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CHAPTER 1

Introduction

In theory of Riemann integration, we consider a function f defined on a non-
degenerate (a < b) interval [a,b] into R. By a partition of [a,b], we mean a finite

collection

of nonoverlapping (except at end points) subintervals /; such that [a,b] = U, I;.
It is always possible to arrange the subintervals in an increasing order; that is
max([;) = min(l;q) for i =1,2,...,n— 1.

Let P = {[;}I~, be a partition of [a,b]. The mesh of P is denoted by [|P||
and defined by

Pl = max{l(l;) | i=1,2,...;n}

where [(I;) is the length of ;.

fP={L]i=12.n}and Q=1{J;|j=1,2,..,m}
are partitions of |a,b], we say that Q-is finer than P if every end point of
subintervals in P is an endpoint of some subinterval in Q. It is obvious that if
Q is finer than P then ||Q| < ||P|| - A set t = {t1,1a,...,t,} of points in [a,b]
is called a set of wntermediate points of P if for each ¢, t; € I;. For each

i=1,2,...n, let I; = [x;_1,x;]. The number

S(f,P,t) = Z ft)[wi — 1]

is called the Riemann sum of f with respect to the partition P = {I;}}; and

the set t = {t1,t,...,t,} of intermediate points of P.



We say that the Riemann sum of f approaches a real number A as ||P|| tends
to zero if for every € > 0, there is a partition P, of [a, b] such that for any partition

P finer than P, and for any set ¢ of intermediate points of P,
IS(f,P,t) — Al <e.
And if this is the case, we write

lim S(f,P,t)=A.

IPll—0

It is noted that if such a number A exists, it is unique. We usually denote A
by fab f, and we say that f is (Riemann) integrable on [a,b] with the integral
J. f

By the above definition, it is seen that the idea of Riemann integration is in-
tuitive and simple. However, there are many elementary functions which are not
integrable in the sense of Riemann. For example, the Dirichlet function f which
assigns the value 1 for rationals @ in [0, 1] and 0 elsewhere in [0, 1], is not Riemann
integrable on [0, 1]. However, it can be proved that if a function f : [a,b] — R is
Riemann integrable on [a, b], then it is bounded on |a, b].

In 1904, Henri Lebesgue introduced a new approach of integration called
Lebesgue integration that can be applied to a wider class of functions, and every
Riemann integrable functions belong to this class. For many years, many scien-
tists ‘satisfied with this kind of integration, since the class of Lebesgue integrable
functions is larger than that of Riemann type. However the class of Lebesgue
integrable functions is still not big enough, and the computation is rather compli-
cated. The new integration introduced by Henstock in the year 1957 fulfilled this
requirement. That is it can be applied to a wider class of functions (than that of
the Lebesgue integration) and most of all the computation is straightforward and

intuitive.



Our work is inspired by the work of Jean Christophe Feauveau [1] and [2], in
which an idea of a generalized Riemann integral for Banach-valued functions was
introduced. We develop an integral called Henstock-Stieltjes integral or a general-
ized Riemann-Stieltjes integral for function whose values are in an Lo-space and

investigate some properties of the integral.



CHAPTER II

Henstock Integrals of Real-Valued Functions

2.1 Preliminaries

In this section, we recall the concept of Henstock integration that was initiated
by Jaroslav Kurzweil, in 1957, in his research work on differential equations. He
gave an elementary definition of the integral and later in 1961, Ralph Henstock
rediscovered Kurzweil’s approach and developed his theory. The integration is
then called Kurzweil — Henstock integration or shortly Henstock integration.
The integration is remarked as a generalized Riemann integration, because the
tools of Riemann type are used in the definition.

Let [a,b] be a nondegenerate closed interval in R. By a gauge on [a,b], we
mean a positive function § defined on [a,b]. We sometimes refer to a partition
P = {[ri1,xi] | i = 1,2,...,n} simply as P = {xg,x1,...,x,}. For a partition
P ={[xri1,x;]|i=1,2,.,n} of [a,b] and a set t = {t1, s, ..., t,,} of intermediate

points in [a, b] with t; < t#;,y forti = 1,2,....m — 1, the set
D = {([mz_l,xl],t,)\z = 1,2, ,n}

is called a tagged-partition if § is a gauge on [a,b], a tagged-partition D =

{([xiz1,zi], t;)|i = 1,2,...,n} is said to be a d-fine partition if foreach i = 1,2, ..., n

The points tq, s, ..., 1, are sometimes called tags of the tagged partition D.

In the above definition it is not immediately clear that for a given positive



function 0 there will be a J-fine partition. It might look a little amazing that a
0-fine partition always exists no matter how the positive function o behaves. The
assertion is interesting. It is known as Cousin lemma. The proof is interesting

and it is shown in the following lemma.

Lemma 2.1.1. (Cousin’s lemma)[5] 1f § is a gauage on a closed and bounded
interval [a,b] and [c,d] is any closed subinterval of [a, b], then there always exists

a d-fine partition of [e, d].

