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CHAPTER I

INTRODUCTION

In the theory of Riemann integration, a real-valued function f defined on [a, b]

is Riemann integrable [1] if there exists A ∈ R such that for each ε > 0, there is

a constant δ > 0 such that

|
n∑
i=1

f(ti)(xi − xi−1)− A| < ε,

for any partition P = {([xi−1, xi], ti) | i = 1, 2, . . . , n} of [a, b] with ti ∈ [xi−1, xi]

and xi − xi−1 < δ for 1 ≤ i ≤ n.

It is noted that if such a real number A exists, it is unique. We usually denote

A by
∫ b
a
f , and we say that f is Riemann integrable on [a, b] with the integral∫ b

a
f .

It is well known that the idea of Riemann integration is intuitive and sim-

ple, but the defects in the Riemann integral are several. The most serious one is

that the class of Riemann integrable functions is too small. That is many simple

functions are not Riemann integrable. For example, the Dirichlet function which

assigns the value 1 for rationals in [0, 1] and 0 elsewhere in [0, 1] is not Riemann in-

tegrable. Even if Lebesgue integration which was developed in the beginning of the

twentieth century can be applied to a wider class of functions and its convergence

properties is superior to the Riemann integral, the class of Lebesgue integrable

functions is still not large enough and the computation is rather sophisticated. In

fact, we desire not only to gain an integral that the class of integrable functions is

large but also to get an integral in which every derivative is integrable that is not
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true for Lebesgue integral. For instance, the function f : [0, 1] → R defined by

f(t) = t2 cos( π
t2

) for t 6= 0 and f(0) = 0 is differentiable on [0, 1] but not Lebesgue

integrable. We will see later for a more detail in example 2.21.

Lately a new integration, Henstock integration or Gauge integration, was in-

troduced by Jaroslav Kurzweil and Ralph Henstock in the year 1957. The idea of

the Henstock integral is a tiny variation of the definition of the classical Riemann

integral and no measure theory is required, the Henstock integral has corrected

the defects in the classical Riemann theory and both simplifies and extends the

Lebesgue theory of integration. Moreover, all derivatives are (Henstock) inte-

grable.

In 1992, Sergio S. Cao [3] generalized the definition of the Henstock integral for

real-valued functions to functions taking values in Banach spaces and investigated

some of its properties. Six years later, J.S. Lim and his colleagues [9] extended

the idea of the Henstock integral to the Henstock-Stieltjes integral for real-valued

functions. In 1999, Jean-Christophe Feauveau [4] developed the properties of an

integral (the generalized Henstock integral) for Banach-valued functions including

the theory of convergence; Monotone Convergence Theorem (MCT) and Domi-

nated Convergence Theorem (DCT), that S.S. Cao and J.S. Lim did not mention.

Also there are works studied on the Henstock integral, such as [2],[5],[8].

The work of J.C. Feauveau exposed an interesting view that: If a Banach-

valued function f defined on [a, b] is integrable then there exists a unique vector

A in the Banach space being the integral of f . The immediate question from

Feauveau is how can we define Henstock-Stieltjes integral for functions whose

values in Banach spaces. Unfortunately, the Stieltjes integral needs the idea of

the product of two elements in Banach space but we do not have the concept

of the product of vectors in abstract Banach space. However, in some function
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spaces, we can define the product.

The purpose of this research is to define Henstock-Stieltjes integral for Lp-

valued functions with respect to Lq-valued functions and investigate some theory

on it. Furthermore, this study extends and improves the work of Piyaporn Juhung

[7] that studied in the special case that p = q = 2.

This work is arranged to three chapters. Chapter I is an introduction. Chapter

II deals with the Henstock integration for real-valued functions that gives us the

idea of the integral in later chapter. The main work of our research is in Chapter

III.



CHAPTER II

PRELIMINARIES

2.1 Henstock Integral for Real-Valued Functions

In this section we summarize the Henstock integral for real-valued function.

We sum up the motivation of the integral in the first part and give some properties

in the second part. Lastly, we present some examples for clearing the idea of the

integral.

2.1.1 Introduction to the Henstock Integral

We now recall the definition of Henstock integration that was introduced by

J. Kurzweil, in 1957, and used in theory of ordinary differential equations. The

integral was discovered independently by R. Henstock who studied the major

convergence theorems (Monotone and Dominated Convergence Theorems) for the

integral. For texts containing expositions of the integral, we advise the readers to

see in [1], [2], [5], [8], and [11]. The definition of the Henstock integral is a tiny

difference of the definition of the Riemann integral but the effect of the variation

is deeply intricate. More precisely, the Henstock integral is more general than the

Lebesgue integral, namely, the class of Henstock integrable functions contains the

class of Lebesgue for the real-valued functions whose domains are closed interval in

R. Nevertheless, similar to the Lebesgue integral, the Henstock integral satisfies

the convergence properties and the Fundamental Theorem of Calculus (FTC)

holds in full generality.
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We commence the idea of the definition of the Henstock integral by focusing on

the FTC in that if f : [a, b]→ R is a function which has a derivative f ′ everywhere

in [a, b], then the desire from this statement is f ′ is integrable and∫ b

a

f ′ = f(b)− f(a). (2.1)

Unfortunately, the FTC for the Riemann integral requires the assumption that

the derivative f ′ is Riemann integrable while the Lebesgue integral requires the

boundedness of f ′ on [a, b]. To obtain a new integral bringing about the statement

(2.1), we consider the following helpful lemma called The Straddle Lemma.

Lemma 2.1. (The Straddle Lemma) Let f : [a, b]→ R be differentiable at

z ∈ [a, b]. Then for each ε > 0 there is a δ > 0 such that

|f(v)− f(u)− f ′(z)(v − u)| < ε(v − u)

whenever u ≤ z ≤ v and [u, v] ⊂ [a, b] ∩ (z − δ, z + δ).

Proof. Let ε > 0. Since f is differentiable at z ∈ [a, b], there is a δ > 0 such that

|f(x)− f(z)

x− z
− f ′(z)| < ε

for 0 < |x− z| < δ, x ∈ [a, b]. Let [u, v] ⊂ [a, b]∩ (z− δ, z + δ) and z ∈ [u, v]. The

conclusion of the lemma is complete in the case of z = u or z = v. Now, suppose

that u < z < v. Then

|f(v)− f(u)− f ′(z)(v − u)| ≤ |f(v)− f(z)− f ′(z)(v − z)|+ |f(z)− f(u)− f ′(z)(z − u)|

< ε(v − z) + ε(z − u) = ε(v − u).

The geometric explanation of the Straddle Lemma is that the slope of the

tangent line at (z, f(z)) can be approximated by the slope of the chord between

(u, f(u))and (v, f(v)).
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This lemma gives us a hint of how to proceed the FTC in the statement

(2.1). For the Henstock-Kurzweil integral, we are interested only in partitions

P = {x0, x1, . . . , xn} and the set of points {y1, y2, . . . , yn} such that

[xi−1, xi] ⊂ (yi − δ(yi), yi + δ(yi)),

where δ is a positive function on [a, b] resembling the condition of the Straddel

Lemma. Before we complete the FTC, we will give a formal definition of the

Henstock integral.

Definition 2.2. Let [a, b] be a nondegenerate interval in R. A gauge on [a, b]

is a positive function defined on [a, b]. For a partition P = {x0, x1, . . . , xn} or

P = {[xi−1, xi] | i = 1, 2, . . . , n} of [a, b] and a subset {t1, t2, . . . , tn} of [a, b] with

ti−1 ≤ ti for i = 1, 2, . . . , n, the set

D = {([xi−1, xi], ti) | i = 1, 2, . . . , n}

is called a tagged partition. If δ is a gauge on [a, b], a tagged partition D is said

to be a δ-fine partition if for each i = 1, 2, . . . , n,

ti − δ(ti) < xi−1 ≤ ti ≤ xi < ti + δ(ti).

The points t1, t2, . . . , tn are sometimes called tags of the tagged partition D. A

subpartition of [a, b] we mean a collection {Jj | j = 1, 2, . . . , s} of nonoverlapping

closed intervals in [a, b].

If δ is a gauge on [a, b], the collection {(Jj, tj) | j = 1, 2, . . . , s} consisting of

a subpartition {Jj | j = 1, 2, . . . , s} of [a, b] and a subset {t1, t2, . . . , tn} of [a, b]

with ti−1 ≤ ti for i = 1, 2, . . . , n is called a δ-fine subpartition of [a, b] if for all

j = 1, 2, . . . , s,

tj ∈ Jj ⊂ (tj − δ(tj), tj + δ(tj))
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Let f : [a, b]→ R, δ a gauge on [a, b] and D = {([xi−1, xi], ti) | i = 1, 2, . . . , n}

a δ-fine partition of [a, b]. The Riemann sum of f on [a, b] with respect to D is

defined to be

S(f,D) =
n∑
i=1

f(ti)(xi − xi−1).

Definition 2.3. Let f : [a, b]→ R. We say that f is Henstock integrable on [a, b]

if there exists a real number A with the property that for every ε > 0, there exists

a gauge δ on [a, b] such that for any δ-fine partition D = {([xi−1, xi], ti) | i =

1, 2, . . . , n} of [a, b], we have

|S(f,D)− A| < ε.

The number A in the definition is called the integral of f on [a, b] and is

denoted by
∫
[a,b]

f or
∫ b
a
f .

Using the lemma 2.1, we directly derive the FTC in the statement (2.1) called

the FTC part I for the Henstock integral.

Theorem 2.4. (The FTC :Part I) If f : [a, b] → R is a function which has a

derivative f ′ everywhere in [a, b], then f ′ is Henstock integrable and∫ b

a

f ′ = f(b)− f(a).

