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CHAPTER 1
INTRODUCTION

Law of large numbers is a fundamental concept in statistics and probability.
It includes various theorems that make statements about the convergence of the
average of a random sample to the mean of the whole population. Usually two
major categories are distinguished: Weak Laws versus Strong Laws. The Weak
Laws deal with limits of probabilities involving average of random sample while the
Strong Laws deal with probabilities involving limits of average of random sample.

In this thesis, we consider only the strong law of large numbers (SLLN) which
is stated as follows.

Let (X,) be a sequence of random variables with finite expectations in a

n

probability space and S,, = ZXZ" We say that (X,,) satisfies the strong law of
i=1

large numbers (or the sequence S, obeys the strong law of large numbers) if

%[&—E(Sn)] as )

where a.s. stands for convergence almost surely. When the random variables are

identically distributed, with the expectation p, the law becomes:
1 a.s.
-5, — U (1.1)
n

The strong law of large numbers (1.1) was originally proved by Borel in the case of
X;’s being independent. Bernoulli random variables while the general form of (1.1)

was proved by Kolmogorov.

Let G(n,p) be a graph on n labeled vertices {1,2,...,n} where each possi-
ble edge, {i,7}, is present randomly and independently with a probability p, of

0 < p < 1. Our main results below are obtained from the investigation of the



strong law of large numbers of the number of vertices with a fixed degree, the
number of isolated trees with a fixed order, and the number of isolated copies of a

fixed connected graph in G(n,p).

Theorem 1.1. The number of vertices with degree d in G(n,p) obeys the strong

law of large numbers in the following cases:
1. p is a constant.

1
2. p:—(s,where 0>1 and d>1.
n

Corollary 1.1. If p is a constant then the number of isolated vertices in G(n,p)

obeys the strong law of large numbers.

Theorem 1.2. Let k be a positive integer and k > 2. The number of isolated
trees with order k in G(n,p) obeys the strong law of large numbers in the following

cases:
1. p is a constant.

1 1
2. p=—,wh &> ——.
p= 5 wherg —

Theorem 1.3. Let H be a fixed connected graph consisting of k > 2 vertices and
¢ > 1 edges. The number ofisolated copies of H in-G(n,p) obeys the strong law of

large numbers in the following cases:
1. p_1s a constant.

1 1
2. P=5 where 0 > 7

The following result is obtained from our study of model of somatic cell hybrid

panels in [14],



Theorem 1.4. Let d be a fired Hamming distance. Then the number of pairs
of chromosomes in a random panel of n distinct hybrid clones for which the Ham-
ming distance is less than d, W, 4, obeys the strong law of large numbers when the

retention probability py is a constant , of 0 < pg < 1.

This thesis is organized as follows. Preliminaries are in Chapter 2. The strong
law of large numbers of the number of vertices with a fixed degree, the number
of isolated trees with a fixed order, and the number of isolated copies of a fixed
connected graph in a random graph are investigated in Chapter 3. In Chapter 4,
we prove that the number of pairs of chromosomes in a random panel of n dis-
tinct hybrid clones for which the Hamming distance is less than a fixed Hamming

distance d obeys the strong law of large numbers.



CHAPTER 11
PRELIMINARIES

In this chapter, we review some basic knowledges in probability theory which
will be used in our study. The proof is omitted but can be found in many proba-
bility theory text books.

The definitions and theorems below are very useful for our study.
Definition 2.1 A measure space (2, F, P) is said to be a probability space if
P(Q) =1.

If (Q, F, P) is a probability space then the measure P is called a probability
measure and the set {2 will be referred as a sample space and its elements are
called points or elementary events. The elements of F are called events and

for any A € F, the value P(A) is called the probability of A.

Definition 2.2 Let (2, F, P) be a probability space. A function X : Q — R
is called o random variable if for every Borel set B in R, X *(B) € F.

We shall use the notation P(X € B) in place of P({w € Q| X(w) € B}). In
case of B ={a}, (—o0,a] or [a,b], P(X € B) is denoted by P(X =a), P(X < a)
or P(a < X <b), respectively.

Definition 2.3 A random wvariable X 15 said to be a discrete random vari-

able if its image is countable.

Definition 2.4 Let X be a discrete random variable. A function f : R — [0,1]
defined by



1s called the probability function of X.

Definition 2.5 Let E be an event from a probability space (2, F,P). A func-
tion X : Q — R defined by

1, if weFE;
X(w) =
0, if weE,

1s called an indicator random variable.

Definition 2.6 Let (0, F, P) be a probability space and F, C F for all a € A.
Then {Fo : a € A} is said to be independent if and only if for each nonempty

finite subset j = {j1, joyer-, Ju} Oof A\,

P (ﬁ Am) L Pt

forall A, € F; and m=1,2,... k.