Proof. Suppose on the contrary that there is no d-fine partition on [c,d]. Then

at least one of the two intervals [c, “t¢] or [<£,d] has no J-fine partition. Let us

denote the half of [¢,d] without a J-fine partition by [c,d;]. Now we continue
this halving process indefinitely, we obtain a sequence ([c,, d,]) of nested intervals
with d,, — ¢, = %, and hence, d,, — ¢, — 0 as n — 00.50 there exists a point z
which lies in all [¢,, d,]. Since 6(z) > 0, there exists a number N € N such that

for n > N, we have

dp, — ¢, < 0(2).

This inequality shows that if D = ([¢,,d,],2), then D is a d-fine partition of

[cn, dp]. Which contradicts to the assumption for [c,, d,]. O



Let f:]a,b] — R, § a gauge on [a,b] and D = {([z;_1, 2], t;) | i =1,2,...,n}
a O-fine partition of [a,b]. The Riemann sum of f on [a,b] with respect to the

gauge ¢ and the d-fine partition D is denoted by S(f, D). It is defined by

S(f>D> = Zf(tz)(fﬂz - 1’171)-

The Kurzweil-Henstock integral (or just the Henstock integral) is defined as the
limit of Riemann sums, the same way as the Riemann integrals, except that the
0-fineness of partition is measured by the gauge d instead of a positive constant

0. More precisely, the definition is as follows:

Definition 2.1.2. Let f: [a.b] — R. We say that f is Kurzweil-Henstock inte-
grable, or briefly Henstock integrable on [a,b/, if for each positive real number e,

there exists a gauge J on [a, b] such that for any ¢-fine partitions
Dy ={([zi-, 2, t:) i =1,2,...,n}

and
D; = {([z}_1, 2L E T, m )}

of [a,b], we have

|S(f; D1)—S(f; D) < e

Definition 2.1.3. Let I = [a,b] be a nondegenerate interval. By a subpartition
of I we mean a collection {J; | j =1,2;..., s} of nonoverlapping closed intervals in
I.1f § isagaugeon I, and {J; | j =1,2,...,s} asubpartition of I, the collection

{(J;,tj) |1 =1,2,...,s} is called a ¢ -fine subpartition of I if
t; € Jj C (tj - 5(tj)7tj + (S(tj))

for y=1,2,...,s.



2.2 Properties of the Integral

By the definition of integrability given in the previous section, we list here

some important properties which will be useful in our study.

Theorem 2.2.1. Let f : [a,b] — R. Then f is Henstock integrable on [a,b] if
and only if there is a real number A with the property that for every ¢ > 0,

there exists a positive function ¢ on [a, b] such that for any §-fine partition D =

{(Jriz1, 23], &) | i = 1,2,...,n} of [a,b] we have
1S(f,D) — Al <.

The number A in the definition is obviously unique. It is so-called the integral
of f on [a,b] and is denoted by f[a 8 f or fab f.
The next theorem is known as Henstock's lemma, it is fundamentally impor-

tant in proving deeper properties of the generalized Riemann integral.

Theorem 2.2.2. Let f be Henstock integrable on [a,b]. Then for each € > 0,
there exists a gauge ¢ on [a,b] such that whenever

D = {([ui,v],&)]i=1,2,...,n} is a 0-fine subpartition of [a,b] we have

n

DL

=1

< €.

flencet Yuy= [ la)as

The statement of theorem are not surprising and the proof is straightforward.

The following theorems are basic properties of the integral.

Theorem 2.2.3. Let o, 5 € R and f;, fo be Henstock integrable on [a,b]. Then

af) + [ fy are Henstock integrable on [a,b] and

/abaflwfg:a/abflw/:fg.



Theorem 2.2.4. Let f: [a,b] — R and ¢ € (a,b). Then f is Henstock integrable

on [a, b] if and only if its restriction to [a, ¢| and [c, b] are both Henstock integrable.

[r=[]r

Theorem 2.2.5. If f is Henstock integrable on [a,b] and [c,d] C [a,b], then

In this case, we have

it is Henstock integrable on |e, d].

Theorem 2.2.6. If f(x) = 0 for almost all = in [a,b], that is, for every z in

[a,b] except a set F' of measure zero, then f is integrable on [a,b] and f: f=0.

Theorem 2.2.7. If [ and g are Henstock integrable on [a,b] and if f(z) < g(x)

/ubfé/abg-

It is the fact that every function that is Lebesgue integrable on [a,b] is also

for almost all = in [a,b], then

Henstock integrable. The proof of this assertion needs some of the properties of
Lebesgue integration and requires some effort. However, it should be mentioned
that E.J. McShane has given an equivalent definition of the Lebesgue integral that
makes it clear that the Lebesgue integral is a special case of Henstock integral.
By using a d-fine division is used instead of d-fine partition.

However; it is noticed that a function f is Lebesgue integrable if and only if

both f and |f] are Henstock integrable.

2.3 Examples

In this section, some examples are given so that we can clearly see the idea of

Henstock integration. All of them are not Riemann integrable.