It is obvious that f is Henstock integrable on [a, b] implies f is Riemann

integrable on [a, b]. More precisely the Henstock integral is defined in the same way

of the Riemann integral as a limit except the δ-fineness of partition is measured

by the gauge δ instead of a positive constant. The next lemma guarantees the

existence of δ-fine partition of [a, b] for each gauge δ on [a, b]. It is known as The

Consin’s Lemma . For the proof of it, see in [1].

Lemma 2.5. (Cousin’s Lemma) [5] If δ is a gauge on a closed and bounded

interval [a, b] and [c, d] is any closed subinterval of [a, b], then there always exists

a δ-fine partition of [c, d].
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2.1.2 Basic Properties of the Integral

The aim of this section is to give some properties of the Henstock integration

that will be duplicated in later chapter.

Theorem 2.6. Let f : [a, b] → R. Then f is Henstock integrable on [a, b] if

and only if for each positive real number ε, there exists a gauge δ on [a, b] such

that for any δ-fine partitions D1 = {([xi−1, xi], ti) | i = 1, 2, . . . , n} and D2 =

{([x′i−1, x′i], t′i) | i = 1, 2, . . . ,m} of [a, b], we have

|S(f,D1)− S(f,D2)| < ε.

Theorem 2.7. Let f, f1, f2 : [a, b]→ R be Henstock integrable on [a, b]. Then,

(i) f1 + f2 is Henstock integrable on [a, b] with
∫ b
a
(f1 + f2) =

∫ b
a
f1 +

∫ b
a
f2.

(ii) For every λ ∈ R, λf is Henstock integrable on [a, b] with
∫ b
a
λf = λ

∫ b
a
f .

(iii) If f ≥ 0 on [a, b], then
∫ b
a
f ≥ 0.

(iv) If f1 ≥ f2 on [a, b], then
∫ b
a
f1 ≥

∫ b
a
f2.

We say that f is absolutely Henstock integrable on [a, b] if both f and |f |

are integrable on [a, b]. We will see later in example 2.21. that the absolute

integrability assumption is necessary for the next theorem.

Theorem 2.8. If f : [a, b]→ R is absolutely Henstock integrable on [a, b], then

|
∫ b

a

f | ≤
∫ b

a

|f |.

Theorem 2.9. Let f : [a, b]→ R and c ∈ [a, b]. Then f is Henstock integrable on

[a, b] if and only if its restriction to [a, c] and [c, b] are both Henstock integrable.

In this case, we have ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Theorem 2.10. If f : [a, b]→ R is Henstock integrable on [a, b] and [c, d] ⊂ [a, b],

then it is Henstock integrable on [c, d].
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The next theorem is known as The Saks-Henstock Lemma, it is fundamentally

important in proving many properties of the Henstock integral.

Theorem 2.11. (Saks-Henstock Lemma) Let f : [a, b] → R be Henstock in-

tegrable on [a, b]. Then for each ε > 0 let δ be a gauge on [a, b] such that if

D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} is a δ-fine partition of [a, b], then

|S(f,D)−
∫ b

a

f | < ε.

If D′ = {([xi, yi], ti) | i = 1, 2, . . . , n} is any δ-fine subpartition of [a, b], then

|
n∑
i=1

{f(ti)[yi − xi]−
∫ yi

xi

f}| = |S(f,D′)−
∫
⋃n
i=1[xi,yi]

f | < ε .

Theorem 2.12. (FTC: Part II) Let f : [a, b]→ R be Henstock integrable on [a, b]

and set F (x) =
∫ x
a
f for a ≤ x ≤ b. If f is continuous at x ∈ [a, b], then F is

differentable at x with F ′(x) = f(x).

Theorem 2.13. If f : [a, b] → R is continuous on [a, b], then f is Henstock

integrable on [a, b].

Theorem 2.14. [11] If f : [a, b] → R is Lebesgue integrable on [a, b], then f is

Henstock integrable on [a, b] and two integrals agree.

This implies that the class of Henstock integrable function is bigger than that

of Lebesgue. The example 2.21. displays the converse of this theorem is false.

Corollary 2.15. If f : [a, b] → R is Riemann integrable on [a, b], then f is

Henstock integrable on [a, b] and two integrals agree.

Theorem 2.16. (Integration by parts) [8] Let F,G, f, g : [a, b] → R. Suppose

that F and G are continuous and F ′ = f and G′ = g on [a, b]. Then Fg + fG is

Henstock integrable on [a, b] and∫ b

a

(Fg + fG) = F (b)G(b)− F (a)G(a).
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A sequence (fk) : [a, b]→ R is said to be increasing on [a, b] if fk(x) ≤ fk+1(x)

for all x ∈ [a, b], k ∈ N. It is said to be decreasing on [a, b] if fk(x) ≥ fk+1(x) for

all x ∈ [a, b], k ∈ N. A sequence is said to be monotone on [a, b] if it is either

increasing on [a, b] or decreasing on [a, b].

Theorem 2.17. (Monotone Convergence Theorem) Suppose that (fk) is a mono-

tone sequence of Henstock integrable functions on [a, b] converging pointwise to f

on [a, b]. Then f is Henstock integrable on [a, b] if and only if the sequence (
∫ b
a
fk)

is bounded on [a, b]. In this case,

lim
k→∞

∫ b

a

fk =

∫ b

a

f.

Theorem 2.18. (Dominated Convergence Theorem) Suppose (fk) is a sequence

of Henstock integrable functions on [a, b] converging pointwise to f on [a, b]. If we

have Henstock integrable functions g and h such that g ≤ f ≤ h for all k ∈ N,

then f is Henstock integrable and

lim
k→∞

∫ b

a

fk =

∫ b

a

f .

2.1.3 Some Examples

In this section, we give some examples of functions that are Henstock integrable

but not Riemann integrable. These examples lead us to see clearly the idea of the

integral.

Example 2.19. [5] Consider the function f(x) = 1√
x

for x ∈ (0, 1] and f(0) = 0.

Let ε > 0. Assume that ε < 3/4. Define a gauge δ on [0, 1] by

δ(x) =

 εx2 if 0 < x ≤ 1,

ε2 if x = 0.

Suppose that D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} is a δ-fine partition of [0, 1].

We now show that 0 must be the tag t1. Since D is a δ-fine partition of [0, 1],
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[0, x1] ⊂ (t1 − δ(t1), t1 + δ(t1)). This implies that t1 − δ(t1) < 0. If t1 > 0, then

δ(t1) = εt21, so that t1 − δ(t1) = t1 − εt21 > 0 which is a contradiction. Therefore

t1 must be 0. Now consider ([xi−1, xi], ti) ∈ D for i > 1. Since xi−1 > ti − εt2i ≥

ti − εti > ti/4,
√
ti(
√
ti +
√
xi−1)

2 > t2i ,

√
ti(
√
ti +
√
xi−1)

2 >
√
ti(
√
ti +

√
ti/4)2 =

9

4
ti
√
ti > ti

√
ti > t2i .

It follows that

|
2
√
ti − 2

√
xi−1

ti − xi−1
− 1√

ti
| = | 2√

ti +
√
xi−1

− 1√
ti
| =

√
ti −
√
xi−1√

ti(
√
ti +
√
xi−1)

=
ti − xi−1√

ti(
√
ti +
√
xi−1)2

<
εt2i
t2i

= ε.

Similarly, it can be shown that

|
2
√
xi − 2

√
ti

xi − ti
− 1√

ti
| < ε.

Combining these two inequalities yields

| 1√
ti

(xi − xi−1)− 2(
√
xi −

√
xi−1)| ≤ |

1√
ti

(xi − ti)− 2(
√
xi −

√
ti)|

+ | 1√
ti

(ti − xi−1)− 2(
√
ti −
√
xi−1)|

= |
2(
√
xi −

√
ti)

xi − ti
− 1√

ti
|(xi − ti)

+ |
2(
√
ti −
√
xi−1)

ti − xi−1
− 1√

ti
|(ti − xi−1)

< ε(xi − ti) + ε(ti − xi−1) = ε(xi − xi−1).

Hence,

|S(f,D)− 2| = |
n∑
i=1

f(ti)(xi − xi−1)−
n∑
i=1

(2
√
xi − 2

√
xi−1)|

≤ 2
√
x1 +

n∑
i=2

| 1√
ti

(xi − xi−1)− (2
√
xi − 2

√
xi−1)|

< 2ε+
n∑
i=2

ε(xi − xi−1) < 3ε.

This shows that f is Henstock integrable with
∫ 1

0
f = 2.
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The first example manifests the role of the gauge that can force one to take a

particular point as a tag. This can be useful when a particular point is a source

of difficulty.

Example 2.20. We consider the well known function called the Dirichlet function

that is defined on [0, 1] by

f(x) =

 1 if x is rational

0 if x is irrational.

Even if f is discontinuous at every point and it is not Riemann integrable, we will

now show that the function is Henstock integrable with the integral 0.

Let {rk : k ∈ N} be an enumeration of the rational numbers in [0, 1] and ε > 0.

We define the gauge

δ(t) =


ε
/
2k+1 if t = rk,

1 if t is irrational.

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be a δ-fine partition of [0, 1]. If the tag

ti ∈ [xi−1, xi] is irrational, then f(ti) = 0 and so f(ti)[xi − xi−1] = 0. If the tag

ti ∈ [xi−1, xi] is rational, then f(ti) = 1 and if ti = rk for some k ∈ N, then

f(ti)[xi − xi−1] = xi − xi−1 < 2δ(rk) = ε/2k. Since only rational tags make a

nonzero contribution to S(f,D), we have

|S(f,D)| <
∞∑
k=1

ε

2k
= ε.

This implies that the Dirichlet function is Henstock integrable with the integral

zero.

The computation in Example 2.20 illustrates the advantage of using gauges

with variable length. Even though the Dirichlet function is usually used to show

that a function which is not Riemann integrable may be Henstock integrable, the
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function is Lebesgue integrable, as well. The next example demonstrates that

a Henstock integrable function need not to be Lebesgue integrable. Moreover,

this example attest that the Henstock integral is not absolutely integrable that is

contrast to the situation for the Riemann and the Lebesgue integrals where the

absolute value of an integrable function is also integrable.

Example 2.21. [8] For 0 < t ≤ 1, let f(t) = t2 cos(π/t2) and f(0) = 0.

Then f is differentiable on [0, 1] with

f ′(t) =

 0 if t = 0

2t cos(π/t2) + 2π
t

sin(π/t2) if 0 < t ≤ 1.

By FTC part I, f ′ is Henstock integrable and
∫ 1

0
f ′ = f(1) − f(0) = −1. Next

we will show that f ′ is not absolutely integrable on [0, 1]. It is clear that f ′ is

continuous at every point of (0, 1]. Therefore |f ′| is integrable on every closed

subinterval in (0, 1]. Setting bk = 1/
√

2k and ak =
√

2/(4k + 1), we see that∫ bk
ak
f ′ = 1/2k. Since the intervals [ak, bk] are pairwise disjoint, if |f ′| is Henstock

integrable on [0, 1], we have

n∑
k=1

1

2k
≤

n∑
k=1

|
∫ bk

ak

f ′| ≤
∫ 1

0

|f ′|

for all n ∈ N. However, from the divergence of the harmonic series we infer that

|f ′| is not Henstock integrable on [0, 1]. In the same way, it is not difficult to see

that f ′ is not Lebesgue integrable. Recall that a function is Lebesque integrable

if and only if its absolute value is Lebesgue integrable.

2.2 Lp-Spaces

In this section, we recall the definition of Lp-space and give some important

properties used in the next chapter.
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2.2.1 Definitions

Let (X,M, µ) be any measure space and let 1 ≤ p <∞. We define a relation

on Lp := {f : X → C | f is a measurable function and
∫
X
|f |pdµ <∞} by f ∼ g

if and only if f = g almost everywhere. We can see that the relation above is an

equivalence relation. Next, we define

Lp(X,µ) = {[f ]∼ | f ∈ Lp}.

For f, g ∈ Lp(X,µ) and c ∈ C, define

[f ] + [g] = [f + g], c[f ] = [cf ] and ||[f ]||p = (
∫
X
|f |pdµ)1/p.

We define metric on Lp(X,µ) by

d([f ], [g]) = ||f − g||p.

One can show that Lp(X,µ) is a Banach space. Hence, Lp(X,µ) is the space

of all equivalence classes of functions in Lp where two functions are in the same

class if and only if they are equal almost everywhere, and we simply refer to [f ]

in Lp(X,µ) by f .

For the case p = ∞. A measurable function f on X satisfying ess supf :=

inf{M | |f | ≤M a.e.} <∞ is said to be essentially bounded and we define ||f ||∞

to be

||f ||∞ = ess supf.

We call ||f ||∞ the essential supremum of f . The space of all (equivalence

classes of) essentially bounded measurable functions on (X,µ) will be denoted by

L∞(X,µ). It is the same as the case 1 ≤ p < ∞, one can show that L∞(X,µ) is

a Banach space.

Definition 2.22. Let (fn) be a sequence in Lr and f ∈ Lr. We say that (fn)

converges to f in Lr if and only if for every ε > 0 there exists N ∈ N such that
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for any n ≥ N implies ||fn − f ||r < ε. We write lim
n→∞

fn = f [Lr] to denote that

(fn) converges to f in Lr.

2.2.2 Some Properties of Lp-Spaces

The following properties are the basic tools for the next chapter. Precisely,

the first two theorems is used to define a Henstock-Stieltjes integral for Lp-valued

functions and the last lemma 2.25 is used to fulfill the Monotone Convergence

Theorem.

Theorem 2.23. (Hölder’s inequality) Let p, q and r be positive real numbers

satisfying 1
p

+ 1
q

= 1
r
. If f ∈ Lp(X,µ) and g ∈ Lq(X,µ), then fg ∈ Lr(X,µ) and

||fg||r ≤ ||f ||p||g||q.

If we set r = 1 when p = 1 and q =∞, then the above conclusion is still true.

Theorem 2.24. (Minkowski’s inequality) Let 1 ≤ p ≤ ∞ and let f, g be non-

negative measurable functions on a measure space (X,µ). Then

||f + g||p ≤ ||f ||p + ||g||p.

Lemma 2.25. Let (fn) be a sequence in Lp(X,µ) and f ∈ Lp(X,µ) where p ≥ 1

and µ(X) <∞. If the sequence (fn) converges to f in Lp and for each n, fn is a

non-negative function, then so is f .

Proof. Let A = {x ∈ X | f(x) < 0} and suppose µ(A) > 0.

Let An = {x ∈ X | f(x) < −1/n}. Then
⋃∞
n=1An = A. Since µ(A) > 0, there is

n0 ∈ N such that µ(An0) > 0. Since (fn) converges to f in Lp, there exists N ∈ N

such that ∫
X

|fN − f |pdµ < (
1

n0

)pµ(An0).
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Let B = {x ∈ X | fN(x) ≥ 0}. Then µ(X\B) = 0 and hence

µ(An0 ∩B) = µ(An0) > 0.

Thus |fN − f |p ≥ ( 1
n0

)p on An0 ∩B. Now ,∫
X

|fN − f |pdµ ≥
∫
An0∩B

|fN − f |pdµ

≥ (
1

n0

)pµ(An0 ∩B)

= (
1

n0

)pµ(An0), a contradiction.

This shows that µ(A) = 0, that is f is a non-negative function.



CHAPTER III

Henstock-Stieltjes Integral for Lp-Valued Functions

In 2007, Juhung [7] studied the Henstock-Stieltjes integration of a function f

whose value is in L2-space with respect to an L2-valued function g. In her work

some interesting properties are not considered. It is a question that can we gen-

eralize the integration to the case that the functions f(x) ∈ Lp and g(x) ∈ Lq.

In this chapter, we introduce a definition of Henstock-Stieltjes integral for Lp-

valued functions with respect to Lq-valued functions and investigate some prop-

erties of the integral, and then the theory on the integral is established.

3.1 The Definition

Let (X,M, µ) be any measure space. To define a Henstock-Stieltjes integral

for an Lp-valued function with respect to an Lq-valued function, the product of

f(x) and g(x) are involved. By virtue of the theorem 2.23, a tool is provided.

Throughout this chapter, we consider only the case that the positive real numbers

p, q and r ≥ 1 satisfy 1
p

+ 1
q

= 1
r
. And for convenience, we will denote Lp(X,µ)

and Lq(X,µ) shortly by Lp and Lq.

Definition 3.1. Let f : [a, b]→ Lp and g : [a, b]→ Lq, we say that f is Henstock-

Stieltjes integrable with respect to g on [a, b] if for each ε > 0, there exists a gauge

δ on [a, b] such that

||
n∑
i=1

f(ci)[g(xi)− g(xi−1)]−
m∑
i=1

f(di)[g(x′i)− g(x′i−1)]||r < ε,
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for any two δ-fine partitions D = {([xi−1, xi], ci) | i = 1, 2, . . . , n} and

D′ = {([x′i−1, x′i], di) | i = 1, 2, . . . ,m} of [a, b].

The above definition gives a criteria of integrability. Nevertheless, for an inte-

grable function, the integral is not given. The next theorem provides a necessary

and sufficient condition for a function f to be integrable with respect to a function

g on [a, b]. Moreover, it states that the integral is an element in Lr. From now

on, the statement “f is Henstock -Stieltjes integrable with respect to g on [a, b]” is

stated in short by “f is interable with respect to g on [a, b]”.

Theorem 3.2. Let f : [a, b]→ Lp and g : [a, b]→ Lq. The function f is integrable

with respect to g on [a, b] if and only if there exists a function A ∈ Lr such that

for each ε > 0, there exists a gauge δ on [a, b] such that whenever

D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} is a δ-fine partition of [a, b], we have

||Sg(f,D)− A||r < ε,

where Sg(f,D) =
n∑
i=1

f(ti)[g(xi)− g(xi−1)].

Proof. Suppose that f is integrable with respect to g on [a, b]. For each positive

integer n, choose a gauge δn on [a, b] such that for any δn-fine partitions

D = {([xi−1, xi], ci) | i = 1, 2, . . . , n} and D′ = {([x′i−1, x′i], di) | i = 1, 2, . . . ,m} of

[a, b],

||Sg(f,D)− Sg(f,D′)||r <
1

n
. (3.1)

We may assume that the sequence (δn)n∈N is non-increasing. For each n ∈

N, let Dn be a fixed δn-fine partition. By the inequality (3.1), the sequence

(Sg(f,Dn))n∈N is a Cauchy sequence in Lr. Let A ∈ Lr be the limit of this se-

quence and let ε > 0. Choose a positive integer N > 2/ε such that if n ≥ N ,

then

||Sg(f,Dn)− A||r <
ε

2
. (3.2)
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Let D′N be a δN -fine partition. By the inequality (3.2), we have

||Sg(f,D′N)− A||r ≤ ||Sg(f,D′N)− Sg(f,DN)||+ ||Sg(f,DN)− A||r

<
1

N
+
ε

2
< ε.

To prove the converse, let ε > 0. There exists a gauge δ on [a, b] such that

whenever D is a δ-fine partition of [a, b], we get

||Sg(f,D)− A||r <
ε

2
.

Therefore, if D1 and D2 are δ-fine partitions of [a, b], then

||Sg(f,D1)− Sg(f,D2)||r < ε.

This implies that f is integrable on [a, b].

The element A in the above theorem is called an integral of f with respect

to g on [a, b]. It is obvious that if A1 and A2 are integrals of f with respect to

g, then A1 =A2 a.e. in Lr. So the integral is unique if it exists, it is denoted by∫ b
a
fdg.

3.2 Properties of the Integral

In this section, some properties of Henstock-Stieltjes integral are presented.

Theorem 3.3. Let f1 and f2 be Lp-valued functions defined on [a, b] and let

g : [a, b] → Lq. If f1 and f2 are integrable with respect to g on [a, b], then the

functions f1 + f2 and λf1 are integrable with respect to g on [a, b] for all λ ∈ R,

and ∫ b

a

(f1 + f2)dg =

∫ b

a

f1dg +

∫ b

a

f2dg,∫ b

a

λf1dg = λ

∫ b

a

f1dg.
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Proof. Let f1 and f2 be integrable with respect to g on [a, b], and ε > 0. Let δ1

and δ2 be gauges on [a, b] such that

||Sg(f1, D′)−
∫ b

a

f1dg||r <
ε

2
(3.3)

for any δ1-fine partition D′ of [a, b] and

||Sg(f2, D′′)−
∫ b

a

f2dg||r <
ε

2
(3.4)

for any δ2-fine partition D′′ of [a, b].

Let δ : [a, b] → R+ defined by δ(t) = min{δ1(t), δ2(t)}. Then δ is a gauge on

[a, b]. For any δ-fine partition D of [a, b], applying the triangle inequality to (3.3)

and (3.4), we obtain

||Sg(f1 + f2, D)− (

∫ b

a

f1dg −
∫ b

a

f2dg)||r < ε.

It is obvious that the integrability of f1 implies the integrability of λf1 for any

λ ∈ R and ∫ b

a

λf1dg = λ

∫ b

a

f1dg.

Theorem 3.4. Let f : [a, b] → Lp, g : [a, b] → Lq and λ ∈ R. If f is inte-

grable with respect to g on [a, b], then f is integrable with respect to λg on [a, b].

Furthermore, ∫ b

a

fd(λg) =

∫ b

a

λfdg = λ

∫ b

a

fdg.

Proof. Let ε > 0. There exists a gauge δ on [a, b] such that

||Sg(f,D)−
∫ b

a

fdg||r <
ε

|λ|+ 1

for any δ-fine partition D of [a, b]. Let D be a δ-fine partition of [a, b]. Then

||Sλg(f,D)−
∫ b

a

λfdg||r = |λ|||Sg(f,D)−
∫ b

a

fdg||r.
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It is clear that the integrability of f with respect to g implies that with respect

to λg for any λ ∈ R and ∫ b

a

fd(λg) =

∫ b

a

λfdg.

Theorem 3.5. If f : [a, b] → Lp is integrable with respect to both g1 and g2 :

[a, b]→ Lq on [a, b], then f is integrable with respect to g1 + g2 on [a, b] and∫ b

a

fd(g1 + g2) =

∫ b

a

fdg1 +

∫ b

a

fdg2.

Proof. Let ε > 0 and δ1, δ2 be gauges on [a, b] such that

||Sg1(f,D′)−
∫ b

a

fdg1||r <
ε

2
(3.5)

for any δ1-fine partition D′ of [a, b] and

||Sg2(f,D′′)−
∫ b

a

fdg2||r <
ε

2
(3.6)

for any δ2-fine partition D′′ of [a, b]. Let δ : [a, b] → R+ be defined by δ(t) =

min{δ1(t), δ2(t)}. Note that δ is a gauge on [a, b]. Let D be a δ-fine partition of

[a, b]. It is easy to see that D is both δ1-fine and δ2-fine partition of [a, b]. Applying

the triangle inequality to the inequalities (3.5) and (3.6), we then obtain

||Sg1+g2(f,D)− (

∫ b

a

fdg1 +

∫ b

a

fdg2)||r < ε.

Since ε is arbitrary, the proof is now complete.

Theorem 3.6. Let c ∈ (a, b). Then f : [a, b] → Lp is integrable with respect to

g : [a, b]→ Lq on each of the intervals [a, c] and [c, b] if and only if f is integrable

with respect to g on [a, b]. If this is the case, we have∫ b

a

fdg =

∫ c

a

fdg +

∫ b

c

fdg.
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Proof. Suppose that f is integrable with respect to g on each of the intervals [a, c]

and [c, b]. Let ε > 0. There exist positive functions δ1 on [a, c] and δ2 on [c, b]

such that

||Sg(f,D′)−
∫ c

a

fdg||r <
ε

2
and ||Sg(f,D′′)−

∫ b

c

fdg||r <
ε

2
(3.7)

for any δ1-fine partition D′ of [a, c] and δ2-fine partition D′′ of [c, b]. We define a

gauge δ on [a, b] by

δ(t) =


min{δ1(t), 12(c− t)} if t ∈ [a, c),

min{δ1(c), δ2(c)} if t = c,

min{δ2(t), 12(c− t)} if t ∈ (c, b].

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be any δ-fine partition of [a, b]. Then by

the definition of δ, c = ti0 for some i0 ∈ {1, 2, . . . , n}. Let D′ = {([xi−1, xi], ti) |

i = 1, . . . , i0−1}∪{([xi0−1, ti0 ], ti0)} and D′′ = {([xi−1, xi], ti) | i = i0 +1, . . . , n}∪

{([ti0 , xi0 ], ti0)}. Then D′ is a δ1-fine partition of [a, c] and D′′ is a δ2-fine partition

of [c, b]. Since Sg(f,D) = Sg(f,D
′) + Sg(f,D

′′) and from the inequality (3.7), we

have

||Sg(f,D)− (

∫ c

a

fdg +

∫ b

c

fdg)||r ≤ ||Sg(f,D′)−
∫ c

a

fdg||r + ||Sg(f,D′′)−
∫ b

c

fdg||r

< ε,

and this implies that f is integrable on [a, b] and
∫ b
a
fdg =

∫ c
a
fdg +

∫ b
c
fdg.

For the converse, we show only that f is integrable on [a, c]. Let ε > 0. Then

there exists a gauge δ on [a, b] such that for any two δ-fine partitions D′ and D′′

of [a, b],

||Sg(f,D′)− Sg(f,D′′)||r < ε. (3.8)

Set δ′ = δ on [a, c] and δ′′ = δ on [c, b] and let D1 and D2 be any δ′-fine partitions

of [a, c] and choose a δ′′-fine partition D3 of [a, b]. Since both D1∪D3 and D2∪D3
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are δ-fine partitions of [a, b] and (3.8), we have

||Sg(f,D1)− Sg(f,D2)||r = ||Sg(f,D1 ∪D3)− Sg(f,D2 ∪D3)||r

< ε.

This implies that f is integrable with respect to g on [a, c].

The next three corollaries are immediately obtained from the above theorem.

Corollary 3.7. Let [c, d] be a subinterval of [a, b]. If f : [a, b]→ Lp is integrable

with respect to g : [a, b]→ Lq on [a, b], then so is the restriction of f on [c, d].

Corollary 3.8. If f : [a, b] → Lp is integrable with respect to g : [a, b] → Lq on

[a, b] and a = c0 < c1< · · · < cn = b, then the restrictions of f on each subinterval

[ci−1, ci] are integrable with respect to g and∫ b

a

fdg =
n∑
i=1

∫ ci

ci−1

fdg.

Definition 3.9. If f : [a, b] → Lp is integrable with respect to g : [a, b] → Lq on

[a, b] and a ≤ c ≤ d ≤ b, we define

∫ c
d
fdg = −

∫ d
c
fdg and

∫ c
c
fdg = 0.

Corollary 3.10. If f : [a, b] → Lp is integrable with respect to g : [a, b] → Lq on

[a, b] and c, d, e are any points in [a, b], then∫ e

c

fdg =

∫ d

c

fdg +

∫ e

d

fdg.

Theorem 3.11. Let f : [a, b]→ Lp and g : [a, b]→ Lq be defined by f(t) = h for

all t ∈ [a, b] and h ∈ Lp. Then f is integrable with respect to g on [a, b] and∫ b

a

fdg = h[g(b)− g(a)].
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Proof. Here if D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} is any tagged partition of

[a, b], then

Sg(f,D) =
n∑
i=1

f(ti)[g(xi)− g(xi−1)] = h[g(b)− g(a)].

Let ε > 0 and a gauge δ defined by δ(x) = 1 for all x ∈ [a, b]. Let D =

{([xi−1, xi], ti) | i = 1, 2, . . . , n} be a δ-fine partition of [a, b]. Then

||Sg(f,D)− h[g(b)− g(a)]||r < ε.

Hence f is integrable with respect to g on [a, b] and
∫ b
a
fdg = h[g(b)− g(a)].

Next, we give two examples of Henstock-Stieltjes integrable functions.

Example 3.12. Define f : [π
2
, π]→ L2(R, `) and g : [π

2
, π]→ L2(R, `)

by f(t) = χ[0,π] and g(t) = χ[0,t] + A(t) cos t where

χ[a,b](τ) =

 1, τ ∈ [a, b]

0, τ ∈ R\[a, b]

and A(t)(τ) = 1 for all t ∈ [π
2
, π] and τ ∈ R.

By the theorem (3.11), we have that f is Henstock-Stieltjes integrable with respect

to g on [π
2
, π] with

∫ π
π
2
fdg = −χ[0,π

2
] .

Example 3.13. If f(x) = 0 for all x ∈ [a, b] where 0 is the zero function in Lp,

then
∫ b
a
fdg = 0.

In order to investigate the theory of the integration, we let the integrator g to

be nice enough. It is obvious that the oscillation of g should not be too “big” in

the following sense.

Definition 3.14. Let g : [a, b] → Lq. We define the variation of g over the

interval I = [a, b] to be

V ar(g, I) = sup{
n∑
i=1

||g(xi)− g(xi−1)||q | P = {x0, x1, . . . , xn}}
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where the supremum is taken over all partitions P of I. We say that g has(or

is of) bounded variation on I if V ar(g, I) < ∞. The collection of all functions

defined on I with values in Lq that have bounded variation on I is denoted by

BV (I, Lq).

Definition 3.15. A function g : [a, b] → Lq is said to be a Lipschitzian map if

there exists α ∈ [0,∞) such that ||g(x)− g(y)||q ≤ α |x− y| for all x, y ∈ [a, b].

It is clear that if g : [a, b] → Lq is a Lipschitzian map, then g has bounded

variation on [a, b]

Theorem 3.16. Let g : [a, b] → Lq be a Lipschitzian map and f : [a, b] → Lp be

the zero function almost everywhere on [a, b]. Then f is integrable with respect to

g on [a, b] and
∫ b
a
fdg = 0.

Proof. Let α ∈ [0,∞) be such that ||g(x)− g(y)||q ≤ α |x− y| for all x, y ∈ [a, b].

Let E = {t ∈ [a, b] | f(t) 6= 0} and for each n ∈ N, let

En = {t ∈ [a, b] | n− 1 ≤ ||f(t)||p < n}.

Since E =
⋃∞
n=1En and E is of measure zero, so En is of measure zero for every

n. Let ε > 0. For each n, let {Jn,k}∞k=1 be a collection of open intervals such that

En ⊆
∞⋃
k=1

Jn,k and
∞∑
k=1

`(Jn,k) <
ε

αn2n
.

Define a gauge δ on [a, b] as follows. For each t ∈ [a, b] if t /∈ E, let δ(t) = 1; if

t ∈ E, then t ∈ Em for some m and there is a δt > 0 such that

(t− δt, t+ δt) ⊆
∞⋃
k=1

Jm,k,

we define δ(t) = δt. Let D = {([xi−1, xi], ti) | i = 1, 2, . . . ,m} be a δ-fine partition

of [a, b] and for each n, let Dn be the subset of D that has tags in En. By the
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definition of δ, every interval in Dn is a subset of
⋃∞
k=1 Jn,k. We now show that

||Sg(f,D)||r < ε.

For each δ-fine subpartition Dn = {([ci, di], si)|i = 1, 2, . . . , s},

||Sg(f,Dn)||r <
s∑
i=1

||f(si)||p||g(di)− g(ci)||q

< n(
s∑
i=1

α(|di − ci|))

≤ αn

∞∑
k=1

`(Jn,k) <
ε

2n
.

Since D
,

n s are pairwise disjoint and their union is D, the sum of the terms

with tags in D is less than
∑∞

n=1
ε/2n = ε. Therefore ||Sg(f,D)||r < ε, and hence,

f is integrable with respect to g on [a, b] and
∫ b
a
fdg = 0.

Corollary 3.17. If f : [a, b]→ Lp is integrable with respect to a Lipschitzian map

g : [a, b]→ Lq on [a, b] and f = h almost everywhere on [a, b], then h is integrable

with respect to g on [a, b] and ∫ b

a

fdg =

∫ b

a

hdg.

Proof. Since f = h almost everywhere, f − h = 0 almost everywhere. Applying

theorem 3.16, the function f − h is integrable with respect to g on [a, b] and∫ b
a
(f − h)dg = 0. By linearity, the function h = f + (h − f) is integrable and∫ b

a
hdg =

∫ b
a
fdg.

Theorem 3.18. Let f : [a, b]→ Lp be a continuous function and let g : [a, b]→ Lq

be of bounded variation on [a, b]. Then f is integrable with respect to g on [a, b].

Proof. Let M be the variation of g over [a, b] and ε > 0. Since f is uniformly

continuous on [a, b], there exists σ > 0 such that ||f(x) − f(y)||p < ε for all

x, y ∈ [a, b] such that |x − y| < 2σ. Let N be a positive integer such that

β = b−a
N

< σ and let D0 = {([xi−1, xi], xi) | i = 1, 2, . . . , N} where xj = a+ jβ for
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0 ≤ j ≤ N . Define a gauge δ on [a, b] by δ(x) = β
2

for all x ∈ [a, b]. We will first

show that

||Sg(f,D)− Sg(f,D0)||r < εM

for any δ-fine partition D of [a, b]. Let D = {([yj−1, yj], tj) | j = 1, 2, . . . , N1} be

a δ-fine partition of [a, b]. We define a set D1 on [a, b] from D as follows.

If (yj−1, yj) does not contain any xi, then put ([yj−1, yj], tj) in D1;

if (yj−1, yj) contains xi for some i, then put ([yj−1, xi], tj) and ([xi, yj], tj) in D1.

Although D1 is not a δ-fine partition of [a, b], we have Sg(f,D1) = Sg(f,D)

because |yj−yj−1| < β and every interval in D1 is a subset of some interval in D.

We rewrite D1 as {([zk−1, zk], sk) | k = 1, 2, . . . , N2} and for each 1 ≤ i ≤ N , let

Pi = {k : [zk−1, zk] ⊆ [xi−1, xi]}. It is clear that each k (1 ≤ k ≤ N2) belongs to a

unique Pi and k ∈ Pi implies |sk−xi| < 2β < 2σ. Since
⋃
k∈Pi [zk−1, zk] = [xi−1, xi],

we have

||Sg(f,D)− Sg(f,D0)||r = ||Sg(f,D1)− Sg(f,D0)||r

= ||
N∑
i=1

∑
k∈Pi

f(sk)(g(zk)− g(zk−1))

−
N∑
i=1

f(xi)(g(xi)− g(xi−1))||r

= ||
N∑
i=1

∑
k∈Pi

f(sk)(g(zk)− g(zk−1))

−
N∑
i=1

∑
k∈Pi

f(xi)(g(zk)− g(zk−1))||r

= ||
N∑
i=1

∑
k∈Pi

(f(sk)− f(xi))(g(zk)− g(zk−1))||r

< ε
N∑
i=1

∑
k∈Pi

||(g(zk)− g(zk−1))||q

≤ εM.
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Let D′ and D′′ be any two δ-fine partitions of [a, b]. Now we have

||Sg(f,D′)− Sg(f,D′′)||r ≤ ||Sg(f,D′)− Sg(f,D0)||r + ||Sg(f,D0)− Sg(f,D′′)||r

< 2Mε.

Since ε is arbitrary, f is integrable with respect to g on [a, b].

The following definitions and thorem are important tools in proving the Mono-

tone Convergence Theorem discussed in the last section.

Definition 3.19. For each n ∈ N, let fn : [a, b]→ Lp.

(i) We say that f1 ≤ f2 on [a, b] if and only if f1(x) ≤ f2(x) for all x ∈ [a, b].

(ii) A function g : [a, b] → Lq is said to be non-decreasing on [a, b] if and only if

x < y implies g(x) ≤ g(y) for all x, y ∈ [a, b].

(iii) A sequence (fn) is said to be increasing if and only if fn ≤ fn+1 for all n ∈ N.

Theorem 3.20. Let (X,M, µ) be a measure space such that µ(X) <∞.

Let f : [a, b]→ Lp be integrable with respect to a non-decreasing function

g : [a, b]→ Lq on [a, b]. Then f ≥ 0 implies
∫ b
a
fdg ≥ 0.

Proof. By the construction of the integral
∫ b
a
fdg, there exists a sequence (Sg(f,Dn))

in Lr such that lim
n→∞

Sg(f,Dn) =
∫ b
a
fdg. And for each n ∈ N,

Sg(f,Dn) =
Pn∑
i=1

f(tni )(g(xni )− g(xni−1))

where Dn = {([xni−1, xni ], tni ) | i = 1, 2, . . . , Pn}. Hence Sg(f,Dn) is a non-negative

function for all n. By lemma 2.25, we have
∫ b
a
fdg ≥ 0.

Corollary 3.21. Let (X,M, µ) be a measure space such that µ(X) < ∞. Let

f1 : [a, b] → Lp, f2 : [a, b] → Lp be integrable with respect to a non-decreasing

function g : [a, b]→ Lq on [a, b]. Then f1 ≤ f2 on [a, b] implies
∫ b
a
f1dg ≤

∫ b
a
f2dg.
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Proof. Since f1 ≤ f2 on [a, b], 0 ≤ f2 − f1 on [a, b]. By theorem 3.20, we get

0 ≤
∫ b

a

(f2 − f1)dg

=

∫ b

a

f2dg −
∫ b

a

f1dg.

Hence,
∫ b
a
f1dg ≤

∫ b
a
f2dg.

3.3 The Saks-Henstock Lemma

In this section, we discuss the important lemma, Saks-Henstock Lemma, that

plays a major role in theory of the Henstock integral. The lemma states that good

approximations over the entire interval yield good approximations over unions of

subintervals.

Theorem 3.22. Let f be integrable with respect to g on [a, b], and for ε > 0, let

δ be a gauge on [a, b] such that for any δ-fine partition D of [a, b]

||Sg(f,D)−
∫ b

a

fdg||r < ε.