Definition 2.7 Let (0, F, P) be a probability space. A collection of events
{E, € F: a € A} isindependent if and only if {o(E,) : « € A} is independent.

Theorem 2.1 A family of events {F, : @ € A} is independent if and only if

P(()E.) =[] P(E.).

a€el aEAN

Definition 2.8 Let { X, a € A} be a family of random wvariables on a probabil-
ity space (2, F, P). Then {X, : o € A} is said to be independent if and only if
{o(X o)+ v € A}isindependent; where o (X ) =4 X' (B) i B-is a-Borel set on R}.

Definition 2.9 Let X be a discrete random wvariable with its probability func-

tion f. If Z |z| f(x) < oo then the expected value of X, denoted by E(X) is

zeImX

defined by
E(X)= Y axf(x).

z€Im X



and the variance of X, in notation Var(X) is defined by

Var(X) = E [(X — E(X))?].

Theorem 2.2 Let X be a random variable such that E(X?) < oo. Then

Var(X) = B(X?) — E*(X).

Theorem 2.3 (Chebyshev inequality) Let X be a random variable with finite

expectation and variance. Then for each € > 0

X
P({l €@ X(W) ~ )| 2 ) < )
Theorem 2.4 Let X, Xy, ..., X,, be random variables on a same probablility space

and a, b be any real numbers. If B(X) < oo and F(X;) < oo fori = 1,2,..,n

then we have the followings;
1. E(aX +b)=aE(X)+b

2. E(X1+Xo+ ...+ X)) = BE(X)) + BE(X3) + ... + E(X,).

Definition 2.10 Let X and Y be random variables on the same probability space.
If E(X?) < 0o and E(Y?) < oo, then the covariance of X and Y is defined by

Cov(X) VI )Y= E[(X/~ E(X)) (¥, < E(Y)):

Theorem 2.5 Let X, Y, X;, ...X,, be random variables on the same probablity
space. If E(X?), E(Y?), BE(X?) < co fori=1,2,...,n then we have the followings;

1. Cov(X,Y) = E(XY) — E(X)E(Y)

3
3
3
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Definition 2.11 Let X, Xy, Xy, ... be random wvariables on a probability space
(Q,F,P). Then we say that (X,) converges to X almost surely, in notation
X, 25 X if

Plwe : X,(w) = X(w) asn — oo}) = 1.

AONUUINYUINNS )
RN ITNINENAY



CHAPTER I11
STRONG LAW OF LARGE NUMBERS
ON RANDOM GRAPHS

3.1 Introduction and Main Results

A random graph is a graph generated by some random procedure. In other
words, a random graph is a collection of vertices with edges connecting pairs of
them at random.

Random graphs are widely used in probabilistic method, where one tries to
prove the existence of graphs with certain properties. In application, Random
graphs have been used as models of networks in diverse areas of science, engineer-
ing and sociology, for examples models of food webs ([22]), networks of telephone
calls ([1]), networks of friendships within a variety of communities ([2],[11]), etc.

The study of random graphs has long history. The notion of random graphs
was first introduced in 1947 paper of Erdds ([4]). A decade later, the theory of
random graphs had been developed by 1959-1968 papers of Erdés and Rényi ([5]-
[10]).

The theory of random graphs lines intersection between graph theory and prob-
ability theory, and studies the properties of typical random graphs. Different ran-
dom graph models produce different probability distribution on graphs.

The simple model introduced by Erdos is very natural and can be described
as choosing a graph at random, with equal probabilities, from the set of all 2(%)
graphs whose vertex set is {1,2,...,n}. Nowadays, among several models of ran-
dom graphs, there are two basic ones, the binomial model and the uniform model,
both models were introduced by Erdés (1947).

In this work, we study on the binomial model that can be described as the

following definition.



Definition 3.1.1. A binomial random graph (or simply random graph) on
n vertices, denoted by G(n,p), is a graph on n labeled vertices {1,2,...,n} where
each possible edge, {i,j}, is present randomly and independently with a probability
p, of 0<p<1.

The probability space of this model is (Q, F, P) where Q) is the set of all 2(%)
graphs whose vertex set is {1,2,....,n}, and F is the family of all subsets of Q and
for each G € (1,

P(G) = p< (1=p) )=

where eq 1s the number of edges in a graph G.

1
Example 3.1.1. Letn =4 ,p= T According to Definition 3.1.1 we have,
Q2 ={G : G is a graph with vertex set {1,2,3,4}} =: {G1,Gs,...,Gp,...,Gos }

G G G, Gos

= 0.0021973.

