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CHAPTER I

INTRODUCTION

The study of vector spaces equipped with “inner products” that are not nec-

essarily positive-definite has always been a theme of extreme importance in rel-

ativistic physics starting probably with the work of H.Minkowski. Complex vec-

tor spaces with indefinite sesquilinear forms have been introduced in relativistic

quantum field theory by P.Dirac [5], W.Pauli [14] and then used by S.Gupta

[9] K.Bleuler [3], although their mathematical definition has been given later

by L.Pontrjagin [15]. Complete “indefinite” inner product spaces, called Krĕın

spaces, have been introduced by Ju.Ginzburg [8] and E.Scheibe [16] and the study

of their properties has been undertaken by several Russian mathematicians.

Although algebras of continuous operators on Krĕın spaces have been around

for some time, the first definition of an abstract Krĕın C*-algebra has been pro-

vided only recently by K.Kawamura [10, 11]. Krĕın C*-algebras are somehow

expected to play some role in a “semi-Riemannian” version of A.Connes non-

commutative geometry [4] (see A.Strohmaier [17], M.Pasche-A.Rennie-R.Verch

[13] for details) and for this reason it should be of some interest to develop a

spectral theory that is suitable for them.

It is the purpose of this paper to introduce a simple spectral theory for the

special class of Krĕın C*-algebras that decompose, via a fundamental symmetry,

in the direct sum A = A+⊕A− with A+ a commutative C*-algebra and A− a sym-

metric imprimitivity (anti-)Hilbert C*-bimodule over A+ and that are equipped

with an odd symmetry exchanging A+ and A−. Our main result (Theorem 3.28)

is that every such Krĕın C*-algebra turns out to be isomorphic (via Gel’fand tran-

form) to an algebra of continuous functions with values in a very elementary Krĕın

C*-algebra defined in detail in Theorem 3.10 .
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The main result presented here actually can be obtained in at least a few other

ways that we briefly describe here below:

• For a symmetric imprimitivity commutative unital Krĕın C*-algebra A, the

even part A+, as a commutative unital C*-algebra, is isomorphic to the al-

gebra of sections of a trivial complex line bundle over the Gel’fand spectrum

Ω(A+). The odd part A− is a symmetric imprimitivity Hilbert C*-bimodule

over A+ and, making use of the spectral theorem for imprimitivity Hilbert

C*-bimodules developed in [2], it is isomorphic to the bimodule of sections of

a complex line bundle over the same Ω(A+). Under the existence of an odd

symmetry on A, the Witney sum of the previous two line bundles turns out

to be a bundle of rank-one Krein C*-algebras isomorphic to K over Ω(A+).

• Although we are not aware now of a specific reference to a Gel’fand the-

orem, once a specific fundamental symmetry/odd symmetry α, ε has been

chosen on A, the Krĕın C*-algebra becomes completely equivalent to a Z2-

graded C*-algebra with a commutative even part and for such elementary

C*-algebras spectral results are, for sure, obtainable as special cases from

the general theory of C*-dynamical systems.

• To every unital Krĕın C*-algebra equipped with a given fundamental sym-

metry, we can always associate a C*-category with two objects. In the case

of imprimitivity commutative unital Krĕın C*-algebras, such C*-category

will be commutative and full according to the definition provided in [1] and

our spectral theorem can be recovered as a trivial application of the general

spectral theory for commutative full C*-categories developed in [1].

The techniques utilized here in the proof of this result are essentially an adaptation

of those developed in [1] for a spectral theory of commutative full C*-categories.

Our choice to develop a completely independent proof of the result can be justi-

fied from the desire to test and caliber some of the general techniques introduced

in [1] in a simple situation that in the near future might be used as a “labora-
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tory” for non-commutative extensions of the spectral theorem. It is expected that

more powerful spectral theories for wider classes of Krĕın C*-algebras might be

developed using a Krĕın version of the spaceoid Fell bundle introduced in [1].



CHAPTER II

PRELIMINARIES

For the convenience and usefulness of the reader, we provide here some back-

ground material and beneficial theorems on the theory of C*-algebras and Hilbert

C*-modules (see [12], [2] for all the details).

Definition 2.1. An algebra over the complex numbers is a complex vector space

A equipped with a bilinear map (called product) · : A × A → A, · : (x, y) 7→ xy

and satisfies an associative law, that is, x · (y · z) = (x · y) · z for all x, y, z ∈ A.

The algebra is called unital if ∃1A ∈ A ∀x ∈ A, x · 1A = 1A · x = x.

Definition 2.2. An algebra is called involutive or also a ∗-algebra if it is

equipped with a function ∗ : A→ A, such that:

(x∗)∗ = x ∀x ∈ A,

(x · y)∗ = y∗ · x∗ ∀x, y ∈ A,

(αx+ βy)∗ = ᾱx∗ + β̄y∗ ∀α, β ∈ C, ∀x, y ∈ A.

Definition 2.3. A normed algebra is an algebra A that is also a normed space

and that satisfies the property: ‖x·y‖ ≤ ‖x‖·‖y‖ ∀x, y ∈ A. A Banach algebra

is a normed algebra that, as a normed space, is complete.

Definition 2.4. A pre-C*-algebra is an involutive algebra A that is also a

normed algebra that satisfies the property ‖x∗x‖ = ‖x‖2 ∀x ∈ A. A C*-algebra

is a pre-C*-algebra that is also Banach algebra.

Example 2.5. The followings are examples of C*-algebras:

1. Let X be a compact Hausdorff space. Then the space C(X) of all continuous

complex-valued functions on X is a unital commutative C*-algebra with the
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following operations and norm: ∀x ∈ X,

(f + g)(x) = f(x) + g(x), (cf)(x) = cf(x),

(fg)(x) = f(x)g(x), (f ∗)(x) = f(x),

‖f‖ = sup{|f(x)| : x ∈ X}.

2. The space B(H) of bounded linear maps on a Hilbert space H is a unital C*-

algebra that is non-commutative if dim(H) > 1, with the following operations

and norm:

(T + S)(x) = T (x) + S(x), (cT )(x) = cT (x),

(T ◦ S)(x) = T (S(x)), ‖T‖ = sup
x 6=0

‖T (x)‖
‖x‖

,

the involution T ∗ of T is the adjoint of T : 〈Tx | y〉 = 〈x | T ∗y〉, ∀x, y ∈ H.

Theorem 2.6. Let B be a unital subalgebra of a unital C*-algebra A. If x ∈ B

and x ∈ A+ := {z∗z | z ∈ A}, then x ∈ B+.

Definition 2.7. A homomorphism from an algebra A to an algebra B is a

linear map ϕ : A→ B such that

ϕ(ab) = ϕ(a)ϕ(b) ∀a, b ∈ A.

A ∗-homomorphism ϕ : A → B of ∗-algebras A and B is a homomorphism of

algebras such that ϕ(a∗) = ϕ(a)∗ ∀a ∈ A. If in addition ϕ is a bijection, it is a

∗-isomorphism.

Theorem 2.8. A ∗-homomorphism ϕ : A → B from a Banach ∗-algebra A to a

C*-algebra B is necessarily norm-decreasing.

Definition 2.9. A character on a commutative algebra A is a unital homomor-

phism τ : A→ C. We denote by Ω(A) the set of characters on A.

For each a ∈ A, define â : Ω(A) → C by â(τ) = τ(a) for all τ ∈ Ω(A). Equip

Ω(A) with the smallest topology on Ω(A) which makes each â continuous.
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Theorem 2.10. If A is a unital commutative Banach algebra, then Ω(A) is a

compact Hausdorff space with respect to the topology defined above.

Theorem 2.11 (Gel’fand-Mazur). If A is a unital Banach algebra in which

every non-zero element is invertible, then A = C1.

Theorem 2.12 (Spectral theorem). If A is a non-zero unital commutative

C*-algebra, then the Gelfand transform

ϕ : A→ C(Ω(A)), a 7→ â, (â : Ω(A) → C, τ 7→ τ(a))

is an isometric ∗-isomorphism.

Definition 2.13. A right R-module E over a ring R is an Abelian group (E,+)

equipped with an operation · : E × R→ E, · : (x, a) 7→ xa, of right multiplication

by elements of the ring R, that satisfies the following properties:

x · (a+ b) = (x · a) + (x · b), ∀x ∈ E ∀a, b ∈ R,

(x+ y) · a = (x · a) + (y · a), ∀x, y ∈ E ∀a ∈ R,

x · (ab) = (x · a) · b, ∀x ∈ E ∀a, b ∈ R.

If the ring R is unital, we say that E is a unital right R-module if the additional

property here is satisfied:

x · 1R = x, ∀x ∈ E.

Analogously, we can define a (unital) left R-module E over a ring R.

Note that a unital module over a unital complex algebra is naturally a complex

vector space.

Definition 2.14. A unital right pre-Hilbert C*-module MB over a unital

C*-algebra B is a unital right module over the unital ring B that is equipped with
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a B-valued inner product (x, y) 7→ 〈x|y〉 such that

〈z | x+ y〉B = 〈z | x〉B + 〈z | y〉B ∀x, y, z ∈M,

〈z | x · b〉B = 〈z | x〉Bb ∀b ∈ B ∀x, z ∈M,

〈y | x〉B = 〈x | y〉∗B ∀x, y ∈M,

〈x | x〉B ∈ B+ ∀x ∈M,

〈x | x〉B = 0B ⇒ x = 0M .

Analogously, a left pre-Hilbert C*-module AM over a unital C*-algebra A is

a unital left module M over the unital ring A, that is equipped with an A-valued

inner product M ×M → A denoted by (x, y) 7→A 〈x | y〉. Here the A-linearity is

on the first variable.

Remark 2.15. A right (respectively left) pre-Hilbert C*-module MB over the C*-

algebra B is naturally equipped with a norm

‖x‖M :=
√
‖〈x | x〉B‖B ∀x ∈M.

Definition 2.16. A right (resp. left) Hilbert C*-module is a right (resp. left)

pre-Hilbert C*-module over a C*-algebra B that is a Banach space with respect to

the previous norm ‖ · ‖M(resp. M‖ · ‖).

Definition 2.17. A right Hilbert C*-module MB is said to be full if

〈MB |MB〉B := span{〈x | y〉B | x, y ∈MB} = B,

where the closure is in the norm topology of the C*-algebra B. A similar definition

holds for a left Hilbert C*-module.

We recall here the following well-known result, see for example in [7, Page 65]:

Lemma 2.18. Let MB be a right Hilbert C*-module over a unital C*-algebra B.

Then MB is full if and only if span{〈x | y〉B | x, y ∈MB} = B.

We also recall a few definitions and results on bimodules (see for example [2]).
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Theorem 2.19. ([2, Proposition 2.6]) Let MA be a right Hilbert C*-module over

a unital C*-algebra A and J ⊂ A an involutive ideal in A. Then the set MJ :=

{
∑N

j=1 xjaj | xj ∈M,aj ∈ J,N ∈ N0} is a submodule of M . The quotient module

M/(MJ) has a natural structure as a right Hilbert C*-module over the quotient

C*-algebra A/J . If M is full over A, also M/(MJ) is full over A/J . A similar

statement holds for a left Hilbert C*-module.

Recall that a unital bimodule AMB over two unital rings A and B is a left

unital A-module and a right unital B-module such that (a · x) · b = a · (x · b), for

all a ∈ A, b ∈ B and x ∈M .

Definition 2.20. A pre-Hilbert C*-bimodule AMB over a pair of unital C*-

algebras A,B is a left pre-Hilbert C*-module over A and a right pre-Hilbert C*-

module over B such that:

(a · x) · b = a · (x · b) ∀a ∈ A∀x ∈M∀b ∈ B,

〈x | ay〉B = 〈a∗x|y〉B ∀x, y ∈M∀a ∈ A,

A〈xb | y〉 =A 〈x | yb∗〉 ∀x, y ∈M∀b ∈ B.

A Hilbert C*-bimodule AMB is a pre-Hilbert C*-bimodule over A and B that

is simultaneously a left Hilbert C*-module over A and a right Hilbert C*-module

over B. A full Hilbert C*-bimodule AMB over the C*-algebras A and B is said to

be an imprimitivity bimodule or an equivalence bimodule if:

A〈x | y〉 · z = x · 〈y | z〉B ∀x, y, z ∈M.

Remark 2.21. (see for example [2, Remark 2.14]) In an A-B pre-Hilbert C*-

bimodule there are two, usually different, norms, one as a left-C*-module over A

and one as a right-C*-bimodule over B:

M‖x‖ :=
√
‖A〈x | x〉‖A, ‖x‖M :=

√
‖〈x | x〉B‖B, ∀x ∈M,

but this two norms coincide for an imprimitivity bimodule. In fact,

M‖x‖4 = ‖A〈x | x〉‖2
A = ‖A〈x | x〉A〈x | x〉‖A = ‖A〈x〈x | x〉B | x〉‖A

≤ ‖〈x | x〉B‖B ·A ‖〈x | x〉‖A = ‖x‖2
M ·M ‖x‖2.
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Definition 2.22. We say that a bimodule AMA is a symmetric bimodule if

ax = xa, for all x ∈ M and all a ∈ A. If AMA is a Hilbert C*-bimodule, we

say that it is a symmetric C*-bimodule if it is symmetric as a bimodule and

A〈x | y〉 = 〈y | x〉A for all x, y ∈M .



CHAPTER III

MAIN RESULTS

First of all, we review the definition of a Krĕın C*-algebra that has been in-

troduced by K.Kawamura [11] and explore some elementary properties of a Krĕın

C*-algebra.

Definition 3.1. (K.Kawamura [11, Definition 2]) A Krĕın C*-algebra is a

∗-algebra A admitting at least one Banach algebra norm and one fundamental

symmetry , i.e. a ∗-automorphism φ : A → A with φ ◦ φ = iA, such that

‖φ(a∗)a‖ = ‖a‖2 for all a ∈ A.

