CHAPTER I PRELIMINARIES

In this chapter we shall give some notations, definitions and results proved by other authers which will be used in this thesis. Our general notations are:

Z = the set of all integers,

 Z^+ = the set of all positive integers,

 $\mathbf{Z}_{0}^{+} = \mathbf{Z}^{+} \cup \{0\},\$

C = the set of all complex numbers,

 $End_F(V)$ = the set of all linear transformations from V to V, where F is a field and V is a vector space over F,

- [i] = the smallest integer which is greater than or equal to i, where i is a real number,
- $\lfloor i \rfloor$ = the largest integer which is less than or equal to i, where i is a real number,

 $\bar{n} = \{1, 2, \dots, n\}, \text{ where } n \in \mathbf{Z}^+.$

For a good account of the basics of Lie algebras and their representations, the reader is advised to consult Humphreys' book [3]. We will follow the notation established therein very closely. However, there are a few notational conventions, definitions, and results which play such an important role in this thesis that they deserve special mention. First, some notation.

- 1) Given a vector space V (over some field F), $\mathfrak{gl}(V)$ will denote the Lie algebra consisting of the set $End_F(V)$ together with the bracket [a,b]=ab-ba for all $a,b\in End_F(V)$.
- 2) For $n \in \mathbb{Z}^+$, $\mathfrak{sl}(n, \mathbb{C})$ will denote the Lie algebra consisting of all $n \times n$ matrices over \mathbb{C} which have trace zero, with bracket [a, b] = ab ba for all $a, b \in \mathfrak{sl}(n, \mathbb{C})$.
- 3) The standard basis for $\mathfrak{sl}(2, \mathbb{C})$ consists of the three matrices

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

- 4) Let s be the 5×5 matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_2 \\ 0 & I_2 & 0 \end{pmatrix}$, where I_2 is the 2×2 identity matrix;
- $\mathfrak{o}(5, \mathbb{C})$ will denote the Lie algebra consisting of all 5×5 matrices a over \mathbb{C} which satisfy $sa = -a^t s$, with bracket [a, b] = ab ba for all $a, b \in \mathfrak{o}(5, \mathbb{C})$.
- 5) Suppose L is a finite-dimensional semisimple Lie algebra over C and H is a maximal toral subalgebra of L. For any L-module V and any linear functional $\mu \in H^*$, we will use V_{μ} to denote the weight space

$$V_{\mu} = \{ v \in V \mid h \cdot v = \mu(h)v \text{ for all } h \in H \}$$

The elements of V_{μ} are called weight vectors of weight μ , and μ is said to be a weight of V whenever $V_{\mu} \neq \{0\}$.

Next, a couple of definitions.

6) Let L be a finite-dimensional semisimple Lie algebra over C, H a maximal toral subalgebra of L, Φ the set of roots of L with respect to H, and $\Delta = \{\alpha_1, \ldots, \alpha_l\}$ a basis of simple roots. For each $i \in \overline{l}$, let x_i be a

nonzero element of the root space L_{α_i} . Then we may choose $y_i \in L_{-\alpha_i}$ such that $S_i = \operatorname{span}\{x_i, h_i, y_i\} \cong \mathfrak{sl}(2, \mathbf{C})$, where $h_i = [x_i, y_i] \in H$. The set $\{x_1, \ldots, x_l, y_1, \ldots, y_l\}$ is called a set of *Chevalley generators* of L.

7) Let V be a finite-dimensional irreducible L-module and let λ be the highest weight of V. Then any nonzero element v^+ of V_{λ} is called a maximal vector of V. Recall that if $\{x_1, \ldots, x_l, y_1, \ldots, y_l\}$ is a set of Chevalley generators of L and v^+ is a maximal vector of V, then $x_i \cdot v^+ = 0$ for all $i \in \overline{l}$.

Finally, some heavily used results.

Theorem 1.1. ([3], Theorem 6.3)(Weyl's theorem) Let L be a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero. Then every finite-dimensional L-module is completely reducible.

