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In this work, we developed a 6-axis robotic arm controller. The robotic arm is powered by hydraulic
pump. Al each axis its arm is driven by a servo valve. This controller is implemented on a low-cost
FPGA. The main control processor supported by some peripherals such as UART, Timer/Counter,
Pigital I/0, Interrupt, PWM Generator, SP1 and SPI Reader is embedded on a FPGA chip.

This work is compaesed of four paris: solving the inverse kinematics problem, designing proper
controller, developing required hardwares and developing GUI user application software. With some
constraints, a set of formulae is developed to solve the inverse kinematics problem using closed-form
method. A 2-DOF PID conwroller is designed using obtained model from system identification step.
The Recursive Least Square method and Pole Placement method are respectively employed for the
system identification and the controller design tasks. Required hardwares are then implemented (o
realize the controller system, Finally, a GUI user application software is developed to interface the
contreller system with human operator.

Through this work, a new robatic controller sysiem is created to replace the old existing con-
troller system which has many constraints such as limited slorage space, uneasy usage, time con-
suming setup and incompatibility with modern communication channel. Overall, this new controller
syslem provides better features which is possible to increase the productivity rate.
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CHAPTER

INTRODUCTION

1.1 Introduction

The term robot was first introduced by the Czech Karel Capek in 1920 [1]. It means an artificial
humanoids - biped robots - which help human beings in physically difficult tasks [2]. Recently, the
term robot is used to denote animated autonomous machines. Robot can be classified into two main
classes, namely robot manipulators and mobile robots. This work will concern only on the robot ma-
nipulators which is defined as a computer-controlled industrial manipulator [1]. A robot manipulator
is composed of links connected by joints into an open kinematic chain. Joints can be either rotary
(revolute) or linear (prismatic). The number of joints determines the degrees-of-freedom (DOF). A
manipulator with 6 axes posses 6 DOF, generally three for positioning and three for orientation. The
joints may be actuated electrically, hydraulically or pneumatically.

Through this writing, the term of robotic arms will be used rather than robot manipulators.
Robotic arms, especially the 6-axis ones, have been widespreadly used in several industrial processes

[3] for many years. The robotic arm that will be emphasized in this work is a painting machine.

Controller <— —2% bt A 2/ . .
i R e = I ,.!
| ! | 'ﬁ% Robotic Arm
| I I TV ) !
gl P — ;
{ I I I i Opto-coupler I : e {
ntema T
| e j [Pover | | @dii= 3
Memory !
{1 - [ Phydmeate Pumg - 1 I
; Solid State : Cil Viaibve S
b LmB Digital O [ 17|  Relay [T L_Seoyvawe ||
! Feﬁlpherﬂt | Prassure Tamo |
N -4— . Opto-coupler -,l— m:' Tomp -.-_
|| Moo sPWM ||, [TPF SAmper| | [ Sero |
Generators (DAC) Valve
{ ! | Soft-Processor i A
i S, ,
] i Peripheral o
X FPGA & SPI readers 1—-{ ADC (= —{ Potentiometer

Figure 1.1: Robot system architecture



Nowadays there are many types of robotic arms that is functioned as painting machines [4—6].
Some of them have been employed for a long time. Perhaps, their service support cannot be extended.
Usually, just the electronic parts of the machines which have been in service ten years or more are
obsolete. On the other hands, most factory support the mechanic part of the machines themselves. It is
a dilemma to choose whether to continue using the old machine with high risk and high maintenance
cost due to lack of standard spare parts, or to invest in new machines which are costly. Moreover,
most old machines have restrictions [7-9] such as limited storage space, incompatibility with modern
technology media or communication channel.

This research was conducted to offer a solution towards some disadvantages above by designing
a System-on-Chip (SoC) embedded controller based on a low-cost FPGA. The system developed in
this research is shown in Figure 1.1. It is composed of a Microblaze module (32-bit RISC soft-
core processor), an internal memory module, a UART module, a 32-bit timer/counter module, a
digital I/O module, a SPI module, 6 custom SPI readers for interfacing ADC and 6 custom PWM
generators as DACs. By using FPGA, it will improve the computation power compared with that of
8051 microcontrollers. FPGA’s processing power is closed to that of DSP, however its price is much
cheaper than that of DSP. The other advantages of FPGA is that it has hardware-level reconfigurable,
so any module with I/O terminal can be designed, modified or adjusted very flexibly. Overall, with
integrating all mentioned module on chip this yields a high-performance system.

The controller controls angular movement of each axis, both direction and velocity, by sending
digital data to the DAC modules in the form of PWM signals which connected to the servo valve
via low-pass filters and amplifiers. The signals that are produced by the DAC modules represent
the outputs of the controller. Their polarity and magnitude respectively determines the direction and
velocity of movement. The position of each axis is measured from its potentiometer that is attached at
each joint. This represents the input of the controller. A PC, supported by GUI application software,
can be connected to the controller system via a USB/UART to make it more interactive and user-

friendly.

1.2 Literature Review

For a few decades, some researches regarding to the development of robotic arms controller have
been done, and are still being done. Inverse kinematics settlement and controller design are common
issues to face.

Closed-form method, that is solving the inverse kinematics analytically, gives preferable so-
lution [3]. Nonetheless, the closed-form method requires complex calculation and rely on the robot
structure. An improvement of closed-form method was proposed to reduce the computational cost
by avoiding a large amount of inverse matrix multiplication [10]. Another approach of closed-
form method was Product-of-Exponentials (POE) [11]. The other methods were numerical meth-
ods (nonclosed-form) such as geometrical solution [12] and iterative solution [13]. Nonclosed-form
methods involve numerical iteration until a desired end-point position and orientation is reached to

within a maximum allowable error. Nonclosed-form methods have some weaknesses as mentioned in



chapter 2.1.3.

Apart from the kinematics problem, robotic arm controllers also have been developed in vari-
ous ways, both of algorithm and its hardware. PI controller [14], PID controller [15-17] or adaptive
controller [18,19] have been implemented by using PC [18], Microcontroller [17,20] and FPGA [15].
It is a bargain to choose which algorithm is suitable to solve inverse kinematics and controller regard-
ing to the hardware requirement and the desired system performance. A new approach to improve the
end-effector of robotic arm motion has been proposed by incorporating a controller algorithm such as
PID [16] or MRAC [19] and an optimization algorithm such as Least Mean Square.

This work did entire mentioned issues both solving kinematics and designing controller from
software up to hardware to replicate or re-design a 6-axis robotic arm controller system as a study
case. In this case, a set of formulae to solve specific inverse kinematics problem was developed and
2-DOF PID controller was designed. A preliminary research to realize that system has been done by

author using microcontroller [17].

1.3 Objectives

The main objective of this research is to develop a system-on-chip of a 6-axis robotic arm controller.

To achieve said objective, one must fulfill the following aims:
1. Solving the inverse kinematics problem
2. Modeling the servo valves system of the robotic arm
3. Designing 2-DOF PID controller
4. Designing required hardwares
5. Implementing the controller on FPGA

6. Developing a GUI user application software

1.4 Scope of Thesis

The system designed by this research has specification as follows:

e It has an embedded PID controller

It can communicate with PC via Serial UART/USB port

All required modules/peripherals are integrated on chip

It has GUI interface to control the robot through PC

It has two mode, those are teaching mode and play back mode

It can load or store the trajectory file from or to PC



1.5 Methodology

In this work, the inverse kinematics problem is solved analytically (closed-form method). After the
desired trajectory pattern that contains the sequence of the robot movement in Cartesian coordinate
had specified by an operator, corresponding file then is generated in Microsoft Excel format called
trajectory file. This file is generated by solving the inverse kinematics problem with some (angular to
digital value) conversions. This file is then loaded into memory of the controller system. At playback
mode, this file will became the set-points of the controller to drive each position of joint so that the
end-point of the robot moves to the position and orientation such the trajectory pattern had been
specified.

The robot is powered by a hydraulic pump which is controlled through digital I/O connections.
Its motion is driven by signals coming to the servo valves. To design proper controller, a good
knowledge regarding to this servo valves must be known. The robotic servo valves are identified by
using Recursive Least Square method. Some signals are given as input to the servo valves for driving
the robot while the output signals are measured from the potentiometer attached in every joint. Both
input and output signals are recorded and then processed by using mentioned method to obtain the
model. This model represents a transfer function that states the relation between position toward
input signal. Three types of input signals i.e. step, triangle and random signals are employed. The
effect of the position and the load toward the model was studied. If the model does not change too
much because of its load, a PID controller can be chosen as the controller. However, when the model
change so much, it will be better to design an adaptive controller. By using adaptive controller, it can
compensate the change of the plant model so that the controller performance kept well.

Having the servo valves model were obtained, proper 2-DOF PID controller then was designed
based on the knowledge of that model. This controller with its apparatus peripheral will be im-
plemented on FPGA. Before being implemented on FPGA; the controller will be applied by using
microcontroller. This way is useful for observing the performance of the controller. If the controller
performance is not good enough, it can be modified or can be improved easily without time consuming
step. Eventually, after the controller performance has achieved the desired one then the controller can
be implemented on FPGA. It can be said that an imitation of microcontroller system with fix features
will be built on FPGA to replace the microcontroller as the main processing for the controller.

For the reason of interactivity, a GUI user application software is developed'on a PC. This one
can be used to re-adjust or to modify the controller system behavior such as updating the controller
parameter, importing or exporting the trajectory file, updating the movement speed and so on by an

operator easily.

1.6 Contributions

Through this research it is wished to yield a replicate of the old robotic arm controller which has some

superiority such as:

1. Its hardware is easy to operate.
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Its software is easy to use.
It can be modified to suit software needs quickly.

It provides better features and better capabilities.
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CHAPTER 11

BASIC THEORY AND PROPOSED METHODS

This chapter provides basic theory and some proposed methods which are used through this work.

2.1 Robot Kinematics

Robot arm kinematics deals with analytical study of the geometry of its motion with respect to a
fixed reference coordinate system, particularly the relations between the joint-variable space and the
position and orientation of the end-effector [1]. The robot arm used in this work has 6-DOF, which

are all revolute-type. Hence, we use robotic arm term through this writing to refer a 6-axis robot arm.

2.1.1 Homogeneous Transformation Matrix

The homogeneous transformation matrix T is a 4 X 4 matrix which maps a position vector expressed
in homogeneous coordinate system to another coordinate system. A large part of robot kinematics
is concerned with the establishment of various coordinate systems to represent the positions and
orientation of rigid object, and with transformations among these coordinate systems. Homogeneous
transformations combine the operations of rotation and translation into a single matrix multiplication.

Suppose two coordinate systems are assigned to each link of a robot arm at link i-/ and link
i respectively. The link i-/ coordinate system is the reference coordinate system and the link i co-
ordinate system is the moving coordinate system when joint i is activated. Using the homogeneous
transformation matrix T, a point p; can be expressed in the link i coordinate system in terms of the

link i-7 coordinate system as

pic1 ="' Tip; 2.1
where
i = position vector (z;, ¥i, 2i, 1)’ representing a point in the link i coordinate system
pi_1 = position vector (z;_ 1,1 1,2 _1,1)" representing the same point p; in term of
the link i-/ coordinate system
“~IT, = homogeneous transformation matrix which specifies the location of the i*

coordinate frame with respect to the base coordinate system i- 1t

A homogeneous transformation matrix can be considered to consist of four submatrices:

T =

I (2.2)
s

R B [ Rotation ‘ Translation
P

Perspective ‘ ScaleFactor



R is a 3 x 3 matrix that represents the relative rotation (orientation). Three basic rotation
matrices R are given in (2.3) to (2.5). R, o, Ry o and R , respectively represent the rotation through

an angel « about the x-axis, y-axis and z-axis.

(1 0 0
Rya=| 0 cosa —sina 2.3)
N0 sin & F gbs g

cosa 0 sina ]
Reye— 0 1 0 2.4)
| —sina 0 cosa |

cosa —sina 0 ]
K, = f Sivo | cosa ™0 2.5
0 Oy

T is a 3 x 1 column vector that represents the relative translation (position). Three basic
translation vectors 7T are given in (2.6). ' wlas y y,b and ¥ - respectively represent the translation in a

distance through the x-axis, b distance through the y-axis and c distance through the z-axis.

a 0 0
oo | B L= =0l , G- % |0 2.6)
0 0

A 1% 3 row vector P and a scalar s are the perspective and scale factor parameter that generally

given by P=[000] and s=1, when the joint is a rotary type.

2.1.2 The Denavit-Hartenberg Representation

In 1955, Denavit and Hartenberg [21] proposed a systematic and generalized approach of utilizing
matrix algebra to describe and represent the spatial geometry of the links of a robot arm with respect
to a fixed reference frame . This method uses a homogeneous transformation matrix T to describe
the spatial relationship between two adjacent rigid mechanical links. The Denavit-Hartenberg (D-
H) representation results a homogeneous transformation matrix representing each link’s coordinate
system at the joint with respect to the previous link’s coordinate system.

Suppose A; is the homogeneous matrix that transforms the coordinate of a point from frame i to
frame i-1i.e A; =" 1 T;,. In the D-H convention, each homogeneous transformation A; is represented

as a product of four basic transformations

A; = Rot, g, Trans, q,Trans; ., Rot, o, 2.7
cos@; —sinb;cosq; sinb;sina; a;cosb;
A — sinf; cosf;cosa; cosb;sina; a;sinb; 2.8)
! 0 sin COs d; ’

0 0 0 1



where the four quantities 6;, d;, a; and «; are parameters of link i and joint i as depicted in Figure 2.1.
These parameters are obtained by step 7 in the D-H general procedure below. Since all joints of the
robot used in this thesis are revolute joint so the three of above four quantities are constant while the

fourth parameter 6; is the joint variable.