Note that, in general, a Krĕın C*-algebra can admit several different funda-

mental symmetries.

Remark 3.2. A C*-algebra A is a Krĕın C*-algebra with fundamental symmetry

1A and so a Krĕın C*-algebra is a generalization of a C*-algebra. Let (A,α) be

a Krĕın C*-algebra with a given fundamental symmetry α. Then we always have

the decomposition

A = A+ ⊕ A−, where A+ = {x ∈ A | α(x) = x}, A− = {x ∈ A | α(x) = −x}.

Indeed, if a ∈ A+ ∩ A−, then a = φ(a) = −a and so a = 0. Moreover for all

a ∈ A, a = a+α(a)
2

+ a−α(a)
2

where a+α(a)
2

∈ A+ and a−α(a)
2

∈ A−.

Every Krĕın C*-algebra A with a given fundamental symmetry α becomes nat-

urally a C*-algebra, denoted here by (A, †α) when equipped with a new involution

†α : A→ A as described in the following theorem.

Theorem 3.3. Let (A,α) be a Krĕın C*-algebra with fundamental symmetry α.

Then A becomes a C*-algebra when equipped with the new involution †α defined by
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†α : x 7→ α(x)∗. Furthermore, the fundamental symmetry α is a ∗-automorphism

of this C*-algebra and hence continuous in norm.

Proof. Firstly, we compute

(xy)†α = α(xy)∗ = (α(x)α(y))∗ = α(y)∗α(x)∗ = y†αx†α

x†α†α = α(α(x)∗)∗ = α(α(x)∗∗) = α(α(x)) = x

‖x†αx‖ = ‖α(x)∗x‖ = ‖x‖2

for all x, y ∈ A. Then the first assertion is verified. To show that α is continuous,

by applying Theorem 2.8, it suffices to show that α is a ∗-homomorphism from

(A, †) into itself. Since α(x†α) = α(α(x)∗) = α(α(x))∗ = α(x)†α for all x ∈ A, we

finish the proof of the theorem.

Remark 3.4. Note that given a †-homomorphism α : A→ A such that α◦α = 1A

of a C*-algebra A (with involution denoted by †), we can naturally construct a

Krĕın C*-algebra (A, ∗α) with involution x∗α := α(x†), for x ∈ A and that α

becomes a fundamental symmetry for this Krĕın C*-algebra.

Now we observe the algebraic structure of the even and odd part of (A,α).

Theorem 3.5. Let (A,α) be a unital commutative Krĕın C*-algebra with a given

fundamental symmetry α. Then A+ is a unital commutative C*-algebra and A−

is a unital Hilbert C*-bimodule over A+.

Proof. Note first that on A+ the two involutions ∗ and †α coincide and since A+

is closed under multiplication and involution, it is clearly a unital C*-algebra.

Next we will show that A− is a Hilbert C*-bimodule over A+. We define right

and left multiplications fromA−×A+ andA+×A− intoA− as usual multiplications

in A and we define a pair of A+-valued inner products from A− ×A− into A+ by

A+〈x | y〉 = xy†α and 〈x | y〉A+ = x†αy (3.1)
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for all x, y ∈ A−. With this definitions, we have

A+〈x+ y | z〉 = (x+ y)z†α = xz†α + yz†α =A+ 〈x | z〉+A+ 〈y | z〉 ∀x, y, z ∈ A−

A+〈ax | z〉 = (ax)z†α = a(xz†α) = aA+〈x | z〉 ∀x, y ∈ A−,∀a ∈ A+

A+〈y | x〉 = yx†α = (xy†α)†α = (A+〈x | y〉)†α ∀x, y ∈ A−

A+〈x | x〉 = xx†α ∈ (A+)+ ∀x ∈ A− by Theorem 2.6

A+〈x | x〉 = 0 ⇒ xx†α = 0 ⇒ ‖x‖2 = ‖α(x)∗x‖ = ‖x†αx‖ = 0 ⇒ x = 0 ∀x ∈ A−

〈z | x+ y〉A+ = z†α(x+ y) = z†αx+ z†αy = 〈z | x〉A+ + 〈z | y〉A+ ∀x, y, z ∈ A−

〈z | xb〉A+ = z†α(xb) = (zx†α)b = 〈z | x〉A+b ∀x, y ∈ A−,∀b ∈ A+

〈y | x〉A+ = y†αx = (x†αy)†α = a(〈x | y〉A+)†α ∀x, y ∈ A−

〈x | x〉A+ = x†αx ∈ (A+)+ ∀x ∈ A− by Theorem 2.6

〈x | x〉A+ = 0 ⇒ x†αx = 0 ⇒ ‖x‖2 = ‖α(x)∗x‖ = ‖x†αx‖ = 0 ⇒ x = 0 ∀x ∈ A−

(ax)b = a(xb) ∀x ∈ A−,∀a, b ∈ A+

〈x | ay〉A+ = x†α(ay) = (x†αa)y = (a†αx)†αy = 〈a†αx | y〉A+ ∀x, y ∈ A−,∀a ∈ A+

A+〈xb | y〉 = (xb)y†α = x(by†α) = x(yb†α)†α =A+ 〈x | yb†α〉 ∀x, y ∈ A−,∀a ∈ A+.

We know that

‖x‖A− =
√
‖〈x | x〉A+‖A+ =

√
‖x†αx‖A+ =

√
‖x‖2

A+
= ‖x‖A+

A−‖x‖ =
√

A+‖A+〈x | x〉‖ =
√

A+‖xx†α‖ =
√

A+‖x†αx‖ =
√

A+‖x‖2 = ‖x‖A+ .

Since ‖ ·‖A is complete, ‖ ·‖A− and A−‖ ·‖ are also complete. Hence A− is a unital

Hilbert C*-bimodule over A+, as desired.

Additionally the Hilbert C*-bimodule A− has the property,

A+〈x | y〉z = (xy†α)z = x(y†αz) = x〈y | z〉A+ .

for all x, y, z ∈ A.

For any Krĕın C*-algebra equipped with a fundamental symmetry α, the odd

part A− in the fundamental decomposition A = A+⊕A− is a Hilbert C*-bimodule

but it is not in general an imprimitivity bimodule because A− might not be a full

bimodule over A+. In the following we will usually assume this further property.
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Definition 3.6. Let (A,α) be a Krĕın C*-algebra with a given fundamental sym-

metry α. A Krĕın C*-algebra (A,α) is said to be imprimitive or full if its odd

part A− is an imprimitivity bimodule over A+. We say that (A,α) is rank-one

if dimA+ = dimA− = 1 as complex vector spaces.

Theorem 3.7. Let (A,α) be a Krĕın C*-algebra with a given fundamental sym-

metry α. The algebra A is commutative if and only if the even part A+ is a com-

mutative unital C*-algebra and the odd part is a symmetric Hilbert C*-bimodule

over A+. In particular a rank-one Krĕın C*-algebra is always commutative.