In this chapter, we investigate the strong law of large numbers of some sequence
of random variables, defined on the sample space of random graphs. The necessary
definitions in the graph theory which are related to our study are as follows.

Next, we denote the set of all two-element subsets of a set A by A®).
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Definition 3.1.2. A graph consists of two things: a nonempty set V and a (pos-
sibly empty) subset E of V@ . Typically written G = (V, E), the elements of V are
the vertices (or nodes) of G, and the elements of E are its edges. When more
than one graph is under consideration, it may be useful to write V(G) and E(G)

for its vertex and edge sets, respectively.

If e = {u,v} € E(G), then vertices u and v are said to be adjacent (to each

other) and incident to e.

Definition 3.1.3. Let G and H be graphs. Then H is a subgraph of G if V(H) C
V(GQ) and E(H) C E(G).

For any subset W of V(G), the subgraph of GG induced (or spanned) by W
is G[W] = (W, E(G) N W®). An induced subgraph G [W] is said to be isolated
if any vertex in W is not adjacent to a vertex in V(G)\W .

N\ G[W]

L]
i
r

Figure 3.1 An example of a graph G containing induced subgraph G [W] where
W ={12,13,14,15,16} and the isolated subgraph H.

Definition 3.1.4. A graph G is connected if for any given pair of vertices a and b
there is a finite sequence of distinct vertices and edes of the form v;,, €, Viy s ..., €, , Vi,
where v, = a, v, = b, and e;; = {viy, Vi }, € = {viy, Vi } 1€, = {vi 00 b

and otherwise, G' is disconnected.
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©

Connected graph Disconnected graph

Figure 3.2

Definition 3.1.5. The degree of a vertez v in a graph G, denoted by deg(v), is
the number of edges incident to v. If deg(v) = 0, then v is said to be an isolated

vertex.

Definition 3.1.6. A cycle is a connected graph in which every vertices has degree
2.

Definition 3.1.7. A tree with order k is a connected graph with k wvertices

o)
s

containing no cycles.

l

Tree with order 6 Tree with order 10

Figure 3.3

Definition 3.1.8. A graph G is isomorphic to a graph Gy (or Gy is a copy of
Gs) if there is a one-to-one function f from V(Gy) onto V(G3) such that {u,v} €
E(G4) if and only if {f(u), f(v)} € E(G2). If such a function exists, it is called
an isomorphism from G to Gs.

An isomorphism from Gy to itself is called an automorphism of G.
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Definition 3.1.9. Let Gy be a fixed graph. A subgraph H in a graph G is an
isolated copy of Gy if H is isolated subgraph of G and isomorphic to Gy.

Figure 3.4 An example of a fixed graph G and a graph G containing subgraph
H which is an isolated copy of Gy.

Our objective is to investigate the strong law of large numbers of the number
of vertices with a fixed degree, the number of isolated trees with a fixed order,
and the number of isolated copies of a fixed connected graph in G(n,p) where

0 < p < 1. The followings are our main results.

Theorem 3.1.1.. The number of vertices with degree d in G(n,p) obeys the strong

law of large numbers in the following cases:
1. pis a constant.
1
2. p=—,where 6>1 and d=>1.
n

Corollary 3.1.1. Ifp is a constant then the number of isolated vertices in G(n, p)

obeys the strong law of large numbers.
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Theorem 3.1.2. Let k be a positive integer and k > 2. The number of isolated
trees with order k in G(n,p) obeys the strong law of large numbers in the following

cases:

1. p 1s a constant.

1 1
2. h 0> —-
p = —, where T
Theorem 3.1.3. Let H be a fized connected graph consisting of k > 2 vertices and
¢ > 1 edges. The number of isolated copies of H in random graph G(n,p) obeys

the strong law of large numbers in the following cases:
1. p is a constant.

1 1
2. p= 5 where § > 7

3.2 Proof of main results

Throughout our study, we use the Proposition 3.2.2 as our tool for proving our
main results. So we begin this section with the following facts that give us this

tool.

Lemma 3.2.1. For each ¢ € R", let B (e) be the set depend on €. If B(e€) is

1
increasing with € then ﬂ B (e) = ﬂ B (—)
n

>0 neN

Proof. We assume that B (¢€) is increasing with .
1
Th T C — .
en (VBO= [ Ble). 10 clear that () Bl(e) [ B (n)
>0 e€(0,1] e€(0,1] neN

1

By Archimedean property, for each e € (0, 1] there exists n € N such that — < e.
n

1
Thus for each € € (0, 1] there exists n, € N such that B (¢) O B (—

Hence () B ;mg(i) > ﬂB(%).