Example 2.3.1. Consider the discontinuous function introduced by Peter G.L.
Dirichelet in 1829. The function is so called the Dirichelet function and defined
on [0,1] by

1 if x is rational,
flz) =

0 if z is irrational.
It is well know that f is not Riemann integrable on [0, 1]. However, we will show
that f is Henstock integrable on [0,1].
Let {r¢|k € N} be an emumeration of the rationals in [0,1] and ¢ > 0 be

given. We define a gauge ¢ on [0, 1] by

5(” y 2,9% if SIS Tk,
1 if ¢ is irrational.
Let D = {([xi_1, 2], t;)|i = 1,2,....n} be a d-fine partition on [0,1]. If ¢; is
irrational, then f(¢;) =0 and so
f(tl)[l'z — Zlfi_l] —(-
If ¢; is rational, then f(¢;) =1 and

S g0l g By

So if t; = vy, then f(t;)[z; — 2] = 2 — 251 <20(1rk) = 55.

If 7, is the tag for two consecutive subintervals in D, the sum of the length

of these two nonoverlapping subintervals does not exceed 5. So we have

€

k=1

This implies that the Dirichlet functions is Henstock integrable with fol f=0.
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Example 2.3.2. Now consider a modification of the function known as the
Thomae's function or the ruler function. The original one was introduced

by Karl J. Thomae in 1875. It is the function g defined on [0, 1] by

Q=

if:t:g,x# 0 (p,q)=1
g(z) =
0 if ¢ is irrational or z = 0.

The function ¢ is Riemann integrable with fol g = 0. But we slightly change

the value of the function at nonzero rationals, namely define f : [0,1] — R by

q ifz=L ., x# 0 (pg=1
f(&) =

0 if ¢ is irrational or = = 0.

It is easy to see that f is not continuous at any point in [0, 1] and is unbounded
on any nondegenerate subinterval of [0,1]. So f is not Riemann integrable on
[0,1]. However, it is Henstock integrable on the interval. To show this, let € > 0

be given. Let {ry|k € N} be an enumeration or rationals in [0, 1].

Define § : [0,1] — R by
P
G’ g2

and 6(t) = 1 if ¢ is an irrational or ¢t = 0. Then for any J-fine partition D on

[0, 1], we have (similar to Example 2:3.1) that
1S(f. D)| < e.
So, f is Henstock integrable on [0, 1] with fol f=0.

It is interesting to notice that the Henstock integral is not absolutely integrable.
This is in contrast to the situation for the Riemann integral and the Lebesgue
integral where the absolute value of an integrable function is also integrable. Then
there are a Henstock integrable function which is not Lebesgue integrable and the

class of Henstock integrable functions is bigger than that of Lebesgue.
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o0

Example 2.3.3. [6] Let Zan be any convergent series of real numbers, and A
n=1
be its limit. Let ¢, = 1 — 2% for n = 0,1,..., that is ¢g = 0, ¢; = %, cy = %,
¢3 = %,... We define a function f :[0,1] — R by
2kq, if x € [cp1,cn),

f(z) =
0 e 1.

Then f is Henstock integrable on [0, 1] with fol f=A

The next example is remarkable as it shows that the absolute value of Henstock
integrable function need not be Henstock integrable. This implies that the class

of Henstock integrable function is strictly bigger than that of Lebesgue.

Example 2.3.4. [6] Let ¢y = 1 — 5 for each k € N. Define a function
9:[0,1] = R by
(1 if 2 € [opmi, n),

g(r) =
0 mt gp = 11

- 1
Since the series Z(—l)kﬂg converges , then by Example 2.3.3 ¢ is Henstock
k=1
1 s (_1)k+1
integrable on |0, 1] and / = .
g 0, 1] it ; .

Now consider-|g|, we have

% it © € [ca1ycn),
9] (x) =

0 if z=1.

We claim that |g| is not Henstock integrable on [0, 1]. Indeed, for each n € N, let

gl (z) if @ €[0,cn),
hn(z) =

0 if x € ey, 1].
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It follows from Example 2.3.3 that h, is Henstock integrable on [0, 1] and

1 " q
hy =S 2.
[ =3
k=1
But since 0 < h,,(z) < |g| (z) for all = € [0,1], it is clear that if |g| is integrable

"1 1 1
on [0, 1], then we must have Z AT / hn, < / |g| for every n € N, which is
5 0 0

impossible. Then |g| is not intggrable on [0, 1].



CHAPTER I11
The Integral of Functions whose Values are in a Banach

Space

In this chapter, we study the notion of a generalized Riemann integration of
functions whose values are in a Banach space. The notion was introduced in 2001

by Jean Christophe Feauveau ([1],[2]).

3.1 Preliminaries

Jean Christophe Feauveau [1] introduced a definition of generalized-Riemann
integration for functions whose values are in a Banach space. The idea is close to

that of Henstock.

Definition 3.1.1. Let [a,b] be a nondegenerate interval. Let § be a gauge
on [a,b], and {[z; 1,z;]|i = 1,2,...,n} be a partition on [a,b]. A collection of

interval-point pairs
D = {([l’i_l,QTi],ti) | 7 = 1, 2, ,n}

is called a tagged partition and the points t; are called tags. A tagged partition

is said to be a d-fine partition if
ti € [vi1,m] C (8 —0(t:), ti + 0(t:)),
and it is said to be a d-fine division if for each i = 1,2, ..., n,

[JTZ'_l, ZL’l] Q (tl — (5(22), ti + 5(%))
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Remark. The definition of a d-fine division is very similar to that of J-fine
partition, but the condition

ti € [zio1, 74

for © = 1,2, ...n is not required. So, every d-fine partition is a J-fine division. The
definition of a § — fine subdivision can be given analogously.
Now, we present the definition of integral introduced by Jean-Christophe Feau-

veau.

Definition 3.1.2. [1] Let f be a function defined on a nondegenerate closed
interval I = [a, ] into a Banach space (X, |.||). Then, f is said to be integrable

on [ if for each € >0, there exists a gauge d on I such that

D Mimaa)lfw) = FE)]] < e

whenever D = {([z;—, 2] i) | = 1,2,..n} and D' = {([z;—1, 2], t)) |1 =

1,2,...,n} are J-fine divisions on I.

For an integrable function f, a gauge satisfying the above property for € is
said to be e-adapted (to f).

Throughout this chapter, (X, |.||) or shortly X, stands for a Banach space.
The next theorem was given in [1] and the proof is sophisticated. Our results
in the following chapter have drawn their inspiration from this theorem, so we

present here the proof but in a modified manner.

Theorem 3.1.3. Let f : [a,b] — X be an integrable function. There exists a
unique vector A in X satisfying the following condition : for every positive real
number ~, there is an « > 0 such that if € is a positive real number less than «,

then for each e-adapted gauge d., we have
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n

Z(ﬂcz — i) f(ti) — A

=1

<7, (3.1.1)

for every d.-fine division {([z;_1,z;),t;) |i=1,2,...,n} on [a,b].

The vector A in the theorem is called the integral of f on |a,b].

Proof. Since f is integrable, for each € > 0 there is an e-adapted gauge, J. for f.

Let A={6.]€>0 and 6, < 65 for 0 <a < f}, and D, be the family of all
dc-fine divisions, where ¢, € A. For each d. in A, if P ={a = x¢, 21, ..., 2, = b}
is a partition on [a,b] and D, = {([z;_1, 2], t;)]e = 1,2,...,n} is a d.-fine division,
we will denote D, by (P t.), and > ;| (z; — z;_1)f(t;) by S(f, De).

For 0 < a < 3, we can merge the partitions P, and Pz into a finer one P, g.
Then we build (Pas,tas) from (P,,t,) by repeating tags whenever necessary.
The same work can be done from (Pgs,t5) to get (Psa,ts.a)-

Thus Dy = (Pas, tas) and Dg, = (Pga,tsa) are dg-fine division, and

15(f; Do) = S(f; D)l = IS(f, Dag) = S(f, Dp.o)ll < 8. (3.1.2)

We construct a sequence in X as follows : for each n € N, let x,, = S(f, D1).
Then the above discussion implies that (z,) is-a Cauchy sequence, and so con-
vergent. Let A be the limit of S(f, D1) as n tends to infinity. Then A € X.

Now let v be any positive real number. Since

lim S(f,Dl) :A,

n—oo

we can choose an integer N > % such that

HS(f, D) —AH <% (3.1.3)
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whenever n > N.

Now let o = % Then a > 0 and for 0 < € < «, we have

IS(F, D) = Al < IS(£.D2) = S(£. Do) + ||S(£.D3) = A|

1
<~ +% by (3.1.2) and  (3.1.3),
<.

To obtain the uniqueness of A, suppose that A and A’ satisfy (3.1.1). By the

triangle inequality, we have for every v > 0

| A= A < [|A= S(f, Do)l + 1S (f, De) — Al

VY
<_ 2
27 9
=

and D, is a d.-fine division on [a,b] where € is as in (3.1.1). Thus A=A4" O
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3.2 Properties of the Integral

Let f and g be function on [a,b] whose values are in a Banach space X. The
proof of the following theorem is identical to the case of real-valued functions (see

[5] for instance).

Theorem 3.2.1. Let f and g be integrable on [a, b].
1) The function f+ g and Af are integrable for all scalars .

2) If [c,d] is subinterval of [a. b], then f is integrable on [c,d].

Theorem 3.2.2. Let a < ¢ < b and f : [a,b] — X be such that the restrictions

of f to [a,c] and [c, b] are integrable .Then f is integrable on [a,b] and

b c b
L=l
Qa a c
The following property of the integral is an important tool to establish more

advanced results.

Theorem 3.2.3. Let f : [a,b] — X be an integrable function. For any positive

real number ¢, if a gauge ¢ is such that

Y@ pra) o) of @y < e
i=1 i=1
for every d-fine divisions {([x;_1,z;],t;)|i = 1,2,...,n} and
{([zj-1, 2], t)|5 = 1,2, ..., m} of [a, b], then
SO £t @i — i) — / f(a)da| < e

i=1

whenever {([x;—1,2;],t;)|i = 1,2,...,n} is a d-fine division on |[a, b].
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3.3 The Fundamental Theorem of Calculus

It is true that the fundamental theorem of calculus holds for the generalized
Riemann integration of functions whose values are in a Banach space. Let us
recall the definition of the derivative of a vector-valued function.

