[ Y Y 9 Y 4 a 1 3 Yo 9
ﬂ?ﬁﬂiﬂiﬁﬁ@ﬂﬂﬁﬂ\w\liﬂﬂﬂUﬂWiﬂuﬁWﬂﬂWmWﬂWﬂWﬂﬂEﬂ\i!ﬁuvlﬂ‘]fﬂ"llﬂ\iellﬂylﬁ

Tagl3t Isailandudmsudelinsal luaeu 6

o = J
HIININA ITSNH

a a yr:,’ 1 % [ a a Y] a
IneninusiiludunisvesmsngamangasUiyanimnssumansunminga
AVIFIFINTTVAY  NIAIFIAINTTUAL
AUZIAINTTUANAAT  JWAINTRINMIING1AD

= =
1nsANET 2550

a a J a (Y
ﬁﬂlﬁﬂﬁﬂl'ﬁ]\‘lﬂw'lﬁ\?ﬂimuﬂ’l')ﬂﬂ’]aﬂ



SIMULTANEOUS DATA RECONCILIATION AND GROSS ERROR DETECTION
USING A ROBUST FUNCTION METHOD FOR NYLON 6 REACTOR

Mr. Jakapon Veeravong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Chemical Engineering
Department of Chemical Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2007
Copyright of Chulalongkorn University



Thesis Title

By
Field of Study

SIMULTANEOUS DATA RECONCILIATION AND GROSS
ERROR DETECTION USING A ROBUST FUNCTION
METHOD FOR NYLON 6 REACTOR

Mr. Jakapon Veeravong

Chemical Engineering

Thesis Principal Advisor Soorathep Kheawhom, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

ﬁ'

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

T ...........Dean of the Faculty of Engineering

THESIS COMMITTEE

. / Vm : Mﬁ,&/\ ,,,,,,,,,, Chairperson
(Assistant Professor Mont ongsri, D.Sc.)
.......... 5 ““H"fzd;"'l"‘“‘ Thesis Principal Advisor

(Soorathep Kheawhom, Ph.D.)

teveeseens External Member

(Assistant Professor Worapon Kiatkittipong, D.Eng.)

MMMA‘PM‘M“‘?F Member

(Assistant Professor Amomchai Arpornwichanop, D.Eng.)



w - ' [ - - i w
PNIND VTEWIH n111J1Uiﬁ'ﬂﬂﬁnﬁ‘na'ﬂﬁ:urrun11ﬁuﬂ’m‘:nuwﬁﬂmnnumﬁuﬁsﬁw;

Yoynlaul¥38 Isiafladdudmivin/fnsalludeu 6. (SIMULTANEOUS DATA
RECONCILIATION AND GROSS ERROR DETECTION USING A ROBUST
FUNCTION METHOD FOR NYLON 6 REACTOR) 8. filSnuiinoriinutwin:

3. gamw Juamey, 77 wih,

ooulmioortd lurdudhund oadoiing mdtlunsiunandauazaamsldminuinilu
QAEIMNI TN doswinfumunseyolinssuaumsdmsdisiumsey luamaziiafige Fafu
Tuilagiuoou Tavfoora s Wi unumileodads TaolumsieenTarfeord sy
soaufilomiood luerdu 3 dgmidaoiufio madiulireandesvoadoyn madszuiu
Avmiined uasmsend i lumaraugmand Taodii Idnnmasadaulsnazurumsezgn
Wiiemmifintel wesd il snszuaums o613 lsfimwlums Sadanlsnszurumseziinnwia
wametaiu Id¥auaznuRana ALY FirnuRanmaiareawuiidesgniiaoenTyly
Sunounisiuliaenndo wesdeyn luvai@vaiudouinszuaums it deadiu
mungniseyinduiauazndinuile Tuaw3suiis niimsdivl¥reandosvesdoyaun
YszyndlFlusalgnsafiuniinnednid mivnssuumsnanludou 6 lugnamnssuiiaan:
neda s oyt lumatinliuliaeandoaveadoya 3 sudoniidaviufe
Contaminated Normal, Lorentzian distribution function uaz Hampel's redescending M-
estimator tienSvuifoulse A venvmiuda 1dn oty dou it i lunsd@ia
vanszua hiimiiadae Fawan 1dTusinnsdiu i reandesveadoyavewnazsuidouis
urasllidiuints 3 sufloy3ieunsoldfunszurumsii 18aneniu mzennsosesiuiy
JoyamaiavednisununisiivannaRaaaediisin diaitaza nuAanaauuygu1d

- el 4 Wl e ¥ -
suflodtmanitemusoma 18 lunsdintuanizuai1d iatndu

¢
- - - F . ., -
MAIY....... IAINTIUAN....... aulio¥etifn... AMSWE AE A
- - - & A f-‘lrl - - ’ “’W LM
mvIr. dmnsTuall........  awle¥oe1nion sﬂmmumwumﬁﬂ...._T...............,,.,...,,......

Tnsdnw......2550............



# # 4970251621 : MAJOR CHEMICAL EHGINEERINGR

KEY WORD : DATA RECONCILIATION / NYLON 6 / REAL TIME ONLINE

OPTIMIZATION / ROBUST FUNCTION METHOD
JAKAPON VEERAVONG : SIMULTANEOUS DATA RECONCILIATION
AND GROSS ERROR DETECTION USING A ROBUST FUNCTION
METHOD FOR NYLON 6 REACTOR. THESIS PRINCIPAL ADVISOR:
SOORATHEP KHEAWHOM, Ph.D., 77 pp.

On-line optimization is a powerful method for economic improvement and
resource reduction in chemical industries, because it allows a process to be operated near
its optimum operating condition. Thus, it is currently receiving increasing attention. In
order to perform online optimization, sequence solving of three optimization problems
which are data reconciliation, parameter estimation, and economic optimization are
required. Normally, process measurements are used to determine the actual state of the
process. However, these measurements usually contain random as well as gross errors.
Both random and gross errors should be eliminated in data reconciliation step. Further, the
reconciled data must satisfy process material and energy balances. In this work, we apply
data reconciliation in VK column reactors for industrial nylon 6 production process at
steady state condition. Three data reconciliation algorithms: Contaminated Normal,
Lorentzian distribution function and Hampel’s redescending M-estimator, are investigated
to compare the performances. We also compare these algorithms under the conditions
where some process streams are unmeasured. The result shows that all algorithms perform
well in this process. Because it can support with process measurements contain both gross
and random errors. Moreover, these algorithms also work well in the case where

unmeasurement process streams exist.
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CHAPTERI

INTRODUCTION

This chapter is an introduction of this research. We first introduce importance
and reasons for research, research objectives, scopes of research, contributions of

research, research procedures, and research contents.

Chapter organization is as follows:

1.1 — Importance and reasons for research
1.2 — Research Objective

1.3 — Scopes of research

1.4 — Contributions of research

1.5 — Research procedures

1.6 — Research Contents
1.1 Importance and Reasons for Research

In a very dynamic market with globalization, chemical process industrial are
increasingly compelled to operate profitably. The increasing competition and stringent
product requirements decrease profit margin. Thus, plant operations must be
optimized dynamically in order to cope the changing markets conditions and to reduce
the operating cost. Hence, the importance of real-time on-line optimization of an

entire plant is rapidly increasing.

Real-time optimization (RTO) refers to evaluation and alteration operating
conditions of a process continually in order to maximize the economic productivity of
the process. Currently, it is more and more used in the chemical industrial in order to
operate a process near its optimum condition by providing real-time computed
optimal set-points to the distributed control system (DCS). Typical structure and
components of RTO are illustrated in Figure 1. Plant measurements collected via the

distributed control system are first checked for steady state operation. If the plant is at
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steady state, reconciliation and gross error detection are performed on the measured
data, and the process model is updated based on reconciled data. Optimization is then
carried out using the updated model along with the economic data and product
requirements, to find the new set-points for the operating variables. The new set-

points are then passed to the distributed control system for implementing on the plant.

The optimization module heavily relies on accuracy of the process model.
Moreover, the quality of the measurement data is crucial for the realization of the
optimization results. However, in most cases there exist discrepancies between the
model and the real plant and the measurements are contaminated with measurement

errors.

Most process models have parameters which have to be estimated from
measurement data. To improve the accuracy of the model these parameters must be

estimated with measurement data taken directly from the plant. Therefore, process

setpoints
for plant
controllers measurements
Distributed Control System
A
sampled
plant data
optimal |setpoint
operating | targets v
conditions
Data
Validation
reconciled
data
Optimization Algorithm plant model Plant Model
Economic Model < parameters Parameter
Plant Model Estimation

economic model
parameters

Figure 1.1 Simplified structure of on-line optimization
(Zejun, Ralph, & Thomas, 1995)
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measurements are necessary to determine the actual state of the process, and to
increase the accuracy of the model. Therefore, measurement data do not only affect

the quality of the optimization results but also that of the estimated process model.

Process measurements are inevitably corrupted by errors during the
measurement itself, and also during its processing and transmission stages. Generally,
measurements often contain random and possibly gross errors as a result of
miscalibration or failure of the measuring instruments. These errors should be

eliminated before the measurements are used for online optimization.

Data reconciliation is an important step in real time on-line optimization. It
adjusts the process measurements with random errors to satisfy the constraints of the
system model and provides estimates for unmeasured variables and process
parameters, which are used in the consecutive economic optimization step. Therefore
data reconciliation has to be performed in order to identify and rectify measurement
errors. Reconciled process data is used to specify the current status of the plant model
and for estimation of the model parameters for plant-model matching. Most
elimination of the less frequent gross errors is achieved by gross error detection.
Therefore, data reconciliation and gross error detection are a way to improve the

quality of the measurements.

