ทฤษฎีชิิงสปกตรัมบนพีชคณิตซีสตาร์ไครน์สมมาตรเต็มสลับที่ซึ่งมีเอกลักษณ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2551
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

SPECTRAL THEORY ON UNITAL COMMUTATIVE

 FULL SYMMETRIC KREǏN C*-ALGEBRAS

Thesis Title	SPECTRAL THEORY ON UNITAL
	COMMUTATIVE FULL SYMMETRIC
	KREĬN C*-ALGEBRAS
By	Mr. Pichkitti Bannangkoon
Field of Study	Mathematics
Thesis Advisor	Associate Professor Wicharn Lewkeeratiyutkul, Ph.D.
Thesis Co-Advisor	Paolo Bertozzini, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE
?. upeqporn V Komptest. Chairperson
(Professor Yupaporn Kemprasit, Ph.D.)
 Advisor
(Associate Professor Wicharn Lewkeeratiyutkul, Ph.D.)

(Zen Harper, Ph.D.)

(Associate Professor Pachara Chaisuriya, Ph.D.)

พิชญู์กิตติ บรรณางถูร : ทฤษฎีดิงงสเปกตรัมบนพืชกณิตซีสตาร์|ครน์สมมาตรเต็มสลับที่ซึ่งมี เอกลักษณ์. (SPECTRAL THEORY ON UNITAL COMMUTATIVE FULL SYMMETRIC
 ปรึกษาวิทยานิพนธ์ร่วม : Dr. Paolo Bertozzini, 31 หน้า.

เราเรียกพีชคมิตอาวัต $\left(A,{ }^{*}\right)$ ว่า พีชคณิตซีสตาร์ไกรร์ ถ้า $\left(A,{ }^{*}\right)$ มีค่าประจำพีชคณิตบานาค อย่างน้อยหนึ่งค่าประจำ และมีสมมาตรหลักมูลของ ($A,{ }^{*}$) กล่าวคือ $\alpha \in \operatorname{Aut}(A, *)$ ซึ่ง $\alpha^{2}=1_{A}$ และ $\left\|\alpha(x)^{*} x\right\|=\|x\|^{2}$ สำหรับทุก $x \in A$ เป้วมมาขสุงโุดคือการพัตนาทฤษฎี|ชิงสเปกตรัมบนพีชคณิต ซีสตาร์ไกรน์สมมาตรเต็มสลับที่ซื่งนีเอกสัดบม์ เมื่อส่วนคี่เป็นทวิมออคูสมมาตรอิมพริมิทิวิทีบนส่วนคู่ และมี "สมมาตรแลกเปลี่ยน" ε ที่แหมาซุมระหว่ง A_{+}+ละ A ผลลัพธ์ที่ได้เป็นนัยทั่วไปของทฤษฎี เชิงสเปกตรัมบนพีชคณิตซีสตาร์โลับขี่ซื่ชมี่อกลักษน์

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

กากวิชา \qquad คมิตศาสตร์ \qquad
 สาขาวิชา คนิตศาสตร์ \qquad
ปีการกึกบา. \qquad 2551. \qquad ลายมือชื่ออาจรย์ที่ปรึกษาวิทยานิพนธ์หลัก Lain copel ลายมือชื่ออาจารช์ที่ปรีกษาวิทยานิพนธ์ร่วม. \qquad peB
\# \# 4972410423 : MAJOR MATHEMATICS
KEYWORDS : SPECTRAL THEORY / KREĬN C*-ALGEBRAS
PICHKITTI BANNANGKOON : SPECTRAL THEORY ON UNITAL COMMUTATIVE FULL SYMMETRIC KREĬN C* -ALGEBRAS.

ADVISOR : ASSOC. PROF. WICHARN LEWKEERATIYUTKUL, Ph.D. CO-ADVISOR : PAOLO BERTOZZINI, Ph.D. 31 pp .

An involutive algebra (A^{*}) is called a Kremlin C^{*}-algebra if it admits at least one Banach algebra norm and one fundamental symmetry of $(A, *)$, ie., $\alpha \in \operatorname{Aut}(A, *)$ such that $\alpha^{2}=1_{A}$ and $\left\|\alpha\left(x^{*}\right) x\right\|=\|x\|^{2}$ for all $x \in A$. The ultimate goal is to develop a spectral theory on unital commutative Krems C* -algebras when the odd part is a symmetric imprimitivity bimodule over the even part and there exists a suitable "exchange symmetry"/ between A_{+}and A_{-}. The result we obtained is a generalization of spectral theory on unital commutative C^{*}-algebras.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Department :Mathematics.... Student's Signature: .̄ึగing uTs Mun
Field of Study :Mathematics...
Academic Year : \qquad 2008 \qquad Principal Advisor's Signature Lala 1 bul Co-Advisor's Signature :

ACKNOWLEDGMENTS

I offer my sincerest gratitude to my advisors, Associate Professor Dr. Wicharn Lewkeeratiyutkul and Dr. Paolo Bertozzini for their helpful suggestions, useful hints and valuable comments. They have provided me not only mathematical inspiration but also abundant knowledge which enable me to complete this work. Without them, my Masters degree would not have been successful.

I would like to express my gratefulness to my thesis committee for their constructive comments and to all of my mathematics teachers during my study for many wonderful courses.

I must not forget to thank Dr. Roberto Conti for making several suggestions and providing references to arguments in the theory of C^{*}-dynamical systems $\left(\mathbb{Z}_{2^{-}}\right.$ graded C*-algebras) that might-be used to shortcut/simplify most of the proofs and results provided in this work.

Special appreciation to the Development and Promotion of Science and Technology Talents Project (DPST) for long term financial support and furnishing me the great opportunity of studying advanced mathematics.

Finally, I would like to dedicate this accomplishment to my beloved parentsTerdgiad and Wanida Bannangkoon- the most important persons in my life who have always been there.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) V
ACKNOWLEDGMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 4
III MAIN RESULTS 10
REFERENCES 30
VITA 31

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

The study of vector spaces equipped with "inner products" that are not necessarily positive-definite has always been a theme of extreme importance in relativistic physics starting probably with the work of H.Minkowski. Complex vector spaces with indefinite sesquilinear forms have been introduced in relativistic quantum field theory by P.Dirac [5], W.Pauli [14] and then used by S.Gupta [9] K.Bleuler [3], although their mathematical definition has been given later by L.Pontrjagin [15]. Complete "indefinite" inner product spaces, called Kreĕn spaces, have been introduced by Ju.Ginzburg [8] and E.Scheibe [16] and the study of their properties has been undertaken by several Russian mathematicians.

Although algebras of continuous operators on Krĕ̆n spaces have been around for some time, the first definition of an abstract Krĕ̆n C*-algebra has been provided only recently by K.Kawamura $[10,11]$. Kreĭn C*-algebras are somehow expected to play some role in a "semi-Riemannian" version of A.Connes noncommutative geometry [4] (see A.Strohmaier [17], M.Pasche-A.Rennie-R.Verch [13] for details) and for this reason it should be of some interest to develop a spectral theory that is suitable for them. 4 J ?

It is the purpose of this paper to introduce a simple spectral theory for the special class of Kruñ C^{*}-algebras that decompose, via a fundamental symmetry, in the direct sum $A=A_{+} \oplus A_{-}$with A_{+}a commutative C^{*}-algebra and A_{-}a symmetric imprimitivity (anti-)Hilbert C^{*}-bimodule over A_{+}and that are equipped with an odd symmetry exchanging A_{+}and A_{-}. Our main result (Theorem 3.28) is that every such Kreĭn C^{*}-algebra turns out to be isomorphic (via Gel'fand tranform) to an algebra of continuous functions with values in a very elementary Kreŭn C*-algebra defined in detail in Theorem 3.10 .

The main result presented here actually can be obtained in at least a few other ways that we briefly describe here below:

- For a symmetric imprimitivity commutative unital Kren̆ C*-algebra A, the even part A_{+}, as a commutative unital C*-algebra, is isomorphic to the algebra of sections of a trivial complex line bundle over the Gel'fand spectrum $\Omega\left(A_{+}\right)$. The odd part A_{-}is a symmetric imprimitivity Hilbert C*-bimodule over A_{+}and, making use of the spectral theorem for imprimitivity Hilbert C^{*}-bimodules developed in [2], it is isomorphic to the bimodule of sections of a complex line bundle over the same $\Omega\left(A_{+}\right)$. Under the existence of an odd symmetry on A, the Witney sum of the previous two line bundles turns out to be a bundle of rank-one Krein C^{*}-algebras isomorphic to \mathbb{K} over $\Omega\left(A_{+}\right)$.
- Although we are not aware now of a specific reference to a Gel'fand theorem, once a specific fundamental symmetry/odd symmetry α, ε has been chosen on A, the Krein C^{*}-algebra becomes completely equivalent to a $\mathbb{Z}_{2^{-}}$ graded C*-algebra with a commutative even part and for such elementary C^{*}-algebras spectral results are, for sure, obtainable as special cases from the general theory of C^{*}-dynamical systems.
- To every unital Kreĭn C*-algebra equipped with a given fundamental symmetry, we can always associate a C*-category with two objects. In the case of imprimitivity commutative unital $\mathrm{Krein} \mathrm{C}^{*}$-algebras, such C^{*}-category will be commutative and full according to the definition provided in [1] and our spectral theorem can be recovered as a trivial applicationoof the general spectral theory for commutative full C^{*}-cafegories developed in [1].

The techniques utilized here in the proof of this result are essentially an adaptation of those developed in [1] for a spectral theory of commutative full C^{*}-categories. Our choice to develop a completely independent proof of the result can be justified from the desire to test and caliber some of the general techniques introduced in [1] in a simple situation that in the near future might be used as a "labora-
tory" for non-commutative extensions of the spectral theorem. It is expected that more powerful spectral theories for wider classes of Kreĭn C*-algebras might be developed using a Kreĭn version of the spaceoid Fell bundle introduced in [1].

CHAPTER II

PRELIMINARIES

For the convenience and usefulness of the reader, we provide here some background material and beneficial theorems on the theory of C^{*}-algebras and Hilbert C*-modules (see [12], [2] for all the details).

Definition 2.1. An algebra over the complex numbers is a complex vector space A equipped with a bilinear map (called product) : : $A \times A \rightarrow A, \quad \cdot:(x, y) \mapsto x y$ and satisfies an associative law, that is, $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in A$. The algebra is called unital if $\exists 1_{A} \in A \forall x \in A, \quad x \cdot 1_{A}=1_{A} \cdot x=x$.