Proof. If A is commutative, clearly A− is a symmetric bimodule over the com-

mutative algebra A+. Furthermore the inner products defined in (3.1) above

satisfy A+〈x | y〉 = xy†α = y†αx = 〈y | x〉A+ and hence A− is a symmetric C*-

bimodule over the commutative C*-algebra A+. Conversely, if A− is a symmetric

C*-bimodule, a−b− = A+〈a− | b†α
− 〉 = 〈b†α

− | a−〉A+ = b−a−, for all a−, b− ∈ A−.

Now, for all a, b ∈ A with decompositions a = a+ + a−, b = b+ + b− an easy

computation shows: ab = (a+ + a−)(b+ + b−) = a+b+ + a+b− + a−b+ + a− + b− =

b+a+ + b−a+ + b+a− + b−a− = ba.

Definition 3.8. We will say that a Krĕın C*-algebra is symmetric if there

exists an odd symmetry i.e. a linear map ε : A → A such that ε ◦ ε = iA,

ε(x∗) = −ε(x)∗ for all x ∈ A, ε(xy) = ε(x)y = xε(y) for all x, y ∈ A and if there

exists a fundamental symmetry α such that ε ◦ α = −α ◦ ε (in this case we say

that the symmetry and the odd symmetry are compatible).

By the properties of odd symmetry, we further have ε(x)ε(y) = ε ◦ ε(xy) and

ε(x)†α = ε(x†α) which are useful in the proof of the next lemma.

Lemma 3.9. If ε is an odd symmetry of a symmetric Krĕın C*-algebra compatible

with the symmetry α, then ε is always isometric.

Proof. For all x ∈ A, ‖ε(x)‖2 = ‖ε(x)†αε(x)‖ = ‖ε(x†α)ε(x)‖ = ‖ε ◦ ε(x†αx)‖ =

‖x†αx‖ = ‖x‖2.
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Next we give an example of a rank-one unital full symmetric Krĕın C*-algebra,

which will play an important role in the proof of our spectral theory. Since, as

we will see, in this case, the fundamental symmetry is necessarily unique, this is

just a well-known example of a commutative Z2-graded C*-algebra. Although all

the properties described in the following three theorems are “standard” from the

theory of Z2-graded C*-algebras, for the convenience of the reader we present here

a direct proof of all of them in the “spirit” of Krĕın C*-algebras.

Let A be a 2 × 2 complex matrix. We define left multiplication operator on

the Hilbert space C2, LA : C2 → C2 by LA(ψ) := Aψ for all ψ ∈ C2. Note

that L : A 7→ LA is a unital ∗-homomorphism in particular LAB = LA ◦ LB and

LA† = LA
† where A† := JAJ with J = [ 1 0

0 −1 ] and LA
† is the adjoint of LA in the

C*-algebra B(C2).

For each a, b ∈ C, let Ta,b =

a b

b a

 . Let K =
{
Ta,b : a, b ∈ C

}
with the

usual matrix operations of addition and multiplication. We define the involution

by T ∗
a,b = Tā,−b̄. Furthermore, we equip K with the operator norm ‖A‖ = ‖LA‖

(where the right-hand-side norm is the operator norm and choose a fundamental

symmetry γ : K → K defined by γ

a b

b a

 =

 a −b

−b a

.

Theorem 3.10. There is a rank-one unital symmetric Krĕın C*-algebra.

Proof. It is easy to verify that γ is a ∗-automorphism on K and γ ◦ γ = 1K, where

1K is the identity map on K.For all matrix A in K, we obtain

‖γ(A∗)A‖ = ‖A†A‖ = ‖LA†A‖ = ‖LA† ◦ LA‖

= ‖L†A ◦ LA‖ = ‖LA‖2 = ‖A‖2.

Then we can write K = K+ ⊕K− where

K+ =


a 0

0 a

 : a ∈ C

 and K− =


0 b

b 0

 : b ∈ C

 .
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Since K+ =

〈1 0

0 1

〉
and K− =

〈0 1

1 0

〉
, we see that dim K+ = dim K− = 1.

The symmetry of the algebra K can be checked by defining ε(Ta,b) := Tb,a.

Theorem 3.11. The identity ιK and γ are the only two unital ∗-automorphisms

from K onto itself. Furthermore, γ is the unique fundamental symmetry on K.

Proof. Let φ be a unital ∗-homomorphism from K into itself. Suppose that φ(e) =

φ(

0 1

1 0

) =

a b

b a

 for some a, b ∈ C. Since e · e = 1 and e∗ = −e, we have

φ(e)φ(e) = φ(1) = 1 and φ(e∗) = −φ(e). From these conditions, we havea2 + b2 2ab

2ab a2 + b2

 =

a b

b a

a b

b a

 =

1 0

0 1


 ā −b̄

−b̄ ā

 =

a b

b a

∗

= −

a b

b a

 =

−a −b

−b −a

 .
Then we have four equations as follows: a2 + b2 = 1, ab = 0, ā = −a and

b̄ = b. By basic arithmetic, we have (a, b) = (0, 1) or (a, b) = (0,−1). Hence

φ(

0 1

1 0

) =

0 1

1 0

 or φ

0 1

1 0

 =

 0 −1

−1 0

. By linearity of φ, we obtain

that

φ

a b

b a

 =

a 0

0 a

 + bφ

0 1

1 0

 =

a b

b a

 or

 a −b

−b a


for all a, b ∈ C. That is φ = 1K or γ, as desired.

For the second assertion, we let φ =

a b

c d

 be the fundamental symmetry on

the rank-one unital Krĕın C*-algebra K. By the property φ(1) = 1, we havea
c

 =

a b

c d

1

0

 =

1

0



and so φ has to be in of the form

1 b

0 d

. By the property that φ ◦ φ is the
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identity map, x+ by + bdy

d2y

 =

a b

c d

a b

c d

x
y

 =

x
y

 .
By easy calculation, we have 2 solutions (b, d) = (0, 1) and (b, d) = (k,−1) where

k is arbitrary in C. Hence φ has to be in the form

1 k

0 −1

 or

1 0

0 1

. Since

the second possibility is the identity map making A not rank 1, φ must be in the

form

1 k

0 −1

 where k ∈ C. Since

φ(e · e) =

1 k

0 −1

exp(iθ)

0

 =

exp(iθ)

0


and

φ(e)2 =

1 k

0 −1

0

1

2

=

 k

−1

2

=

k2 + exp(iθ)

−2k

 ,
by the property φ(e · e) = φ(e)2, it follows that k = 0. Hence φ must be of the

form

1 0

0 −1

 which is equal to γ, as claimed.

Like Gel’fand-Mazur Theorem in C*-algebra, we can characterize the rank-one

unital Krĕın C*-algebras.

Theorem 3.12. Every rank-one unital Krĕın C*-algebra is isomorphic to K.