Figure 2.1: Denavit-Hartenberg frame assignment

Through sequential transformations, the end-effector can be transformed and expressed in the
base coordinates system. The homogeneous matrix "T; which specifies the location of the i** coor-
dinate frame with respect to the base coordinate system is the chain product of successive coordinate

transformation matrices of A; and is expressed as

e (2.9)

This is the general procedure to derive the link parameters based on the D-H convention:
step 1: Locate and label the joint axes zg, ..., 2, —1-
step 2: [Establish the base frame. Set the origin anywhere on the zp-axis.
The zg and yg axes are chosen conveniently to form a right-hand frame.
Fori =1,...;n — 1 perform steps 3 to 5
step 3: Locate the origin o; where the common normal to z; and z;_; intersects z;.
If z; intersects z;_1 locate o; at this intersection.
If 2z; and z;_; are parallel, locate o; at joint i.
step 4: Establish z; along the common normal between z;_; and z; through 0; or
in the direction normal to the z; 1 - z; plane if z;_; and 2; intersect.
step 5: Establish y; to complete a right-hand frame.
step 6: Establish the end-effector o, z,yn 2n
step 7: Create a table of link parameters 6;, o, d; and a;
0; = the angle between x;_1 and z; measured about z;_1.
«; = the angle between z;_; and z; measured about x;.
d; = the distance along z;_; from 0;_1 to the intersection of the x; and z;_1 axes.
a; = the distance along z; from o; to the intersection of the x; and z;_; axes.
step 8: Form the homogeneous transformation matrix A; by substituting the above parameters
into (2.8)



step 9: Form °T,, = A; Ay Aj...A,. This gives the position and orientation of the end-effector

expressed in base coordinates.

2.1.3 Inverse Kinematics

There are two fundamental problems in robot arm kinematics namely forward kinematics and inverse
kinematics. Fig 2.2 shows a simple block diagram of both forward and inverse kinematics problems.
Forward kinematics problem is defined as how to compute the end-point position and orientation
using known link parameters when joint variables are given . Conversely, inverse kinematics problem
is defined as how to compute the joint variables using known link parameters when the end-point

position and orientation is given.

Figure 2.2: Forward and Inverse Kinematics Problems

The general procedure described in section 2.1.2 yields the end-point position and orientation
when the link parameters are known and a set of joint variables is given. This procedure is called
forward kinematics solution. Generally, forward kinematics problem can be solved easier than inverse
kinematics one. Nonetheless, inverse kinematics is more common faced in real application such as
trajectory tracing.

S. Kucuk and Z. Bingul [3] mentioned that there are three types of method for solving the

inverse kinematics problem as follows:

1. Complete analytical solution (closed-form method). The solutions of all joint variables solved
analytically are derived from the basic equations. This method gives very accurate result but it

requires complex calculation.

2. Numerical solution (nonclosed-form method). The solutions of joint variables solved numeri-
cally are obtained by iterative computational procedures. This method gives worse result than
that of the analytical method but it can be applied generally. With bad initial values, correct

solutions can not be guaranteed. It may yield only one solution or no answer at all.

3. Semi-analytical solutions. This solution combines analytical and numerical method. Some of

the joint variables are determined analytically and some of them are computed numerically.
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This thesis proposed a set of formulae to solve the inverse kinematics problem by using closed-

form method as shown in section 3.1.

2.2 System Identification Method

System identification is the method that estimate the mathematical model of a system from experi-
mental data [22]. Estimate model obtained by identification is then used for designing the controller

mathematically. The following are general procedures of system identification steps:
1. Select and define a model structure (containing unknown parameters).
2. Exciting the system by known signals (step, sinusoidal, pseudo-random signals).
3. Collect and record both inputs and outputs data over a certain interval time.
4. Estimate the parameters using some statistically based methods.

5. Validate the obtained model, repeat 1-4 if required.

ufk) | Physical ‘ yik) 1

System |
| SR —

————J:DACHADC:

Analog Board

PC

, |

Figure 2.3: System identification setup

The specific methods used at each step depend on the type of model desired (parametric or non-
parametric, continuous-time or discrete-time) and on the experimental conditions. The validation is
the verification step to decide whether the identified model is acceptable or not.

The equipment setup of system identification for discrete time models is illustrated in Figure
2.3. A sampled input sequence u (k) (where k is the discrete time) is applied to the physical system
by means of a digital-to-analog converter (DAC). The measured sampled output sequence y(k) is
obtained by means of an analog-to-digital converter (ADC). An estimate model with adjustable pa-
rameters 0 is calculated on the computer. The error e, that is the difference between output y(k) and
the predicted output (&), is used to update the estimate model parameters in order to minimize this

error. The simple formula of adaptation algorithm is expressed:
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OF 1 =0T + poTey, (2.10)

where 47, 1, ¢! and e are the estimated parameter, adaptation gain, measured data and error
respectively. A non-recursive identification algorithms proceed a bulk of data input and output over
a certain interval time to obtain the estimated parameter. The bigger data being processed the better
estimated parameter is yielded. However, the increase of used data will be followed by the increase
of computation cost. Recursive method is an alternative technique to counter that problem. Recursive

method offers some advantages such as:

e Reducing the data processing since this algorithm only proceed a shape of data instead of the

whole data.
e Estimating the real current model.
e Reducing the memory and computation requirement.

e Making possible to be applied as a real-time identification (on-line identification).

2.2.1 Least-Squares Method

The Least-Squares method was first introduced by Karl Gauss [23] for determining the orbits of plan-
ets. This method then becomes a major tool and the most popular estimation technique in parameter
estimation because it is easy to comprehend and easy to be implemented. This algorithm is objected
to minimize the sum of the squares of error between the actual data and that predicted by the model.
Let the process that will be estimated be described by an nth order difference equation as in
(2.11) or be expressed as transfer function G/(¢) as in (2.12). Assume that N samples of measurements
of ug, ..., up_n and yg, ..., Yp_ N are obtained from experiment. Where y;. and w, are the output and

input sample at time k respectively and ay, as, ..., @y, b1, b, ..., by, is a set of constant parameters.

Yk + a1Yg—1 + o + QnlYp—n = brug_1 + boug_2 + ... + bpug_y (2.11)
B(q)

G(g) & =5 (2.12)
@ A(q)

where
A= Brog~ = Hang=h
B(q) = N + 1. .00

To estimate the parameters a; and b; we introduce the residual error as

Yk + @1Yk—1 + oo + QnYp—n = b1ug_1 + boug_o + ... + bpUug_p + € (2.13)

or
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A(Q)yr = B(@Q)ux + e (2.14)

This equation is called AutoRegresive with eXoganious (ARX) and will be used through this
writing. Filling the data samples into (2.13) results a set of linear equation that can be expressed as a

simple matrix form in (2.15)

Y =00 +¢ (2.15)
where
Yk
y — Yk—1
Yk—N
—Yk-1 -+ —Yk-n Tk Thk=1 - Tk—n
b — Y2 - FYk-—n-1  Tk-1 T2 -+ LTk-n-1
—Yk-N -+ “Yke-n-N TN Tkp-1 - Tk-n-N
ai
o=| "
bn,
e(k)
k—1
| ek-1)
e(k—N)

The estimate of ¢, denoted by 0, is obtained by solving (2.15). A necessary condition to solve

this set of equations is /N > n. When NV = n, it has a unique solution given in (2.16).

=01 (2.16)

where ! is the inverse of the square matrix ®.. However, when N > n, generally it is not
possible to find a 6 vector which can fit the data samples exactly. It may be caused by too low order
of the model or a wrong model structure. One way to determine the parameters is to estimate them
based on least-square error.

Let the error ¢(k) and the sum of the squares error V7 g are stated by (2.17) and (2.18) respec-
tively.

e(k) = y(k) — g(k) = y(t) — 20 (2.17)

k
o1
Vis=— Y €(j)?= e e (2.18)
—k—
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To carry out the minimization, we express
1

Vis(0) = %(Y —30)1(Y —®0) = N

Y'Y —0"0"Yy —yT®0 — 0" 0" 00 (2.19)
Taking the first derivative of V7 g(6) with respect to 6 and equating the result to zero, we have

oVrs(0) ahl T Toal
7’9:9 =% [—261) &% 0 @6] =0 (2.20)

Hence the solution is given by the equation
= [o70] ' aTY 2.21)

2.2.2 Recursive Least Square Method

In some cases, such as adaptive control, it may be necessary to estimate a model on-line while the
process is in operation. The model will be updated when the new observations are available. Hence
for computation efficiency, it is desirable to arrange the algorithms in such a way that the results
obtained previously can be used for on-line updating. This way of algorithm is called recursive. The
recursive version of Least-Squares method is called Recursive Least-Square methods. Because of
some advantages mentioned above, this thesis will concern on this method only.

In this methods, a square matrix Py is introduced as in (2.22). Suppose that we have found an
estimate of parameters at time kth, that is HAk. Then we could update those estimated parameters using
a new data obtained at time k+/th (yx.1) by formulae (2.23), (2.24) and (2.25).

P, = [o7®] (2.22)

eht1 = Yrs1 — D70, (2.23)

Pey1 = P — 7qu)q)TPk (2.24)
F+oTPp,®

Op1 = 0 + Poy1Perin (2.25)

F' is forgetting factor which should be less than or equal to 1. When the process is slowly
time varying, the measurements obtained a long time ago contain less information than the recent
one. In order to let the estimator follow the change of the process, it is desirable to truncate the old

measurements in the estimation algorithm.

2.2.3 Order Selection

The purpose of order selection is to find the model order that is most accurate for its use in control.
There are some order selection methods that do not need complete parameter estimaton of model like

checking the rank of covariance matrices and plotting the singular value of the Hankel matrix [22].
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However, these methods are not accurate for noisy data. In this thesis, models will be estimated with
increasing orders and then the best order will be chosen using an error criterion. This method is
so-called cross-validation.

A number of criteria exist for order selection. In identification literature [23], the prediction
error criterion is often used. Denote prediction error criterion using a validation data set as in (2.26)

and using the estimate data set as in (2.27).

N
1 - 2 2
Vg = > H (@) [ = Clajuk ] (226)
k=1
ity . 2
V= = A7 (a) [y — Cloyu] (2.27)
k=1

where uk,v, yX and uy, yg are the input-output from the validation data set and the input-output
from the estimate data set respectively. Assume that the white noise e is Gaussian and the model
order is correct, then Akaike (1974,1981) has derived an asymptotically unbiased estimate of V}/ E

using V2

N +d
N—d
where N is the number of estimation data samples and d is the number of model paramters.

This is the famous Akaike’s Final Prediction Error criterion (FPE). Here the factor %—J_rfil is used to

FRE — = I3 (2.28)

correct for the over-fit effect.
Remember that H(q)=1 for ARX model, therefore the term lost function Vo can be used
instead of FPE.

N
5.
Vor =+ kZ_l éomk (2:29)

Note that output error €o (i) is not the same as residual error €. The relation between them

18

Uk = Ty + = (2.30)
"TAQ " A
B
Yp= AE(Q]§Uk+€OEk (2.31)
& = A(g)éork (2.32)

In general, the lost function Vo g decreases as the order n increases. The reduction of Vo will
be insignificant when the order of the model is high enough for simulation purposes. Based on this
principle, a procedure for order selection is so simple. The appropriate model order can be chosen as

the one for which Vi stops decreasing significantly.
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2.2.4 Validation

The goal of model validation is to check if the identifed model is good enough for use in control. This
is done by carrying out a whiteness test on the sequence of residual errors. An acceptable identified
model should verify the condition
RNG)| < 225 i =12, 4 aslng, ns + ) 2.33)
1) < == 11N & giaa(n., n .
VN 7
B o

(2.34)
N
% > k=1 62

RN(i) =

where N is the number of samples.

2.3 Control Design Method

Controllers can be classified into feedback and feed forward controllers. The feedback controllers
itself are divided into one degree of freedom and two degree of fredom controllers (abbreviated as 1-
DOF and 2-DOF respectively) [24]. The structure of both controllers (1-DOF and 2-DOF) in discrete

time are shown in Figure 2.4.

Figure 2.4: Controller Structure (a) 1-DOF (b) 2-DOF

1-DOF controller is simpler to design than 2-DOF controller because it has fewer parameters.
However, 2-DOF controller has more capabilities to shape the responses both reference and distur-

bance signals simultaneously and independently.
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Figure 2.5 shows the general principle of controller design. In order to design and tune a

controller correctly, one needs:

1. Determination of the plant model.
2. Specification of the performance.

3. Computation of the controller parameters (the coefficients of the polynomials R(z), S(z) and
T(z).

4. Verification of the achieved robustness margins and sensitivity functions.

Figure 2.5: Controller design principle

Step no.1, that is system identification, has been detailed previously in chapter 2.2 . This

section will detail the other points.

2.3.1 2-DOF PID Controller

Proportional, integral and derivative (PID) controllers are widely used in industrial practice. Because
of its merit and its simplicity to design, this thesis will be focused on 2-DOF Discrete PID Controller.