Definition 2.2. An algebra is called involutive or also $a *$-algebra if it is equipped with a function $*: A \longrightarrow A$, such that:

$$
\begin{aligned}
& \left(x^{*}\right)^{*}=x \quad \forall x \in A \\
& (x \cdot y)^{*}=y^{*} \cdot x^{*} \quad \forall x, y \in A, \\
& (\alpha x+\beta y)^{*}=\bar{\alpha} x^{*}+\bar{\beta} y^{*} \quad \forall \alpha, \beta \in \mathbb{C}, \forall x, y \in A .
\end{aligned}
$$

Definition 2.3. A normed algebra is an algebra A that is also a normed space and that satisfies the property: $\|x \cdot y\| \leq\|x\| \cdot\|y\| z \forall x, y \in A . A$ Banach algebra is a normed algebra that, as a normed space, is complete.

Definition 2.4. A pre- C^{*}-algebra is an involutive Calgebra A that is also a normed algebra that satisfies the property $\left\|x^{*} x\right\|=\|x\|^{2} \quad \forall x \in A . A C^{*}$-algebra is a pre-C*-algebra that is also Banach algebra.

Example 2.5. The followings are examples of C^{*}-algebras:

1. Let X be a compact Hausdorff space. Then the space $C(X)$ of all continuous complex-valued functions on X is a unital commutative C^{*}-algebra with the
following operations and norm: $\forall x \in X$,

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x), & (c f)(x)=c f(x), \\
(f g)(x)=f(x) g(x), & \left(f^{*}\right)(x)=\overline{f(x)}, \\
\|f\|=\sup \{|f(x)|: x \in X\} . &
\end{array}
$$

2. The space $B(H)$ of bounded linear maps on a Hilbert space H is a unital C^{*} algebra that is non-commutative if $\operatorname{dim}(H)>1$, with the following operations and norm:

$$
\begin{array}{ll}
(T+S)(x)=T(x)+S(x), & (c T)(x)=c T(x) \\
(T \circ S)(x)=T(S(x)), & \|T\|=\sup _{x \neq 0} \frac{\|T(x)\|}{\|x\|}
\end{array}
$$

the involution T^{*} of T is the adjoint of $T:\langle T x \mid y\rangle=\left\langle x \mid T^{*} y\right\rangle, \forall x, y \in H$.

Theorem 2.6. Let B be a unital subalgebra of a unital C^{*}-algebra A. If $x \in B$ and $x \in A^{+}:=\left\{z^{*} z \mid z \in A\right\}$, then $x \in B^{+}$.

Definition 2.7. A homomorphism from an algebra A to an algebra B is a linear map $\varphi: A \rightarrow B$ such that

$A *$-homomorphism $\varphi: A \rightarrow B$ of $*$-algebras A and B is a homomorphism of algebras such that $\varphi\left(a^{*}\right)=\varphi(a)^{*} \sigma \forall a \in A$. If in addition φ is a bijection, it is a *-isomorphism.

Theorem 2.8. A *-homomorphism $\varphi: A \rightarrow B$ froma Banach $*$-algebra A to a C^{*}-algebra B is necessarily norm-decreasing.

Definition 2.9. A character on a commutative algebra A is a unital homomorphism $\tau: A \rightarrow \mathbb{C}$. We denote by $\Omega(A)$ the set of characters on A.

For each $a \in A$, define $\hat{a}: \Omega(A) \rightarrow \mathbb{C}$ by $\hat{a}(\tau)=\tau(a)$ for all $\tau \in \Omega(A)$. Equip $\Omega(A)$ with the smallest topology on $\Omega(A)$ which makes each \hat{a} continuous.

Theorem 2.10. If A is a unital commutative Banach algebra, then $\Omega(A)$ is a compact Hausdorff space with respect to the topology defined above.

Theorem 2.11 (Gel'fand-Mazur). If A is a unital Banach algebra in which every non-zero element is invertible, then $A=\mathbb{C} 1$.

Theorem 2.12 (Spectral theorem). If A is a non-zero unital commutative C^{*}-algebra, then the Gelfand transform

$$
\varphi: A \rightarrow C(\Omega(A)), a \mapsto \hat{a}, \quad(\hat{a}: \Omega(A) \rightarrow \mathbb{C}, \tau \mapsto \tau(a))
$$

is an isometric *-isomorphism.

Definition 2.13. A right R-module E over a ring R is an Abelian group $(E,+)$ equipped with an operation : $: E \times R \rightarrow E, \cdots(x, a) \mapsto x a$, of right multiplication by elements of the ring R, that satisfies the following properties:

$$
\begin{aligned}
& x \cdot(a+b)=(x \cdot a)+(x \cdot b), \quad \forall x \in E \forall a, b \in R, \\
& (x+y) \cdot a=(x \cdot a)+(y \cdot a), \quad \forall x, y \in E \forall a \in R, \\
& x \cdot(a b)=(x \cdot a) \cdot b, \quad \forall x \in E \forall a, b \in R .
\end{aligned}
$$

If the ring R is unital, we say that E is a unital right R-module if the additional property here is satisfied:

$$
x \cdot 1_{R}=x, \quad \forall x \in E .
$$

Analogously, we can define a (unital) left R-module Eover a ring R.
Note that a unitalmodule over a unital complexalgebrā is naturally a complex vector space.

Definition 2.14. A unital right pre-Hilbert C^{*}-module M_{B} over a unital C^{*}-algebra B is a unital right module over the unital ring B that is equipped with
a B-valued inner product $(x, y) \mapsto\langle x \mid y\rangle$ such that

$$
\begin{aligned}
& \langle z \mid x+y\rangle_{B}=\langle z \mid x\rangle_{B}+\langle z \mid y\rangle_{B} \quad \forall x, y, z \in M, \\
& \langle z \mid x \cdot b\rangle_{B}=\langle z \mid x\rangle_{B} b \quad \forall b \in B \quad \forall x, z \in M, \\
& \langle y \mid x\rangle_{B}=\langle x \mid y\rangle_{B}^{*} \quad \forall x, y \in M \\
& \langle x \mid x\rangle_{B} \in B^{+} \quad \forall x \in M \\
& \langle x \mid x\rangle_{B}=0_{B} \Rightarrow x=0_{M}
\end{aligned}
$$

Analogously, a left pre-Hilbert \boldsymbol{C}^{*}-module ${ }_{A} M$ over a unital C^{*}-algebra A is a unital left module M over the unital ring A, that is equipped with an A-valued inner product $M \times M \rightarrow A$ denoted by $(x, y) \mapsto_{A}\langle x \mid y\rangle$. Here the A-linearity is on the first variable.

Remark 2.15. A right (respectively left) pre-Hilbert C^{*}-module M_{B} over the $C^{*}{ }^{*}$ algebra B is naturally equipped with a norm

$$
\|x\|_{M}=\sqrt{\left\|\langle x \mid x\rangle_{B}\right\|_{B}} \quad \forall x \in M .
$$

Definition 2.16. A right (resp. left) Hilbert C^{*}-module is a right (resp. left) pre-Hilbert C^{*}-module over a C^{*}-algebra B that is a Banach space with respect to the previous norm $\# \cdot \|_{M}\left(\right.$ resp. $\left.{ }_{M}\|\cdot\|\right)$.

Definition 2.17. A right Hilbert C^{*}-module M_{B} is said to be full if

$$
6\left\langle M_{B} \mid M_{B}\right\rangle_{B}:=\frac{9}{\operatorname{span}\left\{\langle x \mid y\rangle_{B} \mid x, y \in M_{B}\right\}}=B
$$

where the closure is in the norm topology of the C^{*}-algebral B. A similar definition holds for a left Hilbert C^{*}-module.

We recall here the following well-known result, see for example in [7, Page 65]:

Lemma 2.18. Let M_{B} be a right Hilbert C^{*}-module over a unital C^{*}-algebra B. Then M_{B} is full if and only if $\operatorname{span}\left\{\langle x \mid y\rangle_{B} \mid x, y \in M_{B}\right\}=B$.

We also recall a few definitions and results on bimodules (see for example [2]).

Theorem 2.19. ([2, Proposition 2.6]) Let M_{A} be a right Hilbert C^{*}-module over a unital C^{*}-algebra A and $J \subset A$ an involutive ideal in A. Then the set $M J:=$ $\left\{\sum_{j=1}^{N} x_{j} a_{j} \mid x_{j} \in M, a_{j} \in J, N \in \mathbb{N}_{0}\right\}$ is a submodule of M. The quotient module $M /(M J)$ has a natural structure as a right Hilbert C^{*}-module over the quotient C^{*}-algebra A / J. If M is full over A, also $M /(M J)$ is full over A / J. A similar statement holds for a left Hilbert C^{*}-module.

Recall that a unital bimodule ${ }_{A} M_{B}$ over two unital rings A and B is a left unital A-module and a right unital B-module such that $(a \cdot x) \cdot b=a \cdot(x \cdot b)$, for all $a \in A, b \in B$ and $x \in M$.

Definition 2.20. A pre-Hilbert C^{*}-bimodule ${ }_{A} M_{B}$ over a pair of unital C^{*} algebras A, B is a left pre-Hilbert C^{*}-module over A and a right pre-Hilbert C^{*} module over B such that:

$$
\begin{aligned}
& (a \cdot x) \cdot b=a \cdot(x \cdot b) \quad \forall a \in A \forall x \in M \forall b \in B, \\
& \langle x \mid a y\rangle_{B}=\left\langle a^{*} x \mid y\right\rangle_{B} \quad \forall x, y \in M \forall a \in A, \\
& { }_{A}\langle x b \mid y\rangle=A\left\langle x \mid y b^{*}\right\rangle \quad \forall x, y \in M \forall b \in B .
\end{aligned}
$$

A Hilbert C^{*}-bimodule ${ }_{A} M_{B}$ is a pre-Hilbert C^{*}-bimodule over A and B that is simultaneously a left Hilbert C^{*}-module over A and a right Hilbert C^{*}-module over B. A full Hilbert C^{*}-bimodule ${ }_{A} M_{B}$ over the C^{*}-algebras A and B is said to be an imprimitivity bimodule or an equivalence bimodule if:

$$
6 \backslash A\langle x \mid y\rangle \cdot \mid z \bumpeq x ;\langle y||z\rangle_{B} \forall x, y, z \in M \text {. }
$$

Remark 2.21. (see for example (2, Remark 2.14]) In an A-B pre-Hilbert C^{*} bimodule there are two, usually different, norms, one as-a left-G*-module over A and one as a right- C^{*}-bimodule over B :

$$
{ }_{M}\|x\|:=\sqrt{\left\|_{A}\langle x \mid x\rangle\right\|_{A}}, \quad\|x\|_{M}:=\sqrt{\left\|\langle x \mid x\rangle_{B}\right\|_{B}}, \quad \forall x \in M,
$$

but this two norms coincide for an imprimitivity bimodule. In fact,

$$
\begin{aligned}
{ }_{M}\|x\|^{4} & =\left\|_{A}\langle x \mid x\rangle\right\|_{A}^{2}=\left\|_{A}\langle x \mid x\rangle_{A}\langle x \mid x\rangle\right\|_{A}=\left\|_{A}\left\langle x\langle x \mid x\rangle_{B} \mid x\right\rangle\right\|_{A} \\
& \leq\left\|\langle x \mid x\rangle_{B}\right\|_{B} \cdot{ }_{A}\|\langle x \mid x\rangle\|_{A}=\|x\|_{M}^{2} \cdot{ }_{M}\|x\|^{2} .
\end{aligned}
$$

Definition 2.22. We say that a bimodule ${ }_{A} M_{A}$ is a symmetric bimodule if ax $=x a$, for all $x \in M$ and all $a \in A$. If ${ }_{A} M_{A}$ is a Hilbert C^{*}-bimodule, we say that it is a symmetric C^{*}-bimodule if it is symmetric as a bimodule and ${ }_{A}\langle x \mid y\rangle=\langle y \mid x\rangle_{A}$ for all $x, y \in M$.