Generally, to improve the quality of measured data includes three steps: steady
state identification, gross error detection and data reconciliation. In this research, we
focus on the simultaneous data reconciliation and gross error detection strategies to
reduce the time required in data validation. We implement simultaneous data
reconciliation and gross error detection strategies to industrial nylon 6 production
process at steady state condition.”"We study the performance of each available
technique that suitable for industrial nylon 6 production process and compare these

algorithms under the conditions where some process streams are unmeasured.
1.2 Research Objective

The objectives of our research are to take advantage of information

redundancy on a process to make a cross-check of real time process measurements by
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combining data reconciliation with gross error detection, and to apply the developed

methodology in a case study of industrial nylon 6 production process.
1.3 Scopes of research

1. Simulation of nylon 6 production process in Continuous stirred tank reactor
(CSTR) is studied.

2. An application of data reconciliation with gross error detection in VK

column reactors for industrial nylon 6 production process is considered.

3. The data reconciliation problem is formulated as the optimization problem
by Weighted Least-Square and Robust function methods. The robust distribution

functions that we studied are as follows:

e Contaminated normal distribution.
e Lorentzian distribution.

e Hampel’s redescending M-estimator.

4. The data reconciliation problem formulated is solved by in-house optimizer.

(Deferential Evolution method)

5. To compare performances each algorithm, take solution to obtain each
algorithm compare to true value of each variable at steady state condition. We also
compare these algorithms under the conditions where some process streams are

unmeasured.
1.4 Contributions of research

The contributions of this research are as follows:

1. An efficient system to estimate the current status of process variables and

unmeasured variables of industrial nylon 6 production process.

2. The formalizations of knowledge in applying simultaneous data

reconciliation and gross error detection in industrial nylon 6 production process.



1.5 Research procedures

1. Firstly, relevant information regarding nylon 6 production process and data

reconciliation is reviewed.

2. A process description of an industrial nylon 6 production process is

thoroughly studied.

3. Simulation of nylon 6 production process in Continuous stirred tank reactor
(CSTR) at steady state condition.

4. Industrial process operation data are collected.

5. Various different data reconciliation with gross error detection techniques is
performed. The data reconciliation with gross error detection problem is formulated as
the optimization problem constituted by an objective function that corresponds to
maximum likelihood function formed from the probability distribution function of the
measured variable. The constraints are mass and energy balances, separation rules,

and thermodynamic behaviors.

6. The data reconciliation with gross error detection problem formulated is

solved by in-house optimizer.

7. To compare performance each algorithms, take solution to obtain each
algorithm compare to true value of each variable at steady state condition.

8. Finally, we conclude our research and write thesis.
1.6 Research Contents

This thesis is divided into five chapters.

Chapter 1 is an introduction to this research. This chapter consists the
importance and reasons for research, objectives of research, scopes of research,

contributions of research, and research procedures.
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Chapter 11 is literature reviews related to data reconciliation with gross error

detection.

Chapter 111 cover some background information of data reconciliation, gross
error detection, simultaneous data reconciliation and gross error detection, benefit
from data reconciliation and gross error detection, and algorithm for solve data

reconciliation problem.

Chapter 1V Take data reconciliation with gross error detection techniques are
performed in industrial nylon 6 production process and the other case studied. And

results to obtain data reconciled each algorithms are presented in this Chapter.

Chapter V presents the conclusion of this research and makes the

recommendations for future work.
This is follow by:
References
Appendix A: Reaction and Kinetics for Nylon 6 Polymerization

Appendix B: Reconciliation Solution for the Measured Variables in All Cases



CHAPTER |1

LITERATURE REVIEW

For more than twenty years, reconciliation problem has received consideration
in the literature. Kuehn and Davidson (1961) introduced a data reconciliation method
based on linear process models by use Lagrange multipliers to solve for optimal
adjustments to measurements for the case when either all or none of component flow
rates are measured. The method was improved, for instance, by Nogita [1972] and
Mah et al. [1976] introducing new methods for detection of gross errors in
measurements. The enhancement of data reconciliation towards nonlinear models was
published by Crowe [1986] using matrix projection. In a later article, Crowe gave a
survey on nonlinear data reconciliation and the challenges for its further development
[1996].

The method of data reconciliation can be corrupted by faulty sensors or
improper process models. Therefore, gross errors have to be dealt with additionally.
The original method to cope with gross errors considers a sequential approach, in
which measurements are eliminated after being detected as afflicted with gross errors

and the data reconciliation algorithm is restarted.

In the early 1990s, Tjoa and Biegler (1991) introduced a method which
simultaneously reconciles the data and detects the gross errors by combining the
treatment of small measurement errors and gross errors into a so-called contaminated
Gaussian objective function instead minimize an objective function that is constructed
using maximum likelihood principle to construct a new distribution function, which
takes into account both contributions from random and gross errors. The advantages
of minimizing this objective function are that it gives unbiased estimates in the
presence of gross errors and that simultaneously a gross-error detection test can be
constructed based on their distribution functions without the assumption on the
linearity of the constraints. Furthermore, the structure of this objective function can be
exploited under certain conditions. Thus, efficient nonlinear programming strategies,
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similar to the hybrid SQP method introduced by Tjoa and Biegler in 1991 for least
squares objective functions, can also be developed. The effectiveness of this strategy

is demonstrated on nonlinear example problems.

Johnson and Kramer (1995) reported the feasibility and better performance of
the robust estimators as the objective function in the data reconciliation problem
especially when the data contain gross errors. These robust functions are the
Lorentzian distribution. This approach does not divide the sensors into “normal” and *
gross error™ classes, but uses all of the data in the rectification. In this manner, the
conventional assumption of no sensor bias is-avoided, and both random errors (noise)
and systematic errors (gross errors) are removed simultaneously. This method is
demonstrated on data from a simulated flow network and a simulated heat-exchanger
network. And briefly discussed the theoretical evaluation of algorithms using the

influence function.

Chen, Pike, Hertwig and Hoppe (1998) studied optimal implementation of on-
line optimization for Monsanto sulfuric acid contact plant. In data validation step,
simultaneous gross error detection and data reconciliation algorithms are used to
detect and rectify the gross errors In measurements. These algorithms are
measurement test method using a normal distribution, Tjoa-Biegler’s method using a
contaminated Gaussian distribution, and robust method using robust distribution
functions (Lorentzian distribution, Fair distribution). In summary, the evaluation of
influence functions for the probability distributions shows that the contaminated
Gaussian and Lorentzian distributions have influence functions that are relatively
insensitive to gross errors. Methods based on the contaminated Gaussian distribution
should have the best performance for reconciling measurements when moderate size
gross_errors “are_present (rang 3o0—30c ), “and  methods “using the Lorentzian

distribution should be more effective for very large gross errors.

Ozyurt and Pike (2004) compare different objective functions with the
contaminated Gaussian function regarding their effectiveness in detecting gross errors
of simultaneous procedures for data reconciliation and gross error detection is
established. These procedures depending on the results from robust statistics reduce
the effect of the gross errors. They provide comparable results to those from methods

such as modified iterative measurement test method (MIMT) without requiring an
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iterative procedure. The comparative results of the introduced methods are given for
five literature and more importantly, two industrial cases. Methods based on the
Cauchy distribution and Hampel’s redescending M-estimator give promising results

for data reconciliation and gross error detection with less computation.



CHAPTER IlI

THEORY

The aim of this research is to take advantage of information redundancy on a
process to make a cross-check of real time process measurements by combining data
reconciliation with gross error detection, and to apply the developed methodology in a
case study of industrial nylon 6 production process. Since major roles of data
reconciliation are reconciliation of measured process data to satisfy defined constraints. To
efficient system to estimate the current status of process variables and unmeasured

variables of industrial nylon 6 production process.

In this chapter, that is to say background information of data reconciliation,
gross error detection, simultaneous data reconciliation and gross error detection in
each techniques, benefit from data reconciliation and gross error detection and

algorithm for solve data reconciliation problem.

3.1 Data Reconciliation

3.1.1 Introduction

Process measurements are  inevitably “corrupted by errors during the
measurement, processing and transmission of the measured signal. Using this
information without ‘any filtering ' technique in process control. may affect the
achievement of optimal plant performance (e.g. quality, yield or due-date) and even
could drive the plant to an unsafe situation (Chouaib, 2004). Therefore, data
reconciliation (DR) istechnique that has been developed to improve the accuracy of
measurements by reducing the effect of random error in the data. The principal
difference between data reconciliation and other filtering techniques is that data
reconciliation explicitly makes use of process model constraints and obtains estimates

of process variables by adjusting process measurements so that the estimates satisfy
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the constraints (Narasimhan & Jordache, 2000). Thus, data reconciliation is an
imperative procedure in control strategy to improve the accuracy of measurements
The data provided via data reconciliation are defined as the optimal solution to a
constrained least square and maximum likelihood objective function. The optimal
estimates of physical properties such as concentration and temperature are employed
in control strategy to reduce level of process data corruption and improve process

performance, leading to better quality control.

The reconciled estimates are expected to be more accurate than the
measurements and, more importantly, are also consistent with the known relationships
between process variables as defined by the constraint. In order for data reconciliation
to be effective, there should be no gross error either in the measurement or in the
process model constraints. Gross error detection is a companion technique to data
reconciliation that has been developed to identify and eliminate gross error. Thus, data
reconciliation and gross error detection are applied together to improve accuracy of

measured data.

Data reconciliation and gross error detection both achieve error reduction only
by exploiting the redundancy property of measurement. Typically, in any process the
variables are related to each other through physical constraint such as material or
energy conservation laws. Given a set of such system constraint, a minimum number
of error-free measurements is required in order to calculate all of the system
parameters and variables. If there are more measurements than this minimum, then
redundancy exists in the measurements that can be exploited. This type of redundancy
is usually called spatial redundancy and the ‘system  of equation is said to be

overdetermined.

Data reconciliation cannot be performed without spatial redundancy. With no
extra measured information, the system is just determinated and no correction to
erroneous measurements is possible. Further, if fewer variables than necessary to
determine the determine the system are measured, the system is underdetermined and
the values of some variables can be estimated only through other means or if

additional measurements are provided.

A second type of redundancy that exists in measurements is temporal
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redundancy. This arises due to the fact that measurements of process variables are
made continually in time at a high sampling rate, producing more data than necessary
to determine a steady state process. If the process is assumed to be in a steady state,
then temporal redundancy can be exploited by simply averaging the measurements,
and applying steady state data reconciliation to the averaged values.