Then for any δ-fine subpartition D′ = {([xi, yi], ti) | i = 1, 2, . . . , n} of [a, b],

||
n∑
i=1

{f(ti)[g(yi)− g(xi)]−
∫ yi

xi

fdg}||r = ||Sg(f,D′)−
∫
⋃n
i=1[xi,yi]

fdg||r < ε.

Proof. Let {Kj : 1 ≤ j ≤ m} be the collection of closed intervals in [a, b] such

that the union of it and {[xi, yi] | i = 1, 2, . . . , n} is [a, b]. Let η > 0 and for each

j, let δj be a gauge on Kj such that if Dj is a δj-fine partition of Kj, then

||Sg(f,Dj)−
∫
Kj

fdg||r <
η

m
. (3.9)

Clearly we may assume that δj(t) ≤ δ(t) for all t ∈ Kj. Let D = D′ ∪
⋃m
j=1Dj.

Then D is a δ-fine partition of [a, b] and

||Sg(f,D)−
∫ b

a

fdg||r < ε. (3.10)



30

Combining the inequalities (3.9) and (3.10), we obtain

||Sg(f,D′)−
∫
⋃n
i=1[xi,yi]

fdg||r = ||Sg(f,D′) +
m∑
j=1

Sg(f,Dj)−
∫
⋃n
i=1[xi,yi]

fdg

−
m∑
j=1

∫
Kj

fdg +
m∑
j=1

[Sg(f,Dj)−
∫
Kj

fdg]||r

≤ ||Sg(f,D)−
∫ b

a

fdg||r +
m∑
j=1

||Sg(f,Dj)−
∫
Kj

fdg||r

< ε+ η.

Since η > 0 is arbitrary, then the proof is complete.

Corollary 3.23. Let f be integrable with respect to g on [a, b] and for ε > 0 let

δ be a gauge on [a, b] such that for any δ-fine partition D = {([xi−1, xi], ti) | i =

1, 2, . . . , n} of [a, b]

||Sg(f,D)−
∫ b

a

fdg||r < ε.

Then for each i = 1, 2, . . . , n,

||f(ti)[g(xi)− g(xi−1)]−
∫ xi

xi−1

fdg||r < ε.

3.4 The Fundamental Theorem of Calculus

In this section we see an important application of the Saks-Henstock Lemma;

The Fundamental Theorem of Calculus.

Consider a function f : [a, b] → Lp which is integrable with respect to a

function g : [a, b] → Lq on [a, b]. For any x ∈ [a, b], the integral of f on [a, x]

exists, so we can define a function F : [a, b]→ Lr by

F (x) =

∫ x

a

fdg,

for x ∈ [a, b].
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Theorem 3.24. If f : [a, b] → Lp is integrable with respect to a continuous

function g : [a, b]→ Lq on [a, b], then the integral function

F (x) =
∫ x
a
fdg for all x ∈ [a, b],

is continuous on [a, b].

Proof. Let c ∈ [a, b] and let ε > 0. Since g is continuous at c, there is an α > 0

such that for any x ∈ [a, b] with |x− c| < α,

||g(x)− g(c)||q <
ε

||f(c)||p + 1
. (3.11)

Let δ be a gauge on [a, b] such that for any δ-fine partition D of [a, b],

||Sg(f,D)−
∫ b

a

fdg||r < ε.

Let η = min{δ(c), α}. For each x ∈ [a, b] with |x − c| < η, the interval with

endpoints x, c and tag c is δ-fine subpartition of [a, b]. Apply the Saks-Henstock

Lemma and the inequality (3.11),

||F (x)− F (c)||r ≤ ||F (x)− F (c)− f(c)[g(x)− g(c)]||r + ||f(c)[g(x)− g(c)]||r

< 2ε.

Therefore, the function F is continuous at c.

Definition 3.25. A non-negative real-valued function η defined on [a, b] is said

to be a countably closed gauge on [a, b] if the set of its zeros is countable.

The next theorem, we give an interesting result that allows a positive function

(gauge) to be a non-negative function for which the set of its zeros is countable.

The idea used to the prove theorem follows from the work of Rudolf Výborný [10].

Theorem 3.26. Let g : [a, b]→ Lq be a continuous function. A function

f : [a, b] → Lp is integrable with respect to g on [a, b] if and only if there exists a
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continuous function F : [a, b]→ Lr such that for every ε > 0 there is a countably

closed gauge η with the property that

||
n∑
i=1

{f(ti)[g(yi)− g(xi)]− [F (yi)− F (xi)]}||r < ε, (3.12)

for any η-fine subpartition {([xi, yi], ti) | i = 1, . . . , n} of [a, b]. If the condition is

satisfied then
∫ b
a
fdg = F (b)− F (a).

Proof. Suppose that f is integrable. Let F : [a, b]→ Lr be the indefinite integral

of f . Since g is continuous on [a, b], so is F . Then directly from the Saks-Henstock

lemma, the inequality (3.12) is satisfied.

Now, we assume the converse. We will show that f is integrable with respect

to g on [a, b]. Let ε > 0. There exists a countably closed gauge η satisfying the

property (3.12). Let r1, r2, . . . , rn, . . . be the enumeration of the zeros of η such

that for i < j, ri < rj and let δ′(rn) > 0 be such that

||F (u)− F (v)||r <
ε

2n+2
and ||f(rn)[g(u)− g(v)]||r <

ε

2n+2
(3.13)

for |u− rn| < δ′(rn) and |v − rn| < δ′(rn). Define δ : [a, b]→ R+ by

δ(x) =

 δ′(x) if x = rn

η(x) if x 6= rn.

For any δ-fine partition D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} denote by∑ ′{f(ti)[g(xi)− g(xi−1)]− [F (xi)− F (xi−1)]} (or shortly by
∑ ′

)

the sum is taken in which ti 6= ri for all i and by∑ ′′{f(ti)[g(xi)− g(xi−1)]− [F (xi)− F (xi−1)]} (or shortly by
∑ ′′

)

for the remaining indices i.
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It follows from the inequalities (3.13) that

||
∑ ′′||r ≤

∑
||{f(ti)[g(xi)− g(xi−1)]− [F (xi)− F (xi−1)]}||r

<
∞∑
i=1

ε

2i+2
+
∞∑
i=1

ε

2i+2
=
ε

2
.

Moreover, by assumption we have ||
∑ ′ ||r < ε

2
.

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be a δ-fine partition. We have

||Sg(f,D)− [F (b)− F (a)]||r = ||
∑ ′

+
∑ ′′ ||r

≤ ||
∑ ′ ||r + ||

∑ ′′ ||r < ε.

Since ε is arbitrary, f is integrable.

In order to proceed the Fundamental Theorem of Calculus, we use the idea

of the Straddle Lemma (see in chapter 2, Lemma 2.1) to define a derivative of a

function F with respect to a function g.

Definition 3.27. Let F : [a, b] → Lr and g : [a, b] → Lq. Then F is said to be

differentiable with respect to g on [a, b] if there exists a function f : [a, b] → Lp

satisfying the following condition: for any ε > 0, there exists a gauge δ on [a, b]

such that for any t ∈ [a, b], if u, v ∈ [a, b] ∩ (t− δ(t), t+ δ(t)), then

||F (v)− F (u)− f(t)[g(v)− g(u)]||r ≤ ε||g(v)− g(u)||q.

The function f is called the derivative (with respect to g) of F on [a, b].

From the definition of derivative, it is obvious that the zero function is the

derivative of constant functions.

Theorem 3.28. If F : [a, b] → Lr is differentiable with respect to a continuous

function g : [a, b]→ Lq on [a, b], then F is continuous on [a, b].
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Proof. Let c ∈ [a, b] and let ε > 0. There exists a positive number α such that for

any t ∈ [a, b] with |t− c| < α, we have

||g(t)− g(c)||q <
ε

||f(c)||p + 1
. (3.14)

Let η be a gauge on [a, b] such that

for any t ∈ [a, b], if u, v ∈ [a, b] ∩ (t− η(t), t+ η(t)), then

||F (v)− F (u)− f(t)[g(v)− g(u)]||r ≤ ||g(v)− g(u)||q. (3.15)

Let δ = min{α, η(c)}. Suppose h ∈ [a, b] such that |h− c| < δ. By the inequalities

(3.14) and (3.15), we get

||F (h)− F (c)||r < (||f(c)||p + 1) ||g(h)− g(c)||q

< (||f(c)||p + 1)
ε

||f(c)||p + 1
= ε.

We complete the proof.

Theorem 3.29. (The Fundamental Theorem of Calculus) Let g : [a, b] → Lq be

of bounded variation on [a, b]. If f : [a, b]→ Lp is the derivative with respect to g

of F : [a, b]→ Lron [a, b], then f is integrable with respect to g on [a, b] and∫ b

a

fdg = F (b)− F (a).

Proof. Let M be a positive real number larger than the variation of g on [a, b].

Let ε > 0. Since f is the derivative with respect to g of F , there is a gauge δ

on [a, b] such that for any δ-fine partition D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} of

[a, b], we have

||F (xi)− F (xi−1)− f(ti)[g(xi)− g(xi−1)]||r ≤
ε

M
||g(xi)− g(xi−1)||q. (3.16)

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be a δ-fine partition of [a, b]. From the
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inequality (3.16) and the telescoping sum on F (b)− F (a), we have

||F (b)− F (a)− Sg(f,D)||r = ||
n∑
i=1

{[F (xi)− F (xi−1)]− f(ti)[g(xi)− g(xi−1)]}||r

≤
n∑
i=1

||F (xi)− F (xi−1)− f(ti)[g(xi)− g(xi−1)]}||r

≤ ε

M

n∑
i=1

||g(xi)− g(xi−1)||q

< ε.