CHAPTER III

MAIN RESULTS

First of all, we review the definition of a Kreĭn C*-algebra that has been introduced by K.Kawamura [11] and explore some elementary properties of a Kreĭn C*-algebra.

Definition 3.1. (K.Kawamura [11, Definition 2]) A Kreйn \boldsymbol{C}^{*}-algebra is a *-algebra A admitting at least one Banach algebra norm and one fundamental symmetry, i.e. $a *$-automorphism $\phi: A \rightarrow A$ with $\phi \circ \phi=i_{A}$, such that $\left\|\phi\left(a^{*}\right) a\right\|=\|a\|^{2}$ for all $a \in A$.

Note that, in general, a Krein C*-algebra can admit several different fundamental symmetries.

Remark 3.2. $A C^{*}$-algebra A is a Kreinn C^{*}-algebra with fundamental symmetry 1_{A} and so a Krein C^{*}-algebra is a generalization of a C^{*}-algebra. Let (A, α) be a Kreĭn C^{*}-algebra with a given fundamental symmetry α. Then we always have the decomposition

$$
A=A_{+} \oplus A_{-}, \text {where } A_{+}=\{x \in A \emptyset \alpha(x)=x\}, A_{-}=\{x \in A \mid \alpha(x)=-x\}
$$

Indeed, if $a \in A_{+} \cap A_{-}$, then $a \cong \phi(a)=-a$ and so $a=0$. Moreover for all $a \in A, a=\frac{a+\alpha(a)}{2}+\frac{a-\alpha(a)}{2}$ where $\frac{a+\alpha(a)}{2} \in A_{+}$and $\frac{a-\alpha(a)}{2} \in A-\bar{b}$

Every Kreŭn C^{*}-algebra A with a given fundamental symmetry α becomes naturally a C^{*}-algebra, denoted here by $\left(A, \dagger_{\alpha}\right)$ when equipped with a new involution $\dagger_{\alpha}: A \rightarrow A$ as described in the following theorem.

Theorem 3.3. Let (A, α) be a Kreĭn C^{*}-algebra with fundamental symmetry α. Then A becomes a C^{*}-algebra when equipped with the new involution \dagger_{α} defined by
$\dagger_{\alpha}: x \mapsto \alpha(x)^{*}$. Furthermore, the fundamental symmetry α is $a *$-automorphism of this C^{*}-algebra and hence continuous in norm.

Proof. Firstly, we compute

$$
\begin{aligned}
& (x y)^{\dagger_{\alpha}}=\alpha(x y)^{*}=(\alpha(x) \alpha(y))^{*}=\alpha(y)^{*} \alpha(x)^{*}=y^{\dagger_{\alpha}} x^{\dagger_{\alpha}} \\
& x^{\dagger_{\alpha} \dagger_{\alpha}}=\alpha\left(\alpha(x)^{*}\right)^{*}=\alpha\left(\alpha(x)^{* *}\right)=\alpha(\alpha(x))=x \\
& \left\|x^{\dagger_{\alpha}} x\right\|=\left\|\alpha(x)^{*} x\right\|=\|x\|^{2}
\end{aligned}
$$

for all $x, y \in A$. Then the first assertion is verified. To show that α is continuous, by applying Theorem 2.8 , it suffices to show that α is a $*$-homomorphism from (A, \dagger) into itself. Since $\alpha\left(x^{\dagger \alpha}\right)=\alpha\left(\alpha(x)^{*}\right)=\alpha(\alpha(x))^{*}=\alpha(x)^{\dagger} \alpha$ for all $x \in A$, we finish the proof of the theorem.

Remark 3.4. Note that given a \dagger-homomorphism $\alpha: A \rightarrow A$ such that $\alpha \circ \alpha=1_{A}$ of a C^{*}-algebra A (with involution denoted by \dagger), we can naturally construct a Kreĭn C^{*}-algebra $\left(A, *_{\alpha}\right)$ with involution $x^{* \alpha}:=\alpha\left(x^{\dagger}\right)$, for $x \in A$ and that α becomes a fundamental symmetry for this Krein C^{*}-algebra.

Now we observe the algebraic structure of the even and odd part of (A, α).
Theorem 3.5. Let (A, α) be a unital commutative Krein C^{*}-algebra with a given fundamental symmetry α. Then A_{+}is a unital commutative C^{*}-algebra and A_{-} is a unital Hilbert C^{*}-bimodule over A_{+}.

Proof. Note first that on A_{+}the two involutions * and \dagger_{α} coincide and since A_{+} is closed under multiplication and involution, it is clearly a unital C^{*}-algebra.

Next we will show that A_{-}is a Hilbert C ${ }^{*}$-bimodule over A_{+}. We define right and left multiplications from $A_{-} \times A_{+}$and $A_{+} \times A_{-}$into A_{-}as usual multiplications in A and we define a pair of A_{+}-valued inner products from $A_{-} \times A_{-}$into A_{+}by

$$
\begin{equation*}
A_{+}\langle x \mid y\rangle=x y^{\dagger_{\alpha}} \quad \text { and } \quad\langle x \mid y\rangle_{A_{+}}=x^{\dagger_{\alpha}} y \tag{3.1}
\end{equation*}
$$

for all $x, y \in A_{-}$. With this definitions, we have

$$
\begin{aligned}
& { }_{A_{+}}\langle x+y \mid z\rangle=(x+y) z^{\dagger \alpha}=x z^{\dagger_{\alpha}}+y z^{\dagger_{\alpha}}=A_{A_{+}}\langle x \mid z\rangle+_{A_{+}}\langle y \mid z\rangle \quad \forall x, y, z \in A_{-} \\
& { }_{A_{+}}\langle a x \mid z\rangle=(a x) z^{\dagger_{\alpha}}=a\left(x z^{\dagger_{\alpha}}\right)=a_{A_{+}}\langle x \mid z\rangle \quad \forall x, y \in A_{-}, \forall a \in A_{+} \\
& A_{+}\langle y \mid x\rangle=y x^{\dagger_{\alpha}}=\left(x y^{\dagger_{\alpha}}\right)^{\dagger_{\alpha}}=\left({ }_{A_{+}}\langle x \mid y\rangle\right)^{\dagger_{\alpha}} \quad \forall x, y \in A_{-} \\
& A_{+}\langle x \mid x\rangle=x x^{\dagger}{ }^{\dagger} \in\left(A_{+}\right)^{+} \quad \forall x \in A_{-} \text {by Theorem } 2.6 \\
& A_{+}\langle x \mid x\rangle=0 \Rightarrow x x^{\dagger_{\alpha}}=0 \Rightarrow\|x\|^{2}=\left\|\alpha(x)^{*} x\right\|=\left\|x^{\dagger_{\alpha}} x\right\|=0 \Rightarrow x=0 \quad \forall x \in A_{-} \\
& \langle z \mid x+y\rangle_{A_{+}}=z^{\dagger_{\alpha}}(x+y)=z^{\dagger_{\alpha}} x+z^{\dagger_{\alpha}} y=\langle z \mid x\rangle_{A_{+}}+\langle z \mid y\rangle_{A_{+}} \quad \forall x, y, z \in A_{-} \\
& \langle z \mid x b\rangle_{A_{+}}=z^{\dagger_{\alpha}}(x b)=\left(z x^{\dagger_{\alpha}}\right) b=\langle z \mid x\rangle_{A_{+}} b \quad \forall x, y \in A_{-}, \forall b \in A_{+} \\
& \langle y \mid x\rangle_{A_{+}}=y^{\dagger_{\alpha}} x=\left(x^{\dagger_{\alpha}} y\right)^{\dagger_{\alpha}}=a\left(\langle x \mid y\rangle_{A_{+}}\right)^{\dagger_{\alpha}} \quad \forall x, y \in A_{-} \\
& \langle x \mid x\rangle_{A_{+}}=x^{\dagger} x \in\left(A_{+}\right)^{+} \quad \forall x \in A \text { by Theorem } 2.6 \\
& \langle x \mid x\rangle_{A_{+}}=0 \Rightarrow x^{\dagger} x=0 \Rightarrow\|x\|^{2}=\left\|\alpha(x)^{*} x\right\|=\left\|x^{\dagger \alpha} x\right\|=0 \Rightarrow x=0 \quad \forall x \in A_{-} \\
& (a x) b=a(x b) \quad \forall x \in A_{-}, \forall a, b \in A_{+} \\
& \langle x \mid a y\rangle_{A_{+}}=x^{\dagger_{\alpha}}(a y)=\left(x^{\dagger_{\alpha}} a\right) y=\left(a^{\dagger_{\alpha}} x\right)^{\dagger_{\alpha}} y=\left\langle a^{\dagger_{\alpha}} x \mid y\right\rangle_{A_{+}} \quad \forall x, y \in A_{-}, \forall a \in A_{+} \\
& A_{+}\langle x b \mid y\rangle=(x b) y^{\dagger_{\alpha}}=x\left(b y{ }^{\dagger} \alpha\right)=x\left(y b^{\dagger_{\alpha}}\right)^{\dagger_{\alpha}}=A_{+}\left\langle x \mid y b^{\dagger_{\alpha}}\right\rangle \quad \forall x, y \in A_{-}, \forall a \in A_{+} .
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \|x\|_{A_{-}}=\sqrt{\left\|\langle x \mid x\rangle_{A_{+}}\right\|_{A_{+}}}=\sqrt{\left\|x^{\dagger} \alpha x\right\|_{A_{+}}}=\sqrt{\|x\|_{A_{+}}^{2}}=\|x\|_{A_{+}} \\
& A_{-}\|x\|=\sqrt{A_{+}\left\|_{A_{+}}\langle x \mid x\rangle\right\|}=\sqrt{A_{+} \| x x^{\dagger} \alpha}=\sqrt{A_{+}\left\|x^{\dagger} x\right\|}=\sqrt{A_{+}\|x\|^{2}}=\|x\|_{A_{+}} .
\end{aligned}
$$

Since $\|\cdot\|_{A}$ is complete, $\mathbb{R} \cdot \|_{A_{-}}$and $A_{-}\|\cdot\|$ are also complete. Hence A_{-}is a unital Hilbert C*-bimodule over A_{+}, as desired.

for all $x, y, z \in A$.
For any Kreĭn C^{*}-algebra equipped with a fundamental symmetry α, the odd part A_{-}in the fundamental decomposition $A=A_{+} \oplus A_{-}$is a Hilbert C*-bimodule but it is not in general an imprimitivity bimodule because A_{-}might not be a full bimodule over A_{+}. In the following we will usually assume this further property.

