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CHAPTER I

INTRODUCTION

beoTa I’):%/)alued function f defined on [a, b]

/@hat} for each & > 0, there is

of [a,b] with t; € [l’i_l,xi]

it is unique. We usually denote

itegrable on [a, b] with the integral

faf-

It is well know '| ] eaation is intuitive and sim-

ple, but the defects in ’lc'he Riemann 1nte%Jal are several. The most serious one is

tht the clsfef BbBeh LW RISAT N B34 et i many smple

functions are n%lt Riemann integrable. For example, the Dirichlet function which
i ifhink G el BAINYAR B roman
tegrable Even if Lebesgue integration which was developed in the beginning of the
twentieth century can be applied to a wider class of functions and its convergence
properties is superior to the Riemann integral, the class of Lebesgue integrable
functions is still not large enough and the computation is rather sophisticated. In
fact, we desire not only to gain an integral that the class of integrable functions is

large but also to get an integral in which every derivative is integrable that is not



true for Lebesgue integral. For instance, the function f : [0,1] — R defined by
f(t) =t?cos(f&) for t # 0 and f(0) = 0 is differentiable on [0, 1] but not Lebesgue
integrable. We will see later for a more detail in example 2.21.

Lately a new integration, Henstock integration or Gauge integration, was in-
troduced by Jaroslav Kurzweil and Ralph Henstock in the year 1957. The idea of
the Henstock integral is a tiny variation ofthe definition of the classical Riemann
integral and no measure theory is re_(}uired, the Henstock integral has corrected
the defects in the classigal*Ricimann ;cheory and-both simplifies and extends the
Lebesgue theory of integration. Morfover, all derivatives are (Henstock) inte-
grable. 0, 478 8

In 1992, Sergio S#Caaoi3] gene_ra]ize& the definition of the Henstock integral for
. )

real-valued functions #0 functions _t?akinéjyglpes in Banach spaces and investigated
some of its properties. "Six years'laterfilriﬁ.! Lim and his colleagues [9] extended

el
the idea of the Henstock integral to the Henstock-Stieltjes integral for real-valued

i

functions. In 1999, 'J_ean—Clrl-r_igt-b}jShe Fedﬁ\}égl—l‘[él] devgloped the properties of an

integral (the generéﬁi_ed Henstock integral) for Banacl[;\;alued functions including
the theory of convergénce; Monotone Convergence Theorem (MCT) and Domi-
nated Convergenee TheoremyBCT)gthat-SsS.1Cae and-J.S=Lim did not mention.
Also there aregyorks studied on the Henstock integral, such as [2],[5],[8].
The&woik ©f LC, (Feauvead exposed fan interésting fviewthat:] If a Banach-
valued function f defined on [a, b] is integrable then there exists a unique vector
A in the Banach space being the integral of f. The immediate question from
Feauveau is how can we define Henstock-Stieltjes integral for functions whose
values in Banach spaces. Unfortunately, the Stieltjes integral needs the idea of
the product of two elements in Banach space but we do not have the concept

of the product of vectors in abstract Banach space. However, in some function



spaces, we can define the product.

The purpose of this research is to define Henstock-Stieltjes integral for LP-
valued functions with respect to L%-valued functions and investigate some theory
on it. Furthermore, this study extends and improves the work of Piyaporn Juhung
[7] that studied in the special case that p = g = 2.

This work is arranged to three aptafs apter I is an introduction. Chapter

ed functions that gives us the
—

er. .‘ he main work of our research is in Chapter
NS

i

AU INENTNEINS
PRIANTUUMINYAE



CHAPTER I1

PRELIMINARIES
2.1 Henstock Inte EE L@lued Functions
In this section we ,he H al for real-valued function.

(5]

integral was discovefjd""' who studied the major

convergence theorems ( Monotone and Domlnated Convergence Theorems) for the

integral. For ﬁt%%} %gé}c&}w ‘jo{w c{hltedrill) 43 advise the readers to

see in [1], | M, 8], and [11]. The definition_of the Henstock integral is a tiny
dlffereQeWtq aihﬂ: m ‘Etmhu w q’g w&ﬂeac% the variation
is deeply intricate. More precisely, the Henstock integral is more general than the
Lebesgue integral, namely, the class of Henstock integrable functions contains the
class of Lebesgue for the real-valued functions whose domains are closed interval in
R. Nevertheless, similar to the Lebesgue integral, the Henstock integral satisfies
the convergence properties and the Fundamental Theorem of Calculus (FTC)

holds in full generality.



We commence the idea of the definition of the Henstock integral by focusing on
the FTC in that if f : [a,b] — R is a function which has a derivative f’ everywhere

in [a, b], then the desire from this statement is f’ is integrable and

/ 1= 1) (2.1)

Unfortunately, the FTC for the

integral requires the assumption that
the derivative f’ is Riemann in Lebesgue integral requires the
brmgmg about the statement

(2.1), we consider the foll6wi ; »:. nia _‘ ed The Straddle Lemma.

Lemma 2.1. (The X be differentiable at

z € [a,b]. Then for

Proof. Let € > 0. Sincef is differentiable a : here is a § > 0 such that

for 0 < |z — 2| < 6, x &dasb]. Let [u,v] Gla,b]N (2 —3d,2+0) and z € [u,v]. The

conelusion ofﬂeuﬂ’g S ﬂ@m&’m o = = . Now, suppose

that u < V. Then

VNI INGFY

[f(0) =% () = f'(2)(v —u)
<e(v—2)+e(z—u) =¢c(v—u).
U

The geometric explanation of the Straddle Lemma is that the slope of the

tangent line at (z, f(z)) can be approximated by the slope of the chord between
(u, f(u))and (v, f(v)).

(v—2)| +[f(2) — () (z = )]



This lemma gives us a hint of how to proceed the FTC in the statement
(2.1). For the Henstock-Kurzweil integral, we are interested only in partitions

P = {xg,x1,...,2,} and the set of points {y1, ¥z, ..., y,} such that

(i1, 2] C (yi — 0(wi), vi +6(ui))s

where 4 is a positive function bling the condition of the Straddel

Lemma. Before we comp ive a formal definition of the

Henstock integral.

Definition 2.2. Let [a degenerate ~\ in R. A gauge on [a,b]

is a positive function partition P = {xg,x1,...,2,} or

P=A{lri1,2) |i= ,tn} of [a,b] with

ti—l S tl for i = 1,2, -,

is called a tagged panti  is a gauge saltagged partition D is said

to be a d-fine part y“

tig=0(t;) < zim1 << @ <t +6(t

ﬂ‘IJEJ’J‘VIEWﬁWEJ’]ﬂi

The points ¢;,%4,...,1, are sometlmes called tags of the tagged partition D. A
R IA ANE R
closed itttervals in [a, b].