Since ε is arbitrary, we conclude that f is integrable with
∫ b
a
fdg = F (b)− F (a).

A consequence of the Fundamental Theorem of Calculus is the integration by

parts. Since 1
p

+ 1
r

= 1
( pr
p+r

)
and 1

( pr
p+r

)
+ 1

q
= 1

( r
2
)
, the integral

∫ b
a
(f1F2 + F1f2)dg

considered in the next theorem can be defined when r ≥ 2.

Theorem 3.30. (Integration by Parts) Let r ≥ 2 and let g : [a, b] → Lq be of

bounded variation on [a, b]. Suppose that f1 : [a, b] → Lp and f2 : [a, b] → Lp are

the derivative with respect to g on [a, b] of functions F1 and F2, respectively. Then∫ b
a
(f1F2 + F1f2)dg exists and∫ b

a

(f1F2 + F1f2)dg = F1(b)F2(b)− F1(a)F2(a).

Proof. Let M ∈ R+ be such that ||F1(x)||r ≤ M and ||F2(x)||r ≤ M for all

x ∈ [a, b], and also larger than the variation of g on [a, b]. Since F1 and F2 are

continuous and differentiable, for each t ∈ [a, b], given ε > 0, let σt > 0 such that

||f1(t)||p · ||F2(t)− F2(x)||r <
ε

4M
(3.17)

and

||f2(t)||p · ||F1(t)− F1(x)||r <
ε

4M
(3.18)
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for any x ∈ [a, b] for which |x − t| < σt and we choose a positive function α on

[a, b] such that for any α-fine partition D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} of

[a, b],

||[F1(xi)−F1(xi−1)]− f1(ti)[g(xi)− g(xi−1)]||r ≤
ε

4M2
||g(xi)− g(xi−1)||q, (3.19)

||[F2(xi)−F2(xi−1)]− f2(ti)[g(xi)− g(xi−1)]||r ≤
ε

4M2
||g(xi)− g(xi−1)||q. (3.20)

Let δ : [a, b]→ R+ defined by δ(t) = min{α(t), σt} for all t ∈ [a, b].

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be a δ-fine partition of [a, b], we have

||
n∑
i=1

[f1(ti)F2(ti) + f2(ti)F1(ti)][g(xi)− g(xi−1)]− [F1(b)F2(b)− F1(a)F2(a)]|| r
2

= ||
n∑
i=1

{f1(ti)F2(ti)[g(xi)− g(xi−1)] + f2(ti)F1(ti)][g(xi)− g(xi−1)]

− [F1(xi)F2(xi)− F1(xi−1)F2(xi−1)]}|| r
2

≤
n∑
i=1

||f1(ti)F2(ti)[g(xi)− g(xi−1)]− F2(xi)[F1(xi)− F1(xi−1)]|| r
2

+
n∑
i=1

||f2(ti)F1(ti)[g(xi)− g(xi−1)]− F1(xi)[F2(xi)− F2(xi−1)]|| r
2

≤
n∑
i=1

||f1(ti)||p||F2(ti)− F2(xi)||r||g(xi)− g(xi−1)||q

+
n∑
i=1

||F2(xi)||r||f1(ti)[g(xi)− g(xi−1)]− [F1(xi)− F1(xi−1)]||r

+
n∑
i=1

||f2(ti)||p||F1(ti)− F1(xi)||r||g(xi)− g(xi−1)||q

+
n∑
i=1

||F1(xi)||r||f2(ti)[g(xi)− g(xi−1)]− [F2(xi)− F2(xi−1)]||r

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε,

by the inequalities (3.17), (3.18), (3.19) and (3.20). Therefore
∫ b
a
(f1F2 + F1f2)dg

exists and
∫ b
a
(f1F2 + F1f2)dg = F1(b)F2(b)− F1(a)F2(a).
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3.5 Convergence Theorems

In this section we will show that the major convergence theorems hold for our

integral.

Theorem 3.31. (Uniform Convergence Theorem) Let g : [a, b] → Lq be of

bounded variation on [a, b] and for each n ∈ N, fn : [a, b] → Lp. If (fn) is

a sequence of integrable functions with respect to g on [a, b] and converges to

f : [a, b] → Lp uniformly on [a, b], then f is integrable with respect to g on [a, b]

and

lim
n→∞

∫ b

a

fndg =

∫ b

a

fdg [Lr].

Proof. Let M be the variation of g over [a, b]. We will first show that (
∫ b
a
fndg) is

a Cauchy sequence. Let ε > 0. Since the sequence (fn) converges to f uniformly

on [a, b], there exists N ∈ N such that n ≥ N implies ||fn(t) − f(t)||p < ε for all

t ∈ [a, b]. Consequently, for any m,n ≥ N we have ||fn(t) − fm(t)||p < ε for all

t ∈ [a, b]. Let m,n ≥ N . Let δm and δn be gauges on [a, b] such that

||Sg(fm, D′)−
∫ b

a

fmdg||r < ε and ||Sg(fn, D′′)−
∫ b

a

fndg||r < ε, (3.21)

for any δm-fine partition D′ of [a, b] and any δn-fine partition D′′ of [a, b], respec-

tively.

Let δ be a gauge on [a, b] defined by δ(t) = min{δm(t), δn(t)} for t ∈ [a, b]. By

Cousin’s lemma, there exists a δ-fine partitionD = {([xi−1, xi], ti) | i = 1, 2, . . . , n}

of [a, b] and hence D is a δm-fine and δn-fine partition of [a, b]. Moreover, we have

||Sg(fm, D)− Sg(fn, D)||r ≤
n∑
i=1

||fm(ti)− fn(ti)||p||g(xi)− g(xi−1)||q

< ε

n∑
i=1

||g(xi)− g(xi−1)||q ≤Mε. (3.22)
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Applying the triangle inequality to the inequalities (3.21) and (3.22), we obtain

||
∫ b

a

fmdg −
∫ b

a

fndg||r < (M + 2)ε.

Therefore the sequence (
∫ b
a
fndg) is a Cauchy sequence and so converges in Lr to

some A ∈ Lr. We now show that f is integrable with respect to g on [a, b] with

the integral A. If D̄ = {([xi−1, xi], ti) | i = 1, 2, . . . , n} is any tagged partition of

[a, b] and k ≥ N , then

||Sg(fk, D̄)− Sg(f, D̄)||r ≤
n∑
i=1

||fk(ti)− f(ti)||p||g(xi)− g(xi−1)||q

< Mε. (3.23)

Since (
∫ b
a
fndg) converges to A in Lr, there exists N ′ ∈ N such that for any n ≥ N ′,

||
∫ b

a

fndg − A||r < ε. (3.24)

Now choose a fixed number k ≥ max{N,N ′} and let δk be a gauge on [a, b] such

that for any δk-fine partition D′ of [a, b],

||Sg(fk, D′)−
∫ b

a

fkdg||r < ε (3.25)

Let D′ is a δk-fine partition of [a, b]. Applying the triangle inequality again to the

inequalities (3.23), (3.24) and (3.25), we have

||Sg(f,D′)− A||r < (M + 2)ε.

Since ε is arbitrary, f is integrable with respect to g on [a, b] and
∫ b
a
fdg = A.

Corollary 3.32. Let g : [a, b]→ Lq be of bounded variation on [a, b] and for each

n ∈ N, fn : [a, b] → Lp be continuous function. If (fn) converges to f uniformly

on [a, b], then f is integrable with respect to g on [a, b] and

lim
n→∞

∫ b

a

fndg =

∫ b

a

fdg [Lr].
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We now give another situation concerning the convergence theorems that for a

given ε > 0, there is a gauge that satisfies the definition of integrability for every

function in the sequence.

Definition 3.33. Let g : [a, b] → Lq and for each n ∈ N, fn : [a, b] → Lp. Let

(fn) be a sequence of integrable with respect to g on [a, b]. The sequence (fn) is

equi-integrable with respect to g on [a, b] if for each ε > 0 there exists a gauge δ

on [a, b] such that for any δ-fine partition D of [a, b],

||Sg(fn, D)−
∫ b
a
fndg||r < ε for all n ∈ N.

We will show that equi-integrability and pointwise convergence of the sequence

of functions imply that the limit function is integrable.

Theorem 3.34. Let g : [a, b]→ Lq be of bounded variation on [a, b] and for each

n ∈ N, fn : [a, b]→ Lp. If the sequence (fn) is equi-integrable with respect to g on

[a, b] and the sequence converges pointwise to f : [a, b] → Lp on [a, b], then f is

integrable with respect to g on [a, b] and

lim
n→∞

∫ b

a

fndg =

∫ b

a

fdg [Lr].

Proof. Let M be the variation of g over [a, b]. Firstly, we will show that (
∫ b
a
fndg)

is a Cauchy sequence in Lr. Let ε > 0, there exists a gauge δ on [a, b] such that

for any δ-fine partition D of [a, b],

||Sg(fn, D)−
∫ b
a
fndg||r < ε

3
for all n ∈ N.

Let D0 = {([x′i−1, x′i], t′i) | i = 1, 2, . . . , s} be a δ-fine partition of [a, b]. Then for

all n ∈ N,

||Sg(fn, D0)−
∫ b

a

fndg||r <
ε

3
. (3.26)

Since (fn) converges pointwise to f on [a, b], there exists N ∈ N such that
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||fm(t′i)− fn(t′i)||p < ε
3M

for all i = 1, 2, . . . , s and m,n ≥ N

and hence

||Sg(fm, D0)− Sg(fn, D0)||r ≤
s∑
i=1

||fm(t′i)− fn(t′i)||p||g(x′i)− g(x′i−1)||q

<
ε

3
(3.27)

Applying the triangle inequality to (3.26) and (3.27), we get

||
∫ b
a
fmdg −

∫ b
a
fndg||r < ε for all m,n ≥ N .