Consider the 2-DOF discrete control structure presented in Figure 2.4 (b). The control law is
implemented by:

It is easy to arrive at the following relation between (k) and y(k):

y(k) (2.35)
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The error, that is the difference between the reference signal r(k) and the actual value y(k), is given
by:

e(k) = r(k) —y(k) = (1 - A(z)R?;;lT;()z)S(z)> r(k) (2.37)

Simplifying, we arrive at
A(2)R(z) + B(2)S(2) = B(2)T'(2)
A(z)R(z) + B(2)S(2)

The discrete time form of the error expression in (2.38) is given by:

e(k) =

r(k) (2.38)

A(z) Rz B(2)S(2)—B(z)T(%)
A(z)R(z) + B(z)S(z)

E(z) = r(2) (2.39)

where E(z) and r(z) are, respectively, the Z-transforms of e(k) and r (k). Using the final value

theorem from discrete time systems, we obtain:

) - |
lim e; = lim
k—oco z—1  z

E(2) (2.40)

Substituting the expression for E(z) in (2.39) with step function input, the above equation

becomes

lim e = Lgl- 3 1 A(X)R(2) + B(2)S(z) — B(2)T(2) =
koo # N A(2)R(z) + B(2)S(2) Zz—1

where we have made use of the fact that R(z) is the transfer function of unit step. When the

2.41)

controller has an integral action, R(1) = 0. Using this, the above equation reduces to:

e(o0) = 2 20 2.42)

The above condition can be satisfied if one of the following condition is met:

o (2.43)
Slh=a'1 8 S &1y (2.44)
S(1) = T(1) (2.45)

If we use S = T to solve (2.42) it mean that we use 1-DOF controller. We also need to assume

that S(1) is nonzero otherwise it is a 1-DOF controller too.
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2.3.2 Pole Placement

The pole placement method allows the design of a 2-DOF discrete controller both for stable and unsta-
ble systems without restriction on the degrees of the polynomials A(z) and B(z), without restriction
on the time delay and without restriction on the plant zeros (stable or unstable) because this method
does not simplify the system zeros. The only restriction concerns the possible common factors of
A(z) and B(z), which must be simplified before the computations are carried out.

Let the controlled plant is characterized by the transfer function:

—d
@ D ()
Hiz) = ———7~ 2.46
&) =10, (2.46)
where
d : the integer number of sampling periods contained in the time delay
A(z) : 1+ a127! + 4 € F
B(z) :biz7 ' + .. ¥ b,gz "B
The closed loop transfer function is given by:
~4T(2)B V(B
HCL(Z) = < (Z) (Z) A < (Z) (Z) (247)
A(2)R(2) + 279B(2)S(2) P(z)

where

Plz)=14+piz7t + ... +Pnpz ™
R(z)=1+mrz" 4+ . +r,,z "8
S(z) =s0+s127 4+ ..+ 82"

Polynomial P(z) can be specified directly by defining the desired closed loop poles such as
P(z) = (1+piz ) (1 +phz=1)...(1+pl, pz~1) . Generally, P(z) is chosen in the form of a second-
order polynomial by discretization of a second-order continuous time system, specifying wy, ¢ and

assuring that the condition in (2.48) is satisfied.
025 <woTe <1.5; 07L(<1 (2.48)
Once P(z) is specified, the following equation (known as ‘Bezout Identity equation) must be
solved to compute R(z) and S(z) in (2.47):

A(2)R(2) + 27 3B(2)8(2) = P(2) (2.49)

Defining

na = degA(z); np = degB(z) (2.50)

This polynomial equation has a unique solution with minimal degree (when A(z) and B(z))

do not have common factors) for



19

np =degP(z) <ng+np+d—1 (2.51)
ng =degR(z) =np+d—1 (2.52)
ng =degS(z) =na~1 (2.53)

In order to solve equation (2.49) effectively, this is often represented in the matrix form

Mz=p (2.54)

where
T [1,7'1,...,V‘nR,so,...,sns]T (2.55)
or— [1>p17"'7pi7pnp707”'70]T (256)

and the matrix M has the following form

1 0 s=rr () 0 N TOW T
alf b}
as Qg o 0 /2 b,l
/
M — il “es e b2 (2.57)
-
| 0 Ve o i) ..o N
nA+‘an+d

where:
b, =0fori=0,1,...d; b,=bj_gqfori>d+1
The vector x, contains the coefficients of the polynomial S(z) and R(z), is obtained using

matrix inversion M by the formula

g= M (2.58)

where M~ is the matrix inverse of M. This inverse exists if the determinant of the matrix M
is not zero. One can prove that this is verified if and only if A(z) and B(z) are coprime polynomials
(no simplifications between zeros and poles). Finally, parameters of polynomial R(z) are obtained
by equation (2.43), (2.44) or (2.45).



CHAPTER 111

IMPLEMENTATION, HARDWARE AND SOFTWARE DESIGN

This chapter explains the implementation and the hardware design of controller system. At first, a
set of formulae for solving the inverse kinematics problem and how to generate the trajectory files
are described. The 2-DOF PID controllers then are conveyed based on servo valves models obtained
from system identification. Finally, the required hardwares are constructed to realize the controller

system.

Figure 3.1: Coordinate frames of the robotic arm

3.1 Closed-form Solution of Inverse Kinematics

In order to develop formulae for solving the inverse kinematics problem described in section 2.1.3, a
set of joint parameter represents the mechanical structure of the robot must be known. The mechanical
structure of the robot used in this case study is shown in Figure 3.1. The coordinate Oi, ¢ = 0,..,7
was specified. Then the parameters /;,a;, d;, and 6; can be extracted following the steps in section
2.1.2 as shown in Table 3.1.
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Table 3.1: Denavit-Hartenberg Parameters

Axis l; o; | d; 0;
1 0 516321 601
2 100 | O 0 0
3 164 | O 0 03
4 10NL6Y §5 0 04
5 0 TS 05
6 0 5 | 85 Os
7 o] “ 0 | 077

3.1.1 General inverse kinematics formulae when O and its orientation are given

In this section, we develop a general inverse kinematics formulae when a desired end-point position
(Or) and its orientation are given. Figure 3.2 and Figure 3.3 show the coordinate frame example and

the zoomed area of end-point respectively.

Figure 3.2: Coordinate frame example for section 3.1.1

The end-point position is specified in original coordinate direction Oy (O7 = [z7 y7 27]T)

whereas the orientation is specified by « and § as shown in Figure 3.3.
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Figure 3.3: End-point position and orientation

Assume that O7, « and 8 are given, where O;=[z; y; zi]T is the position coordinate of joint-i in
Xp-axis, Yp-axis and Zp-axis respectively. The corresponding homogeneous matrix transformation of
desired position and orientation (°T) is stated by a rotation of « degrees about Z axis followed by

a rotation « degrees about Y7 axis, a rotation 180 degrees about X axis and translated by translation

Or=[x7 y7 z7]".
0']1‘7 = Rot, , Rot, g Roty; 180 Trans, ;, Transy,, Trans, ., 3.1
cosacosf3 sina  —cosasinf x7
0 sinacosff —cosa —sinasinf yr
T; = 2
7 —sin g 0 —cos 8 27 (3.2)
0 0 0 1

From Figure 3.3 we can easily obtain Og:

—l7 cos (3 cos a
O =07+ | —l7cosfBsina 3.3)
l7sin 3

07, is a constant which is determined by the mechanical structure of the robotic arm. The

relation between 67, and 60~ is given in (3.4).

07 = Tl'/2 + .67 (3.4)

Figure 3.4: X,-Zj plane view
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There are many possible points of Os so that the angle between link-6 and link-7 satisfies 07,.
In order to get a unique position of Os, we constrains this so that it is in the X,-Z; plane and Oy
always in the left side of Og. Figure 3.4 shows the X,-Z; plane view. An auxiliary variable v is

denoted by:

ANl ¥ & (3.5

Then the position of Oy in the original base coordinate is:

—dg cos ycos «
Os = Og + | —dgcosysin a 3.6)
—dg sin vy

Because link-5 and link-6 always be perpendicular, it satisfies the following rule:

(74 — z5)(T6 — @5) + (ys — Y5) (Y6 — Ys5) + (24 — 25) (26 = 25) =0 (3.7

Using known position of Og and Os in (3.3) and (3.6), we introduce constants ¢; = xg — x5,

c2 = Y¢ — Y5 and c3 = zg — 25. Then equation (3.7) becomes:

(4 358 4. (Vads Us) otk 2ds— 28)c3's= 0 (3.8)

C1TA ~-Colys + C324 =.Cy 3.9

where ¢4 = c1x5 + cays + C325.

Figure 3.5: Top view of Xg-Yj plane

Figure 3.5 shows the top view of X(-Yp plane. From this figure we can compute 6; using
formula in (3.10). We also have correlation between x4, y4 and 241 as shown in (3.11) and (3.12),

where ;1 (i = 2, 3,4, 5) is the projection of corresponding position O; in x1 direction.

0, = tan~! (y5> (3.10)

5



T4 = T41c0801

Y4 = w4151n01

Substituting (3.11) and (3.12) into (3.9) yields

c1241€0801 + coxy18inby + c324 = c4

(e1c0s01 + casinby)xa) = c4 — 324

C4 — C324

La1 = ”
c1cosby + cosinby

Figure 3.6: Side view of X-Zj plane
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Figure 3.6 shows the side view of X-Z plane. Because link-4 and link-5 is perpendicular in

this plane, it satisfies:

(231 — @a1) (w51 — Ta1) + (231 — 241) (251 — 241) =0

(241 — x51)% + (201 — 251)% = d2

(241 — 231)% + (241 — 231)° = 12

Substituting (3.15) into (3.17) yields

Cq — C324

2 2 2
—— — T51)" + (241 — 251)° = d
c1cos01 + cosinby ) ( ) 5

(3.16)

(3.17)

(3.18)

(3.19)
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Because z4=z41+d; then

cq — c3(zq1 +dy) 2 2_ 9
. —z +(z41 — 2 =d 3.20
c1c0801 + cosinb 51) (21 51) 5 ( )
Simplifying this equation yields
p2a +qza1 +1 =0 (3.21)
where
C
p= [(0100861+?::28in91)2 +1
_ —csd
q= —2 6100891$’028in91 <C100§§1—ii2;in91 - .1'51) + Z51:|
_ —cad 2 2 2
" = (Gcost +epsmpy — T51)” + 281 — d3

Using quadratic formula, we have 2 solutions for the problem in (3.21). However, we only
choose the bigger one because we constrain that the position of O4 always higher than the position of

Os. Therefore, the solution of z4; is given by:

— S (3.22)
_ V2p ,

241

After z4; is known then we can obtain x4 using formula in (3.15). Now we can simplify
formula in (3.16)

(231 — Ta1)c6 + (231 — 241)c7 =0 (3.23)

CeT31 + C7231 = C6T41 + C7241 (3.24)

2 (c6za1 + crz41) — C6231 (3.25)
(64

where cg=x51 — x41 and cy=z51 — z41. Substituting (3.25) into (3.18) yields

sriy - teg Fu=10 (3.26)
where
(27,2
s=(cg/cz)+1
t=2 [%(241 - J’—‘C‘x“;wz‘u) = $41:'

= _ CoTa1tCr24] !
U= [(241 CGCC410‘|;C 241 )2 | x?ﬂ} lg

Problems in (3.26) also has 2 solutions. Because the position of O3 always in the left of Oy
then we chose the smaller one. The solution of z3; is given by:
—t — V12 —4su

— 3.27
31 9 (3.27)
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Then 231 can be solved using formula in (3.25). From Figure 3.6 we can derive a formula to ob-

tain 6, 03 and 0, as in (3.29), (3.30) and (3.31) respectively, where a=z31, b=x31 and d=||Oz — O4l|,:

c=+vVa%+b? (3.28)

— tan—lf -1 _l§*53*02

05 = tan (b) + cosT A Slpc ) (3.29)
V)
05 = —71 + cos™! (—u (3.30)
2sl3
Ok Wy Oy O
0, =7 — cos_l(fw (3.31)
2131y

Figure 3.7: Zoomed area of O3, Oy, O5 and Of in X; — Zj plane

Figure 3.7 shows the zoomed area of O3, O4, O35 and Og in X; — Zj plane. O is the projection
of Og in X coordinate direction. From this figure, we derive the following formulae, where §=6, +
03 + 05:

Te1 = 51 + dgCOSI (3.32)
261 = 251 + dgsind (3.33)
T = Xg1r COS O (3.34)
Yo' = Tg1r Sin by (3.35)

zgr = g1/ + d1 (3.36)
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Denotes vectors v and vg are the relative position of Og and Oy toward O respectively.

v6 = [(z6 —x5) (Y6 —Y5) (26 — 25)] (3.37)

vg = [(ze —x5) (Yo — ys5) (26 — 25)] (3.38)

By using dot product of two vector formula we obtain:

. T e T
— U6 Vg —1 [ Y6Ve
05, =cos ' | ——>—— | = cos 3.39
; <||v6|r ||v6fu> ( T ) o
Then we get 05:
by = 7 05, (3.40)

We introduce Av=vg — vg . The sign in (3.40) is plus (+) when Aty is negative, otherwise is
minus (—). Now, 6;...05 have been known and 67 is a constant. Therefore we can obtain 6 using the

following formula:

0T, =0T °Tg 6T, (3.41)

where °Tg=Ag and °T7=A- as defined in (2.8). Because the unknown parameter 6 is stated in

Ag, so the solution of problem (3.41) is:

T~ e (3.42)

Finally, we get fg from known matrix Ag
06 = cos™ Ag(1.1) (3.43)

3.1.2 Specific inverse kinematic formulae when O7 is given and link-6 is perpendicular to the
object plane (Yy-Z plane)

This is a specific case for section 3.1.1. We develop another formulae of inverse kinematics when the
end-point position (O7) is given and the orientation is fixed determined so that the link-6 always be
perpendicular to the object plane (Yp-Zp plane).

In fact, this case can be solved using general inverse kinematics formulae as in previous section.
However, the general inverse kinematics formulae requires much complex computation. Therefore,
we develop another simplified formulae to satisfy this case. Figure 3.8 shows the coordinate frame
example of section 3.1.2.

In this case, to make the end-point orientation constant, fg should be determined previously. If
the end-point position is given then the appropriate angle 6; to 6 can be obtained by the formulae in
(3.44) to (3.57). Assume that an end-point O7 = [z7 y; 27]T is given and fg is defined previously,

where x;, y; and z; are the position coordinate of joint-i in Xg-axis, Yp-axis and Zp-axis respectively.
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Figure 3.8: Coordinate frame example for section 3.1.2

Note that 07 is also a constant that defined by its mechanical structure. From Figure 3.8, Og, O5 and

O4 can be computed by equation in (3.44) to (3.46)
—l78in 67

O = O7 + cos B¢ cos 07 (3.44)
—I7 sin g cos 67

O5 = Og + 0 (3.45)

04 = O35 + 0 (3.46)
| —d5 |

Using known position of Oy, then 8 can be computed:

6 — tan~! (y‘*> (3.47)

Tq

If the area around O;, O3 and O, is zoomed in with top view as shown in Figure 3.9, the next

formula can be derived to compute 05 and position Os.

05 — g 0, (3.48)
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Figure 3.9: Zooming in the area O1, O3 and O4 with top view

—14 cos 6
O3 =04+ | —lysinb; (3.49)
0
An auxiliary position, called 7} and variables a, b, ¢ and d are introduced. Figure 3.10 is the
zoomed area of O1, Oy and O3 in X-Zj plane. From this figure we can derive formulae to compute
02 and 03 as in (3.54) and (3.55), where ||-|| denotes norm order 2.

Figure 3.10: Zooming in the area O, Os and O3 with side view

0
T =03+ 0 (3.50)
¥ |
a=03=Ti|| =23 —dy (3.51)

b=|T1—O1] = /22 + 3 (3.52)
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Cc = HOg—Ol” =V a2+b2 (3.53)

2 12 2
6y = tan ! (%) 4 cos™! (_ZSQZZQQCC) (3.54)
B l? i 12
0; =t toS {5 (3.55)
2lyl3

Figure 3.11 shows the zoomed area of O, O3 and O4. 0, can be obtained by the following

formula:

Figure 3.11: Zooming in the area O2, O3 and O4 with side view

d = [|O2 — Oully = V(@2 — 24)2 + (y2 — y1)2 + (22 — 24)? (3.56)

Ly

e T S g STal;

(3.57)

3.1.3 Moving end-point in O, coordinate direction with keeping its orientation

In this section, we design a strategy for moving the end-point of the robotic arm. The end-point will
be moved left-right, up-down and in-out in Y, Zp and X direction respectively while the orientation
is kept constant. This strategy requires formulae which is almost the same with section 3.1.1. The
only difference is that to keep its orientation, we move Oy, Og and Oy parallelly with the same
relative movement from the previous position. Figure 3.12 shows the coordinate frame example for
this strategy.

Assume that present positions O;p = [x;p yip 2; p]T are known by using forward kinematics
formula O;p = ForwardK inematics(gp), where ¢ = 5,6,7 and gp are obtained from the mea-
surement of potentiometers. If desired relative movement, A P=[AP, AP, AP,]T, in original base

(Op) coordinate direction is given then we can easily find the next position of O7y, Ogn and Os

Osn = O7p + AP (3.58)

Osn = Ogp + AP (3.59)
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Osy = Osp + AP (3.60)

Figure 3.12: Coordinate frame example for section 3.1.3 strategy

Using known position of Os, Og and Oy then we can compute 0;...05 with formulae in (3.10)
to (3.40). In this case, there is a difference formula on how to compute g compare to that one in
section 3.1.1 because here we do not specify the orientation by « and 3. Therefore we just need
previous orientation as the next orientation.

Suppose that corresponding homogeneous matrix transformations of the present position T
is denoted by 0T p whereas the next position 0T, 0T, °Ty and ST, are denoted by TN, OTsw,
Agn and A7y respectively. The next homogeneous matrix transformation YTy is obtained from the

present homogeneous matrix transformation T p using the following relation:

07N =" Trp + ! (3.61)

o o oo

o o &lo

oo oo
>
av

To find g, we use the following formula:

OT7n =0 Tsn Aoy A7n (3.62)
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Ay =" Tsy Try Azy (3.63)

Then, we get 0g from this known matrix Agn

06 = cos™ ' Agn(11) (3.64)

This is the general procedure for moving the end-point of robotic arm in coordinate Oy direc-

tion with keeping its orientation:

1. Obtain the present Polar position Op by measuring the potentiometer attached at every axis.

2. Using known 0 p and general homogeneous transformation matrix in (2.8), compute:
OT7p = A1pAspAsp... Azp.

3. Obtain the next position and its orientation 0T i using formula in (3.61).
4. Compute 61 ...05n using formulae in (3.10) to (3.40).
5. Solve Ogn using formula in (3.64).

6. Drive the robotic arm following the new Polar position On.

3.1.4 Moving end-point in O; coordinate Direction with keeping its orientation

In this section, we design a similar strategy for moving the end-point of the robotic arm as in section
3.1.3. The same formulae and the same procedure are also employed. However, the relative movement
will be specified in O7 coordinate direction (not in Oy coordinate direction). Asaddition, we constrain
the movement only in X7 or Y7 or Z7 exclusively.

The following procedure is a general step for moving the end-point of robotic arm in coordinate

Oy direction with keeping its orientation:

1. Obtain the present Polar position 7] p by measuring the potentiometer attached at every axis.

2. Using known 0 p and general homogeneous transformation matrix in (2.8), compute:
OT7p = A1pAspAsp.. Arp.

3. Assume that we have link-8 so that the position and orientation of Og is the same with Oy
exactly. Now we can derive a movement in Oy coordinate direction using this pseudo link-
8. Moving AP, distance in X7 direction means specifies ag = 0, dg = 0, ls = APF,, and
fs = 0. Corresponding homogeneous transformation matrix of axis-8 can be stated by Ag =
Ai(a =0,d = 0,1 = AP,,0 = 0). Likewise, AP, and AP, distance movement in Y7 and
Z7 direction respectively can be stated by Ag = A;j(ov = 0,d = 0,1l = AP,,0 = 7/2) and
Ag = Ai(a=0,d = AP,,1 =0,0 =0).

4. Compute the pseudo-position 0s="T-p As.
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5. Obtain the next position and its orientation 0T 5 using formula in (3.61), where A P,=xs-77,
AP,=yg-y7 and AP,=23-X..

6. Compute 61y ...05y using formulae in (3.10) to (3.40).
7. Solve 0gn using formula in (3.64).

8. Drive the robotic arm following the new Polar position Oy.

3.2 Trajectory File Generator

A trajectory pattern that contains a sequence of the robot movement in Cartesian coordinate is ob-
tained by solving the inverse kinematics problem with some angular-to-digital conversions. This
trajectory pattern is specified by an human operator in Cartesian coordinate. Corresponding file rep-
resents the sequence of the polar coordinate in digital value then is generated. This file is stored in
Microsoft Excel format and so-called trajectory file.

Using inverse kinematics formulae in (3.44) to (3.57), a Cartesian coordinate will be converted
into polar coordinate. Since the controller is a digital system, the polar coordinate value needs to be
converted into digital value before proceeded by the controller. The relation between the angle in
polar coordinate and the digital value is regressed by Linear Least Square method using data from
experiment. This is called angular to digital value conversion.

The following is the least squares regression line at joint-::

Ui, My 1G5 (3.65)

(3.66)

ci = Yy — m;ib; (3.67)

where 9;, 0;, m;, ¢;, 0; and y; denote the estimate of the angle in digital value, the angle,
regression coefficient, a constant, the mean of 6; and the mean of y at axis-i.

In this robotic arm, all of joints using rotary potentiometers to measure the angle in every joint
except joint-3 which uses linear potentiometer. Generally, the linear regression line in (3.65) is used
to state the relation between the angle in polar coordinate and the digital value. Particularly in joint-3,
this linear regression line is used to state the relation between the length of L, and the digital value

as shown in Figure 3.13. The relation between the angle and the length of L, is given in (3.68).

Lp(927 93) = \/(lQCOSGQ + l31008(—(93 + (92)) — l21)2 + ((lgsineg — lglsin(—(ag + (92)))2
(3.68)

where l5; = 18 cm and l3; = 20 cm.



Figure 3.13: The structure of linear potentiometer at joint-3
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The experiment was set up to find m; and c; as explain in (3.66) and (3.67). After measuring

¢; j and y; ;, parameters m; and ¢; are obtained and shown in Table 3.2.

Table 3.2: Regression Parameters

Axis-1 mi @
1 33.7477 1950
2 50 -2400
3} -165.1325 | 17914
4 -12.5 2170
5 -11.4892 | 3080
6 -5.8889 2500

3.3 System Identification

The following section describes the system identification steps. The first step is usually the selection

of a model structure. There are various possibilities of structure state-space and polynomial forms

such as ARX, ARMAX, OE, BJ etc. The more complex the structure, the better estimate model

is yielded. In this work, a high-accuracy model is not required, therefore ARX structure is chosen

because of its simplicity. For a given choice of structure, the order of the model needs to be specified

before the corresponding parameters are estimated.



35

In order to estimate the servo valves of the robot, a set of data input and output from experiment
are required. As an illustration, the 6-th axis servo valve estimation is given to explain its step using

System Identification Toolbox provided by Matlab.

3.3.1 Delay Estimation

The amount of delay (d) as shown in (2.46) also infulence the selection of the model order. Therefore
we need to estimate the best delay before selecting the model order. There are various options avail-
able for determining the time delay from input to output. However, this work will focus only on one
of them, that is using delayest utility. This function evaluates an ARX structure as in (3.69), where
u, Y, na, nb and d respectively are the input signal, the output signal, the order of input, the order of

output and the time delay.
Yk + a1¥k—1 4o £ @na¥k—na = b1Uk—d + ... + bppUk—nb—d+1 (3.69)

Data Output

3500 . . T .
i n 2 ..‘n"l.l I I_,'rrl'-.ll A
£ 3000 f y yil .-‘f A
w & ™ iy /
E .'*.I ." ; | .- { l.\ .". \ /
g A -'I "-. .l'I I"'. Ii'. |'I I‘- -'|l ..'-. .-'r
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0 50 100 150 200 250 300
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T
s 0
m
5
O -500
-1000 - , / , ! |
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Time (10 ms)

Figure 3.14: The dataset measured at axis-6

Assume that we have two set of data input and output (z1,y1 and x2,y2) which are obtained

from measurement at axis-6 as shown in Figure 3.14. Here is the Matlab syntax to estimate the delay
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using delayest toolbox.

>> cdata = iddata(y1,x1); % data test
>> vdata = iddata(y2,x2); % data validation
>> delay = delayest(cdata);
delay = 1
This result shows that the best time delay (d) that should be selected is 1.

3.3.2 Order Selection

Once we have decided the model structure to use, the next task is to determine the order(s). In general,
the selected order should give as close as possible to the real model. Howeyver, it should be not higher
than necessary. This can be determined by analyzing the improvement in fit as a function of model
order. When doing this, it is advisable to use a separate, independent dataset for validation. Choosing

an independent validation dataset (vdata in this example) would improve the detection of over-fitting.

F 4 ‘ F o i T — - C—— e
B ARX Model Structure Seligﬁp T ) . —_@_@E
Fie Options Stye Help r >3 -—-____,_ : .
3 ) :
15 ¥10 : Idod el Mm:'nl'fsnum?r of par's : N
Geeen; MDL Choice |
el Elue: AIC Choice | o
* —
- Red Best Fit | Misfi=  T497e-005
L |
E na= il
=
e |
E ndr= 10
=
" 1 nk= 1
=
=
= 1 |
= Select
B i | Close |
oL | e | = |
o 5 10 15 a0 =
Mumber of par's
Inspect models by clcking bars or press SELECT.

Figure 3.15: The ARX model structure selection

In addition to a progressive analysis of multiple model orders, explicit determination of opti-
mum orders can be performed for some model structures. Functions arxstruc and selstruc are used
for choosing the best order for ARX models. In this work, MATLAB 7.0 is employed to facilitate
system identification. We check the fit for all 100 combinations of up to 10 B(z)-parameters and up
to 10 A(z)-parameters as in (2.46), all with a delay value of 1:
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>> V = arxstruc(cdata,vdata,struc(1:10,1:10,1));
The best fit for the validation data set is obtained by:

>> nn = selstruc(V,0);
nm=10 10 1

For choosing the model order interactively, the following syntax can be used:
>> nns = selstruc(V);

Figure 3.15 shows the ARX model structure selection panel. From this figure we know that the
best fit model is performed when na=10, nb=10 and the time delay d=1 as shown by the red color
bar. If we use Akaike Criterion, we get the best order model when na=1, nb=6 and d=1 as shown by
the blue color bar. A simple 2" order ARX yields only 3.5 x 102 unexpected output variance. This
structure has good enough approximate of the model and nowever can be well exploited to estimate

the controller as proven by the experiment result in section 5.7.

3.4 Controller Design

Due to result in previous section, 2-DOF PID controller will be designed based on the approximate
model of the robot. For the reason of simplicity, 2" order of plant model and 2" order of 2-DOF
PID controller with pole placement method are chosen. Assume that the approximate model, H(z),

obtained by identification is given in (3.70) and the controller structure is as shown in Figure 2.4 (b).

B(Z) il blz_l aF b22_2

Hz) = A(z)  1+a127! + agz2 (3.70)
A 2-nd order controller parameter is stated by:
S(z) = 50+ 512 L8922 (3.71)
R =00 -zHA+rz =1+ -1zt —rz? (3.72)
A polynomial P(z) represents the desired pole locations is specified by:
P(2) =19 piz Y +poz 2+ p3z 3 ¥ pyz? (3.73)

In this design, polynomial R(z) is not in general form. By reconfiguring (2.54) we have

x = [s0, s1, SQ,T’]T (3.74)
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o bg b1 0 a] — 1
M= 0 bg b1 as — aq (375)

0 0 b2 —a

DI 1
e gz i Z; F 7 (3.76)
yz
x=M"'K (3.77)

The following is an example of 2-DOF controller design for joint-1. The estimate model of
plant is given in (3.78) and the desired pole locations are multiple pole at 0.8 as shown in (3.79).
In order to guarantee that the controller system is stable, the poles must be chosen so that they are
located inside unity circle. The closer of the poles to the zero, the faster of settling time to be stable.
However the closer of the poles to the zero will affect to the vulnerability of its stability. Therefore,

locating pole at 0.8 is one of good choices regarding to those reasons.

B(z)  =0.0026z"1 —0.0116272
H(z) = — 3.78
(2) & 4Gy 1= 1432551 0482122 (5.78)
P(z)=(1-082"1)4=1-32,"+3842 2 — 2048273 + 0.40962* (3.79)
Then the matrix M and vector K are stated by:
—0.0026 0 0 1
—0.0116 —0.0026 0 —2.4825
M=1y —0.0116 —0.0026 1.9646 (3-80)
0 0 —0.0116 —0.4821
—0.7175
1.8754
K=1 _15650 (3.81)
0.4096
The solution is:
r=M'K =[-6.8755 11.5107 — 4.7479 — 0.7354]7 (3.82)

The parameters of the controller are
S(z)'= —6.8755 + 11.51072 71 — 4.7479~ 2
R(z) =1 —1.7354271 4 0.73542 2

Finally, T'(z) can be computed using (2.44)

T = S(1) = —0.1127 (3.83)
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3.5 Hardware Design

This section explains the hardware requirement. In general, the hardware is classified into four parts

i.e. main processor board, analog board, digital I/O board and power supply board.

3.5.1 Main Processor Board

The main processor board is the central processing unit of the controller system. This part is respon-
sible on receiving, processing and transmitting data from and to external devices. This part composed
of several internal peripherals such as 32-bit soft-core processor, UART, Digital I/O, Timer/Counter,
SPI, SPI reader and PWM generator. All of mentioned peripherals are embedded in a Xilinx FPGA
XC3S400.

Figure 3.16: MicroBlaze core block diagram

3.5.1.1 MicroBlaze 32-bit Soft-core Processor

Microblaze is a 32-bit soft-core processor developed by Xilinx. This is a reduced. instruction set
computer (RISC) optimized for implementation in Xilinx Field Programmable Gate Arrays (FPGAs).
Figure 3.16 shows a functional block diagram of the MicroBlaze core.

The basic MicroBlaze architecture is consists of 32 general-purpose registers, an Arithmetic
Logic Unit (ALU), a shift unit, and two levels of interrupt. This basic design can then be configured
with more advanced features such as: memory management unit (MMU), barrel shifter, memory

management/memory protection unit, floating-point unit (FPU), caches, exception handling, debug



40

Custom
Local Memory Coprocessors I
| . | (.
3 JTAG
MicroBlaze el |

. .

PLBv46

T r

SDRAMIDDR/DDRZ
SRAMFLASH Muiti Port Interrupt

- | Memory * . Controller

Controller | pma

|

|=+— TimerlPWM |=

10410041000 o 0 CISPI -
Ethernet a— S o Ethernat MAC e
~—1 UART ™ i
-———— PCI, PCle e
~— GPIO
Generic Peripheral

? f Cantroller CANIMOST

N R W
o . e s

Custom 'O K
Peripherals

Virtex™ or Spartan™ FPGA

=—= USB 2.0 * *

Figure 3.17: MicroBlaze core with advanced features

logic, and others. This flexibility allows the user to balance the required performance of the target
application against the logic area cost of the soft processor. Figure 3.17 shows a MicroBlaze system
configured with advanced features.

Three types of memory interfaces are supported: Local Memory Bus, Processor Local Bus
(PLB) / On-Chip Peripheral Bus (OPB) and Xilinx CacheLink (XCL). In this design, Microblaze
system is configured with 16 KB local/internal memory, active low reset, 50 MHz bus clock frequency
and several advanced feautures which are connected via PLB Bus as described in subsection 3.5.1.2
to 3.5.1.7.

3.5.1.2 UART

The UART peripheral is connected to the PL.LB Bus to provide the controller interface for asynchronous
serial data transfer as shown in Figure 3.18.

This peripheral performs parallel to serial conversion on character reveived through PLB and
serial to parallel conversion on characters received from external serial devices. The UART peripheral
is capable of transmitting and receiving 8,7,6 or 5 bit characters with 1 bit stop and 1 bit parity.

There are three sections inside the UART peripheral. First, the PLB interface module provides

the interface to the PLB and implements PLB protocol logic. Second, the register module consist
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Figure 3.18: Block diagram of UART peripheral

of an 8-bit status register, an 8-bit control register and a pair of 8-bit Transmit/Receive registers.
All registers are accessed directly from the PLB using the PLB module. Third, the control module
consists of a RX module, a TX module, a parameterized baud rate generator (BRG) and a control

unit.
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Figure 3.19: Block diagram of GPIO peripheral

3.5.1.3 Digital I/O
The digital I/O peripheral is a general purpose Input/Output (GPIO) to interface the PLB Bus with

external devices. It is a 32-bit bi-directional data transfer which can be configured either as input or
as output at a time.
An input port may be configured to take its external input either from bidirectional 3-state pin

or from the dedcated input only pins. As a ouput port, the data is driven out through a 3-state buffer as
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well as to an input only pin. The port can be configured dynamically for input or output by enabling
or disabling the 3-state buffer.

The bock diagram of GPIO is shown in Figure 3.19. It is composed of 3 modules i.e PLB
interface, Interrupt Control and GPIO core. It can be configured as a single or a dual channel device.

The channel width and the direction are configurable and can be enabled individually.

3.5.1.4 Timer/Counter
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Figure 3.20: Block diagram of Timer/Counter peripheral

This Timer/Counter peripheral is a 32-bit timer module that attaches to the PLB bus. It is orga-
nized as two identical timer modules as shown in Figure 3.20. Each timer module has an associated
load register that is used to hold either the initial value for the counter for event generation or a capture
value depending on the mode of the timer.

There are three modes that can be used with the two Timer/Counter modules:

e Generate Mode. The value in the load register is loaded into the counter. When enabled, the
counter beings to count up or down depending on the selection of the Timer Control Status
Register. This mode is useful for generating repetitive interrupts or external signals with a

specified interval.

e Capture Mode. The value of the counter is stored in the load register when the external capture
signal is asserted. This mode is useful for time tagging external events while simultaneously

generating an interrupt.
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e Pulse Width Modulation (PWM) Mode. Two timer/counters are used as a pair to produce an
output signal (PWMo) with a spefified frequency and duty factor. Timer0O and timer1 are used
to set the period and the high interval time of the PWM respectively.

3.5.1.5 SPI

The SPI peripheral connects to the PLB bus and provides a serial interface to SPI devices. The SPI
protocol provides a simple method for a master and as selected slave to exchange data. SPI is a
full-duplex synchronous channel that supports four-wire interface (transmit, receive, clock and slave-
select) between a master and a selected slave. The block diagram of SPI peripheral is shown in Figure
3.21.
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Figure 3.21: Block diagram of SPI peripheral

When configured as a master, the SPI can communicate with both oft-chip and on-chip slaves.
However, when configured as a slave, it can communicate only with on-chip masters. The number of
slaves is limited to 32 by the size of the Slave Select Register. However, the number of slaves and

masters will impact the achievable performance.

3.5.1.6 SPI reader

The SPI reader peripheral is a custom logic 16-bit shift register which is compatible with SPI protocol.
However it is only able to perform read access and act as a slave module. As shown in Figure 1.1, there
are 6 channels of ADC accessed by SPI protocol. The ADCs are desired to be accessed concurrently.
It is redundant to use 6 SPI peripheral because it consumes more resources. Therefore a custom SPI

reader is developed to optimize and reduce the resources usage. A single command can be sent to all
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Figure 3.22: Block diagram of SPI reader

of ADCs while 6 SPI readers are used to read the data from every channel concurrently. Figure 3.22

shows the block diagram of SPI reader module with their connections to ADCs.
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Figure 3.23: Block diagram of PWM generator

3.5.1.7 PWM Generator

The PWM generator peripheral is a custom logic hardware which is dedicated specifically to generate
PWM signal. Figure 3.23 shows the block diagram of PWM generator.

The PWM generator composed of a 32-bit counter register and two 32-bit comparator registers.
The counter data and the comparators data are defined by sending data through PLB bus. The PLB
interface module then store that data into counter register and comparator registers. When rising

clock is happened, the counter register value will be incremented by 1 and at the same time this
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counter value is compared with both comparator registers value. When the value of counter register is
greater than comparator register A value then PWM ouput signal is forced to be *0’. When the value
of counter register is greater than comparator register B value then PWM output signal is forced to
’1” and register counter value is reset to 0 (zero). The PWM signal generation can be illustrated as

shown in Figure 3.24.

Figure 3.24: PWM output signal

3.5.2 Analog Board

Analog board composed of three parts: digital isolator, filter-amplifier and analog to digital converter
(ADC). The block diagram of Analog board is shown in Figure 3.25.
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Figure 3.25: Block diagram of Analog Board

3.5.2.1 Digital Isolator

The digital isolator is used to isolate the power supply between the main processor board and the ana-
log board. Those power supply must be separated in order to reduce and avoid the noise propagation
from or to external devices. ADuM14xx digital isolator is chosen because it has very high switching

speed (up to 90 Mbps), low pulse width distortion (less than 2 ns) and provides four independent
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isolation channels in a variety of channel configurations and data rates. Figure 3.26 shows the block
diagram of ADuM14xx.

Figure 3.26: Block diagram of ADuM14xx

3.5.2.2 Filter and Amplifier

The filter and amplifier circuit are respectively used to convert the PWM signal into analog signal and
to amplify the analog signal. The filter is designed specifically to satisfy the PWM characteristics.
In a typical PWM signal, the base frequency is fixed but the pulse width is a variable. The produced
analog signal is directly proportional to the duty cycle (D) of the PWM signal. A typical PWM signal
is shown in Figure 3.27.

PWM b
Signal I—=

Figure 3.27: A typical PWM signal

A Fourier analysis shows that there is a strong peak at frequency fpy s and other strongs
harmonics at frequency n fpyypz as shown in Figure 3.28, where n is an integer and fpyy s is the base
frequency of PWM signal. These peaks are unwanted noise and should be eliminated. To eliminate
these noise a low-pass filter with frequency cut off (f.) lower than fpy ), must be employed.

In this design, the PWM base frequency (fpw ar) is fix determined by loading 4096 at regis-
ter comparator B in Figure 3.24. With 100 MHz source clock, it yields 40.96 us periode of PWM
(Tpwar) or equal to 25 KHz frequency of PWM (fpywar). Therefore the low-pass filter must have
frequency cut off less than 25 KHz. The lower f. the better analog signal is yielded. However, one
must be considered that a sinusoidal waveform will be generated at frequency 200 Hz. Hence the f,
of the low-pass filter must be selected so that it is less than 25 KHz but greater than 200 Hz. In this
case, f. =232.27 Hz is chosen. This low-pass filter is realized by using 2-nd order passive filter with
Ry= 10 KOhm, Ro=100 KOhm, C;=0.1 uF and C= 4700 pF as shown in Figure 3.29 and equation
in (3.84).
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The analog signal produced by low-pass filter will be used to drive the servo valve of the

Figure 3.29: The circuit of filter and amplifier

robotic arm. Since the PWM signal level are -2.5 V and +2.5 V, the output of analog signal needs
to be amplified so that it is powerful enough to drive the servo valve. In this design, analog signal
is amplified 4.6 times by choosing R3=36 KOhm and R4,=10 KOhm as computed in equation (3.85),
where V; and V, are the input and the output signal respectively. Therefore the analog signal output
span becomes -11.5 V'to +11.5 V.

R3 36

Vo=(1+=2)Vi=(1+ =)V =4.6V; 3.85
L+ pVi= (14 T5) (3.85)

3.5.2.3 Analog to Digital Converter

The analog to digital converter is used to convert the analog signal obtained by measuring the po-

tentiometer voltage into digital value. The potentiometer is attached in every joint of robotic arm to
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represent the angle. In other word, the ADC is used to convert the measured angle of joint into digital

value.

Figure 3.30: The circuit of analog to digital converter

A single channel ADC (MCP3201) is chosen in this design because its features satisfy the sys-
tem requirement. Moreover, it has very low price compare to other multi-channels ADCs. MCP3201

has 12-bit resolution, 100 KSPS maximum sampling rate, SPI protocol compatible and single supply

operation up to +5 V. The ADC circuit is shown in Figure 3.30.
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Figure 3.31: The active filter frequency response

A 2-nd order active low-pass filter with unity gain is placed between measured potentiometer
voltage and the ADC. This filter is used to filter high frequency noise from external and functioned
as a buffer to isolate the input load. Because the measured signal is changed very slow, frequency cut
off f.=1592.4 Hz is a good value to be selected. This filter is realized by choosing R1=Rs= 1 KOhm
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and C1=C%=0.1 uF as computed in (3.86).

1 1
C 2rVRiRyC1Cy 271 1%0.1%0.1%10-12
The frequency response and the phase response of the designed filter are shown in Figure 3.31.

fe =1592.4 Hz (3.86)

This data is obtained by giving some sinusoidal waveforms wit at point A and then measure the output

at point B

3.5.3 Digital I/O Board

The digital I/O part is used to interface the digital input-output signal between main processor and
external devices. Solid state relays LH150 and opto-couplers CNY 173 are applied as output and
input interfaces respectively as shown in Figure 3.32. This interface solves the DC level mismatch

problem (main processor voltage is 0-3.3 V; whereas those of 1/Os are either 0-12V or 0-24V) and
noisy environment problem.
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Figure 3.32: Block diagram of Digital I/O

3.5.4 Power Supply Board

Several DC voltages are required to supply power for main processor board, analog board and digital
I/O board. In order to eliminate the noise interference among those board, the DC voltages should
be isolated from each others. In this design, a multi secondary side transformer was constructed to
produce eight constant voltage supplies with four isolately ground as shown in Fig. 3.33. Furthermore,
the current requirement for all supplies are less than 0.5 A, that linear regulation therefore seems to
be a good selection for this purpose. By isolating the power supply, it will reduce the noise and

interference from both external noisy factory environment and among internal parts.



Figure 3.33: Power supply unit

3.6 Software
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This section concern with the software of the controller system. Physically, the hardware provides 3

buttons as input interface used to command the controller system software: 2 general buttons and 1

emergency button as shown in Figure 5.14.
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Figure 3.34: The state machine diagram of the software

3.6.1 Main Menu

'\back /) A1 7~ eTrajestory )
3 ( Save to YL Filg

Figure 3.34 shows the state machine diagram of the software. The main software consist of two

main states: standalone mode and PC mode. At the main menu state, the state when the controller

system just ran, some peripheral initializations are done. Initializations are required to set how each

peripheral works. UART initializes the serial communication between controller system and PC such
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as port, baudrate, stop bit and so on. SPI initializes the communication between controller system
and ADC. PWM initializes the duty cycle and the base frequency of PWMs. I/0 initializes general
input and output pins. Controller initializes the PID controllers parameter in their initial value. LCD
initializes the LCD appearance. Interrupt initializes the interrupt service requests.

Having finished the initialization, the software come to a continuous-looping. The looping
will never end unless one of command buttons is pressed. Pressing SD button brings the state to
standalone mode. Likewise, pressing PC button brings the state to PC mode. Conversely, pressing

back button will back its state to the main menu.
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Figure 3.35: Flowchart diagram of software main menu

3.6.2 Standalone Mode State

Figure 3.36 shows the flowchart diagram of standalone mode state. A second after standalone mode
is chosen then the system will check the existence of the trajectory file. If there is no trajectory file
available in the Flash ROM then it shows an empty message on LCD display then goes to main menu
state. Otherwise, it goes to a continuous looping until either start button or back button is pressed.
Pressing start button brings its state to start whereas pressing back button brings its state to the main

nienu.
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Figure 3.36: Flowchart diagram of standalone mode

3.6.3 Run State

In run state, the trajectory file will be loaded from the Flash ROM into main memory of the system.
Then the robot will be driven so that it moves following the pattern stored in the trajectory file.

Pressing stop button brings its state to stop whereas pressing pause button brings its state to pause.
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Figure 3.37: Flowchart diagram of run state

3.6.4 Pause State

When pause button is pressed, controller system holds the present position and waits until the next

command is given. Pressing continue button lets the robot continuing its motion and brings its state
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back to run state whereas pressing back button brings it to standalone mode state.
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Figure 3.38: Flowchart diagram of pause state

3.6.5 Stop State

Stop state is similar with pause state. If stop button is pressed, controller system holds the present
position. While the present position is hold, however, its trajectory sequence is resetted to the initial
position of the trajectory file. Then it waits until the next command is given. If restart button is

pressed, it goes to run state again. If back button is pressed, it backs to standalone mode state.
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Figure 3.39: Flowchart diagram of stop state



3.6.6 PC Mode State
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Figure 3.40: Flowchart diagram of PC mode state
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When PC Mode is chosen, controller system will activate the UART communication channel

by enabling UART interrupt. The controller system can communicate with PC, either receiving com-

mand from PC or transmitting data to PC, using UART protocol. During PC mode, all of robotic

operations are controlled through PC. When a certain command is received, its state goes to corre-

sponding state as shown in Figure 3.34. Every command is known by a unique identity number called

ID command. If there is no.command received and back button is pressed then it brings the state back

to the main menu.

3.6.7 Switch Pump State

This state is done when a command with ID=22 is received. After the a byte command is received

then it waits to receive the next byte for determining the next instruction. If the next received byte

is ’1° then controller system switch the pump ON. Conversely, the controller switch the pump OFF
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when it receives 0’ as the next received byte.

Figure 3.41: Flowchart diagram of switch pump state

3.6.8 Switch Valve State

This is a similar state with switch pump. The state comes to swifch valve state when a command
with ID=33 is received. The next received byte determines the next instruction, either switch on the
oil valve or switch off the oil valve. The next received byte = *1° means switch the oil valve ON,

otherwise switch the oil valve OFF.

Figure 3.42: Flowchart diagram of switch valve state

3.6.9 Switch Control State

The same way as switch pump and switch valve is also used in switch control state. The state comes
to switch control when a command with ID=44 is received. The next received byte = ’1’ means the

controller status is ON, otherwise is OFF.
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Figure 3.43: Flowchart diagram of switch control state

3.6.10 Playback State

If a command with ID=47 is received then it goes to playback state. Playback means the controller
system drives the robot moving with certain pattern automatically. The second received byte deter-
mines the playback status. If the second received byte is ’1’ then playback status is ON, otherwise is
OFF. When the playback status is ON, the controller system drives the robot following a sequence of

data represents its position from the trajectory file.

Figure 3.44: Flowchart diagram of playback state

3.6.11 Update Controller State

After a corresponding ID command of update controller is received, then series of data are received
following the ID command. These series of data represent the coefficient of controller parameters
R(z), S(z) and T'(z) as shown in (3.71), (3.72) and (3.83). These data is begun by 2 bytes represents
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the coefficient of Ry, followed by 2 bytes represents the coefficient of R; and so on up to 75 as shown

in flowchart diagram 3.45.

Figure 3.45: Flowchart diagram of update controller state

3.6.12 Get Single Reference State

Figure 3.46: Flowchart diagram of get single reference state

The get single reference state is begun by receiving a byte of corresponding ID command then
followed by 12 bytes data and ended by a byte of closing ID. These 12 bytes data divides into 6
parts which every part (2 bytes data) represents the reference value of angle/position in every axis of
robotic arm. A closing ID is required to guarantee that these sequence of data are received properly.
When the closing ID does not received correctly then the received data will never used to update the

reference value.
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3.6.13 Save to Flash State

Figure 3.47: Flowchart diagram of save to flash

Save to flash means a present trajectory file used by the controller system will be stored in the
Flash ROM. Storing the trajectory file into Flash ROM enables the standalone mode menu because the
controller system can load this trajectory file anytime without connected to a PC. As shown in Figure
3.47, when a command ID of save to flash is received then it does a looping to copy the trajectory

data occupies the volatile memory at certain address to the Flash ROM of the controller system.

3.6.14 Identification State

Figure 3.48: Flowchart diagram of identification state
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In identification state, two bytes of data are received firstly. The first byte is a corresponding
ID command of identification and the second command determines the identification status. If the
second byte is ’0’ then identification status is OFF, otherwise is ON. When the identification status
is ON, 5 bytes of data are received following the previous command. These data consist of 3 parts:
1 byte to define the desired signal waveform, 2 bytes represents the desired period of signal and last
2 bytes represents the desired amplitude of signal that is used as input signal in system identification

process.

3.6.15 Get Trajectory File State

Figure 3.49: Flowchart diagram of get trajectory file state

Get trajectory file state consists of multiple routines of get single reference and some additional
routines as shown in flowchart diagram 3.49. Firstly, a byte ID command is received then followed
by 2 bytes data represents the number of data rows that will be received later. Every row of received
data composed of 12 bytes data represents the reference value of angle/position and 1 byte of closing

ID as used in get single reference state.

3.6.16 Interrupt Routine

There are three available interrupts provided by the software: emergency interrupt, timer interrupt

and UART interrupt.

o Emergency interrupt handles the emergency condition by pressing the emergency button. When
the emergency button is pressed, the controller system forces to switch the servo valve and the
oil valve OFF, re-initializes their peripherals and back to the main menu state. Figure 3.50

shows the flowchart diagram of emergency interrupt.
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Figure 3.50: Flowchart diagram of interrupt timer routine

o Timer interrupt generates a certain interval time (in this case 10 ms) that becomes the controller
sampling rate. Every single sampling rate, a timer interrupt routine will be performed. This
routine covers updating ADC value, getting current reference value, computing PID algorithm
and generating signal for system identification. When the controller status is ON, the system
generates control signal using PID algorithm and send it to DAC module for driving the robotic
arm. The same way is treated to the identification status. When the identification status is ON,
the system generates certain waveform based on its command and send the measured data to
PC. In order to avoid an interleaving it must be guaranteed that this routine will be accomplished
before the coming timer interrupt is occurred. Figure 3.51 shows the flowchart diagram of timer

interrupt routine.

Figure 3.51: Flowchart diagram of timer interrupt routine

o UART interrupt handles a command that is sent from PC. This interrupt will be enabled only
when PC mode is selected. There are 9 commands known by the controller system: switch

control, switch pump, switch valve, get single reference, get trajectory file, playback, update
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controller, save to flash and identification. Each command has unique command code to dif-
ferentiate each other. For example command for getting single reference has command code =
11, switch pump has command code = 22 and so on. Each command has a specific routine that

will be executed immediately after the command is received.
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CHAPTER IV

GUI USER APPLICATION SOFTWARE

This chapter concern with GUI user application software as an interface between the operator (hu-
man) and the controller system. This software is developed by using Delphi Integrated Development
Equipment program. Basically, it has five main menus: Controller System, Identification System, Tra-
Jjectory Generator, Teaching Mode and Simulation. The state machine diagram of the main menu and

its screenshot display are shown in Figure 4.1 and Figure 4.2 respectively.
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Figure 4.1: The state machine diagram of main menu
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Clicking one of five available menus above brings the state to the corresponding menu state and
shows a new window panel. Then, closing the menu window panel will back its state to the main menu
state. Particularly for the windows panel Controller System, Teaching Mode and Trajectory Generator
respectively, they have a command to bring its state to Teaching Mode and Simulation state directly.
Subsection 4.1 to 4.5 describe the detail of each those menu. Complete flowchart diagrams for each

state in this state machine diagram are described in appendix.

4.1 Controller System

Controller system controls entire behavior of the controller system: how to operate the robot both
manually and automatically, how to setup the controller parameter and so on. This menu has 3 tab
panels: Controller, Setup Controller and Data Record. The state machine diagram of this menu is

shown in Figure 4.3 whereas their screenshot displays are shown in Figure 4.4, 4.5 and 4.6.
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Figure 4.3: The state machine diagram of controller system menu

4.1.1 Controller

o Communication Setting sets the serial UART communication parameters such as port, baudrate

and open-close communication status.

e Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on only
when the hydraulic pump has been turned on already. When the hydraulic pump is turned off,

the oil valve will be turned off as well automatically.

e PID Control controls the PID controller status. When PID controller status is ON, the robotic
arm moves automatically following the given position either single position or sequence of

positions as in trajectory file that has been sent to the controller system previously.
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Figure 4.4: Controller tab

Select Mode provides two operation modes: Teaching Mode and Playback Mode. Teaching
mode means the robot is operated under an human operator control. The trajectory yielded
during teaching mode can be stored as a trajectory file and later can be loaded and played back.
Playback mode means the robot operates automatically doing the trajectory file that has been

stored in the controller system previously.

Reference are the references value of the PID controller system. When the playback status is
ON, these reference values will change following the trajectory file. Conversely, these one can

be set manually and can be sent to the controller system by pressing Send Reference button.

Potentiometer Measurement is the measured values that represent the angle in every joint of

robotic arm.
Movement Control control the relative movement of the robotic arm in Cartesian coordinate.

Matrix Transformation represents the position and orientation of the end-point of robotic arm.

Setup Controller

2-DOF PID Controller Parameters-adjusts.the controller parameters. R, .S-and T are the poli-

nomials of controller with structure as shown in Figure 2.4 (b).

1-DOF PID Controller Parameters adjusts the controller parameters with structure as shown in
Figure 2.4 (a). Send PID Parameters button is used to send the controller parameter at joint as

in selected axis.

Fuzzy Controller Membership adjusts the membership function of parameter input error, delta

error and output if fuzzy algorithm is chosen. Generate Membership button and Send Member-
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ship button are used to generate the membership function and send that membership function

to the controller system respectively.

4.1.3 Data Record
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Figure 4.6: Data record menu

Data record shows the recorded data during the robot operation. These data are stored in a

Microsoft Excel file format. Pressing Refresh button will clear the recorded data and save button will

save the recorded data into PC storage.
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4.2 Identification System

Identification system is provided to support the data collection during experiment. The collected data
is composed of data input and data output of the servo valve in every joint of robotic arm. In advance,
these data are processed to yield the estimate model of the servo valve of robot. The state machine

diagram of the identification system menu is shown in Figure 4.7.
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Figure 4.7: The state machine diagram of identification system menu

4.2.1 Control

This menu controls the data collection process: when the data is began to be collected, when the
data is stopped to be collected, what kind of input data is applied and so on. Figure 4.8 shows the

screenshot of control submenu.

o Command is a panel to control the identification status. Start button and Stop button are used

to begin and end the data collection process.

e Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on
only when the hydraulic pump has been turned on. However the oil valve will be turned off

automatically when the hydraulic pump is turned off.

o Communication sets the serial UART communication parameters such as port, baudrate and

open-close communication status.
o Potentiometer shows the measured values represent the angle in every joint of robotic arm.

o [nput Signal gives choices; what kind of input signal will be employed in the identification

system. There are three types of input signal: Square, Triangle and Pseudo Random Binary Se-
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Figure 4.8: Control in Identification System

quence (PRBS). For Square and Triangle, its amplitude and period of the signal can be adjusted
manually.

4.2.2 Data Record

Data record shows the collected data during the system identification process. These data will be

stored in PC storage as a Microsoft Excel file format by pressing save button.
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Figure 4.9: The state machine diagram of teaching mode menu
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4.3 Teaching Mode

This menu provides a panel to control the robot in feaching mode. In this mode, the robot is fully
controlled by an human operator. The robot position can be specified either in Cartesian or Polar
coordinate. During teaching process, the positions of the robot can be stored as a trajectory file. This
trajectory file then can be loaded and executed in playback mode. The state machine diagram and the

sreenshot display of feaching mode menu are shown in Figure 4.9 and Figure 4.10 respectively.
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Figure 4.10: Teaching mode menu

o Movement Control control the relative movement of the robotic arm in Cartesian coordinate.
The relative movement distance and the direction are respectively determined by the movement

resolution and the direction button.

o Communication Setup sets the serial UART communication parameters such as port, baudrate

and open-close communication status.

o Command is a panel to control the robot moving to the specified position. Button Go C and Go
P respectively forces the robot moves to a specified point in Cartesian and in Polar coordinate.

Pressing confirm button will save current position to the trajectory file.

e Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on only
when the hydraulic pump has been turned on already. When the hydraulic pump is turned off,

the oil valve will be turned off as well automatically.
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e PID Control controls the PID controller status. When PID controller status is ON, the robotic
arm moves automatically following the given position either single position or sequence of

positions as in trajectory file that has been sent to the controller system previously.

e Trajectory Control modifies current trajectory file during feaching mode such as loading tra-

jectory file, inserting and deleting a data.

4.4 Trajectory Generator

This panel provides an interface to do everything related to the trajectory file. Creating a new tra-
jectory file, loading trajectory file, editing trajectory file, sending trajectory file and saving trajectory
file are some available commands in this menu. Figure 4.11 shows the state machine diagram of

trajectory generator menu whereas Figure 4.12 shows its screenshot display.
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Figure 4.11: The state machine of trajectory generator menu

Set Initial Position specifies the initial position of the robotic arm end-point in Cartesian coor-

dinate.

Add New Position adds a new position in trajectory file.

Insert Row inserts a new data in selected row of trajectory file.

Delete Row deletes a data in selected row of trajectory file.

Load Trajectory opens the trajectory file that has been stored in the PC storage previously.

Generate Trajectory converts the sequences of position in Cartesian coordinate into polar coor-

dinate (angle in every joint) and converts the polar coordinate into digital value.
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Figure 4.12: Trajectory generator

e Refresh clears the current trajectory data.
e Simulate calls the simulation panel.

o Send Trajectory sends the trajectory file to the controller system. This trajectory file will be

stored at the RAM of controller system.

e Save to Flash ROM saves the trajectory file that is stored in RAM into Flash ROM of the
controller system. When a trajectory file has been sent to the RAM and its trajectory has
been run well then it can be stored into flash ROM to keep it reside in the controller system

permanently.

e Save stores current trajectory file to the PC storage as a Microsoft Excel file format.

4.5 Simulation

This menu acts as a tool to simulate the trajectory file before loaded in the real controller system. It
is highly recommended to do a simulation by this tool to guarantee that the trajectory file will drive
the robotic arm following the desired pattern properly. Figure 4.13 shows the state machine diagram

of simulation menu whereas Figure 4.14 shows its screenshot display.
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Figure 4.13: The state machine diagram of simulation menu

e Command is a panel to control the simulation status. Run button and Stop button are used

to begin and stop the simulation respectively. Run button only available when the simulated
trajectory file has been loaded.

o Simulation Speed is used to tune the speed of robotic arm motion in simulation.

e Camera View varies the way of view in many styles. Three basic views: top view, front view and

side view are available. It also can be tuned manually by adjusting the value in each parameters
such as azimuth, elevation and distance.
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Figure 4.14: Inverse kinematics simulation with IDE Delphi



CHAPTER V

TEST AND EXPERIMENT RESULTS

5.1 End-point Position Calibration

This experiment is purposed to calibrate the end-point position of the robotic arm by comparing a
targeted position and the real one obtained from measurement. Because a specific tool to measure the

real position is not available then the real position is measured by the method described below.
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Figure 5.1: End-point measurement method

Suppose a base point O (0,0,0) and three auxiliary points with'known coordinate are given:
point A (a,0,0), point B (0,b,0) and point C' (0,0,c) as shown in Figure 5.1. Any point P with
coordinate (X,y,z) can be known by measuring the distance between point P and each point of O, A,
B and C namely do, da, db and dc. There are four equations that represent each of those distance as
in (5.1) to (5.4).

22 + % + 2% = do? (5.1

(x —a)® +y* + 2° = da® (5.2)



4 (y — b)? + 2% = db?

2+ % + (2 —¢)? = dc?

Az

AW =

By substituting equation (5.1) into equation (5.2), (5.3) and (5.4) it yields:

da? T dofF #0:

—2a

dv? — do? — b*

—2b

de? X dode 2

—2c
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5.3)

5.4

5.5)

(5.6)

5.7

Practically, we use O=[46 37 0]7, A=[268 37 0]", B=[46 — 37 0]%, and C=[46 37 49]7 in

this measurement. Therefore we have variables of a, b and ¢ are 222, —74 and 49 respectively. Using

equation (5.5), (5.6) and (5.7) we obtain the measured end-point position P by formula in (5.8). Table

5.1 shows the complete measurement results for this experiment.

X
P 00 ey (5.8)
Az
Table 5.1: End-point measurement results in cm unit
Target Point Measurement Measured Point Error

Tqg | Y4 | 24 do | da | db dc Trer Wian Zm, Gt Y z
180 | O | 170 | 220 | 220 | 185 | 193 | 182.11 0 169.14 | -2.11 0 0.85
180 | -60 | 170 | 238 | 218 | 206 | 213 | 182.39 | -61.62 | 169.47 | -2.39 | 1.62 | 0.52
180 | 60 | 170 | 218 | 238 | 183 | 190 | 182.72 | 61.62 | 167.71 | -2.72 | -1.62 | 2.28
190 | 0 | 170 | 226 | 226 | 192 | 188 | 192.43 0 169.52 | -2.43 0 0.47
190 | 0 | 150 | 212 | 212 | 180 | 171 | 192.36 0 152.5 | -2.36 0 -2.5
190 | O | 120 | 194 | 194 | 168 | 149 | 191.76 0 120.54 | -1.76 0 -0.54
190 | O 80 |'170 | 170 | 154 | 115 | 192.30 0 77.39 | -2.30 0 2.60
160 | O | 170 | 208 | 207 | 171 | 202 | 162.54 | -2.80 | 167.59 | -2.54 | 2.80 | 2.40
140 | 0| 170 | 197 | 197 | 157 | 214 | 141.26 0 165.77 | -1.26 0 1.01
1701 O | 170 | 213 213 | 176 | 197 | 171.77 0 171.36 | -1.77 0 -1.36
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5.2 Analog Board Tests

These experiments test whether the analog board has worked properly or not. The experiment setup

is shown in Figure 5.2.

DAC

PWM
Generator

= Filter + Amplifier -

Figure 5.2: The circuit for matching the ADC and DAC level

The first test is done by generating sinusoidal and sawtooth waveform independently. Microb-
laze is programmed to produce digital values represent the sinusoidal and sawtooth waveform. Those
signals then converted into analog signal by DAC part which is composed of PWM generator, filter
and amplifier circuit. Analog signals at point A are observed by oscilloscope. The results are shown
in Figure 5.3 and 5.4.
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Figure 5.3: Generating sinusoidal waveform
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Figure 5.4: Generating sawtooth waveform

75

The second test is done by looping back the signal that has been generated by DAC part into
ADC part. Both of DAC and ADC values are recorded by a PC and displayed in the screen. Since the
DAC level (-12 V to +12V) is unequal to the ADC level (OV to +5 V), it needs an adjustment to make
it works at proper operation point for each. Figure 5.2 is a simple voltage divider circuit that can be
used for this purpose. By choosing R;= 6.8 KOhm and Ry=5 KOhm it can adjust the DAC level (-12
V to +12V) to the lower level (-5 V to +5 V). The diode D1 is functioned to protect the negative level
so that it only has O V to +5 V level which is match with the ADC level. Figure 5.5 and 5.6 show the
test results. The red line is the DAC data whereas the blue line is the ADC data.
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Figure 5.5: ADC and DAC looping back test with sawtooth waveform
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Figure 5.6: ADC and DAC looping back test with triangle waveform

5.3 Inverse Kinematics Simulation

Figure 5.7 and Figure 4.14 show the simulation of inverse kinematics using Matlab and Delphi. Those
simulation demonstrate how the robotic arm move following a given trajectory pattern in Cartesian

coordinate.
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Figure 5.7: Inverse kinematics simulation with Matlab
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5.4 Playback Tests

In order to observe the controller performance, we also test the robotic operation at playback mode.
Firstly, a sequence of targeted positions in Cartesian coordinate is specified. In this experiment we
specify a sequence of points forming a square pattern By using trajectory generator menu, the cor-
responding trajectory file is then generated. After ¢ simulated by simulation tool, finally the
trajectory file is transferred to the controller system anZ)(s oller is operated based on the given
trajectory file. Figure 5.8 shows the experiment result. Th square represents the ideal trajec-

tory pattern whereas the blue-line ¢ square represen-tJthe real trajei‘;ory pattern.

Figure 5.8: Playback test result

5.5 Servo Valves Model

The servo valve in every axis is identified using Recursive Least Square (RLS) Algonthm Square
signals is given as the inputs and the outputs are recorded as shown in Figure 3.14. The estimate
model has structure as shown in (3.70). Complete estimated models of the six servo valves are shown
in Table 5.2.
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Table 5.2: Estimate Model of Servo Valves
Estimate Model

Axis A(z7h) B(z™h
1—1.4825271 4 0.4821272 | —0.00262~ — 0.01162 2
1—1.69722"1 4+0.6973272 | —0.0008z~" — 0.00362 2
1—1.715271 4-0.715272 —0.00112~1 — 0.026272
1—1.7023z="' +0.7023272 | —0.00032"" — 0.00392 2
1 —1.7339271 4 0.7339272 | =0.0006z % — 0.00432~2
1 —1.92672 ' +0.9268272 | —0.0004z= —0.00112~2

NN | B |W[IN| =

5.6 Controller Coefficient

The PID controller structure is described in Figure 2.4 (b). By solving (3.77) and (3.83), the controller
coeficients of R(z1), S(271) and T/(2~ 1) are obtained as shown in Table 5.3.

Table 5.3: Controller Coefficient

Axis Controller Coefficient

(2 ) [l — 178542784 0.735%; 72

1 | S(@F) JF—=6:833% 1 110 ' -0 1402
T(z"1) | —0.1127
R(z7Y | 1=1.201271 +0.2012 2

2 | S(z7Y) |6.243—14.6782~ 1 +8.36522
T(z71) | —0.072
R(z71) | 1—1.6984271 4+ 0.69842~2

3-8 (z=1) 1 121557 + 20.71152" "RG99 7~>
T(z71) | —0.1368
R(z7Y) | 1 —1.5041z"! 4 0.504122

4 | S(z7h) | —21.4533 + 35.3147271 — 14.2424, 2
T(z1) | —0.381
R(z=1) | 1—1.47827! +0.478272

5 [S(z71) | ~19.83714 33.1837271 —13.673122
T(z~) | —0.3265
R(z7') | 1—1.501z"! +0.50122

6 | S(z7!)|"—=69.3273+127:81782 1~ 58.978z 2
T(271) | —0.1492
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5.7 Controller Performance

The performance of PID controller at every axis is shown in Figure 5.9. Step input is employed to
observe the PID controller performance individually. Solid line curve is the response of PID controller
from simulation based on the estimate model obtained by identification whereas dotted line curve is
the measured response of PID controller from the experiment. Figure 5.10 shows the error curves,

that is the difference between measured values and reference values.
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5.8 Hardware Synthesis

Table 5.4 shows the synthesis report of the device utilization.