If 0 is a gauge on [a,b], the collection {(J;,t;) | j = 1,2,..., s} consisting of
a subpartition {J; | j = 1,2,...,s} of [a,b] and a subset {t1,t2,...,¢,} of [a,b]
with t;_; < ¢; for i = 1,2,...,n is called a d-fine subpartition of [a,b] if for all
i=1,2,...,s,

ty € J; C(t; —6(ty), t; + ()



Let f:[a,b] = R, 0 a gauge on [a,b] and D = {([z;_1,x:],t;) | i =1,2,...,n}
a o-fine partition of [a,b]. The Riemann sum of f on [a,b] with respect to D is

defined to be

D)= Zf(ti)(xi — Ti1).

Definition 2.3. Let [ : [a,b] — R.

say that f is Henstock integrable on [a, D]
if there exists a real number ? / y that for every € > 0, there exists

a gauge ¢ on [a,b] such the X!é- ion D = {([zi—1, 2], t:) | 1 =

1,2,...,n}of[a,b],wy_ |

; i4
-4'

s o=
Theorem 2.4. ( Tﬁ FETC P'/ fo [a, b s a function which has a

o A i P

integrable on [a b]. More precisely the Henstocl&ntegral is deﬁv in the same way
s RAA G T S IR b s
by the gauge 0 instead of a positive constant. The next lemma guarantees the
existence of d-fine partition of [a, b] for each gauge 0 on [a,b]. It is known as The

Consin’s Lemma . For the proof of it, see in [1].

Lemma 2.5. (Cousin’s Lemma) [5] If § is a gauge on a closed and bounded
interval a,b] and [c,d] is any closed subinterval of [a,b], then there always exists

a d-fine partition of [c,d].



2.1.2 Basic Properties of the Integral

The aim of this section is to give some properties of the Henstock integration

that will be duplicated in later chapter.

Theorem 2.6. Let f : [a,b] — R. Then f is Henstock integrable on [a,b] if

and only if for each positive real 1

are integrable on [aﬁ. W : mﬂe 2.21. that the absolute

integrability assumptloit is necessary for e next theorem.

Theoremzﬂfuamam WL e ov 01, i
ammnﬂwﬁwmaﬂ

Theorem 2.9. Let f:[a,b) = R and ¢ € [a,b]. Then f is Henstock integrable on

la,b] if and only if its restriction to [a,c] and [c,b] are both Henstock integrable.

/abfz/:er/cbf-

Theorem 2.10. If f : [a,b] — R is Henstock integrable on [a,b] and [c,d] C [a, ],

In this case, we have

then it is Henstock integrable on [c,d].



The next theorem is known as The Saks-Henstock Lemma, it is fundamentally

important in proving many properties of the Henstock integral.

Theorem 2.11. (Saks-Henstock Lemma) Let f : [a,b] — R be Henstock in-

tegrable on [a,b]. Then for each ¢ > 0 let 0 be a gauge on |a,b] such that if

_ "”-ﬁne partition of |a,b], then
2%
—J
——

bpartition of [a,b], then

D= {([$i_1,$i],ti) | 1= ]_,2, e

If D" = {([zi, yi, ti) | @

RO

Theorem 2.13. If f : 2 muous on |a,b|, then f is Henstock

integrable on [a, D]

Theorem 2.14. | ntégrable on [a,b], then f is

Henstock integrable on [a,b] and two integrals agree. ™

o 04 B D IVRIIRT IR s e e

of Lebesgue. T%'e example 2.21. displays the converse of this gheorem is false.

coroitgs bW [ el ATV ELARLE ) o s

Henstock integrable on [a,b] and two integrals agree.

Theorem 2.16. (Integration by parts) [8] Let F,G, f,g : [a,b] — R. Suppose
that F' and G are continuous and F' = f and G' = g on [a,b]. Then Fg+ fG is

Henstock integrable on [a,b] and

/ (Fg+ fG) = FB)G(b) — F(a)Gla).



10

A sequence (f) : [a,b] — R is said to be increasing on [a, b] if fi(x) < fri1(x)
for all € [a,b], k € N. It is said to be decreasing on [a,b] if fi(x) > fii1(x) for
all x € [a,b],k € N. A sequence is said to be monotone on [a,b] if it is either

increasing on [a, b| or decreasing on [a, b].

Theorem 2.17. (Monotone Convergence Theorem) Suppose that (fi) is a mono-

/y/on [a,b] converging pointwise to f

on [a,b]. Then f is Hens 7 and only if the sequence (fab fr)

tone sequence of Henstock 1

2.1.3 Some E)amples

In this secﬁ %E}/!ﬂ)%%ﬁfﬁﬂﬂi}ﬁ ‘!ﬁe Henstock integrable

but not Riemaith integrable. Thes& examples lead us to see cle&ly the idea of the

s WIANTIIEU UR1INYIA Y

ﬁ for € (0,1] and f(0) =

Let € > 0. Assume that ¢ < 3/4. Define a gauge 0 on [0, 1] by

Example 2.19. [5] Consider the function f(x) =

ex? if 0<z <1,
o(x) =
g2 if z=0.
Suppose that D = {([z;_1, 2], ;) | i = 1,2,...,n} is a d-fine partition of [0, 1].

We now show that 0 must be the tag ¢;. Since D is a d-fine partition of [0, 1],
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[0,21] C (t; — (t1),t1 + 6(¢1)). This implies that ¢t; — d(t1) < 0. If ¢, > 0, then
§(ty) = et?, so that t; — &(t;) = t; — et? > 0 which is a contradiction. Therefore

t; must be 0. Now consider ([z;_1,;],t;) € D for i > 1. Since x; 1 > t; — et? >
t — ety > 6/4, VUV + JTis)? > 8,

VAW 4 VI > VEG § VD = S > > £

It follows that

|2\/t_i - 2\/%‘—1 — \/t_ VZi—1
bi — X Vi +/Tio)
\ t2 B
Similarly, it can be s
Combining these two ineq
1
|\/t—($z - xz—l) - 2(\/1'_1 g - tz) - 2(\/x_z \/E)l

ﬂumwaw%‘f’i@ﬂﬁsw
RIAIN T PG REE

ence

|S(faD)_2|:|Zf(ti)( — Ti1) - Z(Zx/fv_z 2y/wi))

=1

(l‘z —xi1) = (2y/@ — 2¢/7i51)]

<25—|—Z — ;) < 3e.