Since ε is arbitrary, (
∫ b
a
fndg) is a Cauchy sequence in Lr and hence (

∫ b
a
fndg)

converges to a unique A in Lr. Let D be any δ-fine partition of [a, b] and k ∈ N

such that

||
∫ b

a

fkdg − A||r <
ε

3
and ||Sg(fk, D)− Sg(f,D)||r <

ε

3
(3.28)

By the inequality (3.28), the equi-integrability of (fn) and the triangle inequality,

we have

||Sg(f,D)− A||r < ε.

This show that f is integrable with respect to g with integral A.

The next theorem is inspired by the work of R.A. Gordon [6].

Theorem 3.35. Let g : [a, b]→ Lq be of bounded variation on [a, b] and for each

n ∈ N, fn : [a, b]→ Lp. Suppose (fn) is a sequence of integrable with respect to g

on [a, b] and converges pointwise to f : [a, b] → Lp on [a, b]. Then f is integrable

with respect to g on [a, b] and lim
n→∞

∫ b
a
fndg =

∫ b
a
fdg [Lr] if and only if for each

ε > 0 there exists a gauge δ on [a, b] such that for any δ-fine partition D, there

exists N ∈ N such that if n ≥ N , then

||Sg(fn, D)−
∫ b

a

fndg||r < ε.
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Proof. Let M be the variation of g over [a, b]. Suppose f is integrable with respect

to g on [a, b] and lim
n→∞

∫ b
a
fndg =

∫ b
a
fdg [Lr]. Let ε > 0. There exists N1 ∈ N such

that for all n ≥ N1,

||
∫ b

a

fdg −
∫ b

a

fndg||r <
ε

3
(3.29)

and there exists a gauge δ on [a, b] such that for any δ-fine partition D of [a, b],

||Sg(f,D)−
∫ b

a

fdg||r <
ε

3
. (3.30)

Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , s} be a δ-fine partition of [a, b]. Since the

sequence (fn) converges pointwise to f on [a, b], we choose N2 ∈ N such that if

n ≥ N2, then ||fn(ti)− f(ti)||p < ε
3M

for all i = 1, 2, . . . , s and hence

||Sg(fn, D)− Sg(f,D)||r <
ε

3
. (3.31)

Now, let n ≥ max{N1, N2}. Applying the triangle inequality to (3.29), (3.30) and

(3.31), we get

||Sg(fn, D)−
∫ b

a

fndg||r < ε.

Now, assume the converse. We will first show that (
∫ b
a
fndg) is a Cauchy sequence.

Let ε > 0. There exists a gauge δ on [a, b] satisfying the assumption and we

choose D0 = {([x′i−1, x′i], t′i) | i = 1, 2, . . . , s} to be a δ-fine partition of [a, b]. By

the assumption, there exists N0 ∈ N such that if n ≥ N0, then

||Sg(fn, D0)−
∫ b

a

fndg||r <
ε

3
. (3.32)

Since (fn) converges pointwise on [a, b], there exists N1 ∈ N such that if m,n ≥ N1,

then ||fm(t′i)− fn(t′i)||p < ε
3M

for all i = 1, 2, . . . , s, and hence,

||Sg(fm, D)− Sg(fn, D)||r <
ε

3
. (3.33)

Suppose m,n ≥ max{N0, N1}. Applying the triangle inequality again to (3.32)

and (3.33), we have ||
∫ b
a
fmdg −

∫ b
a
fndg||r < ε. It follows that (

∫ b
a
fndg) is a
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Cauchy sequence in Lr. Let A ∈ Lr be the limit of the sequence. We claim that∫ b
a
fdg = A. Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , k} be any δ-fine partition of

[a, b]. By the hypothesis, there exists N2 ∈ N such that if n ≥ N2, then

||Sg(fn, D)−
∫ b

a

fndg||r <
ε

3
. (3.34)

Since the sequence (
∫ b
a
fndg) converges to A in Lr, there exists N3 ∈ N such that

if n ≥ N3, then

||
∫ b

a

fndg − A||r <
ε

3
. (3.35)

Since the sequence (fn) converges pointwise to f , there exists N4 such that if

n ≥ N4, then

||Sg(f,D)− Sg(fn, D)||r <
ε

3
. (3.36)

Let k = max{N2, N3, N4]. Now by combining (3.34), (3.35) and (3.36), we have

||Sg(f,D)− A||r < ε.

Hence f is integrable with respect to g on [a, b] and lim
n→∞

∫ b
a
fndg =

∫ b
a
fdg [Lr].

We close this chapter by proving a major convergence theorem called the

Monotone Convergence Theorem. It requires pointwise (rather than uniform)

convergence and monotonicity of the sequence of functions. We will discuss only

the case of increasing sequence of functions.

Theorem 3.36. (Monotone Convergence Theorem) Let (X,M, µ) be a measure

space such that µ(X) < ∞. Let g : [a, b] → Lq be of bounded variation and

non-decreasing on [a, b]. For each n ∈ N, let fn : [a, b] → Lp be integrable with

respect to g on [a, b] and the sequence (fn) increasing and converges pointwise to

f : [a, b] → Lp on [a, b]. If the sequence (
∫ b
a
fndg) converges uniformly to some

A ∈ Lr on X, then f is integrable with respect to g on [a, b] and

lim
n→∞

∫ b

a

fndg =

∫ b

a

fdg [Lr].
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Proof. Let ε > 0. There is N ∈ N such that if n ≥ N then for all y ∈ X,

|(
∫ b

a

fndg)(y)− A(y)| < ε

µ(X)
1/r
. (3.37)

Thus for all n ≥ N ,

||
∫ b

a

fndg − A||r < ε. (3.38)

Let N1 ∈ N such that N1 ≥ N and 1
2N1−2 < ε. Since fk is integrable, for each k

there exists a gauge δk on [a, b] such that if D is a δk-fine partition of [a, b], then

||Sg(fk, D)−
∫ b

a

fkdg||r <
1

2k
. (3.39)

Since (fn) converges pointwise to f on [a, b], for each x ∈ [a, b] there is k(x) ≥ N1

such that

||f(x)− fk(x)(x)||r <
ε

M
(3.40)

where M = V ar(g, [a, b]). Now define δ(t) = δk(t)(t) for all t ∈ [a, b]. We will show

that f is integrable with integral A. Let D = {([xi−1, xi], ti) | i = 1, 2, . . . , n} be

a δ-fine partition of [a, b]. We consider the following inequality,

||Sg(f,D)− A||r ≤ ||
n∑
i=1

f(ti)[g(xi)− g(xi−1)]−
n∑
i=1

fk(ti)(ti)[g(xi)− g(xi−1)]||r

+ ||
n∑
i=1

fk(ti)(ti)[g(xi)− g(xi−1)]−
n∑
i=1

∫ xi

xi−1

fk(ti)dg||r (3.41)

+ ||
n∑
i=1

∫ xi

xi−1

fk(ti)dg − A||r.

By the inequality (3.40), the first term of the right handside of the above inequality

is dominated by ε, since

n∑
i=1

||f(ti)− fk(ti)(ti)||p||[g(xi)− g(xi−1)]||q < ε.

To estimate the second term, let N2 = max{k(t1), k(t2), . . . , k(tn)} ≥ N1. We

note that the finite sum of the second term can be written as an iterated sum:
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first over all values of i such that k(ti) = s for some natural number s ≥ N1, and

then over s ∈ {N1, . . . , N2}. The Saks-Henstock Lemma implies that

||
∑
k(ti)=s

{fk(ti)(ti)[g(xi)− g(xi−1)]−
∫ xi

xi−1

fk(ti)dg}||r <
1

2s−1
. (3.42)

If we sum the inequality (3.42) over s ∈ {N1, . . . , N2}. We find that the second

term in the inequality (3.41) is dominated by ε, since

N2∑
s=N1

1

2s−1
<

∞∑
s=N1

1

2s−1
=

1

2N1−2
< ε.

We now estimate the third term in (3.41). Since the sequence (fn) is increasing

and N1 ≤ k(ti) ≤ N2 for all i, fN1 ≤ fk(ti) ≤ fN2 and hence∫ xi

xi−1

fN1dg ≤
∫ xi

xi−1

fk(ti)dg ≤
∫ xi

xi−1

fN2dg.

Summing these inequalities for i = 1, 2, . . . , n, we obtain∫ b

a

fN1dg ≤
n∑
i=1

∫ xi

xi−1

fk(ti)dg ≤
∫ b

a

fN2dg.

Thus there is E ⊆ X such that µ(X\E) = 0 and for all y ∈ E,

(

∫ b

a

fN1dg)(y) ≤ (
n∑
i=1

∫ xi

xi−1

fk(ti)dg)(y) ≤ (

∫ b

a

fN2dg)(y).

By the inequality (3.37), we have

|(
n∑
i=1

∫ xi

xi−1

fk(ti)dg)(y)− A(y)| < ε

µ(X)1/r
for all y ∈ E.

Therefore

||
n∑
i=1

∫ xi

xi−1

fk(ti)dg − A||r = (

∫
X

|(
n∑
i=1

∫ xi

xi−1

fk(ti)dg)(y)− A(y)|rdµ)
1
r

= (

∫
E

|(
n∑
i=1

∫ xi

xi−1

fk(ti)dg)(y)− A(y)|rdµ)
1
r

< ε.

Combining the three estimations, we conclude that f is integrable with respect to

g on [a, b] and lim
n→∞

∫ b
a
fndg =

∫ b
a
fdg [Lr].
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