Definition 3.6. Let (A, α) be a Kreĭn C^{*}-algebra with a given fundamental symmetry α. A Kreĭn C^{*}-algebra (A, α) is said to be imprimitive or full if its odd part A_{-}is an imprimitivity bimodule over A_{+}. We say that (A, α) is rank-one if $\operatorname{dim} A_{+}=\operatorname{dim} A_{-}=1$ as complex vector spaces.

Theorem 3.7. Let (A, α) be a Kreĭn C^{*}-algebra with a given fundamental symmetry α. The algebra A is commutative if and only if the even part A_{+}is a commutative unital C^{*}-algebra and the odd part is a symmetric Hilbert C^{*}-bimodule over A_{+}. In particular a rank-one Kreinn C ${ }^{*}$-algebra is always commutative.

Proof. If A is commutative, clearly A_{-}is a symmetric bimodule over the commutative algebra A_{+}. Furthermore the inner products defined in (3.1) above satisfy $A_{+}\langle x \mid y\rangle=x y^{\dagger_{\alpha}}=y^{\dagger_{\alpha}} x=\langle y \mid x\rangle_{A_{+}}$and hence A_{-}is a symmetric C^{*} bimodule over the commutative C^{*}-algebra A_{+}. Conversely, if A_{-}is a symmetric C^{*}-bimodule, $a_{-} b_{-}={ }_{A_{+}}\left\langle a_{-} \mid b_{-}^{\dagger_{\alpha}}\right\rangle=\left\langle b_{-}^{\dagger_{\alpha}} \mid a_{-}\right\rangle_{A_{+}}=b_{-} a_{-}$, for all $a_{-}, b_{-} \in A_{-}$. Now, for all $a, b \in A$ with decompositions $a=a_{+}+a_{-}, b=b_{+}+b_{-}$an easy computation shows: $a b=\left(a_{+}+a_{-}\right)\left(b_{+}+b_{-}\right)=a_{+} b_{+}+a_{+} b_{-}+a_{-} b_{+}+a_{-}+b_{-}=$ $b_{+} a_{+}+b_{-} a_{+}+b_{+} a_{-}+b_{-} a_{-}=b a$.

Definition 3.8. We will say that a Krein C^{*}-algebra is symmetric if there exists an odd symmetry i.e. a linear map $\varepsilon: A \rightarrow A$ such that $\varepsilon \circ \varepsilon=i_{A}$, $\varepsilon\left(x^{*}\right)=-\varepsilon(x)^{*}$ for all $x \in A, \varepsilon(x y)=\varepsilon(x) y=x \varepsilon(y)$ for all $x, y \in A$ and if there exists a fundamental symmetry such that $\varepsilon \circ \alpha=-\alpha 0 \varepsilon$ (in this case we say that the symmetry and the odd symmetry are compatible).

By the properties of odd symmetry, we further have $\varepsilon(x) \varepsilon(y)=\varepsilon \circ \varepsilon(x y)$ and $\varepsilon(x)^{\dagger_{\alpha}}=\varepsilon\left(x^{\dagger}\right)$ which are useful in the proof of the next lemma.

Lemma 3.9. If ε is an odd symmetry of a symmetric Kreĭn C^{*}-algebra compatible with the symmetry α, then ε is always isometric.

Proof. For all $x \in A,\|\varepsilon(x)\|^{2}=\left\|\varepsilon(x)^{\dagger_{\alpha}} \varepsilon(x)\right\|=\left\|\varepsilon\left(x^{\dagger_{\alpha}}\right) \varepsilon(x)\right\|=\left\|\varepsilon \circ \varepsilon\left(x^{\dagger_{\alpha}} x\right)\right\|=$ $\left\|x^{\dagger_{\alpha}} x\right\|=\|x\|^{2}$.

Next we give an example of a rank-one unital full symmetric Krĕ̌ C*-algebra, which will play an important role in the proof of our spectral theory. Since, as we will see, in this case, the fundamental symmetry is necessarily unique, this is just a well-known example of a commutative \mathbb{Z}_{2}-graded C^{*}-algebra. Although all the properties described in the following three theorems are "standard" from the theory of \mathbb{Z}_{2}-graded C^{*}-algebras, for the convenience of the reader we present here a direct proof of all of them in the "spirit" of Kreĭn C*-algebras.

Let A be a 2×2 complex matrix. We define left multiplication operator on the Hilbert space $\mathbb{C}^{2}, L_{A}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by $L_{A}(\psi):=A \psi$ for all $\psi \in \mathbb{C}^{2}$. Note that $L: A \mapsto L_{A}$ is a unital *-homomorphism in particular $L_{A B}=L_{A} \circ L_{B}$ and $L_{A^{\dagger}}=L_{A}{ }^{\dagger}$ where $A^{\dagger}:=J A J$ with $J=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $L_{A}{ }^{\dagger}$ is the adjoint of L_{A} in the C^{*}-algebra $B\left(\mathbb{C}^{2}\right)$.

For each $a, b \in \mathbb{C}$, let $T_{a, b}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$. Let $\mathbb{K}=\left\{T_{a, b}: a, b \in \mathbb{C}\right\}$ with the usual matrix operations of addition and multiplication. We define the involution by $T_{a, b}^{*}=T_{\bar{a},-\bar{b}}$. Furthermore, we equip \mathbb{K} with the operator norm $\|A\|=\left\|L_{A}\right\|$ (where the right-hand-side norm is the operator norm and choose a fundamental symmetry $\gamma: \mathbb{K} \rightarrow \mathbb{K}$ defined by $\gamma\left(\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]\right)=\left[\begin{array}{cc}a & -b \\ -b & a\end{array}\right]$.
Theorem 3.10. There is a rank-one unital symmetric Kreĭn C^{*}-algebra.
Proof. It is easy to verify that γ is a $*$-automorphism on \mathbb{K} and $\gamma \circ \gamma=1_{\mathbb{K}}$, where $1_{\mathbb{K}}$ is the identityomap on \mathbb{K}, For all matrix A in \mathbb{K}, we obtain

Then we can write $\mathbb{K}=\mathbb{K}_{+} \oplus \mathbb{K}_{\text {_ }}$ where

$$
\mathbb{K}_{+}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]: a \in \mathbb{C}\right\} \quad \text { and } \quad \mathbb{K}_{-}=\left\{\left[\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right]: b \in \mathbb{C}\right\}
$$

Since $\mathbb{K}_{+}=\left\langle\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\rangle$ and $\mathbb{K}_{-}=\left\langle\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\rangle$, we see that $\operatorname{dim} \mathbb{K}_{+}=\operatorname{dim} \mathbb{K}_{-}=1$. The symmetry of the algebra \mathbb{K} can be checked by defining $\varepsilon\left(T_{a, b}\right):=T_{b, a}$.

Theorem 3.11. The identity $\iota_{\mathbb{K}}$ and γ are the only two unital $*$-automorphisms from \mathbb{K} onto itself. Furthermore, γ is the unique fundamental symmetry on \mathbb{K}.

Proof. Let ϕ be a unital $*$-homomorphism from \mathbb{K} into itself. Suppose that $\phi(e)=$ $\phi\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ for some $a, b \in \mathbb{C}$. Since $e \cdot e=1$ and $e^{*}=-e$, we have $\phi(e) \phi(e)=\phi(1)=1$ and $\phi\left(e^{*}\right)=-\phi(e)$. From these conditions, we have

$$
\left[\begin{array}{cc}
a^{2}+b^{2} & 2 a b \\
2 a b & a^{2}+b^{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
\bar{a} & -\bar{b} \\
-\bar{b} & \bar{a}
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
b & a
\end{array}\right]^{*}=-\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]=\left[\begin{array}{cc}
-a & -b \\
-b & -a
\end{array}\right] .
$$

Then we have four equations as follows: $a^{2}+b^{2}=1, a b=0, \bar{a}=-a$ and $\bar{b}=b$. By basic arithmetic, we have $(a, b)=(0,1)$ or $(a, b)=(0,-1)$. Hence $\phi\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\phi\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$. By linearity of ϕ, we obtain that

$$
\phi\left(\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]+b \phi\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] \text { or }\left[\begin{array}{cc}
a & -b \\
-b & a
\end{array}\right]
$$

for all $a, b \in \mathbb{C}$. That is $\phi=1_{\mathbb{K}}$ or γ, as desired.
For the second assertion, we let $\phi=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be the fundamentalsymmetry on the rank-one unital Krĕ̌n C^{*}-algebra \mathbb{K}. By the property $\phi(1)=1$, we have

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and so ϕ has to be in of the form $\left[\begin{array}{ll}1 & b \\ 0 & d\end{array}\right]$. By the property that $\phi \circ \phi$ is the
identity map,

$$
\left[\begin{array}{c}
x+b y+b d y \\
d^{2} y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

By easy calculation, we have 2 solutions $(b, d)=(0,1)$ and $(b, d)=(k,-1)$ where k is arbitrary in \mathbb{C}. Hence ϕ has to be in the form $\left[\begin{array}{cc}1 & k \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Since the second possibility is the identity map making A not rank $1, \phi$ must be in the form $\left[\begin{array}{cc}1 & k \\ 0 & -1\end{array}\right]$ where $k \in \mathbb{C}$. Since

$$
\phi(e \cdot e)=\left[\begin{array}{cc}
1 & k \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
\exp (i \theta) \\
0
\end{array}\right]=\left[\begin{array}{c}
\exp (i \theta) \\
0
\end{array}\right]
$$

and

$$
\phi(e)^{2}=\left(\left[\begin{array}{cc}
1 & k \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)^{2}=\left(\left[\begin{array}{c}
k \\
-1
\end{array}\right]\right)^{2}=\left[\begin{array}{c}
k^{2}+\exp (i \theta) \\
-2 k
\end{array}\right]
$$

by the property $\phi(e \cdot e)=\phi(e)^{2}$, it follows that $k=0$. Hence ϕ must be of the form $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ which is equal to γ, as claimed.