This shows that f is Henstock integrable with fol f=
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The first example manifests the role of the gauge that can force one to take a

particular point as a tag. This can be useful when a particular point is a source

of difficulty.

Example 2.20. We consider the well known function called the Dirichlet function

that is defined on [0, 1] by

Even if f is disconti iemann integrable, we will

now show that the f the integral 0.
Let {r, : k € N} wmbers in [0, 1] and € > 0.

We define the gauge

Let D = {([z;-1, Ai-w;¥%g.—!__gg_! ......... parfition of [0, 1]. If the tag

X
tr)|x; — xi—1] = 0. If the tag

I

t; € [z;_1,x;] is rational, then f(¢;) = 1 and if ¢; = 74 for some k£ € N, then
¢ o Q/

el = o @4 43 ﬂﬂ#ﬂ%ﬂﬁ sl B rational tags make a

nonzero contrlﬁ'lltlon to S(f, D \ge have

RN IYHRANENY

This implies that the Dirichlet function is Henstock integrable with the integral

1

t; € [x;_1, ;] is irrational

Z€ero.

The computation in Example 2.20 illustrates the advantage of using gauges
with variable length. Even though the Dirichlet function is usually used to show

that a function which is not Riemann integrable may be Henstock integrable, the
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function is Lebesgue integrable, as well. The next example demonstrates that
a Henstock integrable function need not to be Lebesgue integrable. Moreover,
this example attest that the Henstock integral is not absolutely integrable that is
contrast to the situation for the Riemann and the Lebesgue integrals where the

absolute value of an integrable function is also integrable.

Example 2.21. [8] For 0 < cos(m/t?) and f(0) =

/

By FTC part I, f" 1s = —1. Next
we will show that [’ is solutely integ n [0,1]. It is clear that f’ is
continuous at every poin | 0 is integrable on every closed

= /2/(4k + 1), we see that

e disjoint, if |f'| is Henstock

ﬂu&%ﬂﬁi%ﬂrﬁ'ﬁi

for all n € N. ﬁowever from the gllvergence of the harmonic serles we infer that

QRGBT R RN IE o o o

that f 1qs not Lebesgue integrable. Recall that a function is Lebesque integrable

if and only if its absolute value is Lebesgue integrable.

2.2 [P-Spaces

In this section, we recall the definition of LP-space and give some important

properties used in the next chapter.
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2.2.1 Definitions

Let (X, M, ) be any measure space and let 1 < p < co. We define a relation
on £ :={f: X — C| f is a measurable function and [ [f[Pdu < oo} by f ~g
if and only if f = g almost everywhere. We can see that the relation above is an

equivalence relation. Next, we defin

One can show that e. Hence, LP(X, u) is the space

spa
of all equivalence classes of f ictions in £F where two functions are in the same

r H 7
class if and only if they | _ e, fand we simply refer to [f]
in LP(X, ) by f. " X

mo A measurable functlon f ﬂ X satisfying ess supf =

e 3 ‘WEJW*I’TWET’W’I"? e el
AN AINTMURITN Y8 Y

We call || flloo the essential supremum of f. The space of all (equivalence

For the case p

classes of) essentially bounded measurable functions on (X, ) will be denoted by
L>®(X, p). It is the same as the case 1 < p < oo, one can show that L>(X, p) is

a Banach space.

Definition 2.22. Let (f,) be a sequence in L™ and f € L". We say that (f,)

converges to f in L" if and only if for every € > 0 there exists N € N such that
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for any n > N implies ||f,, — f||» < e. We write lim f, = f[L"] to denote that
n—oo

(fn) converges to f in L".

2.2.2 Some Properties of [’-Spaces

The following properties are th

pslc tools for the next chapter. Precisely,

the first two theorems is used 1 / ck-Stieltjes integral for LP-valued

functions and the last | o1 us ll the Monotone Convergence
' ——

satisfying % + % =1 / . \ ), then fg € L"(X,u) and

#"i’:—’. 44

If we set » = 1 when p L ----- & e above conclusion is still true.

Theorem 2.24. (Minkowski’s *-.. fx < p < oo and let f,g be non-

negative ‘V’.’,'""'"" ————————————————— J Then

1f +9lly < ||f||p+ ||g||zom

Lemmmﬂauﬂb wq&mwa GTE R

and p(X) < oo If the sequence (fy,) convergessto f in LP andgfor each n, f, is a

oyl b i B V1 VT S

Proof. Let A={x € X | f(z) <0} and suppose p(A) > 0.
Let A, ={z € X | f(z) < —1/n}. Then |J -, A, = A. Since pu(A) > 0, there is
no € N such that u(A4,,) > 0. Since (f,) converges to f in LP, there exists N € N

such that

[ 1w = i < (oA
X 0



16
Let B={x € X | fx(x) > 0}. Then p(X\B) = 0 and hence
p(Any N B) = pu(An,) > 0.
Thus |fx — fIF > (nlo)p on A,, N B. Now ,

/|fN—f|deZ ‘
X 2B

»eontradiction.

This shows that u(A Ative function.

-

AUEINENINEINS
ARIAIN TN INNAY



CHAPTER I11

Henstock-Stieltjes Integral for LP-Valued Functions

In 2007, Juhung [7] studie ieltjes integration of a function f

whose value is in L%-s espﬁ:t tmlued function ¢. In her work

; enstock-Stieltjes integral

for an LP-valued fu i -valmd function, the product of
f(z) and ¢ ﬁ a tool is provided.
Throughout t@ i{ ﬁ ﬂ\ﬂﬂgﬁcﬁﬁh fposmwe real numbers
o \ bk ok (TS
ﬂ(ﬁ Shz§ Iflm

and LY

Definition 3.1. Let f : [a,b] — L? and ¢ : [a,b] — L9, we say that f is Henstock-
Stieltjes integrable with respect to g on [a, b] if for each € > 0, there exists a gauge

d on [a, b] such that

| Z fe)lg(wi) — g(@ia)] - Z Fd)lg(}) — g(@i_)lllr <&,
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for any two d-fine partitions D = {([x;_1,2],¢) |1 =1,2,...,n} and
D' = {([z,_y,2}),d;) | 1 =1,2,...,m} of [a,b].

The above definition gives a criteria of integrability. Nevertheless, for an inte-

grable function, the integral is not given. The next theorem provides a necessary

and sufficient condition for a functio !;!to be integrable with respect to a function

g on [a,b]. Moreover, it sta | is an element in L". From now

on, the statement “f is : elt] @ with respect to g on [a, b]” is

where Sy(f, D) =

Proof. Suppose that o is pon [a,b]. For each positive

integer n, choose a gau&e 0, on [a,b] such that for any o,-fine partitions

o= NHWW@WMM 2oy
[a, b],
PANSUINANEY

We may assume that the sequence (0,)nen is non-increasing. For each n €
N, let D, be a fixed d,-fine partition. By the inequality (3.1), the sequence
(Sg(f, Dn))nen is a Cauchy sequence in L". Let A € L" be the limit of this se-
quence and let € > 0. Choose a positive integer N > 2/e such that if n > N,
then

1S5(£. Da) = All, < . (3.2)
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Let DYy be a dy-fine partition. By the inequality (3.2), we have

[196(f, Diy) = Allr < 119(f, Diy) = So(f; D)l + [194(f, D) — Al

<1+€<5
N 2 ’

To prove the converse, let € > 0. There exists a gauge 0 on [a,b] such that

2.

whenever D is a d-fine partiti

This implies that f is i L/jasl U

d an integral of f with respect

N

to g on [a,b]. It is obvious th “=..—‘ o are integrals of f with respect to
,-3'7—5, v

g, then A; =A, a.enin e if it exists, it is denoted by

[? fdg. \Z o

T
- P‘“’"ﬁﬁ?ﬁ“ﬂ’ﬁﬁ’%’w JNT

In this sectlon some properties of HenstocksStieltjes integral are presented.

ool N )R MV ANEINE

g : la,b] — L% If f1 and fo are integrable with respect to g on [a,b], then the

functions fi1 + fo and \fy are integrable with respect to g on [a,b] for all X € R,

/ "+ fo)dg = / fudg + / ’ fadg,
/ab)\fldg = /\/:fldg.

and
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Proof. Let fi and f; be integrable with respect to g on [a,b], and € > 0. Let d;

and 0y be gauges on [a, b] such that

15,(f1, D / fdgll, < 5 (3.3)

for any d;-fine partition D’ of [a, b] and

Let ¢ : [a,b] — R* ) = mi "'l'\"' (t)}. Then 0 is a gauge on
) ] PP

)

W

[a,b]. For any d-fine ng the triangle inequality to (3.3)

\)
\ 2dg)||, < e

It is obvious that the int b f:'-_-? = vlies the integrability of Af; for any

il

O

e i ) wfﬂﬂﬁﬂmﬁ Tiﬂfl 1 AN
S UREILR IR ) HADE

Proof. Let € > 0. There exists a gauge d on [a, b] such that

15,(f.D /fdg||

for any d-fine partition D of [a,b]. Let D be a d-fine partition of [a,b]. Then

b

b
1S3 (£, D) - / Afdgll, = IMIIS,(f, D) - / fdgll.
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It is clear that the integrability of f with respect to g implies that with respect

/a ’ fd(rg) = / \dg.
O

’W with respect to both g, and go :

ct to g1 + g2 on [a,b] and

to Ag for any A € R and

Theorem 3.5. If f : [a,b]

[a,b] = L7 on [a,b], the

(3.5)
for any d;-fine partitio

(3.6)
for any Sy-fine parfis tition D of {a, . Let 6+ {a,b] — ‘r\ be defined by () =
min{d; (t) NOE that ¢ is a gaug a, ). L@ D be a ¢-fine partition of

[a, b]. It is easy to see théateD is both d;-fine and do-fine partition of [a, b]. Applying

sevinge G UL ANLNITHEIN T e o
olile aﬁaﬂ?mmm TRITE &

Since € is arbltrary, the proof is now complete. O

Theorem 3.6. Let ¢ € (a,b). Then f : [a,b] — LP is integrable with respect to
g :[a,b] = L7 on each of the intervals [a,c| and [c,b] if and only if f is integrable

with respect to g on |a,b]. If this is the case, we have

/abfdg= /acfdg+/cbfdg~
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Proof. Suppose that f is integrable with respect to g on each of the intervals [a, c|
and [c,b]. Let ¢ > 0. There exist positive functions d; on [a,c] and d9 on [c, ]

such that

b
15,(f, D) - /fdgnr = and [18,(7,0") - /fdg||r<— (3.7)

for any d;-fine partition D’ of ,y)e partition D" of [¢,b]. We define a
gauge d on [a, b] by

‘\":. partition of [a,b]. Then by

. Let D' = {([xi_l,xi],ti) |
[ i—17xi:|7ti) | i :i0+17-'-7n}u
{([tigs o) tig) }- Then D" is a 6y » of la,c] and D" is a do-fine partition

16m the inequality (3.7), w
)

have ' m

1S,(f. D éfdgﬂ'nfdglr 15,66 D') — | fdgll, +11S,(f. D") — /fdg||

NENINEINT

7

/\

o ] Ghi) DIBUNNT NUIRL 2 e

For the converse, we show only that f is integrable on [a, c|. Let ¢ > 0. Then
there exists a gauge ¢ on [a,b] such that for any two J-fine partitions D’ and D"
of [a, b],

1S4 (f, D) = Sg(f, D")]I» < . (3.8)

Set ¢ =0 on [a,c] and 9" = ¢ on [¢,b] and let Dy and Dy be any ¢'-fine partitions

of [a, ¢] and choose a ¢”-fine partition Dj of [a, b]. Since both Dy U D3 and Dy U D5
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are 0-fine partitions of [a,b] and (3.8), we have

1Sg(f, D1) = Sg(f, Da)llr = |S4(f, D1 U D) — Sg(f, D2 U D3|,

<e.

This implies that f is integrable with respect to g on [a, ]. O

The next three corollaries are immediate ,' obtained from the above theorem.

Corollary 3.7. Let [c.d| be-a __ f :la,b] — LP is integrable

restriction of f on [c,d].

Corollary 3.8. If [ : respect to g : [a,b] — L7 on

\ wns of f on each subinterval

réspect to g : [a,b] — L7 on

i-r'

N L)
[a, b] andagcg, @

'-ll
—fcd fdggand [T fdg = 0.

Corollary 3@ Uﬂ ,wa gj is mtegme with Ie]pgf to g la,b] — L7 o

[‘”’] WWﬁﬁWﬂFWi}Wq ’J/V] #18

Theorem 3.11. Let f : [a,b] — LP and g : [a,b] — L7 be defined by f(t) = h for

[a,b] and a = ¢y < 1< -

[ci1,¢] are integrable wi

Definition 3.9. If f ;|

all't € [a,b] and h € LP. Then f is integrable with respect to g on [a,b] and

/ fdg = hlg(b) — g(a)].
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Proof. Here if D = {([x;_1,2],t;) | ¢ = 1,2,...,n} is any tagged partition of

[a,b], then

n

Se(f, D) = Z f(t)lg(xi) — g(ziz1)] = hlg(b) — g(a)].