Lemma 1.2. ([3], Lemma 7.2) Let V be a finite-dimensional irreducible $\mathfrak{sl}(2,\mathbf{C})$ -module with highest weight λ , let $v^+ \in V_{\lambda}$ be a maximal vector of V, and set

$$v_{-1} = 0,$$
 $v_{0} = v^{+},$
 $v_{i+1} = \frac{1}{i+1}y \cdot v_{i}$

for all $i \in \mathbf{Z}_0^+$. Then for each $i \in \mathbf{Z}_0^+$,

i)
$$h \cdot v_i = (\lambda - 2i)v_i$$

ii)
$$y \cdot v_i = (i+1)v_{i+1}$$

iii)
$$x \cdot v_i = (\lambda - i + 1)v_{i-1}$$

Theorem 1.3. ([3], Theorem 7.2) Let V be a finite-dimensional irreducible $\mathfrak{sl}(2, \mathbb{C})$ -module.

i) If $m = \dim V - 1$, then V is the direct sum of weight spaces

$$V = \bigoplus_{i=0}^{m} V_{m-2i}$$

and dim $V_k = 1$ for all weights $k \in \{m, m-2, \ldots, -m\}$.

- ii) If we ignore nonzero scalar multiples then V has a unique maximal vector, whose weight is m.
- iii) Given a maximal vector v^+ of V, if v_0, v_1, \ldots, v_m are defined as in Lemma 1.2, then they form a basis of V, with the actions of x, y and h given by formulas i), ii) and iii) of Lemma 1.2.

Lemma 1.4. ([3], Lemma 21.2) Let L be a semisimple Lie algebra with Chevalley generators x_1, \ldots, x_l and y_1, \ldots, y_l , H a maximal toral subalgebra of L. For each $k \in \mathbf{Z}_0^+$ and $i, j \in \overline{l}$, the following identities hold in the universal enveloping algebra of L.

- i) $[x_j, y_i^k] = 0$ for $i \neq j$
- ii) $[x_i, y_i^k] = k(1-k)y_i^{k-1} + ky_i^{k-1}h_i$
- iii) $[h, y_i^k] = -k\alpha_i(h)y_i^k$ for all $h \in H$.

Let S denote $\mathfrak{sl}(2, \mathbb{C})$ for the moment, and let B denote the subalgebra $\mathrm{span}\{x,h\}$. The finite-dimensional indecomposable B-modules on which h acts semisimply will play a central role in Chapters III and IV. A complete exposition of this topic may be found in [2], Chapters 5 and 6. For our purposes, however, it suffices to record the following definitions and results.

Proposition 1.5. ([2], Proposition 5.3) Let I be an indecomposable B-module. Then there is a scalar λ and a basis $\{v_0, v_1, \ldots, v_k\}$ of I such that $x \cdot v_i = v_{i-1}$ and $h \cdot v_i = (\lambda - 2i)v_i$ (where $v_{-1} = 0$).

As in [2], page 79, if λ and ν are in C with $\lambda - \nu = 2k$ for some $k \in \mathbb{Z}_0^+$, then we can construct a vector space X with basis $\{v_0, v_1, \ldots, v_k\}$ and define an action of B on X by $x \cdot v_i = v_{i-1}(v_{-1} = 0)$ and $h \cdot v_i = (\lambda - 2i)v_i$. It can be checked that this makes X into an indecomposable B-module with $h \cdot v_0 = \lambda v_0$ and $h \cdot v_k = \nu v_k$. This B-module will be denoted by $S(\lambda, \nu)$ and will be referred to as a string module. Any basis v_0, \ldots, v_k such that $x \cdot v_i = v_{i-1}$ and $h \cdot v_i = (\lambda - 2i)v_i$ will be called a standard basis of $S(\lambda, \nu)$.