Like Gel'fand-Mazur Theorem in C*-algebra, we can characterize the rank-one unital Kreĭn C*-algebras.

Theorem 3.12. Every rank-one unital Kreĭn C^{*}-algebra is isomorphic to \mathbb{K}.
Proof. Since $\operatorname{dim} A_{+}=1$, there is a non-zero element a such that $\langle a\rangle=A_{+}$. Since the unit 1 is in A_{+}, there is $m \in \mathbb{C}$ such that $m a=1$. Then $(m 1) a=1=a(m 1)$ and so a is invertible. Let $b \in A_{+}$beca nonzero element. There is $n \in \mathbb{C}$ such that $b=n a$. Then

$$
b \cdot \frac{a^{-1}}{n}=n a \cdot \frac{a^{-1}}{n}=1 \quad \text { and } \quad \frac{a^{-1}}{n} \cdot b=\frac{a^{-1}}{n} \cdot n a=1 .
$$

Hence every non-zero element in A_{+}is invertible. By Theorem 3.5, A_{+}is a unital commutative C^{*}-algebra over \mathbb{C}. By Gel'fand-Mazur Theorem (Theorem 2.11), $A_{+}=\mathbb{C} 1$.

Since $\operatorname{dim} A_{-}=1$, there is a non-zero element e such that $\langle e\rangle=A_{-}$. Without loss of generality, we choose e such that $\|e\|=1$. Since $e^{*} \in A_{-}$and $e \cdot e \in A_{+}$, we have $e^{*}=\alpha e$ and $e \cdot e=\beta$ for some $\alpha, \beta \in \mathbb{C}$.

From the property $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in A$, we have

$$
\begin{equation*}
\bar{\beta}=\alpha^{2} \beta \tag{3.2}
\end{equation*}
$$

From the property $x^{* *}=x$ for all x, we have

$$
\begin{equation*}
|\alpha|=1 . \tag{3.3}
\end{equation*}
$$

From the property $\left\|\alpha(x)^{*} x\right\|=\|x\|^{2}$ for all x, we have

$$
\begin{equation*}
|\alpha \beta|=\|e\|^{2}=1 . \tag{3.4}
\end{equation*}
$$

From equations (3.3) and (3.4), we have $|\beta|=1$. Since $|\alpha|=|\beta|=1$, we can write $\alpha=\exp (i \delta)$ and $\beta=\exp (i \theta)$ for some $\delta, \theta \in \mathbb{C}$. From (3.2), $\alpha^{2}=\frac{\bar{\beta}}{\beta}=$ $\frac{(\bar{\beta})^{2}}{|\beta|^{2}}=(\bar{\beta})^{2}$ and then $\exp (2 i \delta)=\exp (-2 i \theta)$. Thus $\delta=-\theta+\pi k$ for all $k \in \mathbb{N}$ and so $\alpha=\exp (i \delta)=\exp (-i \theta+i \pi k)$ for all $k \in \mathbb{N}$, that is, $\alpha= \pm \exp (-i \theta)$ for some $\theta \in[0,2 \pi)$. Now we have that $e^{*}= \pm \exp (-i \theta) e$ and $e \cdot e=\exp (i \theta)$ for some $\theta \in[0,2 \pi)$. We use the notation $A_{\theta \pm}$ corresponding to the previous operations.

We claim that $\theta=0$. Since a Krein a C*-algebra is C^{*}-algebra, by Theorem 3.3 and the property in C^{*}-algebra that $\left\|x^{\dagger}\right\|=\|x\|=\left\|L_{x}\right\|$, we have

$$
\begin{equation*}
\left\|L_{\gamma\left(x^{*}\right)}\right\|=\left\|L_{x}\right\| . \tag{3.5}
\end{equation*}
$$

Furthermore, we can see that
and so

$$
\begin{array}{r}
\left.\left.\left.\begin{array}{r}
6\left(L_{x}\right)= \\
\left\{\lambda \mid \operatorname{det}\left(\left[a-\tau \lambda c_{b}\right.\right.\right. \\
\sigma \cdot a^{\prime}-\lambda
\end{array}\right]\right)=0\right\}=\{a+ \tag{3.6}\\
\left\|L_{x}\right\|=\sup _{\lambda \in \sigma\left(L_{x}\right)}|\lambda|=\max \{|a+b|,|a-b|\} .
\end{array}
$$

Similarly we obtain

$$
\begin{aligned}
\sigma\left(L_{\gamma\left(x^{*}\right)}\right) & =\left\{\lambda \left\lvert\, \operatorname{det}\left(\left[\begin{array}{cc}
\bar{a}-\lambda & \pm \bar{b} \exp (-i \theta) \\
\pm \bar{b} \exp (-i \theta) & \bar{a}-\lambda
\end{array}\right]\right)=0\right.\right\} \\
& =\{\bar{a}+\bar{b} \exp (-i \theta), \bar{a}-\bar{b} \exp (-i \theta)\}
\end{aligned}
$$

and so

$$
\begin{align*}
\left\|L_{\gamma\left(x^{*}\right)}\right\| & =\max \{|\bar{a}+\bar{b} \exp (-i \theta)|,|\bar{a}-\bar{b} \exp (-i \theta)|\} \\
& =\max \{|a+b \exp (i \theta)|,|a-b \exp (i \theta)|\} . \tag{3.7}
\end{align*}
$$

By (3.5), (3.6) and (3.7), we see that θ must be zero or π.
For the case $\theta=\pi$, we let $x=a+b e$ and $y=a_{1}+b_{1} e$. Then $x y=\left(a a_{1}-\right.$ $\left.b b_{1}\right)+\left(a b_{1}+a_{1} b\right) e$. By the above procedure, we have

$$
\begin{aligned}
\|x\| & =\max \{|a+b|,|a-b|\} \\
\|y\| & =\max \left\{\left|a_{1}+b_{1},\left|a_{1}-b_{1}\right|\right\}\right. \\
\|x y\| & =\max \left\{\left|a a_{1}-b b_{1}+a b_{1}+a_{1} b\right|,\left|a a_{1}-b b_{1}-a b_{1}-a_{1} b\right|\right\}
\end{aligned}
$$

If $x=y=i+e$, then
$\|x y\|=\max \{|-2+2 i|,|-2-2 i|\}=2 \sqrt{2} \not \leq 2=\max \{|i+1|,|i-1|\}^{2}=\|x\|\|y\|$.
Hence when $\theta=\pi, A$ is not a Krein C^{*}-algebra.
For $\theta=0_{-}$, we have $e \cdot e=1$ and $e^{*}=-e$. Since every element in $A_{0_{-}}$is of the form $m 1+n e$, where m and n are in \mathbb{C}, we define $f: A_{0_{-}} \rightarrow \mathbb{K}$ by $f(1)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $f(e)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then f is an isomorphism between the Krĕ̆n C^{*}-algebras A_{0-} and \mathbb{K}. Since \mathbb{K} is Krĕn C*-algebra, so is A_{0-}.

For $\theta=0_{+}$, we have $e \cdot e=4$ and $e^{*}=e$. Suppose that γ is the fundamental symmetry onit. Note that $x\left(x^{*}+\right)=x^{*-}$ for all $x \in A$. Indeed, let $x \in A$ then $x=a+b e$ for some $a, b \in \mathbb{C}$ and so

Then

$$
\|x\|^{2}=\left\|\gamma\left(x^{*+}\right) x\right\|=\left\|x^{*-} x\right\|,
$$

which contradicts the fact that A_{-}is a nontrivial Krě̆n C^{*}-algebra. Since γ is the only possible fundamental symmetry on A, we can conclude that A_{+}is not a Kreŭn C*-algebra.

Theorem 3.13. The space $C(M, K)$ of all continuous functions from a compact Hausdorff space M into a Kreĭn C^{*}-algebra K is a unital Kreĭn C^{*}-algebra.

Proof. Let γ be a fundamental symmetry of the Kreĭn C^{*}-algebra K and M a compact Hausdorff space. We define all the operations and the norm as follows:

$$
\begin{array}{rlrl}
(f+g)(x) & =f(x)+g(x) & (f g)(x) & =f(x) g(x) \\
(k f)(x) & =k f(x) & f^{*_{C}}(x)=f(x)^{*_{K}} \\
\|f\|_{C} & =\sup _{x \in M}\|f(x)\|_{K}, & &
\end{array}
$$

for all $k \in \mathbb{C}, x \in M$ and for all $f, g \in C(M, K)$. It is easy to check that $C(M, K)$ is a Banach algebra and a $*$-algebra with the operations and norm above.

To see that $C(M, K)$ is a Krein C^{*}-algebra, consider the map ϕ_{C} from $C(M, K)$ into itself defined by $\phi_{C}(f)=\gamma \circ f$. Since, for all $x \in M$,

$$
\begin{aligned}
\phi_{C}(f g)(x) & =\gamma \circ(f g)(x)=\gamma(f(x) g(x))=\gamma(f(x)) \gamma(g(x))=\phi_{C}(f) \phi_{C}(g)(x) \\
\phi_{C}\left(f^{*_{C}}\right)(x) & =\left(\gamma \circ f^{*_{C}}\right)(x)=\gamma\left(f(x)^{*_{K}}\right)=\gamma(f(x))^{*_{K}} \\
& =(\gamma \circ f)(x)^{*_{K}}=(\gamma \circ f)^{*_{C}}(x)=\phi_{C}(f)^{*_{C}}(x), \\
\phi_{C}\left(1_{C}\right)(x) & =\gamma\left(1_{C}(x)\right)=\gamma\left(1_{K}\right)=1_{K}=1_{C}(x),
\end{aligned}
$$

ϕ_{C} is a unital $*$-homomorphism that is an involutive $*$-automorphism because

$$
\phi_{C} \circ \phi_{C}(f)=\phi_{C}(\gamma \circ f)=\gamma \circ \gamma \circ f \equiv f, \quad \forall f \in C(M, K),
$$

and also a fundamental symmetry of a Krein C*-algebra because

$$
\begin{aligned}
\overbrace{9} \phi_{C}(f)^{* C} f \|_{C} & \left.=\sup _{x \in M}\left\|(\gamma \delta f)^{* C}(x) f(x)\right\|_{K}=\sup _{x \in M} \|(\gamma \circ f) \overparen{x}\right)^{*^{R}} f(x) \|_{K} \\
& =\sup _{x \in M}\left\|\gamma(f(x))^{* K} f(x)\right\|_{K}=\sup _{x \in M}\|f(x)\|_{K}^{2}=\|f\|_{C}^{2}
\end{aligned}
$$

for all $f \in C(M, K)$.
When we take $K:=\mathbb{K}$ in the previous theorem, we obtain another example of commutative full symmetric Kreı̆ C*-algebra.

Corollary 3.14. The Kreĭn C^{*}-algebra $C(M, \mathbb{K})$ is a unital commutative full symmetric Kreĭn C^{*}-algebra.

Proof. Define the fundamental symmetry $\phi_{C}(f):=\gamma \circ f$ and $\varepsilon_{C}(f):=\varepsilon_{\mathbb{K}} \circ f$.

Theorem 3.15. Let (A, α) be a (unital commutative) Kreĭn C^{*}-algebra with a fundamental symmetry α. Let I be a closed ideal in A invariant under α, i.e. $\alpha(I) \subseteq I$, then A / I is also a (unital commutative) Kreĭn C^{*}-algebra.

Proof. Since I is a closed ideal in the C^{*}-algebra $\left(A, \dagger_{\alpha}\right)$, the quotient $\left(A / I, \dagger_{\alpha}\right)$ is a C^{*}-algebra with involution $(x+I)^{\dagger_{\alpha}}:=x^{\dagger \alpha}+I$. Since I is invariant under the $*$-automorphism α we can define $[\alpha]: A / I \rightarrow A / I$ by $x+I \mapsto \alpha(x)+I$ for all $x \in A$ and $[\alpha]$ is a \dagger_{α}-automorphism of $\left(A / I, \dagger_{\alpha}\right)$. By Remark 3.4, $(A / I, *)$ is a Kreı̆ C^{*}-algebra with involution $(x+I)^{*}:=\alpha\left(x^{\dagger}\right)+I=x^{*}+I$. and $[\alpha]$ becomes the fundamental symmetry on $(A / I, *)$.

Theorem 3.16. Let (A, α) and (B, β) be two Kreĭn C^{*}-algebras with given fundamental symmetries α and β. A-homomorphism $\phi: A \rightarrow B$ satisfying the property $\phi \circ \alpha=\beta \circ \phi$ is always continuous. Additionally, $\phi\left(A_{+}\right) \subseteq B_{+}$and $\phi\left(A_{-}\right) \subseteq B_{-}$.

Proof. Note that ϕ is a \dagger-homomorphism between the associated C^{*}-algebras $\left(A, \dagger_{\alpha}\right)$ and $\left(B, \dagger_{\beta}\right)$. Indeed,

$$
\phi\left(a^{\dagger}\right) \frac{\varrho}{5}\left(\alpha(a)^{*}\right)=\phi(\alpha(a))^{*}=\beta(\phi(a))^{*}=\beta\left(\phi(a)^{*}\right)=\phi(a)^{\dagger}
$$

for all $a \in A$. The "invariance" of σ under α, β implies the last property.
If $\phi: A \rightarrow B$ is a unital $*$-homomorphism such that $\phi \circ \alpha=\beta \circ \phi$ for a given pair of fundamental symmetries of the Kreı̆ C^{*}-algebras A and B, in view of the last property in Theorem 3.16, we will denote by $\phi_{+}: A_{+} \rightarrow B_{+}$and $\phi_{-}: A_{-} \rightarrow B_{-}$ the restrictions to the even and odd parts of the Kren̆ C^{*}-algebras. Note that $\phi=\phi_{+} \oplus \phi_{-}$. In particular, the quotient isomorphism $\pi: A \rightarrow A / I$ from a Kreĭn C^{*}-algebra A to its quotient Kreĭn C^{*}-algebra by an ideal I that is invariant under
a fundamental symmetry α of A, can be written as a direct sum $\pi=\pi_{+} \oplus \pi_{-}$of the epimorphisms $\pi_{+}: A_{+} \rightarrow(A / I)_{+}$and $\pi_{-}: A_{-} \rightarrow(A / I)_{-}$.

Corollary 3.17. Let (A, α) be a unital Kreĭn C^{*}-algebra with a fundamental symmetry α. Let w be a unital $*$-homomorphism from A into \mathbb{K} with the property that $w \circ \alpha=\gamma \circ w$. Then $A / \operatorname{ker}(w)$ is a Kreĭn C^{*}-algebra.

Proof. By Theorem 3.3, $\operatorname{ker}(w)$ is a closed ideal in A. Moreover, $\alpha(\operatorname{ker}(w)) \subseteq$ $\operatorname{ker}(w)$. To see this, we let $x \in \alpha(\operatorname{ker}(w))$. Then there is $y \in \operatorname{ker}(w)$ such that $\alpha(y)=x$. By the condition $w \circ \alpha=\gamma \circ w$,

$$
w(x)=w \circ \alpha(y)=\gamma \circ w(y)=\gamma(0)=0
$$

and so $x \in \operatorname{ker}(w)$. Consequently, $A / \operatorname{ker}(w)$ is a Krein C^{*}-algebra by Theorem 3.15 .

Corollary 3.18. Let (A, α) be a unital full Kreĭn C^{*}-algebra with a fundamental symmetry α. Let w be a unital *-homomorphism from A into \mathbb{K} with the property that $w \circ \alpha=\gamma \circ w$. Then $A / \operatorname{ker}(w) \cong \mathbb{K}$.

Proof. By Corollary 3.17, $A / \operatorname{ker}(w)$ is a Kreın C*-algebra. Define $f: A / \operatorname{ker}(w) \rightarrow$ \mathbb{K} by $x+\operatorname{ker}(w) \mapsto w(x)$ for all $x \in A$. It is easily checked that f is a unital injective $*$-homomorphism. It remains to show the surjective property. Since $A_{-A_{+}}$ is full, Without loss of generality, $1=\sum_{j=1}^{n} x_{j} y_{j}$ for some $n \in \mathbb{N}$ and $x_{j}, y_{j} \in A_{-}$ for all $j=1, \ldots$. Suppose that $w(x)=0$ for all $x \in A$. Since w is a unital homomorphism, we have

$$
999 \cap 6^{1}-w(1) \approx w\left(\sum_{j=1}^{n \sigma} x_{j} y_{j}\right)=\sum_{j=1}^{n} w\left(x_{j}\right) w\left(y_{j}\right)=0, \quad \ell
$$

which leads to a contradiction. Thus there is an element x in A_{-}such that $w(x) \neq 0$. Since $w\left(A_{-}\right) \subseteq \mathbb{K}_{-}$and $\operatorname{dim} \mathbb{K}_{-}=1$, we have $w\left(A_{-}\right)=\mathbb{K}_{-}$. Similarly $w\left(A_{+}\right)=\mathbb{K}_{+}$. Thus we already have

$$
f(A / \operatorname{ker}(w))=w(A)=w\left(A_{+} \oplus A_{-}\right)=w_{+}\left(A_{+}\right) \oplus w_{-}\left(A_{-}\right)=\mathbb{K}_{+} \oplus \mathbb{K}_{-}=\mathbb{K}
$$

and so f is surjective.

Definition 3.19. A character on a unital (commutative symmetric full) Kreĭn C^{*}-algebra A is a unital $*$-homomorphism $w: A \rightarrow \mathbb{K}$ such that there exists at least one fundamental symmetry α of the Krein C^{*}-algebra A satisfying the property $w \circ \alpha=\gamma \circ w$. In this case we will say that α and w are compatible.

We denote by $\Omega(A)$ the set of characters on A, and by $\Omega(A, \alpha)$ the set of characters compatible with a given fundamental symmetry α that is
$\Omega(A, \alpha)=\{w \mid w: A \rightarrow \mathbb{K}$ unital $*$-homomorphism compatible with $\alpha\}$.
Note that for every C^{*}-algebra $A, \Omega(A) \cong \Omega\left(A, \iota_{A}\right)$ where the left-hand-side is the set of characters in the C*-algebra.

For each $a \in A$, define $\hat{a}: \Omega(A) \rightarrow \mathbb{K}$ by $\hat{a}(w)=w(a)$ for all $w \in \Omega(A)$. Equip $\Omega(A)$ with the smallest topology which makes each \hat{a} continuous.

Note that $\Omega(A, \alpha)$ with the induced subspace topology is clearly a closed set in $\Omega(A)$ since $\Omega(A, \alpha)=\{w \in \Omega(A) \mid \widehat{\alpha(x)}(w)=\gamma \circ \hat{x}(w), \forall x \in A\}$ and the functions $\widehat{\alpha(x)}, \gamma \circ \hat{x}$ are continuous on $\Omega(A)$.

We next define an equivalence relation between the characters as follows:

$$
w_{1} \sim w_{2} \Longleftrightarrow w_{2}=\phi \circ w_{1} \text { for some unital } * \text {-automorphism } \phi \text { on } \mathbb{K} .
$$

By Theorem 3.11, $[w]=\{w, \gamma \circ w\}$. Note that $w \in \Omega(A, \alpha)$ implies $[w] \subset \Omega(A, \alpha)$.
We define $\quad \Omega_{b}(A)=\{[w] \mid w \in \Omega(A)\}, \quad \Omega_{b}(A, \alpha)=\{[w] \mid w \in \Omega(A, \alpha)\}$. Equip $\Omega_{b}(A)$ with the quotient topology induced by the quotient map

$$
\mu: \Omega(A) \rightarrow \Omega_{b}(A) \text { given by } \mu: w \mapsto[w] .
$$

Note that on $\Omega_{b}(A, \alpha)$ the quotient topology induced by $\Omega(A, \alpha)$ coincides with the subspace topology induced by $\Omega_{b}(A)$.

Lemma 3.20. $\Omega(A)$ and $\Omega(A, \alpha)$ are nonempty compact Hausdorff spaces.
Proof. Since a character $w: A \rightarrow \mathbb{K}$ becomes a unital $*$-homomorphism of the associated C^{*}-algebras $\left(A, \dagger_{\alpha}\right)$ and $\left(\mathbb{K}, \dagger_{\gamma}\right)$, by the same techniques used in BanachAlaoglu theorem, it is a standard matter to check that $\Omega(A)$ is a closed subset
of compact set $\prod_{x \in A} \overline{B\left(0_{\mathbb{K}},\|x\|\right)}$ (Using Heine-Borel and Tychonoff Theorems) and hence $\Omega(A)$ is also a compact set. To show that $\Omega(A)$ is a Hausdorff space, we let w_{1}, w_{2} be characters such that $w_{1} \neq w_{2}$. Then there is $a \in A$ such that $w_{1}(a) \neq w_{2}(a)$, that is $\hat{a}\left(w_{1}\right) \neq \hat{a}\left(w_{2}\right)$. Since \hat{a} is continuous from $\Omega(A)$ to the Hausdorff space \mathbb{K}, we obtain that $\Omega(A)$ is also Hausdorff. Since $\Omega(A, \alpha)$ is a closed subspace of $\Omega(A)$, the result follows.

