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We observe that for each ¢ € 7, (I;), € V, and V, is a vector space,

hence Y o, (Ii)u C V,. Therefore V, = @ELI(I‘.)“. 2

Lemma 2.2. Let V be an sl(2, C)-module with a maximal vector vt of weight

m, and let k € Z} with k < m. Then for anyt € Z  with 0 <t < k,

T

Proof: We will prove(1) by inductionon t. Clearly it 1s true for t = 0. Suppose

(1) is true for t € ZF with 0 <'t < k."Then

L. (yk . ‘U+) = - (:l:t 4 (yk { v+))

JATES ST A =
C (— t)J!r(m - 12)!"’ (A et)
B (Z"(“n:)—:_(:n_-—k]?;l)l {[$7yk_t] - yk—t:z:} . v+
kl(m 4+t —k)

= T e =T BT R o

_ km + =R T ot
k- +D)m—-k)"

Thus we have Lemma 2.2. - #

Our next goal is Theorem 2.5, which basically says that in an's{(2, C)-
module; the action“of| y is Complételydetermined (by the actions of z and h.

Lemmas 2.3 and 2.4 are used in the proof of Theorem 2.5.

Lemma 2.3. Let V be a finite-dimensional vector space over C and suppose

@1, w2 : 5[(2,C) — gl(V) are two representations such that ¢1|p = y2|B, where
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B = span{z,h}. Let
H = p1(h), X = p1(z), Y1 = ¢1(y) and Y2 = p2(y).

Using the module structure on V corresponding to @1, write V as a direct sum of
irreducible submodules, V.= @) .+, I;, and for.eachi € n, let v} be a maximal
vector of I;, with highest weight m;. Then for any+ € # and any t € Z with

1<t < my,

X (Y (Y™ (o ) —T:L—ﬂ_)z { - RN+ B 0N)) (@)

(m

Proof: Note that H'= @3(h) and X-=s(z) as well. Fix i € n. We will prove
equation (2) by induction on . | |

Basis: t = 1. We have
X (Y2 (Y (o)) =405 Vo] + 15 v, ()
={HY;"" + ngzYl’""_l}(v;*)

m;! e -
e )

Thus, it is true in the case { = 1.

Induction: Suppose (2) is true for ¢ € Z+ with 1 <t < m;. Then

X (¥ (F (i) = X (X (D)

m;'t! i — mi—
= mx({—}’l T EBY™ T (v)
;1! e — m—
= T (™~ D+ DY YT )
m;!(t 4 1)! i — mi— .
" (ms _(u n i));{—Yl S O SRS ()

Thus, it is true in the case t + 1. Therefore, we have Lemma 2.3. #
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Lemma 2.4. Let V be a finite-dimensional 5{(2, C)-module, m € Z% and sup-

pose w is a nonzero element of the weight space V_,,. Then 2™ - w # 0.

Proof: By Weyl’s Theorem, we may write V = @ .., I;, where for each ¢ € 7,
I; is an irreducible sl(2, C)-submodule of V. with highest weight m;. Since w is
an element of the weight space V_,,, Lemma 2:1 implies w = }_ I, w;, where
w; € (I;)=m for all i.@@. Since w # 0, there exists ip-€ & such that w;, # 0.
Thus —m is a weightof I; ,which implies —m = m;, —2k, where k = Z(m;, +m)
is in Z§ and k < m4,. Let vt be a maximal vector of ;. Then y* - vt is a
nonzero element of (fi,)—a and dim(J; )_n = 1, hence w;; = cy* - v+ for some
nonzero ¢ € C. |

To show ™ - w # 0, it suffices to showiz™ - w;, # 0. Because ¢ # 0, for
this it suffices to show'z™ (¥ - v1])i7£ 0. Observe that m € Z* with 1 <m <k,

so by Lemma 2.2 we have that

-+

| d Jom | i
4 (yk ) v+) _ k'(mm +m k) k—m d

= (k- )l — k)L

Because the scalars in this expression are nonzero and k—m € Z¥ with k—m <
\ p 0 s

k < m;,, we have that'z™ - (y* - v*) # 0. Therefore z™ - w # 0. #

Theorem 2.5. Let'V bea finite-dimensional vectorspace over C and suppose
1,2 : 5l(2,C) — gl(V) are two representations such that ©1|p = 3|8, where