=1

Let € > 0 and a gauge § defined by d(x) = 1 for all x € [a,b]. Let D =

artition of [a,b]. Then

Hence f is integrable
Next, we give two 5 integrable functions.

Example 3.12. De

by f(t) = Xjo,n] and ¢

7] — LX(R, )

and A(t)(7) =1 f' all T € |3
(3.1

i
By the theorem tjes integrable with respect

to g on [%, 7] with ffdg = —X[.z

xample 5. ﬂ 32 388 E;ﬁmlwwg PR oo function i 12

then f fdg—

ATANIUNNIINIAREL. ... ..

be nice enough. It is obvious that the oscillation of g should not be too “big” in

the following sense.

Definition 3.14. Let g : [a,b] — L% We define the wvariation of g over the

interval I = [a,b] to be

Var(g,I —sup{ZHg ;) — g(zi_)|lg | P = {zo,21,...,2n}}
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where the supremum is taken over all partitions P of I. We say that g has(or
is of) bounded variation on I if Var(g,I) < co. The collection of all functions

defined on I with values in L? that have bounded variation on I is denoted by

is said to be a Lipschitzian map if
& < alz—y| for all z,y € [a,b)].

zian map, then g has bounded

BV(I, L9).

Definition 3.15. A function g :

there exists a € [0, 00) such

It is clear that if g :

variation on |a, b]

Theorem 3.16. Let g : map and f : [a,b] — LP be

the zero function almos 18 integrable with respect to

Proof. Let a € [0,00) be < alzr—yl for all z,y € [a, b].

Let E = {t € [a,b] | f(t) # 0,
Since E = J,—, E» anq-E is of measure zero, so E, is of measure zero for every

) et ﬂ u@@twm{]@ SNBSS ntrvals such that
amaxﬁﬁ#mﬂ%‘ﬁﬂﬁm

Define 4! gauge ¢ on [a,b] as follows. For each t € [a,b] if t ¢ F, let §(t) = 1; if

t € E, then t € E,, for some m and there is a §; > 0 such that

(t - 6t7t + 615) g U Jm,k‘7

we define §(t) = &;. Let D = {([w;_1, 2], ¢;) | i = 1,2,...,m} be a d-fine partition

of [a,b] and for each n, let D, be the subset of D that has tags in E,. By the
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definition of 9, every interval in D, is a subset of UZO:1 Jn - We now show that
1Sy(f; DI < e

For each d-fine subpartition D,, = {([¢;, d;],s;)|i = 1,2,...,s},

1S4 (f; D)l < Z 1 Csi)llpl1g(di) = g(ci)llg

with tags in D is le

- ‘ -
Since D, s are 1:% their un s D, the sum of the terms

D)||, < e, and hence,

Corollary 3.17. If [ ' raple with respect to a Lipschitzian map

f is integrable with O

?‘J“"
g :[a,b] = L9 on [a,b] andlf =H-alm n-f:- ry ere on [a, b], then h is integrable

with respect to g on [a, b] and,.}.,.__‘

.—"‘" J#z..l'
e A /

Semmmr X

Proof. Since f = h Enost everywhere, f —h =0 amlost everywhere. Applying

theorem 3. 16 huqﬂ ﬁ W E]\q.a s?t to g on [a,b] and
f (f — h)dg inearity, the function h = —l—fjh — f) is integrable and

“dﬁ’vﬁ’%\ﬂﬂ‘imﬂm’]’w Y1aY  °

Theorem 3.18. Let f : [a,b] — LP be a continuous function and let g : [a,b] — L4

=

be of bounded variation on [a,b]. Then f is integrable with respect to g on |a,b].

Proof. Let M be the variation of g over [a,b] and € > 0. Since f is uniformly
continuous on [a,b], there exists o > 0 such that ||f(z) — f(y)||, < € for all
x,y € [a,b] such that |xr — y| < 20. Let N be a positive integer such that

B =" <o andlet Dy = {([zi—1, 2], 2;) | i=1,2,..., N} where z; = a+ jj for
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0 < j < N. Define a gauge d on [a,b] by d(z) = g for all x € [a,b]. We will first
show that

||Sg(f’D) - Sg(vaO)HT <eM

for any d-fine partition D of [a,b]. Let D = {([y;—1,y;].t;) | 7 =1,2,..., N1} be

a o0-fine partition of [a, b]. We define a set D; on [a,b] from D as follows.

If (y;j—1,y;) does not contai [yj—1,y;],t;) in Dy;

if (y;_1,%;) contains z; for" 1 S, 2], t) and ([x,y4],t;) in Dy.
Although D; is not & ¢ have Sy(f,D1) = S,(f,D)

because |y; —y;j_1| <[ ubset of some interval in D.

and for each 1 < i < N, let

L ¥ At is cleati the k: (1 <k < Ns) belongs to a

We rewrite D as {(|z

P, ={k: [zk_1, 2] C

unique P; and k € P; implies &@' 2 ince Ukep [20—1, 26] = [Tic1, 2]
? J‘ - \
we have ——
|1S,(f, D) —

=103 Flsnloar) — 9)
AN mmm%ﬂ

F)(g(z0) — 9(ze)llr
=l Z > (Flsk) = Fl@)(9(z) — g(ze-1))lr
< é‘Z > 11gzr) = g(z-1))q

<eM.
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Let D" and D" be any two d-fine partitions of [a,b]. Now we have

196 (f, D) = Sg(f; D)l < IS5 (f, D) = Sg(f Do)llr +1196(f, Do) = Sg(f, D)

< 2Me.