Proof. Since dimA+ = 1, there is a non-zero element a such that 〈a〉 = A+. Since

the unit 1 is in A+, there is m ∈ C such that ma = 1. Then (m1)a = 1 = a(m1)

and so a is invertible. Let b ∈ A+ be a nonzero element. There is n ∈ C such that

b = na. Then

b · a
−1

n
= na · a

−1

n
= 1 and

a−1

n
· b =

a−1

n
· na = 1.

Hence every non-zero element in A+ is invertible. By Theorem 3.5, A+ is a unital

commutative C*-algebra over C. By Gel’fand-Mazur Theorem (Theorem 2.11),

A+ = C1.
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Since dimA− = 1, there is a non-zero element e such that 〈e〉 = A−. Without

loss of generality, we choose e such that ‖e‖ = 1. Since e∗ ∈ A− and e · e ∈ A+,

we have e∗ = αe and e · e = β for some α, β ∈ C.

From the property (xy)∗ = y∗x∗ for all x, y ∈ A, we have

β̄ = α2β. (3.2)

From the property x∗∗ = x for all x, we have

|α| = 1. (3.3)

From the property ‖α(x)∗x‖ = ‖x‖2 for all x, we have

|αβ| = ‖e‖2 = 1. (3.4)

From equations (3.3) and (3.4), we have |β| = 1. Since |α| = |β| = 1, we can

write α = exp(iδ) and β = exp(iθ) for some δ, θ ∈ C. From (3.2), α2 = β̄
β

=

(β̄)2

|β|2 = (β̄)2 and then exp(2iδ) = exp(−2iθ). Thus δ = −θ + πk for all k ∈ N and

so α = exp(iδ) = exp(−iθ + iπk) for all k ∈ N, that is, α = ± exp(−iθ) for some

θ ∈ [0, 2π). Now we have that e∗ = ± exp(−iθ)e and e · e = exp(iθ) for some

θ ∈ [0, 2π). We use the notation Aθ± corresponding to the previous operations.

We claim that θ = 0. Since a Krĕın a C*-algebra is C*-algebra, by Theorem

3.3 and the property in C*-algebra that ‖x†‖ = ‖x‖ = ‖Lx‖, we have

‖Lγ(x∗)‖ = ‖Lx‖. (3.5)

Furthermore, we can see that

σ(Lx) =

λ | det

a− λ b

b a− λ

 = 0

 = {a+ b, a− b}

and so

‖Lx‖ = sup
λ∈σ(Lx)

|λ| = max{|a+ b|, |a− b|}. (3.6)

Similarly we obtain

σ(Lγ(x∗)) =

λ | det

 ā− λ ±b̄ exp(−iθ)

±b̄ exp(−iθ) ā− λ

 = 0


= {ā+ b̄ exp(−iθ), ā− b̄ exp(−iθ)}
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and so

‖Lγ(x∗)‖ = max{|ā+ b̄ exp(−iθ)|, |ā− b̄ exp(−iθ)|}

= max{|a+ b exp(iθ)|, |a− b exp(iθ)|}. (3.7)

By (3.5), (3.6) and (3.7), we see that θ must be zero or π.

For the case θ = π, we let x = a + be and y = a1 + b1e. Then xy = (aa1 −

bb1) + (ab1 + a1b)e. By the above procedure, we have

‖x‖ = max{|a+ b|, |a− b|}

‖y‖ = max{|a1 + b1|, |a1 − b1|}

‖xy‖ = max{|aa1 − bb1 + ab1 + a1b|, |aa1 − bb1 − ab1 − a1b|}.

If x = y = i+ e, then

‖xy‖ = max{| − 2 + 2i|, | − 2− 2i|} = 2
√

2 � 2 = max{|i+ 1|, |i− 1|}2 = ‖x‖‖y‖.

Hence when θ = π, A is not a Krĕın C*-algebra.

For θ = 0−, we have e ·e = 1 and e∗ = −e. Since every element in A0− is of the

form m1 +ne, where m and n are in C, we define f : A0− → K by f(1) =

1 0

0 1


and f(e) =

0 1

1 0

. Then f is an isomorphism between the Krĕın C*-algebras

A0− and K. Since K is Krĕın C*-algebra, so is A0− .

For θ = 0+, we have e · e = 1 and e∗ = e. Suppose that γ is the fundamental

symmetry on it. Note that γ(x∗+) = x∗− for all x ∈ A. Indeed, let x ∈ A then

x = a+ be for some a, b ∈ C and so

γ(x∗+) = γ(ā+ b̄e) = ā− b̄e = (a+ be)∗− = x∗− .

Then

‖x‖2 = ‖γ(x∗+)x‖ = ‖x∗−x‖,

which contradicts the fact that A− is a nontrivial Krĕın C*-algebra. Since γ is

the only possible fundamental symmetry on A, we can conclude that A+ is not a

Krĕın C*-algebra.
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Theorem 3.13. The space C(M,K) of all continuous functions from a compact

Hausdorff space M into a Krĕın C*-algebra K is a unital Krĕın C*-algebra.

Proof. Let γ be a fundamental symmetry of the Krĕın C*-algebra K and M a

compact Hausdorff space. We define all the operations and the norm as follows:

(f + g)(x) = f(x) + g(x) (fg)(x) = f(x)g(x)

(kf)(x) = kf(x) f ∗C (x) = f(x)∗K

‖f‖C = sup
x∈M

‖f(x)‖K ,

for all k ∈ C, x ∈M and for all f, g ∈ C(M,K). It is easy to check that C(M,K)

is a Banach algebra and a ∗-algebra with the operations and norm above.

To see that C(M,K) is a Krĕın C*-algebra, consider the map φC from C(M,K)

into itself defined by φC(f) = γ ◦ f . Since, for all x ∈M ,

φC(fg)(x) = γ ◦ (fg)(x) = γ(f(x)g(x)) = γ(f(x))γ(g(x)) = φC(f)φC(g)(x)

φC(f ∗C )(x) = (γ ◦ f ∗C )(x) = γ(f(x)∗K ) = γ(f(x))∗K

= (γ ◦ f)(x)∗K = (γ ◦ f)∗C (x) = φC(f)∗C (x),

φC(1C)(x) = γ(1C(x)) = γ(1K) = 1K = 1C(x),

φC is a unital ∗-homomorphism that is an involutive ∗-automorphism because

φC ◦ φC(f) = φC(γ ◦ f) = γ ◦ γ ◦ f = f, ∀f ∈ C(M,K),

and also a fundamental symmetry of a Krĕın C*-algebra because

‖φC(f)∗Cf‖C = sup
x∈M

‖(γ ◦ f)∗C (x)f(x)‖K = sup
x∈M

‖(γ ◦ f)(x)∗Kf(x)‖K

= sup
x∈M

‖γ(f(x))∗Kf(x)‖K = sup
x∈M

‖f(x)‖2
K = ‖f‖2

C ,

for all f ∈ C(M,K).

When we take K := K in the previous theorem, we obtain another example of

commutative full symmetric Krĕın C*-algebra.
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Corollary 3.14. The Krĕın C*-algebra C(M,K) is a unital commutative full

symmetric Krĕın C*-algebra.

Proof. Define the fundamental symmetry φC(f) := γ ◦ f and εC(f) := εK ◦ f .

Theorem 3.15. Let (A,α) be a (unital commutative) Krĕın C*-algebra with a

fundamental symmetry α. Let I be a closed ideal in A invariant under α, i.e.

α(I) ⊆ I, then A/I is also a (unital commutative) Krĕın C*-algebra.

Proof. Since I is a closed ideal in the C*-algebra (A, †α), the quotient (A/I, †α)

is a C*-algebra with involution (x + I)†α := x†α + I. Since I is invariant under

the ∗-automorphism α we can define [α] : A/I → A/I by x + I 7→ α(x) + I for

all x ∈ A and [α] is a †α-automorphism of (A/I, †α). By Remark 3.4, (A/I, ∗)

is a Krĕın C*-algebra with involution (x + I)∗ := α(x†α) + I = x∗ + I. and [α]

becomes the fundamental symmetry on (A/I, ∗).

Theorem 3.16. Let (A,α) and (B, β) be two Krĕın C*-algebras with given fun-

damental symmetries α and β. A ∗-homomorphism φ : A → B satisfying the

property φ ◦ α = β ◦ φ is always continuous. Additionally, φ(A+) ⊆ B+ and

φ(A−) ⊆ B−.

Proof. Note that φ is a †-homomorphism between the associated C*-algebras

(A, †α) and (B, †β). Indeed,

φ(a†) = φ(α(a)∗) = φ(α(a))∗ = β(φ(a))∗ = β(φ(a)∗) = φ(a)†

for all a ∈ A. The “invariance” of φ under α, β implies the last property.

If φ : A→ B is a unital ∗-homomorphism such that φ◦α = β◦φ for a given pair

of fundamental symmetries of the Krĕın C*-algebras A and B, in view of the last

property in Theorem 3.16, we will denote by φ+ : A+ → B+ and φ− : A− → B−

the restrictions to the even and odd parts of the Krĕın C*-algebras. Note that

φ = φ+ ⊕ φ−. In particular, the quotient isomorphism π : A→ A/I from a Krĕın

C*-algebra A to its quotient Krĕın C*-algebra by an ideal I that is invariant under
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a fundamental symmetry α of A, can be written as a direct sum π = π+ ⊕ π− of

the epimorphisms π+ : A+ → (A/I)+ and π− : A− → (A/I)−.

Corollary 3.17. Let (A,α) be a unital Krĕın C*-algebra with a fundamental

symmetry α. Let w be a unital ∗-homomorphism from A into K with the property

that w ◦ α = γ ◦ w. Then A/ ker(w) is a Krĕın C*-algebra.

Proof. By Theorem 3.3, ker(w) is a closed ideal in A. Moreover, α(ker(w)) ⊆

ker(w). To see this, we let x ∈ α(ker(w)). Then there is y ∈ ker(w) such that

α(y) = x. By the condition w ◦ α = γ ◦ w,

w(x) = w ◦ α(y) = γ ◦ w(y) = γ(0) = 0.

and so x ∈ ker(w). Consequently, A/ ker(w) is a Krĕın C*-algebra by Theorem

3.15.

Corollary 3.18. Let (A,α) be a unital full Krĕın C*-algebra with a fundamental

symmetry α. Let w be a unital ∗-homomorphism from A into K with the property

that w ◦ α = γ ◦ w. Then A/ ker(w) ∼= K.

Proof. By Corollary 3.17, A/ ker(w) is a Krĕın C*-algebra. Define f : A/ ker(w) →

K by x + ker(w) 7→ w(x) for all x ∈ A. It is easily checked that f is a unital in-

jective ∗-homomorphism. It remains to show the surjective property. Since A−A+

is full, Without loss of generality, 1 =
n∑

j=1

xjyj for some n ∈ N and xj, yj ∈ A−

for all j = 1, . . . , n. Suppose that w(x) = 0 for all x ∈ A−. Since w is a unital

homomorphism, we have

1 = w(1) = w(
n∑

j=1

xjyj) =
n∑

j=1

w(xj)w(yj) = 0,

which leads to a contradiction. Thus there is an element x in A− such that

w(x) 6= 0. Since w(A−) ⊆ K− and dim K− = 1, we have w(A−) = K−. Similarly

w(A+) = K+. Thus we already have

f(A/ ker(w)) = w(A) = w(A+ ⊕ A−) = w+(A+)⊕ w−(A−) = K+ ⊕K− = K,

and so f is surjective.
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Definition 3.19. A character on a unital (commutative symmetric full) Krĕın

C*-algebra A is a unital ∗-homomorphism w : A → K such that there exists

at least one fundamental symmetry α of the Krĕın C*-algebra A satisfying the

property w ◦ α = γ ◦ w. In this case we will say that α and w are compatible.

We denote by Ω(A) the set of characters on A, and by Ω(A,α) the set of

characters compatible with a given fundamental symmetry α that is

Ω(A,α) = {w | w : A→ K unital ∗-homomorphism compatible with α}.

Note that for every C*-algebra A, Ω(A) ∼= Ω(A, ιA) where the left-hand-side

is the set of characters in the C*-algebra.

For each a ∈ A, define â : Ω(A) → K by â(w) = w(a) for all w ∈ Ω(A). Equip

Ω(A) with the smallest topology which makes each â continuous.

Note that Ω(A,α) with the induced subspace topology is clearly a closed set in

Ω(A) since Ω(A,α) = {w ∈ Ω(A) | α̂(x)(w) = γ ◦ x̂(w),∀x ∈ A} and the functions

α̂(x), γ ◦ x̂ are continuous on Ω(A).

We next define an equivalence relation between the characters as follows:

w1 ∼ w2 ⇐⇒ w2 = φ ◦ w1 for some unital ∗-automorphism φ on K.

By Theorem 3.11, [w] = {w, γ ◦w}. Note that w ∈ Ω(A,α) implies [w] ⊂ Ω(A,α).

We define Ωb(A) = {[w] | w ∈ Ω(A)}, Ωb(A,α) = {[w] | w ∈ Ω(A,α)}.

Equip Ωb(A) with the quotient topology induced by the quotient map

µ : Ω(A) → Ωb(A) given by µ : w 7→ [w].

Note that on Ωb(A,α) the quotient topology induced by Ω(A,α) coincides with

the subspace topology induced by Ωb(A).

Lemma 3.20. Ω(A) and Ω(A,α) are nonempty compact Hausdorff spaces.

Proof. Since a character w : A → K becomes a unital ∗-homomorphism of the

associated C*-algebras (A, †α) and (K, †γ), by the same techniques used in Banach-

Alaoglu theorem, it is a standard matter to check that Ω(A) is a closed subset
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of compact set
∏
x∈A

B(0K, ‖x‖) (Using Heine-Borel and Tychonoff Theorems) and

hence Ω(A) is also a compact set. To show that Ω(A) is a Hausdorff space, we

let w1, w2 be characters such that w1 6= w2. Then there is a ∈ A such that

w1(a) 6= w2(a), that is â(w1) 6= â(w2). Since â is continuous from Ω(A) to the

Hausdorff space K, we obtain that Ω(A) is also Hausdorff. Since Ω(A,α) is a

closed subspace of Ω(A), the result follows.