Table 5.4: Device utilization summary

Item Number Percentage
Number of Slices 3149 out of 3584 87
Number of Slice Flip Flops | 3670 out of 7168 51
Number of 4 input LUTSs 4283 out of 7168 59
Number of bonded I0Bs 35 out of 97 36
Number of BRAMs 8 out of 16 50
Number of MULT18X18s | 3 out of 16 18
Number of GCLKs 8 out of 8 100
Number of DCMs 2 out of 4 50

5.9 Demonstration Video

In order to show the experiment results on controlling the robotic arm clearly, demonstration videos

were taken. These videos are also shared to public at http://www.youtube.com/user/arumdapta98.

5.10 Hardware Assembly

Figure 5.12 to 5.14 show the developed hardwares to realize the controller system.

[P

"! S

Figure 5.12: The developed hardware of controller system based on FPGA



Figure 5.14: The assembled hardware
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 Discussion

This section discuss some experiment results both hardware and software as depicted in chapter 5.

6.1.1 Hardware

In this work, a 6-axis robotic arm controller is developed. Each axis has its own 2-DOF PID con-
troller which control each servo valve at every axis independently. A 32-bit RISC soft-core processor
(microblaze) with some peripherals and custom peripherals are constructed to realize those controller
on a FPGA chip. The device utilization summary of hardware synthesis for controller implementation
on Xilinx FPGA XC3S400 is shown in Table 5.4. From this table it looks that the developed hardware
spends 87% of total resources provided by Xilinx FPGA XC3S400. The two biggest procentage of
resource usage is allocated for custom peripheral and microblaze circuit which spend 21% and 19%
respectively. The 47% procentage left is allocated for other peripherals such as timer/counter, SPI,
UART, I/O etc. Custom peripheral is a dedicated 6 PWM generators and 6 SPI readers. This periph-
eral is designed to handle a specific job that is generating PWM signal and reading SPI data input.
Using this costum peripheral we can save much more resources compare to when we use general 6
timer/counter and 6 SPI peripheral to handle the same job. This can reduce resources usage from 96%
to only 21%.

The main clock of the controller system is driven by an external 25 MHz source clock. The mi-
croblaze processor clock, bus clock and most of peripheral clock use this 25 MHz source clock. Only
PWM generator peripheral which uses 100 MHz source clock. This clock is obtained by multiplying
the 25 MHz source clock 4 times through Digital Clock Manager. PWM generator needs faster clock
because the faster clock is used the better analog output is produced.

Analog Board is an external device which needs more attention on hardware readiness test
compare to other external devices such as I/O board and power supply board. Basically, analog board
test consist of two tests: DAC test and ADC test. The DAC test can be done by generating any signals
such as square, sawtooth, triangle or sinusoidal waveform then observe the analog output through
oscilloscope. Whereas the ADC test is done by providing certain analog signal then read and display
it on PC. Figure 5.3, 5.4, 5.5 and 5.6 results show that the analog board has work properly. It can
produce analog signal through DAC and read analog signal through ADC satisfically.

A specific test is also done to check the performance of low pass filter circuit. Figure 3.31
shows that the frequency response and phase response of the designed filter has satisfied response as

desired one in section 3.5.2.3.
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Finally an overall hardware test is conducted to ensure that all hardwares are ready to use. The
overall test and some partially tests above show that the designed hardwares are work well and ready
in use. Unfortunately, those hardware never have tried to control the robotic arm in real because
of the limited time on working schedule. However the 2-DOF PID controller design ever tried and
implemented on microcontroller at preliminary work. The result as shown in Figure 5.9 has proved
that the designed controller work properly even using microcontroller. Therefore we are sure that

those designed controller will work properly as well if it is implemented on the FPGA based.

6.1.2 Controller

An inverse kinematics simulation must be performed before loading and running the trajectory file
at the controller system. In this experiments, 3 kind of trajectory files are generated and simulated:
square pattern, triangle pattern, and zig-zag pattern. To generate this trajectory files, some points
must be defined previously in Cartesian coordinate by an operator. For example, points P;(160,-
50,180), P»(160,-50,130), P5(160,50,130) and P4(160,50,180) are determined as a via points to gen-
erate square trajectory pattern in cm unit length. Every 5 cm movement in any direction, the Cartesian
coordinate will be converted into Polar coordinate using closed-form inverse kinematics formula as
given in 3.44 to 3.57. An polar to digital conversion then is employed to convert the corresponding
Polar coordinate into digital value. Finally, the sequence of the digital value are stored in a Microsoft
Excel format namely trajectory file.

This simulation is required to guarantee that the trajectory file can drive the robotic arm move
following the desired pattern properly. By assuming that the controller performance is ideal, this
simulation provides a good enough testing tool represents the real motion of robotic arm. Chosen
trajectory file then can be loaded, ran and stored in the controller system safely. Figure 5.7 and 4.14
show an example of this simulation. It looks that desired trajectory file could drive the robotic arm
satisfically.

Having generated and simulated, the trajectory file is loaded into controller system. Now it is
the controller responsibility to drive the robot so that the angle in every axis following the sequence
values in the trajectory file. The performance of 2-DOF PID controller in each axis is shown in
Figure 5.9. Step input is employed to observe these performance individually and independently.
Solid line curve represents the response of the controller system from simulation which is simulated
by the model obtained from identification whereas dotted line curve represents the real response of
the controller system which is obtained from. From this figure it looks that the controller responses
both from simulation and from experiment resemble one another. It means that the estimate model of
the servo valves are closed enough to the real model.

Controller error, that is the difference between measured angle and the reference input in each
axis, is less than 6 (digital value) or less than 0.5° at steady state condition as shown in Figure 5.10.
End-point error is the difference between the targeted position and the measured position in Cartesian
coordinate. The measured end-point error is less than 3 cm as shown in Table 5.1. This error is

also proven by experiment result as shown in Figure 5.8. The error yielded by that experiment (the
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difference between the real square pattern at playback mode and the ideal one) is less than 1.5 cm.
This error can be said small enough when this error can be tolerated and acceptable such that the
painting target do not need rework.

As shown in Figure 5.9, the axis-2 requires much more time to reach steady state. Most axes
require 10 up to 30 sampling time to be stable. Only axis-2 that requires more than 100 sampling
time or equal with more than 1 second to achieve the steady state. From the experiments, axis-2 can
not be forced to reach the reference too fast. If this is done, it yields oscillation and it never be stable.
This problem is happened because the center of mass of the whole machine, i.e weight of the robot
is on this axis, hence the velocity of this axis is not directly proportional to the DC component of the
servo valve. PID controller will think that the weight is the disturbance of the system i.e that have not
formulated in the model. Moreover when the angle of the axis changes, the center of mass moves and
the force that counter weight changes too. It mean that the model may change dependent on the angle

at a particular time. Therefore we have to choose slower rise-time for this axis.

6.2 Conclusions

This work is conducted to develop an embedded system of 6-axis robotic arm controller. This means
that both hardware and software are designed here. The controller system itself is integrated and
embedded in a single chip. This is usually called a system on chip. Xilinx FPGA XC3S5400 is chosen
to implement that controller system because its features satisfy the requirement and its price is so
cheap.

The angle of robotic arm in every axis is measured from the potentiometer attached in every
joint. It then be converted from analog value to digital value by ADC part. This measured angle in
digital value will be compared with reference values. The difference between measured value and the
reference value, namely error;, is proceeded by PID-algorithm to produce control signal. This control
signal is then used to drive the servo valve of robotic arm such that the angle in every joint following
its reference value.

To design proper PID controller, the servo valves were identified. The estimate model of servo
valves and the PID controller are simulated using matlab tool. After it satisfied the desired speci-
fication, the controller is then implemented on microcontroller. Finally, the microcontroller will be
replaced by FPGA. Experiment results show that the designed controller has worked very well.

A set of formulas were developed to solve the inverse kinematics problem. With some con-
straints such as by keeping the end-point orientation constant, the inverse kinematics problem can be
solved with closed-form method. This method has been worked correctly as shown in the simulation
and the experiment results.

In this work, a GUI user application software is developed as well. This GUI application soft-
ware can be used to setup and control the robotic arm controller system interactively. Through this
GUI application software, an operator can command the robot easily. Some interactive menus are de-
signed as easy as possible to use. Moreover, with its user-friendliness it can increase the productivity

because the operator can modify and adjust anything regarding the robotic arm operation easily and
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quickly.

6.3 Suggestion for future work

In this work, we have not considered about the disturbance effect against the servo valves model. As
mentioned in the discussion session, particularly in axis-2, its models may change depend on the end-
point position. When its model change too much, it makes the PID controller unstable and oscillate.
Therefore other identification methods which include the disturbance variable could be considered in
the future future work to get better estimate model and to get better controller performance. Adap-
tive controllers such as MRAC or repetitive-path optimization are other points that can be further

considered.
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APPENDIX

Flowchart Diagram of GUI User Application Software

1. Communication Setting

Com Setting

Y

Port = ComboBoxPort
Baudrate = ComboBoxBaudrate

Connect

Button? ComPort Connection = True —

, ¥ -
Dfsconneck__. ComPort Connection = False —
Button?

Close

Button? Form Control = Close |




2. Movement Control

Movement Control

R=relative movement
P=InverseKinematics(Th)
P=P+(0,0,R)
Th=ForwardKinematics(P)

R=relative movement
P=InverseKinematics(Th)
P=P-(0,0,R)
Th=ForwardKinematics(P)

R=relative movement
P=InverseKinematics(Th)
P=P+(0,R,0)
Th=ForwardKinematics(P)

R=refative movement
P=InverseKinematics(Th)
P=P-(0,R,0)
Th=ForwardKinematics(P)

R=relative movement
P=InverseKinematics(Th)
P=P-(R,0,0)
Th=ForwardKinematics(P)

R=refative movement
P=InverseKinematics(Th)
P=P+(R,0,0)
Th=ForwardKinematics(P)
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3. Command in System Identification

Command
h=header ID
WriteComPort(h)
X h=header Start
WriteComPort(h)
Start h=header signal
Button? WriteComPort(h)
h=Period
WriteComPort(h)
N h=Amplitude
WriteComPort(h)
h=header ID
Stop WriteComPort(h)
Button? h=header Stop
WriteComPort(h)
N
Save Save collected data
Button? in the PC storage
N

For r=1;last row;r++
{Delete Position(r)}
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4. Command in Teaching Mode

Command

r=current row
Polar(r)=convert Position(r)
Go to Polar(r)

r=current row
Position(r)=convert Polar(r)
Go to Polar(r)

row=current row
Add position(row)

5. Data Record

Data Record

Refresh
Button?

For r=1;last row;r++

{Delete Position(r)}

Save the collected data

In the PC storage
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6. Input Signal

Input Signal

Period = SpinEditPeriod
Amplitude = SpinEditAmplitude

Square

Button? header signal=square ID

Triangle

Button? header signal=triangle 1D

PRBS

Button? header signal=PRBS ID

7. Mode Selection

Mode Selection

Y

h=header playback

Playback WriteComPort(h)
Button? h=header ON/OFF
WriteComPort(h)

Go to Teaching

tons Mode State

Button?
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8. PID Control

PID Control

Controller
Button?

h=header PID
WriteComPort(h)
h=header ON/OFF
WriteComPort(h)

Send Reference
Button?

h=header send ref
WriteComPort(h)
For i=1;6;j++
{Write ComPort(ref[i])}

9. Power Control

Power Control

Switch Pump
Button?

h=header Pump

WhiteComPort(h)
h=header ON/OFF

WriteComPort(h)

Switch Valve
Button?

h=header Valve

WriteComPort(h)
h=header ON/OFF

WriteComPort(h)
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10. Setup Controller

Setup Controller
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11. Trajectory Control

Trajectory Control

Open a selected
irajectory file

row = selected row
For r=last row;row;r--

| {Position(r+1)=Pasition(r)

Position(r) = New Position}

Row=selected row
For r=row;last row-1;r++
{Position(r)=Position(r+1)
Delete Position(r+1)}

row=current row+1
Go to Position{row)

row=current row-1
Go to Position{row)

For r=1;last row;r++
{Delete Position(r)}

Save trajectory file
in the PC storage
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12. Trajectory Generator

‘ Trajectory Generator

Button?

N
Save
Button?

N

Save

to Flash

row=1
Position(row) = New Position

row=last row+1
Position{row)=New Position

row = selected row
For r=last row;row;r--
{Position(r+1)=Position(r)
Position(r) = New Position}

Row=selected row
For r=row;last row-1;r++
{Position(r)=Position(r+1)
Delete Position(r+1)}

For r=1;last row;r++
{Delete Position(r)}

Open a selected
trajectory file

For r=1;last row;r++
{Polar(r)=convert Position(r)}

For r=1,last row;r++
{Send Reference(r)}

Save trajectory file
in the PC storage

h=header save to flash
WriteComPort(h)
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13. Simulation Speed
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