6.23) are equivalent, but our expression (Eq. (6.23)) 1is

more compagted and alsowequivalent to the Green's function that is

obtained by Hostler without using|path integral.

The solutien of the hydrogen atom problem has already been
well-known . The energy spectrum andfthe wave functioné for the
hydrogen atom can be jobtained wather easily from thg Schroedinger's
wave equation. Therefore; the solution itself is not particularly
important. The main problem is whether path integration can be
carried out for the hydrogeh--atom. The only path.integral.known
to be soluble is of the ‘gaussian.type. 1n order to succeed in the
- path integration, one has to- succeed ‘in reducing the path integral
to a gaussian path integral . The path integral for-the harmonic
oscillator is the simplest that can be directly reduced to a gaussian
path integral . ©The presence of the Coulomb potential in the intégrapd
makes the _path integralrunvgaussian sor that it; direct path integration
becomes | hopeless . What-is shown in this dissertation is a procedure
which converts the Coulomb path integral into an oscillator path
integral which, is exactly path—integrable. The. keys of the technical

preakthrough for the hydrogen atom problemiare the position—dependent

time rescaling and the mapping of the three dimensional space on to
1]

a four dimensional space. Finding the exact path integration
procedure does not remain to be a theorist's acadamic satisfaction.
The success of the transtormation procedure certainly encourages

further studies of contact transformation in .path integral.
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