Lemma 3.21. Let w,w1 and w2 be characters. The following properties hold:

a) If w1 ∼ w2, then ker(w1) = ker(w2).

b) If w ∈ Ω(A,α) for all x ∈ A, we have w(x) = 0 ⇐⇒ w(x†αx) = 0 .

c) If w1, w2 ∈ Ω(A,α) and w1+ = w2+, then ker(w1) = ker(w2).

Proof. It is easy to show a).

For b), assume that w(x†αx) = 0. Then

‖w(x)‖2 = ‖γ(w(x))∗w(x)‖ = ‖w(α(x))∗w(x)‖ = ‖w(α(x)∗x)‖ = ‖w(x†αx)‖ = 0,

and so w(x) = 0.

For c), by the assumption, we have ker(w1+) = ker(w2+). Let x ∈ A− be

such that w1(x) = 0. By b), w1(α(x∗)x) = 0 and also w2(α(x∗)x) = 0 because

ker(w1+) = ker(w2+). Again by b), w2(x) = 0 and hence ker(w1−) ⊆ ker(w2−).

By the same argument, it is elementary to verify the inverse inclusion.

Lemma 3.22. Let (A,α) be a Krĕın C*-algebra equipped with a fundamental

symmetry α and let ω ∈ Ω(A+) be a character defined on the even part of the

Krĕın C*-algebra A = A+ ⊕ A−. Define

I+ := ker(w), I− := A− ker(w) := span{xa | x ∈ A−, a ∈ kerw}, I := I+⊕I−.

Then I is an ideal in A invariant under α and the following properties hold:

a) A+/I+ is a C*-algebra with dimension 1.
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b) A−/I− is a Hilbert C*-bimodule over A+/I+.

c) A/I = (A/I)+ ⊕ (A/I)− ∼= A+/I+ ⊕ A−/I−.

d) A/I is a rank-one Krĕın C*-algebra.

Proof. The bimodule A−/I− over A+/I+ is a Hilbert C*-bimodule with the inner

products defined as in the proof of theorem 3.5 using the (x + I−)†α := x†α + I−

involution. The only other thing that is not completely straightforward is that

A/I is rank-one. By b), since by Gel’fand-Mazur A+/I+ ∼= C, A−/I− is a Hilbert

space over A+/I+. To show the rank-one property, suppose by contradiction that

x, y ∈ A−/I− is a pair of orthonormal vectors, then

y = 〈x | x〉y + 〈y | x〉y = 〈x+ y | x〉y = (x+ y)〈x | y〉 = 0,

which is impossible.

Theorem 3.23. If (A,α) is a unital commutative imprimitivity Krĕın C*-algebra

with fundamental symmetry α, then Ωb(A,α) is a compact Hausdorff space.

Proof. Since Ω(A,α) is compact by Lemma 3.20 and µ is continuous, Ωb(A,α) is

also compact.

We now consider the map φ from Ωb(A,α) to Ω(A+) defined by [w] 7→ w+. If

we can show that this map is a homeomorphism, we can conclude that Ωb(A,α)

is a Hausdorff space since Ω(A+) is a Hausdorff space by the spectral theorem for

unital commutative C*-algebras. It is sufficient to show that φ is a continuous

bijective map because Ωb(A,α) is a compact space and Ω(A) is a Hausdorff space.

To see that, φ is well-defined, let [w1] = [w2]. If w1 6= w2, then w2 = γ ◦ w1.

For any x ∈ A+, w1(x) = w1(α(x)) = γ(w1(x)) = w2(x), that is, w1+ = w2+.

We next show that R := φ ◦ µ is a continuous map. Note that, by definition,

we have R(w) = w+. For easier consideration, we provide a diagram of all the

functions involved.

Ω(A,α)
µ

xxrrrrrrrrrr
â

##FFFFFFFFF

R
��

Ωb(A,α)
φ

// Ω(A+)
â+

// C



25

Since for all a ∈ A+, â = â+ ◦ R is continuous on Ω(A,α), R is also continuous.

By the properties of quotient topology we also have that φ is a continuous map.

Next, we will show that φ is a bijection.

To show that φ is injective, we suppose that w1, w2 are characters on (A,α)

such that w1+ = w2+. We next examine the following diagram

A K A

K ∼= A/ ker(w1) A/ ker(w2) ∼= K

-w1

?

π1

� w2

?

π2

�
�

�
�

���

β1

@
@

@
@

@@I

β2

By Lemma 3.21 (c) and Corollary 3.18 we have A/ ker(w1) ∼= K ∼= A/ ker(w2).

Hence β2 ◦ β−1
1 is a unital ∗-automorphism on K. Since by Theorem 3.11 a unital

∗-automorphism on K is either the identity map or γ, we have to consider two

cases.

1. β2 ◦ β−1
1 is an identity on K

Then β1 = β2. Since ker(w1) = ker(w2), we have

w1(a) = β1(a+ kerw1) = β2(a+ kerw2) = w2(a),

for all a ∈ A. Thus w1 = w2.

2. β2 ◦ β−1
1 = γ

Then β2 = γ ◦ β1. Again by the fact that ker(w1) = ker(w2), we have

w2(a) = β2(a+ kerw2) = γ ◦ β1(a+ kerw1) = γ ◦ w1(a),

for all a ∈ A. Hence w2 = γ ◦ w1.

From both cases, we can conclude that [w1] = [w2] which implies the injection

of φ, as desired. To prove the surjectivity of φ, let wo : A+ → K+. Consider

I+ := ker(wo) and define the ideal I in A as in Lemma 3.22.

Since A/I is a rank-one Krĕın C*-algebra, A/I is isomorphic to K by an

isomorphism f such that f ◦ [α] = γ ◦ f , where [α] is the fundamental symmetry
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of A/I such that π ◦α = [α] ◦π. Note that f = f+⊕ f− where f+ : (A/I)+ → K+

is the isomorphism f+(a+ I) = wo(a), for all a ∈ A+.

A
π // A/I

f // K.

Define w := f ◦ π. Then w ∈ Ω(A,α) because w ◦ α = γ ◦ w. We claim that

w+ = wo. To see this, let a ∈ A+. Then

w(a) = f ◦ π(a) = f(a+ I) = wo(a),

and the theorem is proved.

Corollary 3.24. If w1 and w2 are characters on Ω(A,α), then

[w1] = [w2] ⇐⇒ kerw1 = kerw2.

Definition 3.25. If (A,α, ε) is a unital commutative full symmetric Krĕın C*-

algebra with a given fundamental symmetry α and a given odd symmetry ε, we

define the even spectrum Ω(A,α, ε) := {w ∈ Ω(A,α) | εK ◦ w ◦ ε = w}, the set

of even characters of A. Similarly we call w ∈ Ω(A,α) an odd character if

it satisfies εK ◦ w ◦ ε = −w.