Since ¢ is arbitrary, f is integrable with respect to g on [a, b]. O

The following definition ' rtant tools in proving the Mono-

tone Convergence The

Definition 3.19. F
(i) We say that f; < , if : : d.onl Ny o(z) for all z € [a, b].

easing on [a,b] if and only if

Let f :[a,b] — LP béki

Proof. By the construction,of the integral{é7 fdg, there exists a sequence (S, (f, D,))

oo o o]l W BT NSNS
R AEATASWAR NI A Y

where D,, = {([z}_,,27],t}) | i =1,2,..., P,}. Hence Sy(f, D,) is a non-negative

function for all n. By lemma 2.25, we have fab fdg > 0. O

Corollary 3.21. Let (X, M, u) be a measure space such that u(X) < oo. Let
f1 i [a,b] — LP, fy : [a,b] — LP be integrable with respect to a non-decreasing

function g : [a,b] — L9 on [a,b]. Then fi < fy on [a,b] implies fab fidg < fab fodg.
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Proof. Since fi < fy on [a,b], 0 < fo — f1 on [a,b]. By theorem 3.20, we get

/(fz fi)dg

/ fadg — / fudg.
Hence, f fldg_f fadg.

o @W’/

In this section, we d

ma, aks—Henstock Lemma, that

al. The lemma states that good

approximations over t interval yield ~  rox1mat10ns over unions of
subintervals
Theorem 3.22. Let f be i esp 0 g on [a,b], and for e >0, let
d be a gauge on [a,b] such that -,'-; 1/ partition D of [a, b]

V;
Then for any d-fine ﬁbpa .,n} of la,b],

A

Proof. Let { ;1 < j < m} besthe Collectlon of closed 1nt&){als in [a,b] such

oo RV T LD VI TG 8 ot o uc

J, let 6; be a gauge on K such that if D; is a ¢;-fine partition of K, then

15,(f.D / fdgll. (3.9)

Clearly we may assume that ¢;(¢t) < o(¢) for all t € K. Let D = D'"UJj_, D

Then D is a d-fine partition of [a, b] and

1Sy (f, D /fdg|| < e (3.10)
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Combining the inequalities (3.9) and (3.10), we obtain

= 1[331 yz

—Z/ fdg+§j (f,D /fdgnr

sagl + 1100 [ sl
/ a K
Since n > 0 is arbitrM \\

IS, 00~ [ gl =S D)+ oS00 = g

"?.‘\ D
Nohe \c on [a,b] and for e > 0 let
on D = {([wi—1,zi], ;) | i =

d be a gauge on [a,

2,...,n} of [a,]

F” < E.

3.4 The Fundélﬁgntal Theorem of Calculus

AULINENITINYING

In this section we see an 1mpo?ant apphcatlon of the Saks—Henstock Lemma,;

ne QP RFRAN T V186 B

Consider a function f : [a,b] — LP which is integrable with respect to a
function g : [a,b] — L7 on [a,b]. For any = € [a,b], the integral of f on [a,x]

exists, so we can define a function F': [a,b] — L" by

=[fdg,

for x € [a, b].
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Theorem 3.24. If f : [a,b] — LP is integrable with respect to a continuous

function g : [a,b] — L% on [a,b], then the integral function
= [T fdg  for all x € [a,b],

is continuous on |a, b.

(3.11)

ion D of [a, b],
8.
Let n = min{d(c), a}. ": J.:r' 4/ ith [x — ¢| < 7, the interval with

endpoints z, ¢ and tag c i a_nc-f.“'-'  of a,b]. Apply the Saks-Henstock

Lemma and the inequality (3. ZE e T

1F(2) - F(o)ll, <AIF() | [;" 1 ©@le@) — gl

Thestor. th@ua@n&nﬁw BIN3 -
Deﬁ"ﬂ“’ﬁ“"lsﬂ\ﬂ“f’f‘mi T VTV TR o e

to be a ¢ountably closed gauge on |[a,b] if the set of its zeros is countable.

The next theorem, we give an interesting result that allows a positive function
(gauge) to be a non-negative function for which the set of its zeros is countable.

The idea used to the prove theorem follows from the work of Rudolf Vyborny [10].

Theorem 3.26. Let g : [a,b] — L7 be a continuous function. A function

f i la,b] = LP is integrable with respect to g on [a,b] if and only if there exists a
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continuous function F : [a,b] — L" such that for every e > 0 there is a countably

closed gauge m with the property that

| Z{f No(v:) = g(w)] = [Fyi) = F(z)lHlr <e, (3.12)

for any n-fine subpartition {([x;, vi], t; | i=1,...,n} of [a,b]. If the condition is

of f. Since g is contin( i ._.-1.\: from the Saks-Henstock

satisfied then fab fdg = F(b) —

Proof. Suppose that f i LT be the indefinite integral

Now, we assume th g W ‘owill st v\* f is integrable with respect
D

losed gauge n satisfying the

to g on [a,b]. Let ¢ > \}

property (3.12). Let 71, @, & v, b the enumeration of the zeros of 1 such

17 () <3 (313)
for [u — ro| < & (rn "* . : fv;' — R+ by
oy ifz=1r,
quaﬁwéﬂswanni
U DN P el RGN
{@) g(wi1)] = [F(z;) = F(ai-1)]} (or shortly by 3)

the sum is taken in which t; # r; for all ¢ and by

S Ft)lg(x) — g(wima)] — [F(:) — F(xi-1)]} (or shortly by >27)

for the remaining indices .
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It follows from the inequalities (3.13) that

1D Ml < D0 I f()lg () = g(wimn)] = [Fla) = Fzim)l} e

< Z 222 +Z 222 - %
i=1 i=1

Definition 3.27. [et

' q. Then F' is said to be

differentiable with ym \‘ function f : [a,b] — L?

satisfying the follow 1¢ condition: for any € > 0, th@e exists a gauge d on [a, b

such that forﬂ ugﬂﬁwﬁmwgq ﬁﬁ- then
oL MERIRL R e k)

The fun€tion f is called the derivative (with respect to g) of F on [a, b].

From the definition of derivative, it is obvious that the zero function is the

derivative of constant functions.

Theorem 3.28. If F : [a,b] — L" is differentiable with respect to a continuous

function g : [a,b] — L7 on [a,b], then F is continuous on [a, b].
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Proof. Let ¢ € [a,b] and let € > 0. There exists a positive number « such that for

any t € [a,b] with |t — ¢| < «, we have

€

1f()lp+1

”ﬁ} ) then

m llg(®) — g(u)ll,. (3.15)

Let § = min{a, n(c)/ bl s '- g \ c¢| < 4. By the inequalities
. _. \ . _

lg(t) = g(clly < (3.14)

Let 1 be a gauge on [a, b] such that

for any t € [a,b], if u,v € [a,b

We complete the proof. —— ’ O

cutus) Let g : [a,b] — L7 be
4

of bounded variation o derivative with respect to g

. {

of F: la,b] = L"on [a, b] then f is mtegmble with respect to g on |a,b] and

ﬂ'LlEJ’J Wﬂﬂﬁﬂﬁl’]ﬂ‘i
Poof QAR ARTUUNAINY VR Yot w0

Let ¢ > O Since f is the derivative with respect to g of F', there is a gauge d
on [a, b] such that for any o-fine partition D = {([x;_1,z;],t;) | 1 = 1,2,...,n} of

[a, b], we have

|F(x:) — F(xio1) — f(t)]g(x:) — g(zi)]ll» < %Hg(%‘) = g(wi1)llg- (3.16)

Let D = {([zi—1, 2], t;) | i = 1,2,...,n} be a d-fine partition of [a,b]. From the
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inequality (3.16) and the telescoping sum on F'(b) — F'(a), we have
|F(b) = F(a) - D)ll» = 1| Z{ Faia)] = f(t)lg(w:) — g(zia)]}]

< Z |F (i) = F(wia) = f(8)9(x:) — g(zia)]}]»

sevable with |7 fdg = F(b) — F(a).