Lemma 1.6. ([2], Lemma 5.7) Let V be a finite-dimensional $\mathfrak{sl}(2, \mathbb{C})$ -module, let $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_0^+$ and let W be a B-submodule of V isomorphic to S(m+n,m-n). Let w_0,\ldots,w_n be a standard basis for W. Then $m \geq 0$ and the set

$$\{y^j \cdot w_i \mid i, j \in \mathbf{Z}_0^+ \text{ with } 0 \le j \le m, \ 0 \le i \le n\}$$

spans the $\mathfrak{sl}(2, \mathbb{C})$ -submodule of V generated by W.

Lemma 1.7. ([2], Lemma 6.3) Let $m, n \in \mathbb{Z}_0^+$ and let V be a B-module with basis $\{v_{i,j} \mid i,j \in \mathbb{Z}_0^+ \text{ with } 0 \leq j \leq m, 0 \leq i \leq n\}$ satisfying

- 1) $h \cdot v_{j,i} = (m + n 2j 2i)v_{j,i}$
- 2) $x \cdot v_{j,i} = v_{j,i-1} + j(m+n-2i-j+1)v_{j-1,i}$, where we make the convention that $v_{j,i} = 0$ if at least one of j or i is negative.

Then V can be made into an S-module by keeping the same action for x and h and defining an action of y by

3)
$$y \cdot v_{j,i} = v_{j+1,i}$$
 for $0 \le j < m, 0 \le i \le n$.

4)
$$y \cdot v_{m,i} = \sum_{p=1}^{n-i} \left\{ (-1)^{p-1} \binom{n-i}{p} \prod_{r=0}^{p-1} (m+1-r)(i+r+1) \right\} v_{m+1-p,i+p}$$

for
$$0 \le i < n$$

$$5) y \cdot v_{m,n} = 0.$$

The last topic which needs to be discussed in this chapter is that of Verma bases. These are bases for the finite-dimensional irreducible modules of many of the finite-dimensional simple Lie algebras which are constructed in a special way. Again, the reader is advised to consult other sources (such as [4] and [2]) for the full story. Here we only need to know Verma bases for modules over the algebras $\mathfrak{sl}(3, \mathbb{C})$ and $\mathfrak{o}(5, \mathbb{C})$.

Lemma 1.8. ([2], Proposition 9.2) Let L be the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$ with Chevalley generators x_1, x_2, y_1 and y_2 . Let V be a finite-dimensional irreducible L-module with highest weight λ , and let v^+ be a maximal vector for V. Set $m_1 = \lambda(h_1), m_2 = \lambda(h_2),$ where $h_i = [x_i, y_i]$ for $i \in \{1, 2\}$. The set of all elements of V of the form

$$y_1^{a_3}y_2^{a_2}y_1^{a_1}\cdot v^+$$

where $a_1, a_2, a_3 \in \mathbf{Z}_0^+$ and

$$0 \le a_1 \le m_1$$

$$0 < a_2 \le m_2 + a_1$$

$$0 \leq a_3 \leq \min\{a_2, m_2\}$$

forms a basis of V.

Lemma 1.9. ([2], Proposition 9.4) Let L be the Lie algebra $\mathfrak{o}(5,\mathbb{C})$ with Chevalley generators x_1, x_2, y_1 and y_2 . Let V be a finite-dimensional irreducible L-module with highest weight λ , and let v^+ be a maximal vector for V. Set $m_1 = \lambda(h_1), m_2 = \lambda(h_2),$ where $h_i = [x_i, y_i]$ for $i \in \{1, 2\}$. The set of all elements of V of the form

$$y_1^{a_4}y_2^{a_3}y_1^{a_2}y_2^{a_1}\cdot v^+$$

where $a_1, a_2, a_3, a_4 \in \mathbf{Z}_0^+$ and

$$0 \leq a_1 \leq m_2$$

$$0 \leq a_2 \leq m_1 + a_1$$

$$0 \le a_3 \le \min\{m_1 + a_2, 2a_2\}$$

$$0 \le a_4 \le \min\{m_1, \lfloor a_3/2 \rfloor\}$$

forms a basis of V.

ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย