CHAPTER I

INTRODUCTION : HISTORICAL REVIEW AND FEYNMAN PROPAGATOR

1.1 Introduction and Historical Review

The hydrogen atom is' the,dynamical system cbnsists.éf two
particles difference in charge, the proton or nucleus with positive
charge (+ e) anothexriis/the electron with negative charge (-e)
moving about the first particle under the influence of attractive
Coulomb potential. It was/the success of the old quantum theory
that could be used tojcalculate the energy spectrum of tke hydrogen
atom. Then, tﬁe new quantum, theory was discovered, first
Heisenberg discovered ‘the matrix mechanics, and later}sChroedinger
ﬁiscovered wave mechanics . By uglng the neQ quantum theory one can
calculate the energy spectrum énd the wave functions of the .
hydrogen atom exactly. Now one of the major topics which compriseé
vital part of current textboéks on quéntum mechanics is'ﬁhe hydrogen
atom problem. In 1948, Feyhman (1) proposed a new approach to
quantum mechanics whiech proevidessthe .propagator er the probability
amplitude of i@ particle las =@ path integral.over all possible
histories of the system that 1§ characterized by the Lagrangian.
Then the pathintegral approach has attracted much attention’ ‘and
has proven useful in many greas,of-physics including statistical
mechanics, many body theory, field theory and others. A strange
fact is that(Feynman's theory has been powerless 15 solving the

hydrogen atom problem, whose solution once symbolized the success



of gquantum mechanics has been left unsolved for some thirty years .

Historically, many physicists aitempted to treat the
hyd;ogen atém.problem within the framework of .Feynman approach.
Gutzwiller(Zy» performed the path ;ntegration in phase space by using
the sémiclassical approximation . TheysCregen's function.evaluated
approximately were "found to give rise_exactly to Bohr's formﬁla fqr
the bound state.energy. THe resdue Values.of approximate Gréen's
function were shown tO'yield'all.the exaqt wave functions of the

bound states, but this ds/the semi-classical not the analytical

calculation of the COulomb path_integral.

o A-A:HifécEméﬁavéHéiigiggimsdiﬁﬁiéh.fbfViﬂéAh§d£oéen atom
problem via pathintegral then ‘treated by Goovaerts and Devreése (3).
They evaluated an integral transform of the propagator by means of

the exact summation of a .medified parturbation expansion to obtain

the exact energy spectrum -and. to show a possible way of finding the

wave functionsy+ but the calculations are too complicated to be
informative anddthe result is not given in a closed.form. In 1979
- Duru and Kleinert(4) proposed an impbrtant"procedure_fbr solving

the hydrogeh atom problem. The procedﬁre consists of the folléwing
two key steﬁs'-i) the reparameterization‘of_pafhs in terms of a.
new- time ii) the change of variables by the Kustaanhéimo—stieféi
transformétion. The transformafion éoﬁverts the.phase space path .
integral of the three dimensional Coulomb‘pfobiem inﬁo a féur
dimensional hafmonié'oscillator which is exactly solvable ?AéFording
to Dﬁru and Kleinert's ideaé, Ho and Inomata (5)  wused these'th'
key steps and‘peﬁﬁormed the coniguration space bath»inteération.

They obtained the Greéen's function of the hvdrogen atom'exactly with



same result as that of Duru and Kleinert. From  this, =

Green's function we can examing the energy spectrum oi the hydrogen

atom which is equivalent to Bohr's formula for Lha‘enercy level of

the hydrogen atom.
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this wave f ctlon by solving h?e Schroedlngcr S equatlon
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where U(t, t') is the time evolution operétor satisfying the

following properties,

i) in a-é(t’t')

ii)  u(t',-t")
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iii) ut", t)u(

lV) U+(t", (t.n, tn)
and H is the Hami FIrthe L1toniar i not an explicit
function of time the Vo] n ra the form

ut", t') (1.2)
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We can rewrite equation (1.3) as

.-} |
¢(3(’n , tu) = fK(s(’u,'S(’li tn, tv) q’(_)Zl, tl)d3xl

- O

(1.5)



where k(x", x' 3 t", t') = <=x*|U(t", £l x'> (1.6)

K(x", %'"; t", t') is called the propagator or the probability
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amplitude of a particle to go £rO at time to x" at time t'"
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with the Lagrangian L(x, x) = 7 mx - Vi(x) (1.10) .



Actually, we can not evaluate K(;" ’ X! ; t* , t¥) 'from
(1.7) directly because of their infinitely many paths contribution.

Feynman (1) proposed another to perfbfm a new formalism of |
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For the small time slices
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Feynman wrote thi restrictive notation

as

K(x", x' ; (1.14)
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From (1.13) - we can use it to compute the propagator of a

free particle. The Lagrangian for a free particle is

)

L(X , ¥) = 5msl’ (1.



Thus with the helps of (1.13) the propagator for a free particle

in one dimension is

K(X", x!

(1.16)
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result is
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1.4 The armonic Osc1llator
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1t is possible to carry out the 1ntegral over all paths in a way
which described in the previous section. But in geal practice, it
is too complicated to perform, for example, the harmonic oscillator

problem. We will present an alternative calculation of the
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propagator of the harmonic oscillator in the following ways.

Let x(t) be the classical path between the end points.

for the-action 5,

This is the path which is the e

1.19)
We can represen
(1.20)

.Namely, inste by its distance

x(t) from aﬁméfi- i the deviation y{t)

from the classical
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The dlfFerence between the classical path x(t)
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Ar esch t the variables x and y differ by thé constant .

X . Therefore, clearly dxj = dy. for each ‘specific point/z
J D ' 4

t " in the subd1v151on of time, general we may say

tlon can be written as

i?x(u) = y(t) The i

(1.21)

thé resulting
integral.ié just 1&~r moré; all terms
_Ayhfch:cgptaiq“m_> ed,u—the-resulting
integral vanish H hosen th‘lt satisfies
the variational pr r §” i t", t') can

be written as
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where y(t)' = 2im dy dyz.--dy (a)~N (1.23)
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so that
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where T t . “The aci ) BAS (t)] can be
performed exa
SCE[ x(t)] - cos (wt) - 2x"x ]
(1.26)
Since all .; I o 0 at't = t",

such paths ca v_
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.where J 1is the Jacobian of transformation which is a constant .

After integration and taking the limit N - « we find .

F(ﬂll

k Il| ) / (1 .29)
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Finally , ,7; z sc1*nu%_;=£t§opagator can be

performed exactly in

K(x" x'; t", [(x"?+ x'2)cos(wt)_

(1.30)
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