€€(0,1] Ne neN

Therefore (| B(e)= () B(e)=()B (%) O

e>0 €€(0,1] neN
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Proposition 3.2.1. (The first Borel-Cantelli Lemma) Let A, Ao, ... be sequence
of events from a probability space (2,3, P), zfz P (A,) < oo, then

n=1
P (ﬂ U Am> = 0.
neNm=n
Proof. (see [12], pp. 320) O

Proposition 3.2.2. Let (X,,) be a sequence of finite variance random variables on

a probability space (2, F, P) and (a,) be a sequence of positive real numbers.

— Var X 1
I " < oo then — [X, — B(X,)] == 0.
f; 2 <o i o (Xn)] —
=, Var X,
Proof. We assume that Z o2 <

=1 13

Xn, — BE(X
Let € > 0 be arbitrary and A, (¢) = {w e ‘”—(")
a’n

By Chebyshev’s inequality, we get

a

Hence by the first Borel-Cantelli Lemma, P (ﬂ U Anm (e)) =
neN m=n

That is P (U ﬂ A? (e)) =1 for any € > 0.

neNm=n

Since U ﬂ A?. (e) is increasing with e, it follows from Lemma 3.2.1 that

neNm=n
~ C ~ (& 1
N U =4 ()
e>0neNm=n keNneNm=n
Note that U ﬁ AL (%) is decreasing with k.

neN m=n
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We obtain that

(foen [E55500 wm)
X (w) — E(Xon)

:P({wEQ: Ve >0, dn € N, Vm > n,

\
—p ﬂUﬁ{WEQ: ’Xm(w)a;E( m)

e>0neNm=n

-r(NU N 0]

e>0neNm=n

~r(NU Nasl))

keNneNm=n

Z,JHEOP<U A, (%))

neNm=n

<))

am

J

= 1.

1 a.s.
That implies — [X,, = E(X,,)] — 0 . O

n

Now, we are ready to prove our main theorems. From now on, we let ¢ =1 —p

and 0 <p < 1.

3.2.1 Proof of Theorem 3.1.1

Proof. Let a non negative integer d be fixed and S, 4 be the number of vertices with
degree d in G(n,p). For each n € N and i € {1,2;...,n}, we define the indicator

random variable

X 1, if the vertex ¢ in G(n,p) has degree d;
ngN)
0, otherwise.

It’s clearly that

ZX""’ if n>d;
Sn.d = § i=1 (3.1)

0, if n<d.
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Barbour, Karonski and Rucinski ([3]) show that

E(Sna) = E:&n—nEMﬁ%ﬂM%Uﬁfld (3.2)
=1
and
n _ n—d)—
Var(S,.q) = (";1)2 (d— (n— 1)p)2p2d Lg2n—d)=3

1
+ E(Sn,d) =3 %Ez(sn,d). (33)

For d > 1, it follows from (3.1) and (3.2) -(3.3) that Var(S, 4) = 0 for every n < d

and for each n > d,

n o N
Var(Sp.a) = — (") d— (n = 1) p p* 1?2
1
+ﬂ&@—gﬁww)
n

n—1\2 — n—d)—
= — (%) [d— (n=1p) p* g0

n— n=11\2 n—d)—
+n ( )pdq 1=d TZ( dl) p2dq2( d)—2

= i T (g ) [d* = 2dp (n — 1)+ p? (n — 1)) p**tgPn=d)=3
+n (n l)pdqn 1-d n(n;l )2p2dq2(n—d)—2
(n2 n) ( )2 2d—1 2(n d)—3 o (n2 i n) (n;l )2p2d+1q2(nfd)73
+n (Tt g
< n2 (2_%)2]7201 1 _2(n—d)—3 4+ n? (n;1)2p2d+1q2(n—d)—3
+n (") plg T

n2(d_1) B n—d)— n2d n—d)—
<'n? ' )de L2n=d) =3 2 (( )2>p2d+1q2( d)-3

[(d—1)!° d!

nd e
+h (E) plgn-id

1 2d, 2d—1_2(n—d)—3 L odr2 2441 2(n-d)-3
= ———n"p g + P g

[(d = 1)) (a!)?
1

b+ = pl d+1pdqn 1-d

= a,+ b, + ¢, (3.4)
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1 2d,2d—1 2(n—d)=3 1 _. L odro 21 2(n—d)—3
) n - -

where a,, = ————=n n
@—np" Pt CIE

1
and ¢, =: End“pdq”_l_d.
Case 1: Let p be a constant . To prove that S, 4 obeys the strong law of large

numbers, it suffices to show that [S,, 4 — B(S, 4)] — 0.

We will show that Z Var(S,.4) < oo by considering the case d =0 and d > 1.

n=1

For d = 0, it follows from (3.2) and (3.3) that

n —

00 00 £ N -
ZV&I(SnVO) Y- Z [ i (n — 1)2pq2n 5 4 B(Spo) — n~ E2(Sn)
n=1

£ Z [n2pq2n73 {0 npq2n73 L\ nqnfl il nq2nf2]
_ Z [nqn—l + n2pq2n—3 A (p A q) q2n—3}
_ Z [nqn—l = n2pq2n—3 - nq2n—3]
n=1
1 = n ﬁ — 2 2n. i = 2n
P DB =D DL

4 n=1 q n=1 q =1
Each series on the right side converges by the ratio test, which implies
ZVar(Sn,g) 0.
n=1

For.d > 1; It-follows-from (3.4)-that

iVar(Snvd) = i Var(Sy.q)
n=1

n=d+1

Sian"i_ibn‘{'icn

n=d+1 n=d+1 n=d+1
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= 1 2d_2d—1,2(n—d)—3
= —n
Z TR

= L odio 2441 2(n—d)—3
> —<d!)2n P
n= d+1

+ E : d+1 d n 1-d

n= d+1

<O an 2n+02§:n2d+2 2n+C¢ an+1 n
"—%

where C, Cy and C5 are certain positive constants. Then ZVar(Sn’d) < o0 by

n=1

applying the ratio test with each series on the right side.
According to the proposition 3.2.2, we get [S, 4 — B(S,4)] —> 0 when d > 0

and p be a constant.

1
Case 2: Welet p=—,0>0andd > 1.
n

1 a.s.
We will show that — [S,,4 — E(S,.4)] — 0. It follows from (3.4) that
n

> \kﬂ‘S%d it Var Smd
S~ Var(Saa) _ 5 VS

n? n2
n=1 n=d-+1
= a b =, ¢
L P
T n? n? n?
n=d+1 n=d+1 n= d+1
_ ad+1+bd+1 Z p2d-2)20-12(n—d)-3
2
(d-+-1) n=d+2
1 >
i Zn2dp2d+1q2nd Z pd=Lpdgn=1-d
(d})? d!

n=d+2 d! n=d-+1
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oo

aqy1 + bay1 1 1 1 oina)—s
- 2 s D el )
(d+1)2 " [(d— 1) &2, nodD n
—1 - 1 1 2(n—d)—3
+ (d)2 Z n§(2d+1)—2d(1 o 5)
n=d-+2
1 S 1 1 n—1-—d
+ d! Z nod—d+1 (1 E)
n=d+1
aq+1 + bay1 1 F 1
+ )1/ 7 o
- 2 2 8(2d—1)—2d+2
(d+1) [(@= 1)\ 4P % D
1 > 1 | &= 1
+ (d|)2 Z nd(2d+1)—2d T E Z ndd—d+1°
7 n=d+2 " n=d+1

Each series on the right side converges when 6 > 1. By the proposition 3.2.2,

1 a.s.
- [Sna — E(Sna)] —> 0 where > L. O

3.2.2 Proof of Corollary 3.1.1

Proof. 1t follows directly from Theorem 1.1 in the case of d = 0. O

3.2.3 Proof of Theorem 3.1.2

Proof. Let a positive integer k >-2 be fixed and-S,,;, be the number of isolated
trees of order k'in G(n,p). For each n > k, we define

Doy =: {Z: (iny 2y ooy i) © 1 < iy <3 < ... < ip < n}
be the set of all possible combinations of k vertices and for each i€ Dy, 1, we define
1, if the induced subgraph which is spanned by all vertices
Xz, = of 1, is an isolated trees in G(n,p);

0, otherwise.
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Stien ([18]) shows that for n > k
B(X;,) = P(X;, = 1) = k2t (5) -6, (3.5)

It’s obvious that
> X, if n>k

Snk = { 1€Dnk
0, if n<k.
Thus
Var(S, ) = 0 for every n < k. (3.6)

Barbour, Karonski and Rucinski ([3]) show that for each n > k,

( — —
E(X;) = E*(X3,), ifi=7j;

E(X;H)E(an)(q‘kg — 1), if7and j have disjoint vertices ;
Cov (X5,

wmn’

Xﬁn) =
’ —E(X;, ) E(X:), if i # j and 7, j have at least one

vertex in common.

\
For each i € Dy, i, we let
Ly =: {j € Dy : i andj have disjoint vertices},

and

-

L= {j € Dpy:i+#jand i, ] have at least one vertex in common}.

Hence by (3.5),

)
kk—2pk—1qk(n—kz)+( K)—k+1

_k2(k—2)p2k—2q2k(nfk)+2( K)—2k+2

)

COV(X* X;n) =

mn’

Jo20e-2) 22 2kn—R)+2(§ ) 2k 42 (q_kZ - 1) . ifie L

\ _kz(1672)])%72q2k(n—k)—l—2(15)—2k-~-27 if j c L% ‘
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Then we obtain that for each n > k,

Var(S, Z Z Cov(X5,, )

ZGDn,k ]EDn,k

= ) Cov(X;, X))+ DY Cov(X;,, X5,)

i€Dy g j=i TeDn s jeb-
+ 3 Y Cov(X;, X))
€D, i jeL.
= (%) [l{;k—ka-lqk(nfk)Jr(’Qg)*kJrl &~ k2(k72)p2k72q2k(n7k)+2(5),2k+2]
+ (%) (nzk) [ k2(k72)p2k72q2k(n_k)+2(15)_2,%2((1%2 1)
() ki_‘i (k9 (2 ,lf) 2k 2)p2k 2q2k(n k)+2( k) —2k+2
r=1

< (1) kk72pk71qk(n~k)+(]§)—k+l

+ (1) (") 21 =2)) 2k =2 2k —2k? —3k-+2

=:r, +f (3.7)

where 7, =: (}) kk*2pkflqk(nfk)+(§),k+1

L)

— (Z) (n—kz) k2(k—2)p2k—2 2kn—2k2—3k+2‘

and ¢, P q

Now, we suppose that p is a constant. It suffices to prove that

[Sp — E(Spx)] == 0. From (3.6) and (3.7), we get

iVar(Sn,k) 8-
n=1

(Sn,k>

(") kk—2pk—1qk(n—k)+( ’5 )—k+1

VAN

ﬁMg 1 ]2
=

[
WE

3
I

+
”M&%w

3
N
ko

Z ) ( n;k ) k2(k—2)p2k—2q2kn—2k2—3k+2



22

ok
N k-2 k-1 k(n—k)+( K )—k+1
<D THT (%)

n=~k
oo

+Z n2k

e (K)?

o0 o
S Cl § nqun _|_ 02 § n2kq2kn

2(k—2) 2k—2q2kn—2k2—3k+2

where ciand ¢y are positive constants. Thus ZVar(Smk) < oo by applying the
n=1
ratio test with each series on the right side.

According to the proposition 3.2.2, [S,x — E(S,.1)] —= 0 where p be a constant.

1
Next, suppose that p = —, 0 > 0. It follows from (3.6) and (3.7) that

nd’
i Var(Sn,k) Y/ i V&I"(Sn k)
n=1 (k;) A=k (k)
N T et
P ke
w MR e W)
00 n 2k—1
_ Z (%) Jh—2 =1 k(n—k)+( K )—k+1 ln
=) ety D
n=k (k) n=k (k)
= (1) (":") 2(k—2) 2k—2 2kn—2k2—3k+2
A=
n=2k (k)
o0 Lk 1\ Fo=B) (5 ) —k+1
< Z nd(k—1) (1 - ﬁ)
n=k
1 12k~ 1 2kn—2k2—3k+2
+ nd(2k=2) < 1 ﬁ)
n=2k
= 1 ad 1
k=2 2(k—2)
S HH AR TS
n==k n=2%k
< o0

1
whenever § > 1 According to the proposition 3.2.2, we get

1 s, 1
— [Spk — E(Sup)] 2250 where § > ——. O
©) ' ’ k—1
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3.2.4 Proof of Theorem 3.1.3

Proof. Let S, g be the number of isolated copies of H in G(n,p).
For each n > k, let D, , Ly and L% be defined as in the proof of Theorem
3.1.2. Then for each i € D,, . , we define

1, if the induced subgraph which is spanned by all vertices
Y; = of i, is an isolated copy of H in G(n,p);

0, otherwise.
k! ’ . - . -
Note that there are W possible copies of H which spanned by all vertices of i,
au
where aut(H) stands for the number of automorphisms of H ([13], pp 141). Then

we get

and E(Y;,) = E(Y3,) for any 7€ Dnpe
It’s clearly that

> Y, i n>k

Sp,H = { 1€Dnk
0, ifn < k.
Thus
Var(S, g) =0 for every m.< k. (3.8)
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Now, we will determine Var(S,, g) for n > k. Consider, ifi = j then EY:Y: )=

m- Jn
E(Y2) = E(Y;,) and hence,
k! ¢ k(n—k)+(5)—¢ kU o 9 2k(n—k)+2( K )—2¢
= 2)7f o (—— 2
aut(H)p 1 (aut(H)) P
k! ¢ kn—k2+(5) = KU o 90 okn—k?— k-2
_ 9 )Y n ) 3.9
cat(i? (aut(H))p q (3.9)
In case of j € L. we have E(Y7,Y3,) = 0 which implies that
kU o o 2k(n—k)+2( K )—2¢
y O 2
k! ek fo
2 _(am(H))zpzeq% k2—k—2( (3.10)

In case of j € L; we get

|
E(Y~ Y- ) AVp (Y* = 1,Y- — 1) = (L)Qp%q%(n—%)-k(% )_22

n’jn

and hence,

n) T gn nsgn

Cov(Y;,, Y5,) = B(Y;,Y;,) — B(Y;,)E(Y;,)

.y k! )22 2k(nf2k)+(22k)f2€_( k! )22 2k(n—k)+2( K )-2¢

aut(H) aut(H)
k! 2, 20 2kn—2k2—k—2¢0 k! 2. 20 2kn—k2—k—2¢
= (——— n — (———— n . 3.11
(aut(H)) Py (aut(H)) P4 ( )



25

From (3.9)-(3.11) we obtain that for n > k,

VarS) = 30 Y Conli Vi)
ZEanJEan
=D SD WLITRERRED S BTN
1€an j=i 1€Dn,k JGL;
+ > D Covl(¥, Yy
ZEDnykJGL;
n k! ¢ kn—k2+(k)—¢ KL o 90 okn—k2 k20
e _ 2 P
k! 2 k! 2
n n—~k 2, 20 2kn=2k<—k=20u. 2,20 2kn—k*—k—2¢(
— k! )
_(n kY (n=k - 2. 20 2kn—k2—k—2¢
(k) p (r) (k—r) (aut(H)> pq
n kL kn=k2+(E)=€ o (n\ (n—k KU o o0 okm-ok2 k-2
A 2 n b n
—w, + 2, (3.12)
k! k24 (k)=
where w, =: (}) aut(H)péqk it P S
and 2z —: (n) (n—k)( k! )2p2zq2kn—2k2—k—2z
nARIN R N qut(H) :

Now, suppose that p is a constant. It suffices to show that

[Sp.ir — E(Sp.1)] == 0. From (3.8)

and (3.12) we get

Z Var(S,n) = Z Var(Sy/a)
n=1 n=~k
< i (n) k! pqun—kz—l-('g)—é
f = M7 qut(H)
k! 2
n n k 2 20 2kn—2k*—k—2¢

SCIan kn+c Zan 2kn
n=~k

n=2k
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where Cy, Cy are certain positive constants. Then Y >, Var(S, g) < co by using
the ratio test. According to the proposition 3.2.2, [S, iy — E(Snu)] — 0, where
p is a constant.

1
Next, suppose that p = —, § > 0. Then from (3.8) and (3.12), we obtain
n

= ) I G
SN S
n=k (k:) n=Fk (k)
k! > (%) 4 kn—k?+( k)¢ = Zn
- Y D D
aut(H) Z (+)? Z (%)
k! = (R C"F) 20 sem—ow2—p—2e
( )? P
aut(H) T;C N
k?' 0o 1 1 kn—kz—i-(g)—f
< L AN
~ aut(H) ; ndt ( n5>
il . 00 1 1 2kn—2k2—k—2¢
(aut(H) Tgm ﬁ)
k! == k! =1
< — 2N\"
~ aut(H) ; ol (aut(H)) 7224; n2o¢

1
where 0 > 7 According to the proposition 3.2.2, S, g obeys the strong law of

1
large numbers whenever § > 7 O



CHAPTER IV
STRONG LAW OF LARGE NUMBERS ON
RANDOM SOMATIC CELL HYBRID PANELS

4.1 Introduction and main result

Somatic cell hybrids are usually used to assign particular human genes to
specific human chromosomes ([16, 17, 20, 21, 23]). The potential of human gene
localization by rodent-human somatic cell hybrids has been confirmed since the
pioneering work of Weiss and Green ([21]). Rodent-human somatic cell hybrids
are formed by fusing normal diploid human somatic cells with permanently trans-
formed rodent cells. The resulting hybrid somatic cells retrain all of the rodent
chromosomes while losing random subsets of the human chromosomes. A few gen-
eration after their formation, a collection of different hybrid clones are analyzed for
the expression of the human gene and for the presence of each of the 24 distinct
human chromosomes. The chromosomes bearing the interested gene are consis-
tently present in the hybrid clones expressing the gene and consistently absent in
that clones not expressing it. From this pattern one can assign the gene to the
particular chromosome. Since the Y chromosome bear few gene of interest, we will
focus on somatic hybrid clones derived from human female cells that give total of
23 different chromosome types: 22 autosomes and the X chromosome.