B = span{z,h}} | Then @1 =3:

Proof: Let

H = p1(h), X = ¢1(z), Y1 =¢1(y) and Y2 = p2(y).
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Note that H = ¢2(h) and X = p2(z) as well. Let -; be the module structure on
V corresponding to ¢;. Using this module structure, write V as a direct sum
of irreducible submodules, V = @3 Ij. ‘To show ¢; = ¢2, it suffices to show
Yils, = Ya|r, for all € 7. |
Fix : € 7 and let.v" be a maximal veetor of I;. Let m be the highest
weight of I;. Then {vt,yao™® .., y™ 4 v*} is abasis of I;. To show Yi|r, =
Ya|r., it suffices to show'Vi(y* yv™) = Ya(y' 1 v') for all t € {0,1,...,m}.
Observing that y*-; vie= Yi(v ), we must show that Y1(Yi(vt)) = Ya(YH(vT))
for all t € {0,1,...,m}. Sappose Ft-€ {0,1,...,m} such that Y;(Y{(vF)) #
Y2(Yi(vt)), and let o be the largest such t.
| Firét, we claim that t, # 'm. Note that Y;(¥(v*)) = y™+! 4
vt = 0. Thus if wejean show Yo(Y™(vt)) = 0, then to # m. Suppose
Yo (Y™ (vt)) # 0. We see that Yo (¥y" (vt)) € Va(mi2). Then by Lemma 2.4,

Xm™+2(Y2(Y™(vt))) # 0. But by Lemma 2.3,

XYY (v ) = X (& (1 (v 1))
| = X2{(m)*(=¥1 + ¥2)(v ")}
= (M2 XL (~XY: + XY2)(v 1))
= (!’ X{(=H + H)(vT )}

=0

which is a contradiction. Thus Y2(Y;"(v*t)) = 0. Therefore we have the claim
to ;é m.
Next, we will show that Y;(Y{°(vt)) = Yo(Y{°(v1)). Since to # m, to <

m and to € {0,1,...,m}, by our choice of ¢y, Y1(¥°T!(vH)) = Yo(Y{ot!(vt)).
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v‘ Therefore

X(Hi(YEH (1)) = X (Yo (v ) | 3)

By Lemma 2.2,

X (Ya(¥o 1 (o)) = X (Vo ()

={to +2)(m — (o 1)) Y, (v1)

X (Ya(YoH (o1))) = ([Xaa ot o) Vi T (ut)
| = (Ff% XYt (vt)
£ B s e s o)
Lrg ) £l el ¥ () + Y )
= (m 22(to HNV TN OE) + (fo+ 1)(m — to)Va(¥yo(v))

From (3), we have
(to + 1)m — t0)Y2(Y,°(v)) = (m — to)(to + 1)¥{°™' (v™)

But (¢o+1) # 0 and(m —tp) # 0, hence ¥;(¥;°(v 1)) = Y2(¥;'°(v1)), which con-
tradicts the choice of to. Thus Y1(Yi(vt)) = Ya(Yi(vt)) forallt € {0,1,...,m}.

Hence Y) |fi'= ¥z |1, £ Therefore Y= Y3 ,/i.epo01(= gl | : #

Lemma 2.6 will be useful in Chapter III, where it will tell us the formula
for the action ofithe Chevalley generator y; 0f 5((3, C) on the'elementseof a Verma

basis of a finite-dimensional irreducible s{(3, C)-module.

Lemma 2.6. Let A be an associative algebra over a field of characteristic zero.

Let a, b € A and suppose that ad?(b) = 0 and ad?(a) = 0. Then for any k,

meZt,

018349
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+1-k% k
N bakb™ = mT .=k kpmtl oF-1pm+1
1) ba e + — e 1
i) bmakb = %E—kbm“ak + _k_gpmigh
- :

Proof: i) We will prove i)

Basis: k = 1. We must pre ve

forallm e Zt.

Basis: m =

Thus

P
|

Hence the result holds in the case m = 1.