Theorem 3.26. If (A,α, ε) is a unital commutative full symmetric Krĕın C*-

algebra with fundamental symmetry α and odd symmetry ε, the character w ∈

Ω(A,α) is even if and only if γ ◦ w ∈ Ω(A,α) is odd. Hence in every equivalence

class [w] = {w, γ ◦ ω} there is one and only one even character and there is a

bijection between Ω(A,α, ε) and Ωb(A,α).

Proof. Since εK ◦ γ = −γ ◦ εK, we see that w is even if and only if γ ◦ w is odd.

More precisely, if w is even then εK ◦ γ ◦ w ◦ ε = −γ ◦ εK ◦ w ◦ ε = −γ ◦ w, which

implies that γ ◦w is odd. For the other direction, assume that γ ◦w is odd. Then

w = γ ◦ γ ◦ w = γ ◦ −εK ◦ γ ◦ w ◦ ε = −γ ◦ εK ◦ γ ◦ w ◦ ε

= εK ◦ γ ◦ γ ◦ w ◦ ε = εK ◦ w ◦ ε,
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and therefore w is even. To show that there exists an even character, let w ∈ [w].

Define wo := w|A+ and w̃(x) := wo(x+) + εK ◦ wo ◦ ε(x−). By the properties of

the odd symmetry, we see that w̃ is an even character compatible with α. Since

w̃|A+ = w|A+ , by Lemma 3.21 c), we have ker w̃ = kerw. Applying Corollary 3.24,

we obtain [w̃] = [w].

Definition 3.27. Let A be a unital commutative full symmetric Krĕın C*-algebra

and let α be a fundamental symmetry of A and ε an odd symmetry of A. The

Gel’fand transform of x ∈ A is the map x̂ : Ωb(A,α) → K defined by:

x̂([w]) := w(x+) + εK ◦ w ◦ ε(x−), ∀x ∈ A.

By the previous theorem, it is clear that the Gel’fand transform x̂ of x is just

the function that to every even character w ∈ Ω(A,α, ε) associates w(x).

Although the following theorem is our goal, the proof is easy and straightfor-

ward.

Theorem 3.28 (Spectral theorem). If (A,α, ε) is a unital commutative full

symmetric Krĕın C*-algebra with fundamental symmetry α and odd symmetry ε,

then the Gelfand transform

ϕ : A→ C(Ωb(A,α),K), a 7→ â

is an isometric ∗-isomorphism.

Proof. In view of Theorem 3.26, let [w], with w even, be a point of Ωb(A,α). To

prove that ϕ is a ∗-homomorphism of algebras, let a, b ∈ A and k ∈ C,

(ϕ(ab))([w]) = (âb)([w]) = w(ab) = w(a)w(b) = â([w])b̂([w]) = (ϕ(a)ϕ(b))([w]),

(ϕ(ka+ b))([w]) = (k̂a+ b)([w]) = w(ka+ b) = kw(a) + w(b) = kâ([w]) + b̂([w])

= (kϕ(a) + ϕ(b))([w]),

ϕ(a∗)[w] = â∗([w]) = w(a∗) = w(a)∗ = ϕ(a)∗[w]

for all [w] ∈ Ωb(A,α). Clearly ϕ(1A) = 1C so that ϕ is unital.
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It is easy to verify that ϕ ◦ α = φC ◦ ϕ. In fact, for all a ∈ A, [w] ∈ Ωb(A,α),

(ϕ ◦ α)(a)[w] = ϕ(α(a))[w] = w(α(a)) = γ(w(a)) = γ(ϕ(a)[w])

= (γ ◦ ϕ(a))[w] = φC(ϕ(a))[w] = (φC ◦ ϕ)(a)[w].

We also have that ϕ ◦ ε = εC ◦ϕ, in fact, for all [w] ∈ Ωb(A,α), and all x ∈ A,

εC ◦ ϕ(x)[w] = εK(w(x)) = εK ◦ w ◦ ε2(x) = w ◦ ε(x) = ϕ ◦ ε(x)[w]. (3.8)

Let A be a unital commutative Krĕın C*-algebra with the fundamental sym-

metry α. Then (A, †A) and (C(Ωb(A,α),K), †C) become C*-algebras with the

involutions †A and †C defined as in Theorem 3.3 respectively, that is,

a†A = α(a∗A) for all a ∈ A and f †C = φC(f ∗C ) for all f ∈ C(Ωb(A,α),K).

To show ϕ is a †-homomorphism, let a ∈ A and [w] ∈ Ωb(A,α),

ϕ(a†A)[w] = ϕ(α(a∗A))[w] = α̂(a∗A)[w] = w(α(a∗A)).

Since w ◦ α = γ ◦ w, we have,

ϕ(a†A)[w] = γ(w(a∗A)) = γ(w(a)∗K) = γ(â([w])∗K) = γ(â∗C ([w]))

Since φC(f) = γ ◦ f for all f ∈ C(Ωb(A),K),

ϕ(a†A)[w] = φC(â∗C )[w] = â†C [w] = ϕ(a)†C [w].

By the spectral theorem for unital commutative C*-algebras, the restriction of

the Gel’fand transform to the even part ϕ+ : A+ → C(Ω(A,α),K)+ is an isometric

†-isomorphism, for all a ∈ A that coincides with the usual Gel’fand isomorphism

for the commutative unital C*-algebra A+.

Since ε and εC are linear surjective (because ε2 = iA) isometries, from the

equation (3.8), we see that ϕ− = ε− ◦ ϕ+ ◦ εC+ is isometric surjective too and

hence ϕ = ϕ+ ⊕ ϕ− is a †-epimorphism. Since ϕ is a †-homomorphism, we have

‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A. Since ϕ+ and ϕ− are injective and the uniqueness

property of a directsum, ϕ is also injective. Now ϕ is a †-isomorphism, it implies

that ϕ−1 exists and is also †-isomorphism which implies that ‖a‖ = ‖ϕ−1(ϕ(a))‖ ≤

‖ϕ(a)‖ for all a ∈ A.
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The previous theorem provide a complete characterization of those unital com-

mutative Krĕın C*-algebras that are full and symmetric. In this case, a posterori,

with a bit more work, we might actually prove that the fundamental symmetry

and the odd symmetry are indeed unique. Further analysis is required in order

to provide a spectral theory of more general Krĕın C*-algebras. Omitting the

exchange symmetry requirement will lead us to algebras of sections of Banach

bundles of Krĕın C*-algebras and omitting the commutativity (or just the im-

primitivity condition on the odd part) will lead us to a theory of Krĕın spaceoids

along very similar lines to those used to describe the spectrum of commutative full

C*-categories in [1], we hope that the extra effort paid here to describe a “direct

proof” of the spectral theory in the special case of commutative full symmetric

Krĕın C*-algebras will facilitate the analysis of those more general topics that we

plan to address in the near future.
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