Lemma 3.21. Let w, w_{1} and w_{2} be characters. The following properties hold:
a) If $w_{1} \sim w_{2}$, then $\operatorname{ker}\left(w_{1}\right)=\operatorname{ker}\left(w_{2}\right)$.
b) If $w \in \Omega(A, \alpha)$ for all $x \in A$, we have $w(x)=0 \Longleftrightarrow w\left(x^{\dagger} x\right)=0$.
c) If $w_{1}, w_{2} \in \Omega(A, \alpha)$ and $w_{1+}=w_{2+}$, then $\operatorname{ker}\left(w_{1}\right)=\operatorname{ker}\left(w_{2}\right)$.

Proof. It is easy to show a).
For b), assume that $w\left(x^{\dagger} x\right)=0$. Then

$$
\|w(x)\|^{2}=\left\|\gamma(w(x))^{*} w(x)\right\|=\left\|w(\alpha(x))^{*} w(x)\right\|=\left\|w\left(\alpha(x)^{*} x\right)\right\|=\left\|w\left(x^{\dagger} x\right)\right\|=0
$$

and so $w(x)=0$.
For c), by the assumption, we have $\operatorname{ker}\left(w_{1+}\right)=\operatorname{ker}\left(w_{2+}\right)$. Let $x \in A_{-}$be such that $w_{1}(x)=\overline{0}$. By b), $w_{1}\left(\alpha\left(x^{*}\right) x\right)=0$ and also $w_{2}\left(\alpha\left(x^{*}\right) x\right)=0$ because $\operatorname{ker}\left(w_{1+}\right)=\operatorname{ker}\left(w_{2+}\right)$. Again by b), $w_{2}(x)=0$ and hence $\operatorname{ker}\left(w_{1-}\right) \subseteq \operatorname{ker}\left(w_{2_{-}}\right)$. By the same argument, it is elementaryytocverify the inverse inclusion.
Lemma 3.22. Let (A, α) be a Krein C^{*}-algebra equipped with a fundamental symmetry α andlet $\omega \in \Omega\left(A_{\oplus}\right)$ be a character defined on the even part of the Kreĭn ${ }^{\text {C }}{ }^{*}$-algebra $A=A_{+} \oplus A_{-}$. Define
$I_{+}:=\operatorname{ker}(w), \quad I_{-}:=A_{-} \operatorname{ker}(w):=\operatorname{span}\left\{x a \mid x \in A_{-}, a \in \operatorname{ker} w\right\}, \quad I:=I_{+} \oplus I_{-}$.

Then I is an ideal in A invariant under α and the following properties hold:
a) A_{+} / I_{+}is a C^{*}-algebra with dimension 1 .
b) A_{-} / I_{-}is a Hilbert C^{*}-bimodule over A_{+} / I_{+}.
c) $A / I=(A / I)_{+} \oplus(A / I)_{-} \cong A_{+} / I_{+} \oplus A_{-} / I_{-}$.
d) A / I is a rank-one Kreĭn C^{*}-algebra.

Proof. The bimodule A_{-} / I_{-}over A_{+} / I_{+}is a Hilbert C*-bimodule with the inner products defined as in the proof of theorem 3.5 using the $\left(x+I_{-}\right)^{\dagger_{\alpha}}:=x^{\dagger_{\alpha}}+I_{-}$ involution. The only other thing that is not completely straightforward is that A / I is rank-one. By b), since by Gel'fand-Mazur $A_{+} / I_{+} \cong \mathbb{C}, A_{-} / I_{-}$is a Hilbert space over A_{+} / I_{+}. To show the rank-one property, suppose by contradiction that $x, y \in A_{-} / I_{-}$is a pair of orthonormal vectors, then

$$
y=\langle x \mid x\rangle y+\langle y \mid x\rangle y=\langle x+y \mid x\rangle y=(x+y)\langle x \mid y\rangle=0,
$$

which is impossible.
Theorem 3.23. If (A, α) is a unital commutative imprimitivity Kreĭn C^{*}-algebra with fundamental symmetry α, then $\Omega_{b}(A, \alpha)$ is a compact Hausdorff space.

Proof. Since $\Omega(A, \alpha)$ is compact by Lemma 3.20 and μ is continuous, $\Omega_{b}(A, \alpha)$ is also compact.

We now consider the map ϕ from $\Omega_{b}(A, \alpha)$ to $\Omega\left(A_{+}\right)$defined by $[w] \mapsto w_{+}$. If we can show that this map is a homeomorphism, we can conclude that $\Omega_{b}(A, \alpha)$ is a Hausdorff space since $\Omega\left(A_{+}\right)$is a Hausdorff space by the spectral theorem for unital commutative C^{*}-algebras. It is sufficient to show that ϕ is a continuous bijective map because $\Omega_{b}(A, \alpha)$ is a compact space and $\Omega(A)$ is a Hausdorff space.

To see that, ϕ is well-defined, det $\left[w_{1}\right]=\left[w_{2}\right]$. If $w_{1} \neq w_{2}$, thên $w_{2}=\gamma \circ w_{1}$. For any $x \in A+w_{1}(x)=w_{1}(\alpha(x))=\gamma\left(w_{1}(x)\right)=w_{2}(x)$, that is, $w_{1_{+}}=w_{2+}$.

We next show that $R:=\phi \circ \mu$ is a continuous map. Note that, by definition, we have $R(w)=w_{+}$. For easier consideration, we provide a diagram of all the functions involved.

Since for all $a \in A_{+}, \hat{a}=\hat{a}_{+} \circ R$ is continuous on $\Omega(A, \alpha), R$ is also continuous. By the properties of quotient topology we also have that ϕ is a continuous map. Next, we will show that ϕ is a bijection.

To show that ϕ is injective, we suppose that w_{1}, w_{2} are characters on (A, α) such that $w_{1+}=w_{2_{+}}$. We next examine the following diagram

By Lemma 3.21 (c) and Corollary 3.18 we have $A / \operatorname{ker}\left(w_{1}\right) \cong \mathbb{K} \cong A / \operatorname{ker}\left(w_{2}\right)$. Hence $\beta_{2} \circ \beta_{1}^{-1}$ is a unital $*$-automorphism on \mathbb{K}. Since by Theorem 3.11 a unital *-automorphism on \mathbb{K} is either the identity map or γ, we have to consider two cases.

1. $\beta_{2} \circ \beta_{1}^{-1}$ is an identity on \mathbb{K}

Then $\beta_{1}=\beta_{2}$. Since $\operatorname{ker}\left(w_{1}\right)=\operatorname{ker}\left(w_{2}\right)$, we have

$$
w_{1}(a)=\beta_{1}\left(a+\operatorname{ker} w_{1}\right)=\beta_{2}\left(a+\operatorname{ker} w_{2}\right)=w_{2}(a)
$$

for all $a \in A$. Thus $w_{1}=w_{2}$.
2. $\beta_{2} \circ \beta_{1}^{-1}=\gamma$

Then $\beta_{2}=\gamma \circ \beta_{1}$. Again by the fact that $\operatorname{ker}\left(w_{1}\right)=\operatorname{ker}\left(w_{2}\right)$, we have

From both cases, we can conclude that $\left[w_{1}\right]=\left[w_{2}\right]$ which implies the injection of ϕ, as desired. To prove the surjectivity of ϕ, let $w^{o}: A_{+} \rightarrow \mathbb{K}_{+}$. Consider $I_{+}:=\operatorname{ker}\left(w^{o}\right)$ and define the ideal I in A as in Lemma 3.22.

Since A / I is a rank-one Kreı̆ C^{*}-algebra, A / I is isomorphic to \mathbb{K} by an isomorphism f such that $f \circ[\alpha]=\gamma \circ f$, where $[\alpha]$ is the fundamental symmetry
of A / I such that $\pi \circ \alpha=[\alpha] \circ \pi$. Note that $f=f_{+} \oplus f_{-}$where $f_{+}:(A / I)_{+} \rightarrow \mathbb{K}_{+}$ is the isomorphism $f_{+}(a+I)=w^{o}(a)$, for all $a \in A_{+}$.

$$
A \xrightarrow{\pi} A / I \xrightarrow{f} \mathbb{K} .
$$

Define $w:=f \circ \pi$. Then $w \in \Omega(A, \alpha)$ because $w \circ \alpha=\gamma \circ w$. We claim that $w_{+}=w^{o}$. To see this, let $a \in A_{+}$. Then

$$
w(a)=f \circ \pi(a)=f(a+I)=w^{o}(a),
$$

and the theorem is proved.
Corollary 3.24. If w_{1} and w_{2} are characters on $\Omega(A, \alpha)$, then

$$
\left[w_{1}\right]=\left[w_{2}\right] \Longleftrightarrow \operatorname{ker} w_{1}=\operatorname{ker} w_{2} .
$$

Definition 3.25. If (A, α, ε) is a unital commutative full symmetric Kreĭn C^{*} algebra with a given fundamental symmetry α and a given odd symmetry ε, we define the even spectrum $\Omega(A, \alpha, \varepsilon):=\left\{w \in \Omega(A, \alpha) \mid \varepsilon_{\mathbb{K}} \circ w \circ \varepsilon=w\right\}$, the set of even characters of A. Similarly we call $w \in \Omega(A, \alpha)$ an odd character if it satisfies $\varepsilon_{\mathbb{K}} \circ w \circ \varepsilon=-w$.

Theorem 3.26. If (A, α, ε) is a unital commutative full symmetric Kreĭn C^{*} algebra with fundamental symmetry α and odd symmetry ε, the character $w \in$ $\Omega(A, \alpha)$ is even if and only if $\gamma \odot w \in \Omega(A, \alpha)$ is odd. Hence in every equivalence class $[w]=\{w, \downarrow \circ \omega\}$ there is one and only one even character and there is a bijection between $\Omega(A, \alpha, \varepsilon)$ and $\Omega_{\bar{b}}(A, \alpha)$.

Proof. Since $\varepsilon_{\mathbb{K}} \circ \gamma=-\gamma \circ \varepsilon_{\mathbb{K}}$, we see that w is even if and only if $\gamma \circ w$ is odd.
More precisely, if w is even then $\varepsilon_{\mathbb{K}} \circ \gamma \circ w \circ \varepsilon=-\gamma \circ \varepsilon_{\mathbb{K}} \circ w \circ \varepsilon=-\gamma \circ w$, which implies that $\gamma \circ w$ is odd. For the other direction, assume that $\gamma \circ w$ is odd. Then

$$
\begin{aligned}
w & =\gamma \circ \gamma \circ w=\gamma \circ-\varepsilon_{\mathbb{K}} \circ \gamma \circ w \circ \varepsilon=-\gamma \circ \varepsilon_{\mathbb{K}} \circ \gamma \circ w \circ \varepsilon \\
& =\varepsilon_{\mathbb{K}} \circ \gamma \circ \gamma \circ w \circ \varepsilon=\varepsilon_{\mathbb{K}} \circ w \circ \varepsilon,
\end{aligned}
$$

and therefore w is even. To show that there exists an even character, let $w \in[w]$. Define $w^{o}:=\left.w\right|_{A_{+}}$and $\tilde{w}(x):=w^{o}\left(x_{+}\right)+\varepsilon_{\mathbb{K}} \circ w^{o} \circ \varepsilon\left(x_{-}\right)$. By the properties of the odd symmetry, we see that \tilde{w} is an even character compatible with α. Since $\left.\tilde{w}\right|_{A_{+}}=\left.w\right|_{A_{+}}$, by Lemma 3.21 c), we have $\operatorname{ker} \tilde{w}=\operatorname{ker} w$. Applying Corollary 3.24, we obtain $[\tilde{w}]=[w]$.

