CHAPTER IIX

THE HYDROGEN ATOM IN THREE DIMENSIONS

In the preceding chapter we deal with the path integral for
the Hydrogen atom in twoO dimensions whieh is rather nonrealistic
since it was thought that the electron moves only about the nucleus ina
plane under the influence of an attractive inverse potential. 1In
order to complete' the'problems, we must consider the higher
dimensions,ie,the three dimensionali problem. The situation is indeed
analogy with the case ©f thevtwo dimensions, the path integral must
be transformed into a gaussian integral. The time reparame;erization
and the coordinate transformation still be the Key steps for the
reduction procedure . But, the cocordinate transformation is different
from that used.earliér. In-three dimensional problem we use the four
dimensional Kustaanheimo Stiefel transformation instead of the

Levi-Civita transformation in two dimensions .

3.1 The Coulomb Path Integral in Three Dimensions .

Consider.sthe Green's function
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Here K™, %% 1)  is thespropagator of the bound electron and is

given in the form
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with the Lagrangian

(%) = 2 \ - - (3.3

where X  1s a 1 . ' m°n81onal space and
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In the_short .
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where fj of the mldelnt vector

X(t) at time : i Llce tnat:}
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_We see that (3.7) has the same form of the Green’s function as in two

dimensions, with the same time rescaling used in chapter II ,
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The application of (3.8) reduced | (3.7) into the form

2

o ieg : :
Gx'%e) = fe Q%% 6)de (3.9)
r 5

where

Qxils) = Gima” (1. = ¢ ﬁ"‘ Vf/z'l“_l.zf (3.10)
(5(‘,;(‘{6 = XiMmy¥ -4 @x i 6:) - - .
. 2 v

with Ses)) = gm(A%)) + E76; (3.11)
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Of course, (3.10) uis not yet integrable. The next step is

to change the integral variables in (3.10)

3.2 The Modified Kustaanheimo-Stiefel Transformation in Four

Dimensions .

L]
The path integral (3.10) with the new time parameter is not

of thergaussian form. s In ordersto=carny; out thevintegration explicitly,
a further reduction.of! thewintegral is required.’' One'‘may expect thAt
the Levi-Civita transformation can be used in three dimeﬁsional
problem’analogy with in [the two dimensions. |However it/ is found

that one can not do-.-so because there is no three dimensional counter
part of the Levi-Civita transformation. Another kind of transformation
"must be sought, it is the Kustaanheimo-Stiefel tPansformation (10),

the transformation which transforms the Cartesian variables

a .
X = -
(x,y, z) in R} into the Cartesian variables ub = (u, u, u,

A
u ) in R
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The cartesian variables in R3 can be transformed into the

cartesian variables in R4 by using the relation

ab

a a
x = = A(wu (3.12)
b=1 b
o) (3.13)
with the transfg
A(u) (3.14)
The matrix (3.14)
L L
i) ;m_.m.w:“. function of u
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A(u) . A(!Slﬂh = (3.15)
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is called the Kustaanheimo—-
Stiefel transforma an s : n is not one to one
transformation al >in o to one, it is
necessary to imp o A > Hwoosing such a

First, let k> be the ransformation of the

differential duP ,
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dx
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Comparision 8F identities
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In general ', E ~in (3.19) does not vanish. However if

54 = 0 is demanded then (3.18) and (3.13) can be put

. 3
together as
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The}constraint,

0 (3.23)
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establishes the o the two sets of variables

(x, v, z) and

An advantage ef;_ _¢v : ¥ ondition (3.23) as the

constraint p].q s, A
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(x2 + y2 EZ)% = U + (u3)2 I ua)’l_ = ¥ (3.24)

- e npanT-

51mp11f d expression,

9 mmmm um'mm N8k, e

In order to use the KS transformation ‘(3.17) in a short
time integral, it is necessary to define not only the transformation
of the j-th coordinate but also the transformation of the j-th

interval. The former follows directly from (3.12) .
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x2 = == 'Aab(uj)u? (a =1, 2, 3,) (3.26)

AX (3.27)
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where u. u., — u,. .
J ] J-1
Obviousl or the j-th
variables
0 (3.28)
Therefore the transformation (3.20), (3.27) and (3.28)
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map the th ,!r_': LT 1onal space.
r|-
To establish 'one to one co rondence bet een the X and the
a coordlnates,"o must either 1 se a constraint or introduce
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In analogy to (3 ?f)
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(u )Au
may be set to be vanish. But the constrainted transformation will
induce some complicated in path integral. Here it is rather

convenient to utilize Ej defined by (3.29) as an auxiliary
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variable. Combining (3.27) with (3.29) yields the one to one

mapping

(3.30)
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which from now imo-Stiefel

transformation. tant to define the

- _ 2522 5. - (ﬁj)2 (3.31)

with this defi 1 X A(D,) of (3.27)

satisfies the © thogonallty condition,
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The Jacobian of transformation can be obtained
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3.3 The Lagrangian Path
Now the path KS

coordinates,

dimensional basi , ; 3 KS transformation,

an extra dimensi

into (3.10)

N
a (3.35)
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After inserting V 5 ~into : e path integral (3.10)
becomes
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coordinates .

(3.37) 1into

Using (3.31) and (3.33) converts the short time action
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S(sj) = Azwng(Auj + EUjd; (3.38)
j

and the measure of (3.36)

NS /
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(3.36) 1into

(3.40)
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where
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(3.41)

hat of an isotropic

%

oscillator of mass M 4m and frequency = (-E/2m) in

- dHuE iﬂﬂﬂ% -
propag f] ﬁvalution .
The path integral of (3 41," can be rea&ly performed a
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The short time tio

where
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F&)y = Mw _ (3.43)
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3.4 The Hamiltonian Pat Dimensions.

Now , “‘eon I ‘dai drog atom problem.
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As before, thesthree dimensio w/integral, can be
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where x", X'; s*, s") 1s‘the aux111arHropagator glvwln the
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Q% 5858 = [.DP.DXL ex}os fds(p x—rB-rE)} (3.48)

Again we shall transform the component into a gaussian form.

For this purpose we need a generalization of the change of variables
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to square root coordinates. A transformation of this type is the
same type of the preceding section ft Lagrangian path integration.
For phase space path integral we must transform the mementum

variables too.

Xa (3.49)
R& (3.50)

with a matrix
A(u) (3.51)
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quite a natural choice also ‘br such a fourth component f r X.
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arbltrary path® (3.49) , we find
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(3.52)

F 7 uat s for a completi
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This permit aju finition o oordinate X, as
e
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X, (s) = Jr dS(u u - u2l3 + uyug —_u1i (3.54)

ﬂ WU NENITAYIAT o

We can rlfy that the traniformatlon x»u, p-+P is really
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ated as

dAP = _i_-6 Y‘2 d4Pu

(3.55)
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and the measure in configuration space

d4x = 16r2 d4u (3.56)
so that the measure in p ‘invariant
dx dp (3.57)
Also P - %
2 2
hd .58
p A (3.58)
Before .48) we now inserting

anonical coordinates
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We now change the variables from (X, P) to (4, P ) and notice

‘that

opé D4y 2 d (3.61)

ator of an harmonic

oscillator in four di i : / 4m and frequency

Bonnar . i - 2 s -
K(ut)uisJ : . ) - u-U ) (3.63)
where

(3.64)

and (3.65)
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whlch equivalent to (3.46) if we set x“ = E‘N , s =
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The next chapter we have tried to carry out this double ;

integration to get the important information about the energy

E).

spectrum from the Green's f G(x", X';
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