If the process state is dynamic, however, the evolution of the process state is
described by differential equation corresponding to mass and energy balance, which
inherently capture both the temporal and spatial redundancy of measured variables.
For such a process, dynamic data reconciliation and gross error detection techniques
have been developed to obtain accurate estimates consistent with the differential

model equations of the process (Narasimhan & Jordache, 2000).

In general, the total error in a measurement, which is the difference between
the measured value and the (definitely unknown) value of a variable, can be
conveniently represented as the sum of the contributions from two types of errors:

random and gross errors.
1. Random errors.

Random errors which are inherent to the measurement process are usually
small in magnitude and are most often described by the use of probability
distributions. These errors can be caused by a number of different sources such as
power supply fluctuation, network transmission and sign conversion noise, changes in

ambient conditions, and so on.
2. Non-random errors or gross errors

Gross errors. are caused by nonrandom events such as instrument
malfunctioning (due to improper installation of measuring devices), miscalibration,
wear or corrosion of sensors and so on. The nonrandom nature of these errors implies
that at any given time they have a certain magnitude and sign which may be unknown.
Thus, if the measurement is repeated with the same instrument under identical
conditions, the contribution of a systematic gross error to the measurement value will

be the same.
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By following good installation and maintenance procedures, it is possible to
ensure that gross error are not present in the measurement at least for some time.
Gross error caused by sensor miscalibration may occur suddenly at a particular time
and thereafter remain at a constant level or magnitude. Other gross error causes such
as the wear or fouling of sensors can occur gradually over a period of time and so the
magnitude of the gross error increases slowly over a relatively long time period.
Therefore, gross errors occur less frequently but their magnitudes are typically larger

than those of random errors. (Narasimhan & Jordache, 2000)

3.1.2 Definition Different Objective Functions for Formulate Data

Reconciliation Problem is as the Optimization Problem

3.1.2.1 Weighted Least-Square (WLYS)

Steady-State Data Reconciliation (SSDR) was first addressed in the pioneer
work of Kuehn and Davidson (1961). The authors adjust process data to satisfy mass
balance. Therefore, they formulated the SSDR as a Weighted Least-Square (WLS)
optimization problem (show as equation 3.1) subject to mass balances (show as

equation 3.2).

Wnay—ﬂTQ4@=§n:nyw5Q4@:nwlz{ii%qz (3.1)

subject to:

A~

Ay =0 (3.2)

where A is the incidence matrix representing steady state mass balance, it is
considered that all process variables involved in the mass balance were measured and
the measurement do not contain gross errors. The term a is the adjustment vector that
is the difference between the measurement vector (y) and estimated vector (§/) and Q
is the variance-covariance matrix. The measurement errors follow a normal

distribution with zero-mean and a known variance Q, = o7’
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The square of standard deviation &7 is the weight on the measurement

adjustment i. Variables known with a high certainty (low variability) are given a large
weight and variables with high variability implies that the measurement is less

accurate and received less weight in Data Reconciliation procedure.

The standard deviation of a measurement error plays an important orle in data
reconciliation and various other error reduction techniques. Since the true standard
deviation is never know, an estimates of standard deviation can be obtained by using a

sample standard deviation, according to the follow equation 3.3
o
Y 2
g v 3.3
N_J;;x yﬂ (3.3)

where s is the estimated value of standard deviation, y;is the ith observation and y is

the arithmetic average of N observations of the same variable.

The effect of random errors on measurement is modeled as additive
contributions. The relation between the measured value, true value and random error

in the measurement expressed in equation 3.4.
Y=yt (3.4)

where y’ is the vector of true value (noise free), and & is the vector of random error.

The random error (&) usually oscillates around zero. Its characteristics can be
described using statistical properties of random variables. I1ts mean or expected value

IS zero and its variance is given by:

var(s)=E[ & |=07 (3.5)
where o, is the standard deviation of the measurement error ¢, .

The problem above described can be solved analytically by using Lagrange

multipliers as shown in equation 3.6.

y=Yy-QA" (AQA") " Ay (36)
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3.1.2.2 Maximum Likelihood Estimation (MLE).

If the measurement error distribution follows a normal distribution, the Data
Reconciliation problem can be posed as a Maximum Likelihood Estimation (MLE)
problem, where the probability of the estimated (reconciled) process variables (y) is

maximized given the measurement set (y) as shown in equation 3.7.

max P{yly} (3.7)

According to Bayes’ theorem, the probability of the process variables given
the measurements can be written in terms of the probability of the measurements

given the reconciled process variables, the probability density function of the process

variables P{§} and the probability density function of the measurements P {y} .

p{y/¥}p{¥}

p{y}

max P{§/y} = max (3.8)
y y

The denominator term (independent of §) acts as normalizing constant and

does not need to be further considered for optimization. The first term in the
numerator represents the probability density of the measurements given the reconciled

process variables, y , which is the distribution of the measurements errors P(y -y).

Finally, P{)?} IS a binary assumption, that is equal to 1 if the constraints are satisfied

(under this assumption the P{y} term converted to a set of constraints and the

original problem is converted to a constrained optimization) and equal to 0 otherwise.
P(§-¥)=P(2)BN(0,Q) (3.9)

If sensor errors are independents the product of this probability over all

sensors yields to:

P{y/y}= Hexp {%(%}2} = exp{%zi:[%lyijz} (3.10)

Taking the negative logarithm of the maximization of the objective function
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represented in equation 3.10 results in the minimization of the conventional WLS
formulation as is shown in equation 3.1. The symmetric and positive definite matrix Q
contains the variance-covariance elements of the measurement errors and thus
quantifies the uncertainty in each measured value. Then the success of Data
Reconciliation technique relies on the hypothesis that the error is normally distributed

and on the evaluation of matrix Q.

3.2 Gross Error Detection (GED)

The technique of data reconciliation crucially depend on the assumption that d
values, only random error are present in the data and systematic errors either in the
measurement or the model equation are not present. If this assumption is valid,
reconciliation can lead to large adjustments being made to the measured values, and
the resulting estimates can be very inaccurate and even infeasible. Thus it is important
to identify such systematic or gross error before the final reconciled estimated are
obtained.

There are two major types of gross errors. One is related to the instrument
performance and includes measurement bias, drifting, miscalibration, and total
instrument failure. The other is constraint model-related and includes unaccounted
loss of material and energy resulting from leaks from process equipment or model

inaccuracies due to Inaccuracies parameters.

Usually gross errors are associated with sensor faults. In Figure 3.1, illustrates
graphically the-most common types of instrument; bias, complete failure, drifting, and
precision degradation.

Various techniques have been designed for the detection and elimination of
these two types of gross errors: statistical tests approaches. Any comprehensive gross

error detection strategy should preferably processes the following capabilities:

e Ability to detect the presence of one or more gross error in the data (the
detection problem)

e Ability to identify the type and location of the gross error (the identification
problem)
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e Ability to locate and identify multiple gross error which may be present
simultaneous in the data (the multiple gross error identification problem)

e Ability to estimate the magnitude of the gross error (the estimation problem)

A number of statistical tests are derived from this basic statistical principle and
are able to detect gross errors. But not all statistical test are able to identify different
types and location of gross errors. Some basic statistical test are able to detect only
measurement error (biases). Other statistic test can only detect process model error or
leaks. On the other hand, the generalized likelinood ratio test, which is derived from
maximum likelihood estimation principle in statistics, can be used to detect both

instrument problems and process leaks.
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Figure 3.1 Types of gross errors (Narasimhan & Jordache, 2000)
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3.3 Simultaneous Data Reconciliation and Gross Error

Detection

The process data from a distributed control system is subject to random and
gross error, and the gross error must be detected and rectified before the data is used
to estimate plant parameters. Simultaneous gross error detection and data
reconciliation algorithms are used to detect and rectify the gross errors in
measurements. Two main approaches can be adopted for such purpose: the Bayesian

approach and Robust approach.
3.3.1. Bayesian approach

Tjoa and Biegler (1991) have proposed a contaminated Gaussian distribution
function to describe the measurement errors. A measurement is subject to either
random or gross error. The two possible outcomes are: G = {Gross error occurred}

with prior probability » and R = {Random error occurred} with prior probability

(1—7). Therefore, the distribution of a measurement error is:

P(y,/x)=(1-n)P(y;/%,R)+nP(y;/%,G) (3.11)

where P(yi X, R) is the probability distribution of a random error and

P(yi %, G) is the probability distribution of a gross error.

n is the probability of gross error measurements

It was assumed that the random errors are normally distributed with a zero mean and a

known variance o”. Also, it was assumed that the gross errors are subject to a
contaminated normal distribution which has a zero mean and larger variance
(bo, )2 ,(b0 1). If the measurement errors are independent of each other, then the

likelihood function (or joint probability function) for all measurement, are the
products of the distributions for individual measurement, and the measurement errors

are estimated by minimizing the negative logarithm of the joint probability density
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function. This gives the objective function used with the constraints of equation 3.2
for Tjoa-Biegler’s method as (Ozyurt and Pike,2004):

maxHP maxH{l 7) \/_G exp[ (i ?2(') }Ln\/z_ibai eXp[_—()gb_Z:f) J}

(3.12)

or
(% =%)’ (%~
. i il n i — X
min —>"In {(1n)exp£TJ+Bexp[ o’ }}+Zln(\/ a) (3.13)
where: b is the ratio of the standard deviation of gross errors to that of random errors.

However, the gross error distribution is usually a posteriori information which,
may lead to a biased estimation. If the gross error term is higher than the random term
for a particular measurement a gross error is identified. In consequence, this approach

can only be used if the gross error distribution is known a priori.
3.3.2. Robust approach

The basic idea of robust estimation is to build a robust distribution function p

that is asymptotic to the normal distribution or any pre-assumed rigorous distribution
function that describes the distribution pattern of measurement errors under some
ideal assumptions. The estimator (mean or variance) determined by the robust
distribution is insensitive to extreme observations and yet maintains a high efficiency

(lower dispersion) (Chen, Pike, Hertwig and Hoppe, 1998).

(Huber (1981); Romagnoli _and Sanchez (2000)) attempts to make the
estimation insensitive in front of the presence of gross errors. The weighted squared
residual of the DR formulation is replaced by another function of the residual as
shown in equation 3.14. (Chouaib ,2004)

min > p{uj (3.14)
i O;
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where p(%} is usually selected as a convex function in order to ensure that the
i
solutionis unique, the influence function is the derivative of p with respect to the
process variable measurements. This Robust Estimator will give an unbiased estimate
when the gross error follows a previously known distribution and still behaves well if
they are deviations from ideal situation. Thus, this influence function compensates for
the effects that have the residuals on the estimations, given a weight of zero to high
value residuals. The crucial step in the Robust Estimation is the choice of these
influence functions: different pre-selected choices of the influence function deals to

estimations with different robustness.

The p function have been studied previous as follows: (Ozyurt and Pike, 2004)

1. Normal distribution.

1,

= } 3.15
% (3.15)

2. Contaminated normal distribution function.

—In {(1—n)exp(—g—2‘2j+biexp[— 222 j} (3.16)

3. Cauchy distribution function.

2 5}2
Ciln 1+F (3.17)

C

4. Logistic distribution function.

2In (1+ exp [CLD—[CLJ (3.18)

5. Lorentzian distribution function.
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SR (3.19)

1+(5i2/205)

6. Fair distribution function.

2¢? {ﬂ ~In (1+ Mﬂ (3.20)
C C:

7. Hampel’ s redescending M-estimator

igiz, OSHSaH
2 c.
a,la|-=al, a, <|g/<by,

2 a2 C "9' 2
agb, — 2+ (c, —by)—|1-| ——{ |, b, <|&|=cy

A

1., 1.,

a,b, —EaHJr(cH—bH)Ea, Cy <& (3.21)

where & =(y;—x )/ o; is standard error

C..C_.C.,C¢,Cy areturning constants of each distribution function.

3.4 Benefit from Data Reconciliation and Gross Error

Detection

Development of a data reconciliation and gross error detection package for a
system and its practical implementation is a difficult and costly task and can not be
justified without its benefits for a particular industrial application. The justification for
data reconciliation and gross error detection may come from the many important
applications for improving process performance shown in Figure 3.2 which requires

accurate data for achieving expected benefits as outlined below:

1. A direct application of data reconciliation is in evaluating process yields or
in assessing consumption of vitalities in different process units. Reconciled values

provide more accurate estimates as compared to the use of law measurements.
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2. Applications such as simulation and optimization of existing process
equipment rely on a model of the equipment. The models usually contain parameters
which have to be estimated from plant data. This is also known as model tuning, for
which accurate data is essential. The use of erroneous measurements in model tuning
can give rise to incorrect model parameters which can nullify the benefits achievable

though optimization.

3. Data reconciliation can be very useful in scheduling maintenance of process
equipment. Reconciled data can be used to accurately estimate key performance
parameters of process equipment.

4. Many advanced control strategies such as model-based control or inferential
control require accurate estimates of controlled variables. Dynamic data reconciliation

techniques can be used to derive accurate estimates for better process control.

5. Gross error detection not only improves the estimation accuracy of data
reconciliation procedures but is also useful in identifying instrumentation problems
which require special maintenance and correction. Incipient detection of gross error
can reduce maintenance costs and provide a smoother plant operation. These methods
can also be extended to detect faulty equipment.
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Figure 3.2 Online data collection and conditioning system
(Narasimhan & Jordache, 2000)

3.5 Algorithm for Solve Data Reconciliation Problem

In the optimization process of a different task the method of first choice will
usually be a problem specific heuristic. Different Evolution (DE) algorithm is a
stochastic optimization method minimizing an objective function that can model the
problem’s objective while incorporation constraints. The algorithm mainly has three
advantages: finding the true global minimum regardless of the initial parameter

values, fast convergence, and using a few control parameters.
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3.5.1 Differential Evolutionary Algorithm

DE was first introduced by Storn & Price. As it is typical for evolutionary
algorithms (EAs), DE does not require any prior knowledge of the search space, nor
of the derivative information. It is a very simple population based, stochastic
optimization algorithm which is very powerful and robust at the same time. Figure 3.3
shows the flowchart of DE. The algorithm starts by generating a randomly distributed
initial population of N vectors. Mutation and recombination is then performed on each

vector X; of the generated population in order to create a trial vector U;.

Start

Initialize
population

=)

Mutation
Y

Crmssover

Figure 3.3 The flowchart of the differential evolutionary algorithm

The basic DE/rand/1/bin and trigonometric schemes are used in this
algorithm. DE/rand/1/bin scheme starts by randomly selecting three vectors in the
populations. The perturbed vector V; is then generated based on the three previously

selected vectors as follows:
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Vi = Xr3 + F(sz - Xrl) (3-22)

where, X1, Xr2 and X3 are randomly selected vectors, and r1 # r2 = r3 # i are
satisfied. F e [0; 1+] is a control parameter of the algorithm. The trigonometric
mutation scheme also starts by randomly selecting three vectors in the populations as
in the DE/rand/1/bin scheme. But, the perturbed variable is calculated using the center
point of the hyper geometric triangle of three previously selected vectors. The
perturbed vector V; is then generated by perturbing the center point a sum of three
weighted vector differentials, as described by the following formulation:

V. = (Xr1+Xr2 +Xr3)

+(Py = P(X L — X;5)

' 3
+(P3 = P2)(X 5= Xi3) + (P — Pa)(X 13— X}p) (3.23)
where:

7 [ F(X,0)|
LGl T O]+ (X )

= (X))
2 OGO )]+ (X a)]

) [F(X3)]

T E O[T+ T (X )]

Where, X1, X2 and X3 are randomly selected vectors, and rl = r2 #r3 #i
are satisfied.

The: . perturbed _ vector . Vi(V;,Vjz,m..Vi,) - and _its. parent vector
X (Xi 12 X 2.1 X; o) @re subjected to the crossover operation, which finally generates

the trial vector U, (u;,U; ,...,u; ;) as follows:

oo v f random[0,1) < CR v j = random(L, n)
i

X otherwise

ij?

(3.24)
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Where CR € [0, 1] is crossover factor. The created trial vector U; is then
compared with its parent vector X;. If the trial vector is better than the parent vector,
the trial vector replaces its parent vector in the population, as expressed in the

following formulation:

U, if fU;)< (X)),
X

Xi+1 = (325)

otherwise

The evolutionary process repeats until the stopping criteria are satisfied.

3.5.2 The Constrain Handling Scheme

3.5.2.1 Handling Integer and Discrete Variables

The original DE is incapable of handling discrete variables. However, it is
very easy to modify the algorithm to deal with integer and/or discrete variables. First,
continuous variables are converted to integer variables by truncation. Then, the
truncated variables are used to evaluate the objective function. It can be expressed

using the following expression:
x" = (int)x; (3.26)

Discrete variables can also be easily handled. Instead of directly using discrete
variables as the optimized variables, the index of all discrete variables is assigned
first. The index of each discrete variable is then used as the optimized variables. But,

to evaluate the objective function, the original discrete variables are used.
3.5.2.2 Handling Boundary Constraints

It is important that the optimize variables must lie inside their allowed ranges.
We replace each variable that violates boundary constraints by the upper or lower

limits, according to the following rule:
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x i x<xV;

x, if xP<x<x); (3.27)

xif x> xY;

Where, x{ and x"’ are the upper and lower bounds of each variable, respectively.

3.5.2.3 Dominance-based Selection Scheme

A dominance-based selection scheme is used to incorporate constraints into
the fitness function. When comparing trial vector U; with its parent vector X;, we can
have three possible situations. In the first case, both U; and X; are feasible. The vector
with a better objective function survives to the next generation. In the second case,
one is feasible, but the other one is infeasible. The feasible vector survives to the next
generation. In the last case, where both vectors are infeasible. The vector with lower
degree of constraints violation survives to the next generation. The rule for the

selection is defined as follows:

Xi X; =U;;
Xin = (3.28)

U,, otherwise;

Where, X; <U, denotes that X; dominates U;. That is X; has better objective

function than U; and/or lower degree of constraints violation.
3.5.2.4 Handling Equality Constraints

Generally, the equality constraints can be used to: reduce the number of
dimensions_for the optimization problem without distorting the results. However,
identifying the reduced variables is still a hard- task. Moreover, some equality
constraints are irreducible, and cannot be used to transform the problem to the lower
dimension problem. Consider the case of n-dimensional optimization problem with m
equality constraint (H(X) = 0), the degree of freedom for this problem is actually n -
m. That is only n-m variables are independent, while m variables are defined by the
equality constraints. Therefore, any infeasible vector X containing n variables can be
repaired by solving the system of m equations. Newton's method herein is applied to

solve the system of equality constraint equations. In the first step, m variables from
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totally n variables are randomly selected to be repaired. The degree of constraints
violation are checked whether it is greater than a specified tolerance e. Infeasible
vectors with small degree of violation are allowed to survive. This helps to maintain
diversity in the population. On the other hand, infeasible vectors with large degree of
violation are then repaired by solving the system of m equations. The corrected vector
X that is computed by equation 3.22 moves each equality constraint closer to the

allowable range.
i = X =3 X)H (X)) (3.29)

where, J(X;) is the Jacobian matrix, and H(X;) is the vector of equality
constraints violation. lteration stops if either the sum of the degree of constraints
violation is less than a given tolerance e, or the maximum iteration number has been

reached.



CHAPTER IV

NYLON 6 PRODUCTION PROCESS

4.1 Process Description

Nylon 6 or polycaprolactam is a polymer developed to reproduce the
properties of nylon 6,6 without violating the patent on its production. Unlike most
other nylons, nylon 6 is not a condensation polymer, but instead is formed by ring-
opening polymerization. This makes It a special case in the comparison between
condensation and addition polymers. Nylon 6 is widely used in the synthetic fiber

industry, automotive parts, electrical cables, and packaging.
4.1.1 Theory Nylon 6 Polymerization Reaction

Nylon 6 reaction starting from caprolactam by using water as catalyst is not as
simple as the reaction for generating polyolefines or polyester. The reaction are

carried out in five steps:
Step 1: Ring Opening of Caprolactam (Start Reaction)

The reaction -initiated by water(W) and generating-amino caproic acid(P1).
Start reaction of ring opening of caprolactam(CL) is a slow, endothermic reaction,
accelerated by-water and temperature,-catalyst by COOH-groups. The formula of the
chemical reaction can be described as follows:
l‘51
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caprolactam  water amino caproic acid

Figure 4.1 Ring opening of caprolactam via water
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The functional group notation for this reaction is:

CLtW ——=— P (4.0)

ky=ky / K,
Step 2: Polycondensation (Chain Growth)

This reaction step regulates the polymerization degree and herewith also the
relevent properties of the polymer. The polymerization degree is proportional to the
number of caprolactam molecules, which are built in the chain, and depends on the
water content of the polymer. The formula of the chemical reaction can be described

as follows:

|
qlzﬂ“xx‘* v, f.'uH;L + *:fl;]\_fvx J,AHSL

n m

k- o
-_—— .ﬂ,_ NH + HO
QJ[ wv-"ﬁ\uf ]q
kp'=koH, s

Figure 4.2 Polycondensation reaction

Two nylon-6 chains, of degree of polymerization n and m, react to form one
longer chain of degree of polymerization n+m. Water is the small molecule that is
eliminated. The group R can stand for hydrogen, a hydroxyl group, or a terminator

group show in Figure 4.2

The polycondensation reaction inherently contains many possibilities for
reaction between polymeric species. In order to enumerate these possibilities, we must
consider the attack of any polymeric species with an amine end group on any
polymeric species with a carboxylic end group. P; and terminal amine groups (T-NH,)
on polymer chains can attack the carboxyl groups on P; and terminal carboxyl groups
(T-COOH) on polymer chains. We show all of these reactions below. (Kevin, 2003)

P+P ————= T-COOH:T-NH,+W  (42)

P+T-COOH z——=—— T-COOH:B-ACA+W  (4.3)

Ky=ky /K,

T-NH,+P 4% T—NH,:B—ACA+W (4.4)
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T—NH,+T-COOH z=—-—2> B-ACA:B-ACA+W (4.5)

ko=ky /Ky
Step 3: Polyaddition of Caprolactam (Caprolactam Conversion)

The reaction between caprolactam and already generated amino caproic acid.
The polyaddition is an exothermic reaction and is carried out faster than the
polycondensation reaction. Therefore this reaction influences strongly the
caprolactam turnover. The formula of the chemical reaction can be described as

follows:

Figure 4.3 Addition of caprolactam

Any polymer with amine functionality can perform the forward reaction. We

list all of the possibilities below:

P, +CL —# T—NH, :T —COOH (4.6)
T—NH,+CL —k—# T—NH,:B—ACA (4.7)

Step 4: Ring Opening of Cyclic Dimer

Cyclic dimer can be opened by water; this reaction is analogous to ring
opening of caprolactam. The formula of the chemical reaction can be described as

follows:

Figure 4.4 Ring opening of cyclic dimer
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The functional group notation for this reaction is:

CD+W ———— T-COOH :T - NH, (4.8)

2=k, 1K,
Step 5: Polyaddition of Cyclic Dimer

We also consider polyaddition of cyclic dimer; this reaction is analogous to

the polyaddition of caprolactam. The formula of the chemical reaction can be
described as follow:

7

Figure 4.5 Polyaddition of cyclic dimer

A terminal amine group of any polymer can perform this addition. Therefore,
over all polymer species, we have:

B+CD ————= T-NH,:B=ACA:T ~COOH (4.9)

ks=ks / K

T-NH,+CD <————= B-ACA:B-ACA:T-NH, (4.10)

Ky =ks / K

The rate constant for 5 equilibrium reactions. We can follow as (Kevin, Neeraj
& Liu, 2003) in Table 4.1
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Table 4.1 Rate Constants for the Equilibrium Reactions in equation 4.1 — 4.10

rate constant . EO EC
i k = A’ exp| ——— |+ A’ exp| ——- ||[T —COOH
expression = A p( RTJ A p( T ][ ]
equilibrium constant k. AS. —AH /T
expression K, =—-=exp [%J
k, R
i Ao EiO A E AH; AS,
(kg/mol*s) |  (J/mol) | (kg*/mol**s) |  (I/mol) (/mol) JImol*K
1.66E+02 | 8.32E+04 1.20E+04 7.87E+04 8.03E+03 -33.01
5.26E+06 | 9.74E+04 | 3.37E+06 8.65E+04 -2.49E+04 3.951
7.93E+05 | 9.56E+04 | 4.55E+06 8.42E+04 -1.69E+04 -29.08
2.38E+08 | 1.76E+05 6.47E+08 1.57E+05 -4.02E+04 -60.79
7.14E+04 | 8.92E+04 8.36E+05 8.54E+04 -1.33E+04 2.439

4.1.2 General Process description

4.1.2.1 Caprolactam feeding part

In this section, caprolactam bags are prepared for the folowing melting in the
melter, for the use in the polymerization process. The delivered caprolactam bags are
manully opened by a knive and emptied in funnel device. Lactam is then crushed and

fed to the lactam melter.
4.1.2.2 Monomer part

In this section, caprolactam is prepared for use in the polymerization process.
Solid caprolactam is charged to the melter and melted under nitrogen atmosphere by a
hot water jacket and an external steam heated heat exchanger. The lactam is circulated
through filters back to the melter. The molten caprolactam is then stored in a lactam
tank for further metering to the polymerization the lactam section. Before entering the
pressure polymerization the lactam is mixed in a fixed ratio with recovered lactam,

filtered and heated up in a pre-heater.
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4.1.2.3 Additive System

Condensate or demineralized water used as intiator is filtered and fed by
gravity into receiver is dosed continuously into the lactam stream by metering pump.

4.1.2.4 Pressure Polymerizer

In the pressure stage mainly the ring opening reaction of the caprolactam is
carried out and also a degree of polyaddition. This take place at elevated temperature
and slight overpressure. The lactam stream entering the reactor is heated to reaction
temperature in the upper section of the reactor. As the material moves downwards in
the reactor, flow regulators ensure an uniform product flow during polymerization, to

reach the required product viscosity.

The excess catalyst-water which is evaporated from the top of the pressure
polymerizer reactor passes through a packed column, while the remainder flows to the
Distillation. Afterwards the pre-polymer is fed to the final polymerizer by means of a

discharge gear pump.
4.1.2.5 Final Polymerizer

In the final polymerizer the surplus of water is taken off to allow the polymer
chains to grow to the desired polymerization degree. The reaction of polymerization
takes place under vacuum and elevated temperature. The water/lactam vapors leaving
the top of the Final polymerizer enter a partial condenser for separation. The vacuum
is generated by means of water jets. The product increases in-viscosity while flowing
downwards through the reactor by a uniform flow ensured by built in flow distributors
regulate not only the downwards stream but also the upwards stream of water bubbles.

The product is then discharged to the die head by means of a gear pump.

Three heating system are provided for the heating of the Final polymerizer.
The built in heat exchanger moderator, serves to remove the polymerization heat from
the product, in order to prevent it from overheating. All heating system are heated
electrically.

Schematic of industrial nylon 6 production process. (illustrated as Figure 4.6)
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Most of the monomer conversion takes place in the first reactor, while the molecular

weight build occurs in the second reactor.

sleam
steam+ (L
Pre-palymer Tl
B

W+ CL

Zonel ———ao 11 "|Zone | a2
4 —e 2 s — *T3
M 11—
LS NN Yy

— T3
Zone 2 < T4 Zone 2 -<: % T
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0 T3 E
” N, - L %{—.T?

F F 3. 75 a e Pulymer
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Figure 4.6 Two VK column reactors for industrial nylon 6 production process:

(A) pressure polymerizer (B) final polymerizer

In this work, we apply data reconciliation in VK column reactors for industrial
nylon 6 production process at steady state condition. And we study the performance
of each available technique that suitable for industrial nylon 6 production process.
Performance is compared between Robust function method and Weighted Least-
Square. Robust function interested: Contaminated Normal, Lorentzian distribution
function and Hampel’s redescending M-estimator. Before, we study the performance
of each available technique that suitable for industrial nylon 6 production process. We
taking data reconciliation with gross error detection apply to other cases for

performance comparison each-algorithm. There are three cases:
e Application of data reconciliation with gross error detection in simple case

e Application of data reconciliation with gross error detection in nylon 6

production process by simulated at steady state condition

e Application of data reconciliation with gross error detection in industrial nylon

6 production process at steady state condition
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In application of data reconciliation in three cases to compare performance.
We divide two parts of system: system with all measured variables and system with
all unmeasured variables. To efficienttest of data reconciliationto use estimate the
current status of process variables and unmeasured variables in all case could obtain

efficient system.

4.2 Case Studies

4.2.1 Systems with All Measured Variables

4.2.1.1 Case A: Application of Data Reconciliation with Gross Error Detection in

Simple Case

Let us first the simplest data reconciliation problem: the reconciliation of the
stream flow of process. Initially, all flow rates are assumed to be directly measured.

We assume a process operating at steady state condition.

In this case, we assume measured flow rates in process have 3 variables: A, B,
C as show in Figure 4.7. Let us also ignore the energy flows of this process and focus
only on the mass flows. We denote the true value of each variable are 1, 2 and 3

respectively.

A ey

[—p C
5 Reactor

Figure 4.7 Example of process in'simple case
The flow balance around the reactor can be written as:
A+B-C=0 (4.11)

In step compare the performances of each available technique that suitable for

usability. We can classify into 3 cases.

e Case 1: measurement data have not gross error



37
e Case 2 : measurement data have gross error
e Case 3 : measurement data contain both Normal and Uniform distributions

The measured values in case 1 — case 3 do not satisfy in equation 4.11.
Therefore, we are desired to derive estimates of the flow that satisfy the above flow
balance. The aim of reconciliation is to make minor adjustments to the measurements
in order to make them consistent with the material balance. The adjusted
measurements, which are referred to as estimates, are expected to be more accurate
than the measurement. Therefore, we take data reconciliation with gross error
detection apply this process and find algorithm that suitable for usability. There are

step for performance test of each algorithms below:
Case 1: measurement data have not gross error

1. To determine measured data have normal distribution. While most of
measurement values are distributed over true values range of each variables measured
and Standard Deviation (SD) of distribution is 0.1. Therefore, measurement sets

created can assume that there are only random error and lack of gross error.

2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated
Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3. To compare performance ‘each algorithms take “solution to obtain each

algorithm compare to true value of each variable at steady state condition.
Case 2: measurement data have gross error

1. To determine measured data have gross error. Take normal distribution
measurement data added uniform distribution data in ratio 10%, 20% and 30% from
old data. Therefore, measurement data created can assume that there are both random

error and gross error 10%, 20% and 30% respectively.
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2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated

Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3.To compare performance each algorithms take solution to obtain each

algorithm compare to true value of each variable at steady state condition.
Case 3: measurement data contain both Normal and Uniform distributions

1. Using true values such as design data, measurement sets are created for each
variable by adding noise from Normal and Uniform distributions with equal
probability, i.e. half of the simulated measurement errors has a Normal probability

distribution and the other half are from Uniform probability distribution.

2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated

Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3. To compare performance each algorithms take solution to obtain each

algorithm compare to true value of each variable at steady state condition.

Reconciliation solution for the measured variables in case 1 through case 3

(shown in Figure 4.8 — Figure 4.13)
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Figure 4.8 Distribution of measured A, B, C at have only random error:

(@) normal view (b) expansion view
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distributions: (a) normal view (b) expansion view
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4.2.1.2 Case B: Application of Data Reconciliation with Gross Error Detection in

Nylon 6 Production Process by Simulated at Steady State Condition

We simulate nylon 6 production process in Continuous stirred tank reactor
(CSTR). The CSTR operates at 513.15 K for 12 hours. And total mass flow rate inlet
is 100 kg/hr: 99 kg/hr caprolactam and 1 kg/hr of water. The reactor is operated at

high pressure, i.e., we simulate it as a single liquid phase.

The assumptions are used in simulation as follows:
1. Concentration and temperature are distributed uniformly both in the reactor.
2. Total mass flow rate inlet equal total mass flow rate outlet

3. Simulate at steady state condition.

The material balance of each component (W, CL, CD, Py, B-ACA, T-NH,, T-

COOH) in nylon 6 production process can be written as:

F
0 = (Cwlin—CW)(ﬁ}+(R2+R3+R4+R5)—(R1+R8) (4.12)
I:in
0 = (Cein —(:CL)(VJ—(R1 +Rs +R,) (4.13)
o
0 = (CCD,in _CCD)(V)_(RB + R9 + Rm) (4.14)
0 = (Cpl’in—Ca)(%}LRl—(ZRZ+R3+R4+R6+R9) (4.15)
I:in
0 = (Cooai —CBACA)E y j+(R3 +R, +2R;+R, + Ry + 2R) (4.16)
F
0 a1 64\ )(ﬁ}r(Rz +R; +#Ry +R,)— R, (4.17)
F_
0 = (CT—COOH,in _CT—COOH )(M_mj"'(Rz + Re + Rs + Rg)_ Rs (4-18)

The reaction velocity of equations (4.12)—(4.18) is follow as APPENDIX A in

Table AL, Cy, Co, Copy Cpy Cgipear Cry, and C; o, are the concentrations

for the outlet stream(mol/kg), F, is the total mass flow rate for the inlet

n
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stream(kg/hr), and M is the total mass in the reactor(kg). Inlet streamincludes
caprolactam (CL) and water (W), outlet streamincludes water, caprolactam, cyclic
dimer(CD) and nylon 6 ( P, ). In this case, we are interest mass flow rate of each
component in inlet/outlet streams. Therefore, the mass flow rate balance around the

process can be written as:
FW,in + FCL,in —Fy —Fe. —Fep — FPn =0 (4.19)

Let us also ignore the energy mass flow rates this process and focus only on
the mass flows. We believe that simulation at steady state is true value of process
designed. A result obtained from nylon 6 productions simulation at steady state
condition was presented in Table 4.2.

Table 4.2 Results of the nylon 6 production process simulation at steady state

condition each variables

mass flow rate (kg/hr)
elements
inlet outlet
water 1.00 0.845419
caprolactam 99.00 23.3329
cyclic dimer - 0.316816
nylon 6 = 75.50477

In step compare the performances of each available technique that suitable for

nylon 6 production process. We can divide into 3 cases:
e Case 1: measurement data have not-gross error
o Case 2 : measurement data have gross error
e Case 3 : measurement data contain both Normal and Uniform distributions

The measured values in case 1 — case 3 do not satisfy in equation 4.19.
Therefore, we are desired to derive estimates of the flow that satisfy the above flow
balance. Therefore, we take data reconciliation with gross error detection apply this
process and find algorithm that suitable for nylon 6 production. There are steps for

performance test of each algorithm below:
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Case 1: measurement data have not gross error

1. To determine measured data have normal distribution. While most of
measurement values are distributed over true values range of each variables measured
and Standard Deviation (SD) of distribution is 0.1. Therefore, measurement sets

created can assume that there are only random error and lack of gross error.

2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated
Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3.To compare performance each algorithms take solution to obtain each

algorithm compare to true value of each variable at steady state condition.
Case 2: measurement data have gross error

1. To determine measured data have gross error. Take normal distribution
measurement data added uniform distribution data in ratio 10%, 20% and 30% from
old data. Therefore, measurement data created can assume that there are both random

error and gross error 10%, 20% and 30% respectively.

2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated

Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3. To compare- performance each -algorithms- take, solution to obtain each

algorithm compare to true value of each variable at steady state condition.
Case 3 measurement data contain both Normal and Uniform distributions

1. Using true values such as design data, measurement sets are created for
each variable by adding noise from Normal and Uniform distributions with equal
probability, i.e. half of the simulated measurement errors has a Normal probability
distribution and the other half are from Uniform probability distribution.
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2. Various different data reconciliation with gross error detection techniques are

performed for find true solution of measurement data set each variables in process.
The algorithms that we studied are as follows: Weighted Least-Square, Contaminated

Normal, Lorentzian distribution function and Hampel’s redescending M-estimator.

3.To compare performance each algorithms take solution to obtain each

algorithm compare to true value of each variable at steady state condition.

In this case, we are select variable for showing result of data reconciliation.
There are analyzed 2 variables: mass flow rate of inlet water and caprolactam.
Reconciliation solution for the measured variables in case 1 through case 3 (Figure
4.13 — Figure 4.17)
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Figure 4.13 Distribution of measured mass flow rate of inlet water and caprolactam at

have only random error (a) normal view (b) expansion view
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As a result of performance test both 2 cases are application of data
reconciliation with gross error detection in simple case and nylon 6 production
process by simulated at steady state condition. As an example in case 1, the measured
data have normal distribution. The solutions obtained from apply data reconciliation

each technique shown in Figure 4.8 and Figure 4.13.

As can be seen from Figure 4.8 and Figure 4.13. The result shows that in the
case of process measurements contain only random error. The reconciled data
obtained from 4 algorithms are close to true value at steady state condition. One of the
possible reasons is that measurement data of each variables in process have normal
distribution. While most of measurement values are distributed over mean range of

each measured variables. Therefore, all algorithms perform well in this case.

For comparison, in the case that process measurements contain both gross and
random errors, the measured data have gross errors present in measurements 10%,
20% and 30% respectively. The solution obtained from apply data reconciliation each
techniques shown in Figure 4.9 and Figure 4.14 for gross error 10%, Figure 4.10 and
Figure 4.15 for gross error 20% and Figure 4.11 and Figure 4.16 for gross error 30%.

As a result of reconciled data each algorithms in case 2. The finding
demonstrated that reconciliation solution obtained from Weighted Least-Square
method has gross errors present in measurements 10%, 20% and 30%. It incorrect to
true value of process at steady state have stronger tendency to be increase with an
increase amount of gross error. On the other hand, Contaminated Normal, Lorentzian
distribution function and Hampel’s redescending M-estimator approaches show a
better performance. Due to the objective functions of Contaminated Normal
distribution function, Lorentzian distribution function:and Hampel’s redescending M-
estimator approaches are formed using the probability distribution function of the
measured variable, by maximizing the product of individual probability values for
each measured variables. Therefore, with 10%, 20% or 30% of gross errors in
measurement does not affect to reconciled data obtained. However, the concept of
Weighted Least-Square is to minimize difference between true value and

measurement value. In the case of measurement data have gross error, the gross error
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are also used in reconciliation. Therefore, reconciled data obtained from Weighted

Least-Square are different to true value of each variable.

For comparison, the measured data contain both Normal and Uniform
distributions. The solutions obtained from apply data reconciliation each technique
shown in Figure 4.12 and Figure 4.17.

As a result of the reconciled data obtained from 4 algorithms are close to true
value at steady state condition. It can also be said that all 4 methods give the same
performance in case of measured data has pattern distribution. Nevertheless, if
measured data have gross errors present in measurements. Weighted Least-Square
method has generally given limited information concerning usability, because it can
not support with gross errors present in measurements. Therefore, algorithms are the
appropriate in case A and case B: Contaminated Normal distribution function,
Lorentzian distribution function and Hampel’s redescending M-estimator approaches.
Because it can support with process measurements contain both gross and random

errors.

The solutions obtained from apply data reconciliation each technique in all
cases both case A and case B. We have shown in APPENDIX B.

4.2.1.3 Case C: Application of Data Reconciliation with Gross Error Detection in

Industrial Nylon 6 Production Process at Steady State Condition

In this case, we apply data reconciliation with gross error detection in VK
column reactors for industrial nylon 6 production process. Schematic of industrial
nylon 6 production process (illustrated as Figure 4.6). As can be seen from Figure 4.6
the reactor for industrial nylon-6 production process has 2 reactors: (A) pressure
polymerizer (B) final polymerizer. Therefore, the data reconciliation applied both 2
reactors. The motivation for reconciling these measurements arises from the need to
estimate true value of measured mass flow rate at steady state each measured variables
both 2 reactors. While the measured adjust in order to be more accurate than the

measurement.
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In this case, the measured mass flow rates in process have 6 variables:
I:W,in’FCL,in’':W,v,l(va‘por phase)’Fpre—polymer,l’FW+CL,V,2 (Vapor phase)’Fnylon6,2 as ShOW

in Figure 4.18. Let us also ignore the energy flows of this process and focus only on
the mass flow rates

Fuvva (vapor phase) FvacLv. (vapor phase)

+F

W, in CL,in

I_I HZUO-!OIDFFI:U‘
4_| N;UO—|OJ>ITI:U‘

T

=

pre—polymer,1 nylon6,2

Figure 4.18 Mass flow rates diagram both 2 reactors for industrial
nylon 6 production process

Therefore, the mass flow rates balance around the reactor 1 and reactor 2 can

be written as:

Reactor 1:

Fv d WS FR O Eob-odyad: =0 (4.20)
Reactor 2:

Fore_polymer1 — FwscLvz = Faytons.2 =0 (4.21)

The measured all mass flow rate values both 2 reactors do not satisfy in
equation 4.20 and 4.21. The problem in this case is to reconcile all the mass flows so
as to satisfy material balance of reactor 1 and reactor 2. In addition, it is required to
estimate true value of each measured mass flow rates. Therefore, we take data

reconciliation with gross error detection apply this process and find algorithm that
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suitable for industrial nylon 6 production process. Reconciliation solution for the

measured mass flow rates. (shown in Table 4.3)

Table 4.3 Reconciliation solution for the measured variables in industrial nylon 6

production process at steady state condition (both 2 reactors)

Mass flow rate of each Algorithms for data reconciliation
component measured
(ka/hr) WLS CN Lorentzian hampel
water inlet 1384.990832 | 1384.990821 | 1384.990692 | 1384.991
caprolactam inlet 21.23286002 | 21.23291696 | 21.23343858 | 21.23286
water (vapor) 7.912654701 | 7.912671073 | 7.91281431 7.912655
Pre-polymer 1398.311037 | 1398.311067 | 1398.311316 | 1398.311
water+caprolactam(vapor) | 13,01850506 | 13.01851729 | 13.01861824 | 13.01851
polymer 1385.292532 | 1385.292549 | 1385.292698 | 1385.293

As a result of reconciled data each algorithm, the case apply data
reconciliation with gross error detection in industrial nylon 6 production process both
2 reactors. It can be seen that reconciled data obtained from 4 algorithms are close. It
can also be said that measurement data both 2 reactor have Normal distribution (only
random error). Due to the performance test in case A and case B, the reconciled data
obtained from Weighted Least-Square method is close to true value at steady state
condition if the measurement data have only random error. Therefore, algorithms are
the appropriate in this case: Weighted Least-Square, Contaminated Normal
distribution function, Lorentzian distribution function and Hampel’s redescending M-
estimator approaches. Because, the reconciled data obtained from 4 algorithms are
close to true value at steady state condition. However in case measurement data have
gross errors present in measurement, Weighted Least-Square method can not support
with gross errors present in measurements. Therefore, Robust function method can
perform better than Weighted Least-Square method because it can support with
process measurements contain both gross and random errors. In addition, the
performance of Robust function method: Contaminated Normal, Lorentzian
distribution function and Hampel’s redescending M-estimator approaches are same

depend on the tuning parameter of each algorithm.
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4.2.2 Systems with Unmeasured Variables

In the previous example, we have assumed that all variables are measured.
However, usually only a subset of the variables is measured. The presence of
unmeasured variables not only complicates the problem solution, but also introduces
new questions such as whether an unmeasured variable can be estimated, or whether a

measured variable can be reconciled as illustrated by the following example.

Let us consider the flow reconciliation problem of the case A, case B and case

C are studied in the previous, we are assume:
e Case A: flows of variables A, B are measured, while the C is unmeasured.

e Case B: flows of in/outlet water, in/outlet caprolactam and cyclic dimer are

measured, while the nylon 6 is unmeasured.

e Case C: flows of all variable in process are measured, while the

vavll(vapor phase) and. Fy e vz (vapor phase) are unmeasured.

Thereafter, we taking data reconciliation with gross error detection each
algorithm applies to system with unmeasured variables in case A, case B and case C
respectively. To estimate current status of process variables and unmeasured variables
in all case. The efficiency of system, as applied data reconciliation for estimate
unmeasured variables are shown %average relative error. The comparison between
system with unmeasured variables.and system with all. measured variables are shown
in Figure 4.19 - Figure 4.21.
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(c), measurement data have gross error-30% (d) and measurement data contain both

normal and uniform distributions (e).
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Figure 4.21 %Average relative error of applying data reconciliation with gross error

detection in case C

In Figure 4.19 - Figure 4.21, demonstrate the comparison of %average relative
error of solution obtained from data reconciliation in case A, B and C both case of
systems with all measured variables and systems with unmeasured variables. As a
result in Figure 4.19 and Figure 4.20, it can be seen that %average relative error have
stronger tendency to be increase with an increase amount of gross error. In addition,
the Weighted Least-Square method has highest %average relative error if gross errors
presented in measurement data. On the other hand, Contaminated Normal distribution
function, Lorentzian distribution function and Hampel’s redescending M-estimator
approaches show a better performance. In case measurement data have only random
error. In the same way, %average relative error obtained from4 algorithms can
estimate unmeasured variables. Therefore, algorithms are the appropriate in case A
and case B: Contaminated Normal distribution function, Lorentzian distribution
function and Hampel’s redescending M-estimator approaches. Because it can support

with process measurements contain both gross and random errors.

As shown in Figure 4.21, it can be seen that %average relative error all
algorithms of system with unmeasured variables close to system with all measured
variables. It is also common to say that unmeasured variables can be estimated by data

reconciliation, providing that enough measured data is available in order to make
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them observable. These algorithms also work well in the case where unmeasurement

process streams exist.
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CHAPTER V

CONCLUTIONS AND RECOMMENDATIONS

5.1 Conclusion

Data reconciliation is an important step in real time on-line optimization. It
adjusts the process measurements with random errors to satisfy the constraints of the
system model and provides estimates for unmeasured variables and process
parameters, which are used in the consecutive economic optimization step for process

near its optimum condition.

In this research, we implement simultaneous data reconciliation and gross error
detection strategies to industrial nylon 6 production process at steady state condition
for cross-check of real time process measurements. We study the performance of each
available technique that suitable for industrial nylon 6 production process and
compare these algorithms under the conditions where some process streams are
unmeasured. The algorithms that we studied are as follows: Weighted Least-Square,
Contaminated Normal, Lorentzian distribution function and Hampel’s redescending

M-estimator.

Before, we study the performance of each available technique that suitable for
industrial nylon 6 production process. We taking data reconciliation with gross error
detection: apply to other cases for compare performance each algorithm. There are
three cases: Application data reconciliation with gross error detection in simple case,
nylon 6 production process by simulated at steady state condition and industrial nylon

6 production process.

Result of application data reconciliation with gross error detection in all cases.
The result shows that in the case of process measurements contain only random error.
The reconciled data obtained from 4 algorithms are close to true value because

measurement data of each variable in process have normal distribution. While most of
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measurement values are distributed over mean range of each variables measured.

Therefore, all algorithms perform well in this case.

For comparison, in the case that process measurements contain both gross and
random errors, it can be seen that robust function method: Contaminated Normal
distribution function, Lorentzian distribution function and Hampel’s redescending M-
estimator show a better performance. The reconciled data obtained each algorithms
are close to true value. Eachalgorithm can support with gross errors present in
measurements depending on adjusted tuning parameter of each algorithms. Therefore,
with 10%, 20% or 30% of gross errors in measurement does not affect to reconciled
data obtained. On the other hand, the reconciled data obtained from WLS approach
are different to true value of each variables because can not detect gross error. We

conclude that WLS is appropriate for measurement data containing only random error.

Therefore, apply data reconciliation with gross error detection in VK column
reactors for industrial nylon 6 production process at steady state condition.
Algorithms are the appropriate in this case: Contaminated Normal distribution
function, Lorentzian distribution function and Hampel’s redescending M-estimator
approaches. Because it can support with process measurements contain both gross and
random errors. Moreover, these algorithms also work well in the case where

unmeasurement process streams exist.
5.2 Recommendations
The developed "system *(data reconciliation with- gross error detection

techniques) is implemented in distributed control system (DCS) with real time

optimization in industrial nylon 6 production process.
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APPENDIX A

REACTIONS AND KINETICS FOR NYLON 6
POLYMERIZATION

When we say that polymeric molecules are made up of multiple functional
groups, we mean that functional group segments are connected in a linear chain by

covalent bonds.

There are two types of functional group segments: bound (or repeat) segments

and terminal (or end group) segments (Figure A.1).

Terminal
Segment

Bound
Segment

Figure A.1 A five segment, linear polymer chain-consisting of two terminal segments
and three bound segments (Kevin , 2003)

Terminal -segments. are found only at the ends of polymer chains, and are
connected to other segments through one covalent bond. Bound segments, on the

other hand, occur in the interior of a polymer molecule and have two covalent bonds.