Definition 3.27. Let A be a unital commutative full symmetric Kreĭn C^{*}-algebra and let α be a fundamental symmetry of A and ε an odd symmetry of A. The Gel'fand transform of $x \in A$ is the map $\hat{x}: \Omega_{b}(A, \alpha) \rightarrow \mathbb{K}$ defined by:

$$
\hat{x}([w]):=w\left(x_{+}\right)+\varepsilon_{\mathbb{K}} \circ w \circ \varepsilon\left(x_{-}\right), \quad \forall x \in A .
$$

By the previous theorem, it is clear that the Gel'fand transform \hat{x} of x is just the function that to every even character $w \in \Omega(A, \alpha, \varepsilon)$ associates $w(x)$.

Although the following theorem is our goal, the proof is easy and straightforward.

Theorem 3.28 (Spectral theorem). If (A, α, ε) is a unital commutative full symmetric Krein C^{*}-algebra with fundamental symmetry α and odd symmetry ε, then the Gelfand transform

$$
\varphi: A \rightarrow C\left(\Omega_{b}(A, \alpha), \mathbb{K}\right), a{ }_{\natural} \hat{a}
$$

is an isometric *-isomorphism.
Proof. In view of Theorem 3.26, let $[w]$, with w even, be a point of $\Omega_{b}(A, \alpha)$. To prove that ψ is a $*$-homomorphism of algebras, let $a, b \in A$ and $k \in \mathbb{C}$,

$$
\begin{aligned}
& (\varphi(a b))([w])=(\widehat{a b})([w])=w(a b)=w(a) w(b)=\hat{a}([w]) \hat{b}([w])=(\varphi(a) \varphi(b))([w]), \\
& (\varphi(k a+b))([w])=(\widehat{k a+b})([w])=w(k a+b)=k w(a)+w(b)=k \hat{a}([w])+\hat{b}([w]) \\
& \quad=(k \varphi(a)+\varphi(b))([w]),
\end{aligned}
$$

$$
\varphi\left(a^{*}\right)[w]=\widehat{a^{*}}([w])=w\left(a^{*}\right)=w(a)^{*}=\varphi(a)^{*}[w]
$$

for all $[w] \in \Omega_{b}(A, \alpha)$. Clearly $\varphi\left(1_{A}\right)=1_{C}$ so that φ is unital.

It is easy to verify that $\varphi \circ \alpha=\phi_{C} \circ \varphi$. In fact, for all $a \in A,[w] \in \Omega_{b}(A, \alpha)$,

$$
\begin{aligned}
(\varphi \circ \alpha)(a)[w] & =\varphi(\alpha(a))[w]=w(\alpha(a))=\gamma(w(a))=\gamma(\varphi(a)[w]) \\
& =(\gamma \circ \varphi(a))[w]=\phi_{C}(\varphi(a))[w]=\left(\phi_{C} \circ \varphi\right)(a)[w] .
\end{aligned}
$$

We also have that $\varphi \circ \varepsilon=\varepsilon_{C} \circ \varphi$, in fact, for all $[w] \in \Omega_{b}(A, \alpha)$, and all $x \in A$,

$$
\begin{equation*}
\varepsilon_{C} \circ \varphi(x)[w]=\varepsilon_{\mathbb{K}}(w(x))=\varepsilon_{\mathbb{K}} \circ w \circ \varepsilon^{2}(x)=w \circ \varepsilon(x)=\varphi \circ \varepsilon(x)[w] . \tag{3.8}
\end{equation*}
$$

Let A be a unital commutative Krenn C^{*}-algebra with the fundamental symmetry α. Then $\left(A, \dagger_{A}\right)$ and $\left(C\left(\Omega_{b}(A, \alpha), \mathbb{K}\right), \dagger_{C}\right)$ become C^{*}-algebras with the involutions \dagger_{A} and \dagger_{C} defined as in Theorem 3.3 respectively, that is,

$$
a^{\dagger_{A}}=\alpha\left(a^{* A}\right) \text { for all } a \in A \text { and } f^{\dagger_{C}}=\phi_{C}\left(f^{* C}\right) \text { for all } f \in C\left(\Omega_{b}(A, \alpha), \mathbb{K}\right)
$$

To show φ is a \dagger-homomorphism, let $a \in A$ and $[w] \in \Omega_{b}(A, \alpha)$,

$$
\varphi\left(a^{\dagger A}\right)[w]=\varphi\left(\alpha\left(a^{* A}\right)\right)[w]=\widehat{\alpha\left(a^{* A}\right)}[w]=w\left(\alpha\left(a^{* A}\right)\right) .
$$

Since $w \circ \alpha=\gamma \circ w$, we have,

$$
\varphi\left(a^{\dagger} A\right)[w]=\gamma\left(w\left(a^{*},\right)\right)=\gamma\left(w(a)^{* K}\right)=\gamma\left(\hat{a}([w])^{*^{*}}\right)=\gamma\left(\hat{a}^{* C}([w])\right)
$$

Since $\phi_{C}(f)=\gamma \circ f$ for all $f \in C\left(\Omega_{b}(A), \mathbb{K}\right)$,

$$
\varphi\left(a^{\dagger} A\right)[w]=\phi_{C}\left(\hat{a}^{* C}\right)[w]=\hat{a}^{\dagger C}[w]=\varphi(a)^{\dagger C}[w] .
$$

By the spectral theorem for unital commutative C*-algebras, the restriction of the Gel'fand transform to the even part $\varphi_{+}: A \hookrightarrow C(\Omega(A, \alpha), \mathbb{K})_{+}$is an isometric \dagger-isomorphism, for all $a \in A$ that coincides with the usual Gel'fand isomorphism for the commutative unital C*-algebra A_{+}.

Since ε and ε_{C} are linear surjective (because $\varepsilon^{2}=C_{A}$) isometries, from the equation (3.8), we see that $\varphi_{-}=\varepsilon_{-} \circ \varphi_{+} \circ \varepsilon_{C+}$ is isometric surjective too and hence $\varphi=\varphi_{+} \oplus \varphi_{-}$is a \dagger-epimorphism. Since φ is a \dagger-homomorphism, we have $\|\varphi(a)\| \leq\|a\|$ for all $a \in A$. Since φ_{+}and φ_{-}are injective and the uniqueness property of a directsum, φ is also injective. Now φ is a \dagger-isomorphism, it implies that φ^{-1} exists and is also \dagger-isomorphism which implies that $\|a\|=\left\|\varphi^{-1}(\varphi(a))\right\| \leq$ $\|\varphi(a)\|$ for all $a \in A$.

The previous theorem provide a complete characterization of those unital commutative Kreŭn C*-algebras that are full and symmetric. In this case, a posterori, with a bit more work, we might actually prove that the fundamental symmetry and the odd symmetry are indeed unique. Further analysis is required in order to provide a spectral theory of more general Krĕ̆n C*-algebras. Omitting the exchange symmetry requirement will lead us to algebras of sections of Banach bundles of Kreĭn C^{*}-algebras and omitting the commutativity (or just the imprimitivity condition on the odd part) will lead us to a theory of Krĕn spaceoids along very similar lines to those used to describe the spectrum of commutative full C^{*}-categories in [1], we hope that the extra effort paid here to describe a "direct proof" of the spectral theory in the special case of commutative full symmetric Kreĭn C*-algebras will facilitate the analysis of those more general topics that we plan to address in the near future.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] Bertozzini, P., Conti, R. and Lewkeeratiyutkul, W., Horizontal Categorification of Gel'fand Theory, preprint (2008), arXiv:0812.3601v1 [math.OA].
[2] Bertozzini, P., Conti, R., Lewkeeratiyutkul, W., A Spectral Theorem for Imprimitivity C^{*}-bimodules, preprint (2008), arXiv:0812.3596v1 [math.OA].
[3] Bleuler, K., Helv. Phys. Acta, (1950)23 n. 5: 567-586.
[4] Connes, A., Noncommutative Geometry: Academic Press, 1994.
[5] Dirac, P., The Physical Interpretation of Quantum Mechanics, Pro. Roy. Soc. London, Ser. A, 180(1942): 1-40.
[6] Dritschel, M., Rovnyak, J., Operators on Indefinite Inner Product Spaces, in: Lectures on Operator Theory and its Application, Fields Institute Monographs, 3, 141-232, AMS (1996).
[7] Figueroa, H., Gracia-Bondia. C.Varilly J.M. , Elements of Noncommutative Geometry, Birkäuser 2000.
[8] Ginzburg, Ju., On J-contractive Operator Functions, Dokl. Akad. Nauk SSSR, 117(1957): 171-173.
[9] Gupta, S. Proc. Phys. Soc., A63 n. 27 (1950), 681-691.
[10] Kawamura, K., Indefinite-metric Quantum Field Theory and Operator Algebra, preprint 2006, arXiv:math/0608076v2 [math.OA].
[11] Kawamura, K., Algebra with Indefinite Involution and Its Representation in Kreĭn Space, preprint 2006, arXiv:math/0610059v2 [math.OA].
[12] Murphy, G.J., C*-algebras and Operator Theory, Academic Press, Inc., CA, 1990.
[13] Paschke,M., Rennie, A., Verch, R., Lorentzian Spectral Triples, preprint
[14] Pauli, W., On Dirac's New Method of Field Quantization, Rev. Modern Phys. 15(1943): 175-207.
[15] Pontrjagin, L., Hermitian Operators in Spaces with Indefinite Metric, Izv. Akad. Nauk SSSR, Ser. Mat., 8(1944): 243-280.
[16] Scheibe, E., Über Hermetische Formen in Topologischen Vektorräumen I, Ann. Acad. Fenn. Ser. A I(1960): 294.
[17] Strohmaier, A., On Noncommutative and Semi-Riemannian Geometry,
J. Geom. Phys., 56(2006): 175.

VITA

Name Mr. Pichkitti Bannangkoon
 Date of Birth 17 August 1984
 Place of Birth Phatthalung, Thailand
 Education B.Sc. (Mathematics) (First Class Honours), Prince of Songkla University, 2006
 Scholarship
 The Development and Promotion of Science and Technology Talents Project (DPST)
 สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