’ﬁﬁﬂﬁﬂﬂﬂiﬂﬂ?ﬂi

badb™ =

ARIANT

where m € Z*. Then

bab™*! = (bab)b™
(4)

1 1
el bm+2 12 1m
2a + 2b ab
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Look at

b?>ab™ = b(bab™)

That 1s,

for all m € Z%, where k € _l,‘rﬁ'ﬁ"'q '
ba*¥*t1p™ = ady(a u..'_—;.——_“——

— akadb( m
J

i¥

LT

+1 m+1

Qﬁﬂﬂ;ﬂﬂiwﬂ‘ﬁﬂﬂﬂﬂﬂﬂ

T;]fak+lbm+1+ kt1l kpmer,
m+1 m+ 1

‘Thus the result hold; in the case k + 1. Therefore we have Lemma 2.6 i).

ii) The proof is the same as that of part i). #
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Our next goal is Lemma 2;9, which will be useful in Chapter IV, where it
will tell us the formula for the action of the Chevalley generator y, of o(5, C) on

the elements of a Verma basis of a fini ensional irreducible o(5, C)-module.

Lemma 2.7. Let F be d, A ¢

that aé(a) = §(a)a, {

Proof: We will pr

N ———7 Y |
Induction: Supp I 2. Then

)
6(ak+1) = §(a*a)

ﬂUEJ’JWEFWﬁWEJ’]ﬂ‘i

= até(a) + (ka""5(a)a

Qﬁﬂﬁﬁﬂ‘iad%dwﬂ?ﬂ%]']ﬂﬂ

Thus the result holds in the case k + 1. Hence we have Lemma 2.7. #
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Lemma 2.8. Let A be an associative algebra over a field of characteristic zero.

Let d, b € A and suppose that ad}(a) = 0. Then for any m € Z+ with m > 2,

Thus 3bab? = ab? ,_.‘_w;_._:___ 'a) b’>ab. Hence 1)
7

] _
AU ININTNGINS
ARIANTAUIM TN

is done for the ca



Induction: Suppose i) and ii) are true for m-€ Z* with m > 2. Then

bab™*! = (bab™)b

Look at
" Then -: Y]
(mn‘:(i?L(Tl—) 1)b 7___ m——-(ab”‘+2 bm+2 o) + ( (7172(_7:1'*)' 2) ym+14p
i ﬂ'lJEJ'J HNINYINT

babm+l — ___(‘bm+2 bm+2 bm+1ab

@Sﬂjiu RN Y
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For ii) we calculate

. b(m+1)—2a62 — b(bm—2abZ)

2(m )bm b
m—1
m+1
b
\\1 a28 #

Lemma 2.9. Let A » field of characteristic zero.

Let a,b € A and suppose that ;' 0 di(a) = 0. Then for any k,

m € Z1 with m > 2,

bakpm = LA o da b ab

]

’-j
Proof: Since ad?(b) f and ad?(b) = 0, 002 de(b) = ads(b)a and bady(b) =

ﬁw%wﬁmwmm ) -

mbm~1a —0 Then

QW?ﬂﬁﬂ‘iwﬂJﬁﬂﬂmﬂﬂﬂ

= akad,(b™) + adb(ak)bm
= kak_ladb(a)b"1

= ka*71bab™ — ka*pmH?
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Thus by Lemma 2.8 i),

bakb™ = (1 — k)a*b™* ! + ka*~1(bab™)

= (1 — k)akb™+ 4 pabt ‘ —bmtlg) + b"‘ab}
kak~15™ab

Therefore we have Le

Lemma 2.

Lemma 2.10. L ' F' with a basis

W1, W,y - - 5 Wae Let {w; |7 e a—1TI}.

Then {w; +zi |t € I} i

Proof: Suppose Ziel b;(w; ALy whe Ffor all 2 € I. Then

Because for any i.eg z; € span{w , there exi calars d;, 1 € n—1,

such that d

AUEIRHYENEINT
TRANFAURNRINAY

Since wy, ws, ..., Wy, are linearly independent, b; = 0 for all ¢ € I and d; = 0 for

all i € 4 — I. Therefore {w; + z; | i € I} is linearly independent. #



	CHAPTER II BACKGROUND