Let f be a function defined on a subset A of R with values in a Banach space
X, and let ¢ be a non-isolated point of A. The function f is said to have the

derivative at c if the limit

flz) = f(o)

JAGNE

lim,_.

exists in X and the value of this limit is called the derivative of f at ¢, and
denoted by f'(c). The derivative f" of f is the function x — f’(x) whose domain
is the set of non-isolated points = of A at which f’(z) exists. If f'(z) exists for
every © € B C A, then we say that f is dif ferentiable on B.
Let f : [a,b] — X. The function f is said to be absolutely continuous on
[a, b] if for every positive real number e there is a positive number § > 0 such
that
D F@) = fly)ll < e
i=1
whenever {[z;,y;]li = 1,2,...,n}is a collection of subintervals of [a,b] and such
that > " | Jyi— x| < 6.
It-is easy-to-prove that-if -f. is integrable on {asb]; then @ — [T f(t)dt is
continuous. In fact, we have a stronger result from the generalized Riemann

theory.

Theorem 3.3.1. If f : [a,b] — X is integrable, then the function F: 2 — [ f

is absolutely continuous.

The following theorem is an important property of the generalized Riemann

integral on the class of functions considered.
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Theorem 3.3.2. [The Fundamental Theorem of Calculus]/
Let f:[a,b] — X be continuous. If f is differentiable on [a,b] with f’ integrable
on [a,b] then

[ 7=10)- s,

The following result is the reverse problem of Theorem 3.3.2.

Theorem 3.3.3. Let f :[a,b] — X be integrable and F : [a,b] — X defined by

Fla)= [ 4

for each z € [a, b]. Then the function F is differentiable a.e. on [a,b] and F' = f

a.e. on |a,b|.



CHAPTER IV

A Generalized Riemann-Stieltjes Integral

4.1 Preliminaries

In this chapter, we develop an integral so-called a generalized Riemann-
Stieltjes integral for functions whose values are in an Lo-space. The idea is
based on the integral defined in chapter 3 and the Riemann-Stieltjes integral, a
modification of Riemann integral which has proved to be of considerable utility
in statistics. Let (Lq,||.|;) and (Ls,||.||,) denote an L;-space and Ls-space,

respectively.

Definition 4.1.1. Let f.g : [a,b] — (La,||.|l,). We say that f is integrable

with respect to g on la,b] if for each ¢ > 0, there exists a gauge ¢ on [a, b] such

that
> felola) mglol = Y F@lglw) — gl <e (@1

whenever D ={([z;_1, x:];¢;)[1 =1,2,..;n} and D" = {([u;=1, uj],v;)|j = 1,2, ...,m}

are 0-fine partitions on [a,b}.

For a given function g : [a,5] — (La, |.l,), i £ : [a,8] — (Lz, |.ll,) is integrable
with respect to g on [a,b] and € is a positive real number, then the gauge &
satisfying the condition (4.1.1) is called an e-adapted gauge for f (over g) on
la, b]. If there is no confusion which function g is concerning, we may shortly say

that ¢ is an e-adapted for f on [a,b].
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In the above definition, a criteria of integrability is given, but for an integrable
function, the integral is not given. The next theorem guarantees the existence of

the integral of integrable function, which is an element in L;.

Theorem 4.1.2. Let f and g be defined on [a,b] with values in L,. Then f
is integrable with respect to g on [a,b] if and only if there exists A € Ly such
that for every e > 0, there corresponds a gauge ¢ on [a,b] such that whenever

D = {([xi—1, ), )i = 1,...;n} is a d-fine partition of [a,b], we have

1S4(f. D) = All, < e, (4.1.2)

where Sy(f, D) => ", f(t:)]g(z:) = g(zi-1)].

Proof. Suppose that f is integrable with respect to g on [a,b]. Then for each
n € N, there is a gauge 9,, on |a,b| which is %-adapted for f. That is if
D = {([zi—1,z],t)|i = 1,...,n} and D" = {([uj_1,u;],0;)|7 = 1,2,...,m}

are two 0, -fine partitions on [a, b], then

157Dy 7 558 DMl 5 (1.1

We may. assume that for each n € N, 6,11(z) < 6,(x) for all = € [a,b].
Otherwise, we let ¢/, = min(d,, 6,41). Consequently for m > n, every 0,,-fine
partition is d,-fine partition.