Since ¢ is arbitrary, we comelude that f is i Y

Calculus is the integration by

U
e integral fab(leg + F1fa)dg

Theorem 3.30. (Integmtion 7 tar > 2 and let g : [a,b] — L9 be of
- j and fy : a,b] — LP are
the derivative with .Cw (

# Fy, respectively. Then

[
f (f1Fy+ Fif2)dg exzsts and

ﬂf;dmnﬂmmmz
o A F RV AN S VB VB < v

x € [a,b], and also larger than the variation of g on [a,b]. Since F} and F, are

continuous and differentiable, for each t € [a, b], given £ > 0, let oy > 0 such that

1A @y - 1F2(8) = Fa(2)]], < ﬁ (3.17)

and

F2O1]p - [[E2() = Fa()]] < ﬁ (3.18)
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for any x € [a,b] for which |x — t| < ¢ and we choose a positive function o on
[a,b] such that for any a-fine partition D = {([z;—1, 2], t;) | i = 1,2,..., n} of

[a7 b]’

|[F1 (i) — Fa(zia)] = fi(t)lg (@) — g(@ia)]ll _4M2||9( i) = 9(xi-1)llg, (3.19)

.' W |, < rsllota) — gl (3:20)

Let 6 : [a,b] — RT defined | min or all ¢ € [a, b].

[[F2 (i) — Fa(zi1)] — fa(t:)

Let D = {([zi-1, 2], t( \\\ artition of [a, b], we have
T — [

- .' Mlo(xs) — glwia)

Fy(a)lll

— [Fi(z) F2
< QA B Fa(ws-1)llg
+ Z | ;r.:.-.:r.::;:;r.:ﬁ";:;‘:;;;:::;:‘_'ﬁ' (x;) — Fy (%’—1)]”%

<lef1 Imle TRt — ol
Emmmmmam@ Fi(wio)

9 Wﬁﬂzﬁ FEI SMTINETR

+Z|IF1 vi)lle|lf2(t)lg (i) — g(xia)] = [Fa(wi) — Fa(ia)]l]

<Sifpiit g
4 4 4 4 7

by the inequalities (3.17), (3.18), (3.19) and (3.20). Therefore f:(leg + F\ fy)dg

exists and f:(leg + Fifo)dg = Fi(b)Fy(b) — Fi(a)Fy(a). O
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3.5 Convergence Theorems

In this section we will show that the major convergence theorems hold for our

integral.

Theorem 3.31. (Uniform Convergence Theorem) Let g : [a,b] — L% be of

bounded variation on [a,b] and f Dlab] — Lo If (fa) s

and

Proof. Let M be the vagiati f over [ayb], We will first show that (fab fndg) is

el wi n) converges to f uniformly

mplies || f,,(t) — f(¢)||, < € for all
t € [a,b]. Consequently, for have || f,,(t) — fn(t)||, < € for all

Ja, b] such that

159 (fm, D) =

for any o, ﬁxﬁﬂﬂq ﬂ(ﬁ WWETWﬂ? D" of [a,b], respec-

tively.

“Q WAL HRAURT NG <o

Cousin’s lemma there exists a d-fine partition D = {([x;_1,z;],%;) | i =1,2,...,n}

fndgHT <g, (3.21)

of [a,b] and hence D is a d,,-fine and 9,,-fine partition of [a, b]. Moreover, we have

1Sg(fim, D) = Sg(fn, D ||T<Z||fm = Fnlt)llpllg(:) = g(zia)llg

< 82 g (i) = g(ziz1)llg < Me. (3.22)
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Applying the triangle inequality to the inequalities (3.21) and (3.22), we obtain

b b
||/ fmdg—/ fudgllr < (M + 2)e.

Therefore the sequence ( f; fndg) is a Cauchy sequence and so converges in L" to

some A € L". We now show that f is integrable with respect to g on [a, b] with

the integral A. If D = {([x;_,

1,2,...,n} is any tagged partition of
[a,b] and k > N, then

.

4
15(fi, D) — 21 LR Ipllg(i) = g(i1)llg

(3.23)

Since (fab fndg) converge [ &g ; V such that for any n > N’,

(3.24)

Now choose a fixed number &= 1 } and let 0 be a gauge on [a, b] such

that for any Jx-fine.parti

-

ey

Iﬂ : Tﬂ (3.25)

Let D' is a dx-fine partition, of [a,b]. Applying the triangle inequality again to the

inequalities (%Mﬁﬂm%ﬂ)ﬂjjﬂ EJ‘ ’] ﬂ i
RINNFRENRITNINY

Since ¢ is arbitrary, f is integrable with respect to g on [a, b] and fab fdg=A. O
Corollary 3.32. Let g : [a,b] — L7 be of bounded variation on [a,b] and for each

n €N, f,:[a,b] = LP be continuous function. If (f,) converges to f uniformly

on [a,bl], then f is integrable with respect to g on [a,b] and

n—oo

b b
im [ fudg = [ sag L]
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We now give another situation concerning the convergence theorems that for a
given € > 0, there is a gauge that satisfies the definition of integrability for every

function in the sequence.