Throughout this chapter we study on the mathematical models for the design
of hybrid clone panels in the paper of Lange ([14]). There are three assumptions
that should be satisfied when somatic cell hybrid panels are randomly created.
First, each human chromosome is lost or retrained independently during the for-
mation of a stable clone. Second, there is a common retention probability p, where
0 < py < 1, applying to all chromosome pairs. Third, different clones behave in-

dependently in their patterns.
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01010001000000101101111
101011001000010010101T11
0111101000001 0011011O011
1110011001010001110010°1
0001111000111 1101000110
0111111111100000100000°0
001010110111 00001111100
000101110001 01T11101010°1
100011000101 1010101100°1

Figure 4.1: An example of karyotype matrix of a somatic cell hybrid panel

Let n denote the number of distinet hybrid clones in a panel. We construct
a karyotype matrix of this panel when each clone in the panel is assayed for the
presence of each of 23 chromosomes. It consists of n rows and 23 columns and its
entry in the row ¢ and column 75 is 1 if the clone ¢ contains chromosome j ; other-
wise it is 0. We also construct an additional test column of 0’s and 1’s when each
clone is assayed for the presence of a given human gene. Barring assay errors or
failure of critical assumptions ([14, 15]), the test column will uniquely match one
of the columns of the matrix. In this case the gene is assigned to the corresponding
chromosome. If two columns of the karyotype matrix of a panel are identical, then
the gene assignment becomes ambiguous for any gene lying on one of the two cor-
responding chromosomes. Figure 1 depicts the karyotype matrix of a hybrid panel
with n = 9. This panel has an unusual property that every pair of columns differs
at least three entries. This level of redundancy is useful.  If a single assay error
is made in creating a test column for a human gene, then the program of gene
assignment must be successful. In practice, the level of redundancy is random.

Minimum Hamming distance is a natural measure of the redundancy of a panel.

Let ¢! denote the column s of the karyotype matrix of a random panel with n
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distinct hybrid clones. The Hamming distance p (¢, ¢}') between the chromosomes

s and ¢ is just the number of entries in which ¢! and ¢} differ.

Let I' = {a=s,t : 1 <s#t<23}. The minimum Hamming distance of
a panel is defined as min p(c, c}).
{s,t}el’

Let d be a fixed Hamming distance and W, 4 denote the number of pairs of
chromosomes in the panel for which the Hamming distance is less than d.
Clearly, W,, 4 must be 0 when the minimum Hamming distance of the panel

equals or exceeds d.

In this Chapter, we investigate the strong law of large numbers of W, 5. The

following is our main result.

Theorem 4.1.1. W, 4 obeys the strong law of large numbers when the retention

probability py is a constant , 0 < py < 1.

4.2 Proof of Main Result

Proof. 1t suffices to prove that [W,, 4 — E(W,,.4)] 22,0 . Let py be a constant and
0 <po <1 Foreachn e Nand a={st} €', we define

Y 1, ifp(ctcp)<d;

0, otherwise.

Then X,,’s are dependent identically distributed. Teerapabolarn and Neammanee

([19]) show that for n > d ,

p=:E(Xon) = P(Xan=1) = : (%) qi<1 - Q)nii' (4.1)

where ¢ = 2po(1 — po) is the probability that ¢ and ¢} differ in each entry.
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It is obvious that

> KXo, if n>d;

Wn,d = 4 a€l
(%), if n<d.

i.e., Var(W, 4) = 0 if n < d and for each n > d.

Var(Wya) = Var()  Xan)
acl
F Z Z COV(Xam Xﬁn)
acl’ el
=N B(Xan X)) — E(Xaw) E(X )] (4.2)
acl’ el

By Holder’s inequality and (4.1), we obtain that for any o, § € T,

E(XanXg) < VEGE)\/E(X3,)
=/ E(Xon) E(X0)
-7

=ip! (4.3)

It follows from (4.1), (4.2) and (4:3) that for n >4,

Val"(and) < Z Z [p - E(Xom)E(XﬁN)]

ael el
= |1 [p=p]

< \F!2p

= T Z ¢'(1—q)"



Thus we have

(o] o0
E VarW,, 4 = E Var W, 4
n=1 n=d

co d—1

<|r)? ZZ q'(1—q)"
=d =0

oo d—1 i

<IN -
n=d =0 4"
d—1 oo i

=ILPD > ==
1=0 n=d

IZﬂ( N )Z” 1=q)"
< [T ZZ'( - )Zn 1—q)"

Since 0 < po < L and ¢ = 2po(1—po), |1 —q| < 1. Hence for eachi =0, 1,2, ...

the series Y 7 n'(1 — ¢)" converges by the ratio test. That implies
o0
Z VarW,, 4 < oo.

n=1
According to the proposition 3.2.2, we obtain the required result.
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