For each n € N, let D,, be a fixed §,-fine partition. From (4.1.3), we note
that (S,(f, Dy))nen is a Cauchy sequence in Ly, hence there is an element A € L,
such that

lim S,(f,D,) = A

n—oo
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in L. Let € > 0 be arbitrary and let N be an integer greater than % such that

if n > N, then
€
For n > N, if D] is any §,-fine division, then by the triangle inequality, we have

159(f Dp) = Ally < 186 (f5 D) = Sg(fs Do) Iy + (155 (f; D) = All

s €

< — 4 = by (4.1.4
- y (4:1.4),
1

§N+§ for n > N,
€ € 2
— 4+ = fom YW, >, —
<2+2 or =\

I
Q)

Now, assume the converse. We will show that f is integrable with respect to g
on [a,b]. Let € > 0 be given. By (4.1.2), there is a gauge ¢ on [a,b] such that

whenever D is a § - fine partitions on |a, b], we have

155(f, D) = Al| <

N

Therefore, if D; and Dy are any two 0-fine partitions on [a, b]
1S(fs D1) = Sg(fy D2)ll, <ISy(f, D1) = Al + [[Sy(f, D2) — All, <

Hence, f is integrable with respect to g on [a, d]. O

It is obvious that the element A in the previous theorem is unique. It is called

the integral of f (with respect to g) on |a,b] and denoted by

/a b fdg.
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4.2 Elementary Properties of the Integral

In this section, we present the elementary properties of the Henstock-Stieltjes

integral defined in the previous section.

Theorem 4.2.1. If f;, fo and f are Henstock Stieltjes integrable with respect to

g on [a,b] and X € R, then so are f; + fo and \f, and

l%ﬁﬁwwafﬁ@+[ﬂ@,
/:Afdg \ A/abfdg

Proof. Let f; and fy be Henstock-Stieltjes integrable with respect to g on [a, b].

Let € > 0 be arbitrary. Let d; and d, be gauges on [a,b] such that

b
€
'Sg(flaDl)_/ hdg|l < 5 (4.2.1)
a 1
for any ¢;-fine partition D; on |a,b] and
g €
‘Sg(fQ,DQ)—/ AL S (4.2.2)
a 1

for any do-fine partition Dy on [a, b].
Let § : [a,b] — R™ defined by 06(t) = min(d;(t),d2(¢)). Then § is a gauge on

la,b] and for any J-fine partition D on [a,b], we have

by the triangle inequality, (4.2.1) and (4.2.2).

§e

7

Sy(fi+ o, D / fidg = / f2dg]

Now, let f be Henstock-Stieltjes integrable with respect to ¢ on [a,b] and

A € R be arbitrary. If § is a gauge on [a,b] and D is a d-fine partition on [a, b],

b
‘ s, 5,(£.0)~ [ rdg

then

b
(\f, D) - A/ Jdg|| =
a 1

(4.2.3)
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So it is obvious that the integrability of f implies the integrability of A\f for any

/;Afdg:)\/abfdg.

A € R, and

]

Theorem 4.2.2. Let f,g : [a,b] — Lo, and ¢ € (a,b). Then f is Henstock-
Stieltjes integrable with respect to g on [a,#] if and only if the restrictions of f
to [a,c] and [c,b] are both Henstock-Stieltjes integrable. If this is the case, we

have

/ab fdg = /ac fdg + /cb fdg. (4.2.4)

Proof. Let fi, the restriction of f to [a,c|, and f3, the restriction of f to [c, ],
be Henstock-Stieltjes integrable with respect to g. Let € > 0 be given. Then there
are gauges 0, on [a,c| and 0y on [c,b] such that if D; is a d;-fine partition on

la,c] and Dy is a do-fine partition on [¢,b] then

1

We define a gauge o on [a,b] by

€
<= (425
5 5 (425)

b
Sg(f27D2)—/ Jdg

Sg(f1,D1) — /acfdg

< s and '

1 1

(

min{é,(t),5(c —t)} if t € a,0),

6(f) = q min{dy(c), d2(e)} if t=c,

\min{ég(t), ft—o)} if te (b
Then 6 < §; on [a,c] and § < &9 on [c,b].

Let D be any J-fine division on [a,b], say D = {([x;_1,z;],t;)|i = 1,2,...,n}.
Then ¢ =t;, for some i, € {1,2,...,n}.

Let D1 = {([l’l_l,JTZ],tl)lZ = 1, ...,io — 1} U {([[L’io_l,tio],tio)}, and
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Dy = {([xs—1, ], ti)|i = i + 1, ...;n} U{([ts,, x:,], ti,) }. Then Dy is a d-fine par-
tition, and hence a §;-fine partition on [a,c|. And also D, is a d-fine partition

on [c,b]. Note that
Sy(f, D) = Sy(f, D1) + S,(f, Da). (4.2.6)

Since Dj is a d;-fine partition and Dy is a d,-fine partition by (4.2.5) and (4.2.6),

we conclude that

i

b
S,(f, Da) — / fdg

c

S,(f; Dy)— / fdg

a

Sg<f,D>—</:fdg+/cbfdg>

:
1

1 1

+

VAN
N
N

Since € > 0 is arbitrary, f is Henstock-Stieltjes integrable with respect to g on
[a,b] and the equality in (4.2.4) holds.

Conversely, suppose that f is Henstock-Stieltjes integrable on [a, b]. Let € be
arbitrary. Then there is a gauge J on |a,b] such that for any J-fine partitions

D17D2 on [CL, b],
1S5(f, D1) = So(fs Do)l; < e. (4.2.7)

Let ¢’ = i, D' and D" be ¢'-fine partitions on [a,c]. For 6" = 6|y,
choose a partition D on [e, b] which is a 0”-fine partition.
Consider D’ U D and D" U D They are d-fine partitions on [a,b] and so by

(4.2.6), we have

15, D) = S,(£, D", = |

S,(f,D"U ﬁ) = Sy(f, D"V E)HI

< €.

This implies that f is Henstock-Stieltjes integrable on [a, ¢]|.Similarly, f can be
shown to be Henstock-Stieltjes integrable on [c, b]. Therefore, the equality (4.2.4)

holds from the first part of the theorem. n
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Corollary 4.2.3. If f is Henstock-Stieltjes integrable with respect to g on [a, b]

and [c,d] C [a,b], then so is the restriction of f to [c,d].

Proof. 1f f is Henstock-Stieltjes integrable with respect to g on [a,b] and

¢ € [a,b], then it follows from the previous theorem that the restriction of f to
[c,b] is also Henstock-Stieltjes integrable with respect to ¢g. And if d € [c,d],
another application of the theorem shows that the restriction to [c,d] of f is also

Henstock-Stieltjes integrable. O

The next corollary is immediately obtained from Theorem 4.2.2 by using math-

ematical induction.

Corollary 4.2.4. Tf f is Henstock-Stieltjes integrable with respect to g on [a, b]
and a = ¢g < ¢ < ... < ¢, = b, then the restrictions of f to each of the

subintervals [¢;_1,¢;] are integrable and

/abfdg = Z/ fdg.

Definition 4.2.5. If f is Henstock-Stieltjes integrable with respect to g on [a, ]

/dcfdg=—/cdfdg
/Ccfdgzo.

Corollary 4.2.6. If f is Henstock-Stieltjes with respect to ¢ on [a,b] and ¢, d, e

and a < c¢<d <b, we define

and

are any points in [a,b], then

/: fdg = /Cd fdg + /de fdg, (4.2.8)

in the sense that the existence of any two of these integrals implies the existence

of the third integral and the equality (4.2.8).
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4.3 The Saks-Henstock Lemma

By the result of Theorem 4.1.2, we have as an equivalent condition for Henstock-
Stieltjes integrability of f on [a,b] that given any positive real number €, there

exists a gauge d on [a,b] such that if D is any d-fine partition of [a,b], then

The inequality (4.3.1) can be referred as an approximation of the Henstock-

b
S,(f, D) — / fdg

a

<e. (4.3.1)
1

Stieltjes integral of f on [a,b] by the Riemann sum of f with respect to g and
the d-fine partition 0. The Saks-Henstock Lemma asserts that the same degree

of approximation is valid for

<e

Sy(f, D) —/ fdg

UL I

=

1
for any J-fine subpartition D" = {(I;,#;)|i = 1,2,...,n} of [a,b]. This fact may
not seem so surprising if the union of subintervals in D’ is a subinterval of [a, b].
But it is not obvious that the result remains true for an arbitrary collection of
subintervals. The next theorem is analogous to the important result known as the

Saks-Henstock Lemma. The idea of the proof is due to this well known lemma.

Theorem 4.3.1. Let f be Henstock-Stieltjes integrable on [a,b] and € be any

positive real number. Let ¢ be any gauge on [a,b] such that for any 0-fine

Then for any d-fine subpartition,

partition D on [a, b]

<e
1

b
S,(f, D) — / fdg

a

D, = {([xz,yz]ytz)’Z = 1,2, ,n}
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of [a,b]
g i Li : Sg ) , J dg <e
;1{] (t)[g(y) g( )] /1 ]dg} 1 (J E) /;Ll[i, : 1
(4-3-2)

Proof. Let Ky, ..., K, be closed subintervals in [a, b] such that {[z;, y]|i = 1,2,...,n}U
{Ky, ..., K,,} forms a partition of [a, b].

Now let v > 0 be arbitrary. Since (by Theorem 4.2.2) the restriction of f to
each subinterval K; (5= 1,2,...,m) is Henstock-Stieltjes integrable, there exists

a gauge 0,; on K such that if D; is a ¢, ;-fine partition of K, then

(0%
< —. 4.3.3
N (4.3.3)

Sy(f, Dj) —/

K;

I

1

We may assume that 0, ;(z) < é(x) for all z € K;. Let D =D'UD; U ...U D,,.

Then D is a d-fine partition of [a, b and

<e.
1

b
Sg(f7D>_/ fdg

a

Furthermore,
Sq(f, D) = Sg(f; D)+ 54(f, D1) + ... + Sy(f, D)

and

b
/a fdg = /U o fdg+ . fdg+ ..+ /K ) fdg.

Consequently, we obtain

) S0l D) = S e fdgH1

— {844, D) = 184, 1) + o+ Sy(f, D)} = {2 g = [, Fg+ .+ fye, Sdgl} |

Sy(£.D) = [} Fdg| +|[So(F, D) = fi, Fdg| 4 ||Syl £, D) = fi, Fdg])

<e+mt

|

=€+ 7.

Since v > 0 is arbitrary, then ‘ Se(f, D) — [, i 124] fdgH < € as required. [J
i=11Li—1,Tq¢ 1
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Corollary 4.3.2. Let f be Henstock-Stieltjes integrable with respect to g on
[a,b] and € > 0 be arbitrary. Let 6 be a gauge on [a, b] such that for any J-fine

partition D = {([x;_1, ), t;)|i = 1,2, ...,n} of [a,b],

Then for each i =1,2,....n,

<e.
1

b
S,(f, D) — / fdg

<e.
1

Hf(t»[g(m sl [ty

Proof. The conclusion is immediately obtained from Theorem 4.3.1 and the fact

that {([x;_1, ], )} is a d-fine subpartition on [a, b]. O
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4.4 The Fundamental Theorem of Calculus

Now, we investigate an analogous result of the fundamental of calculus. In
this section, we give an important application of Sakes-Henstock lemma (Theorem
4.3.1), by establishing the continuity of the indefinite integral. For simplicity, we
consider here only the indefinite integral with the point a as the left endpoint,
since any other indefinite integral differs from this by a constant (in L; ). However,
in our work, the continuity of the integrator g is assumed.

Consider a function f : [a, b] — Ly which is Henstock-Stieltjes integrable with
respect to g on [a,b] (g :[a,b] — Ls). For any « € [a, b], the integral of f (with

respect to g) on [a, 2] exists, so we can define a function F : [a,b] — L; by

ria) =, [ fdg
for x € [a, b].

Theorem 4.4.1. If f is Henstock-Stieltjes integrable with respect to a continuous

function ¢ on [a, b]; then the indefinite integral

Fla)i= | fdg
for = € [a,b]; is continuous on [a,b].

Proof. Let-c € [a,b) be arbitrary. We will show that F' is continuous from the
right at ¢. Let ¢ > 0 be given. Since ¢ is continuous at ¢, there is an o > 0 such
that for any ¢ € [a,b] with |t — ¢| <

€

l9(t) = g(c)ll, < oL+ T

Let § be a gauge on/a, b] such that for any 0-fine partition D on [a, ],

<e
1

b
S,(f,D) — / fdg
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Now, define a gauge ¢’ on [a,b] by for each t € [a, b]

min{d(t), 1 [t —c} if t#ec,
§'(t) =

d(c) if t=c

let 0 < h < min{d'(c),a} and D" be the ¢’-fine subpartition consisting of only
one member; that is D" = {([¢,c + i), ¢)}. Then by applying the Corollary 4.3.2,
we have

<e.
1

stefoc1d gt~ [ sds

Hence, it follows from A < « that

c+h
/ fdg

< [[f()lgle+h) —g(e]ll, + e

That

|F(c+h) - F(A)], = ]

1

< || f(@)l5 lg(c + h) — g(c)]lly + € (by Cauchy Schwarz inequality)

€

< ||f(0)||zm

A=
< 2e.

Since € > 0 is arbitrary, then F"is continuous at cfrom the right. We can show

that F' is continuous from the left at any point in (a, b] by the same manner. [

To establish the fundamental theorem of calculus, it is useful to confine our
consideration of the integrator g to be nice enough. We consider only the function

g which does not oscillate too much in the sense we will now define.

Definition 4.4.2. Let ¢ : [a,b] — Ly. We define the wvariation of g over the

interval I = [a,b] to be

Var(g,I) = Sup{z lg(z:) = g(zi)lly [P = {20, s zn}}
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where the supremum is taken over all partition P of I. We say that g has (or
is of ) bounded variation on I if Var(g,I) < oco. The collection of all functions

defined on I with values in L, that have bounded variation on is denoted by

BV (I, Ly).

In order to investigate the fundamental theorem of calculus we recall the def-

inition of the derivative with respect to ¢ of a function [8].

Definition 4.4.3. Let F : [a,b] — L; and ¢ : [a,b] — Lo. Then F' is said to
be differentiable with respect to g on |a,b] if there is a function f : [a,b] — Lo
satisfying the following condition: for any e > 0, there is a gauge § on [a,]
such that for any x € [a,b], if u,v € [a,b] are such that |u— x| < 0(z) and

|v — x| < 0(z) then

1F(v) — F(u) = flz)lg(v) = gl)]ll, < ellg(v) —g(w)ll,-

The function f is called the derivative (with respect to g) of F' on [a,b], and

denoted by %.

Theorem 4.4.4. Let g : [a,b] — Lo belong to BV ([a,b],Ly) of F on |a,b].If
f is the derivative with respect to g of F on [a,b], then f is Henstock-Stieltjes

integrable with respect to ¢ on [a,b] and

b
/ fdg = F(b) — F(a).

Proof. Let a = Var(g,I). Since g € BV([a,b],Ls), 0 < o < c0. Let € > 0 be
given. There is a gauge ¢ on [a,b] such that for any d-fine partition

D = {([zi_1, 2], t;)|i = 1,2, ...,n} on [a,b] we have

[ F (i) — F(2i1) — f(t)]g(x:) — g(@ia)]ll, < aLle lg(zi) — g(@i1)ll, -
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By using the telescoping sum F(b) — F(a) = Y i, [F(x;) — F(xi—1)], we have

(b)) = F(a) = Sy(f, D), =

1

Z[F(xi) = F(z; = 1)] - Z ft)lg(w:i) — g(xii)]

This implies tha

AONUUINBUINT )
ANRINITUINENAY
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