Definition 3.33. Let ¢ : [a,b] — L7 and for each n € N, f, : [a,b] — L. Let

(fn) be a sequence of integrable wi spect to g on [a,b]. The sequence (f,) is

equi-integrable with respect ' each € > 0 there exists a gauge ¢

Theorem 3.34. Let g i f%g of bounded wvariation on |a,b] and for each
,“ ,J"::::‘ J

n €N, f,:[a,b] — LP. Iffthe/sequcnce(f equi-integrable with respect to g on

la,b] and the sequence conueiges po 4\ : : [a,b] — LP on [a,b], then f is

integrable with respet

m Tim [ fudg = [ fdg [Lzu
“ a | ¢ TN
Proof. Let I\ﬂ;% &Qoﬂfﬁoﬂ@ MF‘EJ’BQ ﬂvﬁl show that ( f; fndg)

is a Cauchy sequence in L". Let & > 0, there exists a gauge dyon [a, b] such that

A RAANDAR U INGTA Y

[|Sg(fn, D) — f; fndgll, < % for all n € N,

Let Dy = {([z}_y,2}],t) | i = 1,2,...,s} be a d-fine partition of [a,b]. Then for
all n € N,

b
ISy(5u.D0) = [ fudgll: < 5. (3.26)

Since (f,) converges pointwise to f on [a, ], there exists N € N such that
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[ fm () — fu(t)|lp < 557 foralli =1,2,...,s and m,n > N
and hence
[1S9(frms Do) = Sy fars DOl < D 1 fn (82 = FultDIIpllg(2) = 9@y

<= (3.27)

Since ¢ is arbitrary, n L and hence ([ fndg
converges to a unique rtltlon of [a,b] and k € N
such that ,

1 [ fedg — A4 £ %itd S,(f. D)l < % (3.28)

By the inequality (3.28), of (f,) and the triangle inequality,

we have

This show that f is lmegrable with @peet to g witﬂntegral A. O

The next ﬁ} ung; apwyw@wm f4eon 1]

Theo ﬁg ? /g é{ ] and for each
n e a,b Suppose fn 1S a seque ce of integrable with respect to g

on [a,b] and converges pointwise to f : [a,b] — LP on [a,b]. Then f is integrable

with respect to g on [a,b] and lim fa fudg = fa fdg[L"] if and only if for each
n—roo

e > 0 there exists a gauge 6 on [a,b] such that for any §-fine partition D, there

exists N € N such that if n > N, then

1S, (fu, D /fndgnr < e
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Proof. Let M be the variation of g over [a, b]. Suppose f is integrable with respect

to g on [a,b] and lim f: fndg = f: fdg[L"]. Let € > 0. There exists N; € N such
n—oo

that for all n > Ny,

b b
||/ fdg—/ fndgl, <§ (3.29)
b

and there exists a gauge 0 on [a,

»u[ that for any d-fine partition D of [a, b],
(3.30)

Let D = {([xi_1, z4], t; artition of [a,b]. Since the

sequence (f,) conve oose Ny € N such that if

n > Ny, then ||f.(t; .., s and hence

(3.31)

Now, let n. > max{Ny, N b 1o triangle inequality to (3.29), (3.30) and

(3.31), we get

Now, assume the couver ) is a Cauchy sequence.

Let € > 0. There emsts a gauge 0 on [a,b] satisfy

[
choose Dy = ﬁ ,ﬁl,ﬁ Wﬂ%ﬁWﬂzq artition of [a,b]. By
0 € ‘

the assumption,| there exists N such that if n > Ny, then

PARIUNMAANYINY o

Since (f,,) converges pointwise on [a, b], there exists N; € N such that if m,n > Ny,

g the assumption and we

then |[fn(t;) — fu(ti)]|p < 55 foralli=1,2,... s, and hence,

1, fn D) = Sy(fu D) < 3 (3.33)

Suppose m,n > max{ Ny, N1}. Applying the triangle inequality again to (3.32)

and (3.33), we have ||fab fmdg — fab fndg||, < e. Tt follows that (fab fndg) is a
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Cauchy sequence in L". Let A € L" be the limit of the sequence. We claim that
fab fdg = A. Let D = {([zs—1,2),t;) | i = 1,2,...,k} be any o-fine partition of

[a,b]. By the hypothesis, there exists Ny € N such that if n > Ny, then

15, (fur D / fudgll, (3.34)

, /A in L", there exists N3 € N such that

(3.35)

Since the sequence ( fab fadg) co

if n > N3, then

Since the sequence there exists Ny such that if

n > Ny, then
(3.36)
Let k = max{Na, N3, 3.35) and (3.36), we have
Hence f is integrable with regp and lim f fadg = [ fdg[L"]. O
We close this'r apter by proving a ma ‘J theorem called the

Monotone Converge% Theore poin@'ise (rather than uniform)

convergence and monotomigity of the sequence of functions. We will discuss only

e cae o e od DHNINYINT
The"W’ﬁ ﬁ@ﬂ"ﬁ?ﬂaﬂ”ﬁ “T"’Jﬂ AN E

space stch that p(X) Let g : [a,b] — L% be of bounded variation and
non-decreasing on [a,b]. For each n € N, let f, : [a,b] — LP be integrable with
respect to g on [a,b] and the sequence (f,) increasing and converges pointwise to
f o la,b) = LP on [a,b]. If the sequence (f; fndg) converges uniformly to some

A€ L" on X, then f is integrable with respect to g on [a,b] and

n—oo

lim fndg—/ fdg[L"].



43

Proof. Let € > 0. There is N € N such that if n > N then for all y € X,

(] £udo)w) - A < — (3.37)

Thus for all n > N,

(3.38)

Since (f,,) converges poi
such that

(3.40)

where M = Var(g, [a,b]). ) for all t € [a, b]. We will show
that f is integrable with 'i-f: _;i Lot (i1, xi],t;) | i =1,2,...,n} be

a 0-fine partition of .:,="=-':-'-“:'-':-==-=':'i—."“ noquality,

Y |

1S4(f, D) — Al < me )Ng(@i) —g(zi-1)] — @( o (t)lg(@i) — g(zi-1)]ll-
'y | i
ﬂwﬁfﬂmmwﬂﬂf ol @)

awwmmwmmma

By the mequahty (3.40), the first term of the right handside of the above inequality
is dominated by ¢, since

D) = Fuao @ plllg (i) = glzim)lly < e

i=1
To estimate the second term, let Ny = max{k(t:), k(t2),...,k(t,)} > Ni. We

note that the finite sum of the second term can be written as an iterated sum:
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first over all values of i such that k(¢;) = s for some natural number s > Nj, and

then over s € {Ny,..., No}. The Saks-Henstock Lemma implies that

IS oo @lote) ~ g = [ fudall < e (32

k(t;)=s

If we sum the inequality (3.42) over s € {Ny,..., N2}. We find that the second
term in the inequality (3.41) is dom l;
No “ "x\ 30

We now estimate the (8.41). Since sequence (f,) is increasing

y €, since

" i -—————ﬁ_”"f. | fdg)w)

By the inequality ( SE , we have

M%%ﬂ%@ﬂﬁ%ﬂ?y”-
ﬂ@ﬁ Freydg jIa—‘la‘ll ’}QZ];I’I ardﬂé

= ([ 1 [ st - A1

<E.

Combining the three estimations, we conclude that f is integrable with respect to

g on [a,b] and lim fab fodg = fab fdg[L"). O
n—oo
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