Nylon-6 segments include the nylon-6 repeat segments (B-ACA) and the end
groups terminal amine (T-NH2), terminal carboxylic acid (T-COOH) illustration as
Figure A.2
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Figure A.2 Nylon-6 molecules of degree of polymerization n existing as two types:
unterminated (above) and terminated by AA (below). (Kevin, Neeraj & Liu, 2003)

For Nylon-6 polymerization reactions and rate constants, we can follow as

(Kevin, Neeraj & Liu, 2003) (presented in Table A.1 and Table A.2)

Table A.1 Nylon-6 polymerization reactions written in segment notation

equilibrium reaction

reaction rate

Ring opening of caprolactam (W +CL# P)

1

CL+W T R

R =k [CL][W]-k[R]

Polycondensation (P, + P, &—=P, .. +W)

P+P——><__
R P

T-COOH :T —NH, +W

R, =k,[R] -

o [R][W]

P +T-COOH W

T-COCH :B-ACA+W

R; = kz[Pl][T _COOH]

[B-ACA]| j

el _COOH]([B—ACA]+[T ~NH, ]

T-NH,+P ——
K=k, /K,

T-NH,:B-ACA+W

R4 = kz [T _NHZ][Pl]

| [B— ACA]
_kZ[W][T _NHZ]([B—ACA]Jr[T —COOH]}
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2+T—COOHz%;%%:2

B-ACA:B-ACA+W

T —NH

Ry =k, [T —NH,][T —~COOH]

[B—ACA] ]

_@DNHB—ACA{iB_ACAP{T—NHJ

equilibrium reaction

reaction rate

Polyaddition of caprolactam (CL+ P, —= <__ P..)

P +CL—>
k3 ks /Ks

T—NH, : T —COOH

R; =k;[R][CL]

-«JT-COOH](

[T—NH,] ]

[B— ACA]+[T —NH, |

T-NH +CLT

T-NH,:B-ACA

R; =k [T = NHZ][CL]

[B-ACA] J

_%rr_NHZ{[B—ACAP{T—COOH]

Ring opening of cyclic dimer (W +CDE<_ﬁ P,)

CO-W—/———— ——
k4 K/ K,

T-COOH :T -NH,

Ry =k,[CD][W ]

-«HT—COOH](

[T—NH,] J

[B—ACA]+[T - NHZ]

Polyaddition of cyclic dimer (CD + P, ——> ——P.,)

P +CD:
ky=ks /Ky

T-NH,:B-ACA:T -COOH

Rg — k5 [Pl][CD]

g COOH][

[B-ACA] ]

[B— ACA]+[T - NH,]

TNH
B ACA T NH]

T -NH +CD—>k 0

B-ACA:B—-ACA:T —NH,

R =ks[T —NH,][CD]

[B-ACA] ]

—%rr_NHzm[B—ACAh{T—COOH]
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Table A.2 Rate constants for the equilibrium reactions in Table A.1

rate constant . EO EC
i k. =A’exp| ——— [+ A’exp| —— |[T —COOH

expression = A p( T j A p[ RT j[ ]
equilibrium constant k. AS —AH. /T

expression K, =—-=exp (%J

k, R
A E’ A E AH, AS,
(kg/mol*s) |  (I/mol) | (kg*mol**s) | (J/mol) (J/mol) JImol*K

1| 1.66E+02 | 8.32E+04 1.20E+04 7.87E+04 8.03E+03 -33.01

2| 5.26E+06 | 9.74E+04 | 3.37E+06

8.65E+04 -2.49E+04 3.951

3| 7.93E+05 | 9.56E+04 | 4.55E+06 8.42E+04 -1.69E+04 -29.08
4| 2.38E+08 | 1.76E+05 | 6.47E+08 1.57E+05 -4.02E+04 -60.79
5| 7.14E+04 | 8.92E+04 | 8.36E+05 8.54E+04 -1.33E+04 2.439

We can define molecular weights of each functional group as Table A.3

Table A.3 Functional group molecular weights

Functional Group Molecular Weight (g/mol)

W 18.01528

CL 113.1595

CD 226.318

ACA 131.1742

T-COOH 130:1668

T-NH2 114.1674

B-ACA 113.1595
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RECONCILIATION SOLUTION FOR THE
MEASURED VARIABLES IN ALL CASES

gross errors present in measurements)

Table B.1 Reconciliation solution for the measured variables in simple case (Case 1: No

Algorithms for data reconciliation

variables True values
WLS CN Lorentzian | Hampel
1.00 1.001018 | 1.001024 | 1.00107 | 1.001018
B 2.00 1.995498 | 1.995493 | 1.995448 | 1.995498
3.00 2.996517 | 2.996517 | 2.996518 | 2.996517

have gross errors present in measurements 10 %)

Table B.2 Reconciliation solution for the measured variables in simple case (Case 2:

variables

True values

Algorithms for data reconciliation

WLS CN Lorentzian | Hampel

1.00 1.268121 | 1.000808 | 1.008867 | 1.0125

B 2.00 2.261061 | 1.994084 | 1.986489 | 1.9952
3.00 3.529182:12.994892 | 2.995356 | 3.0077

have gross errors present in measurements 20 %)

Table B.3 Reconciliation solution for the measured variables in simple case (Case 2:

) Algorithms for data reconciliation
variables True values
WLS CN Lorentzian | Hampel
1.00 1.538987 | 1.001132 | 1.003791 | 1.0277
B 2.00 2.525761 | 1.989931 | 1.987331 | 1.9985
3.00 4.064748 | 2.991063 | 2.991122 | 3.0262
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Table B.4 Reconciliation solution for the measured variables in simple case (Case 2:

have gross errors present in measurements 30 %)

) Algorithms for data reconciliation
variables True values
WLS CN Lorentzian | Hampel
A 1.00 1.809981 | 1.005701 | 1.007499 | 1.0529
B 2.00 2.797385 | 1.98934 | 1.988597 | 2.0117
3.00 4.607366 | 2.995041 | 2.996097 | 3.0646

Table B.5 Reconciliation solution for the measured variables in simple case (Case 3:

measurement data contain both Normal and Uniform distributions)

_ Algorithms for data reconciliation
variables True values
WLS CN Lorentzian | Hampel
1.00 0.999872 | 0.999872 | 0.999864 | 0.999872
B 2.00 2.005753 | 2.00575 | 2.005723 | 2.005753
3.00 3.005625 | 3.005621 | 3.005587 | 3.005625

Table B.6 Reconciliation solution for the measured variables in nylon 6 production

process by simulated at steady state condition (Case 1: No gross errors present in

measurements)
Mass flow rate of | True values at Algorithms for data reconciliation
each component steady state ]
measured (kg/hr) condition WES © Lorentzian | Hampel
Water 1.00 1.004922 1°1.004929 | 1.004989 | 1.004922
Caprolactam 99.00 99.00585 | 99.00585 | 99.00586 | 99.00585
Water 0.845419 0.846364 | 0.84637 | 0.846417 | 0.846364
Caprolactam 23.3329 23.33496 | 23.33495 | 23.33489 | 23.33496
Cyclic dimer 0.316816 0.31695 | 0.31695 | 0.316946 | 0.31695
Nylon 6 75.50477 75.5125 | 75.51251 | 75.5126 | 75.5125
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Table B.7 Reconciliation solution for the measured variables in nylon 6 production
process by simulated at steady state condition (Case 2: have gross errors present in

measurements 10%)

Mass flow rate of | True values at Algorithms for data reconciliation
each component steady state _

measured (kg/hr) condition WES cN Lorentzian | Hampel
Water 1.00 1.54095 | 1.006828 | 1.013279 | 1.0257
Caprolactam 99.00 99.54105 | 99.00245 | 99.00188 | 99.0116
Water 0.845419 1.112937 | 0.847639 | 0.846681 | 0.8459
Caprolactam 23.3329 23.58185 | 23.32843 | 23.3312 | 23.3393
Cyclic dimer 0.316816 0.596441 | 0.316849 | 0.317033 | 0.3217
Nylon 6 75.50477 75.79077 | 75.51636 | 75.52025 | 75.5304

Table B.8 Reconciliation solution for the measured variables in nylon 6 production
process by simulated at steady state condition (Case 2: have gross errors present in
measurements 20%)

Mass flow rate of | True values at Algorithms for data reconciliation
each component steady state )

measured (kg/hr) condition i Vv Lorentzian | Hampel
Water 1.00 2.07879 | 1.004693 | 1.00722 | 1.0508
Caprolactam 99.00 100.0823 | 99.00615 | 99.00569 | 99.0339
Water 0.845419 1.38279 | 0.848227 | 0.850463 | 0.8594
Caprolactam 23.3329 23.83069 | 23.32681 | 23.3278 | 23.3523
Cyclic dimer 0.316816 0.874071 | 0.313529 | 0.312747 | 0.3286
Nylon 6 75.50477 76.07359 | 75:52228 |~ 75.5219 1 | 75.5444




76

Table B.9 Reconciliation solution for the measured variables in nylon 6 production
process by simulated at steady state condition (Case 2: have gross errors present in

measurements 30%)

Mass flow rate of | True values at Algorithms for data reconciliation
each component steady state )

measured (kg/hr) condition Ve cN Lorentzian | Hampel
Water 1.00 2.630183 | 1.006127 | 1.008023 | 1.0726
Caprolactam 99.00 100.6183 | 99.00575 | 99.00538 | 99.0723
Water 0.845419 1.651885 | 0.846223 | 0.848195 | 0.8706
Caprolactam 23.3329 24.08994 | 23.33341 | 23.33386 | 23.3733
Cyclic dimer 0.316816 1.156899 | 0.313266 | 0.312862 | 0.3453
Nylon 6 75.50477 76.34979 | 75.51898 | 75.51848 | 75.5557

Table B.10 Reconciliation solution for the measured variables in nylon 6 production
process by simulated at steady state condition (Case 3: measurement data contain both

Normal and uniform distributions)

Mass flow rate of | True values at Algorithms for data reconciliation
each component steady state _
measured (kg/hr) condition WS — Lorentzian |- Hampel
Water 1.00 0.999788 | 0.999787 | 0.99978 | 0.999788
Caprolactam 99.00 99.00671 | 99.00671 | 99.00669 | 99.00671
Water 0.845419 0.84605 |0.846056 | 0.846104 | 0.84605
Caprolactam 23.3329 23.32773 | 23.32774 | 23.32787 | 23.32773
Cyclic dimer 0.316816 0.325436 |0.32543 | 0.325373 | 0.325436
Nylon 6 75.50477 75.50728 | 75.50726 | 75.50713 | 75.50728
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