องค์ประกอบทางเคมีและฤทธิ์ทางชีวภาพของผักจ๋อนแจ๋นและเจตพังคื

นางสาว มยุรี กัลยาวัฒนกุล

ิทยานิพนซ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสตรงไริญญาวิทยาศาสตรดษภิ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเภสัชเคมีและผลิตภัณฑ์ธรรมชาติ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2547 ISBN 974-53-1766-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF *PTEROCAULON REDOLENS* AND *CLADOGYNOS ORIENTALIS*

Miss Mayuree Kanlayavattanakul

ลถาบนวทยบรกกร จุฬาลงกรณ์มหาวิทยาลัย

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Chemistry and Natural Products Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2004 ISBN 974-53-1766-7

Thesis Title	CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF
	PTEROCAULON REDOLENS AND CLADOGYNOS ORIENTALIS
Ву	Miss Mayuree Kanlayavattanakul
Field of Study	Pharmaceutical Chemistry and Natural Products
Thesis Advisor	Associate Professor Nijsiri Ruangrungsi, Ph.D.
Thesis Co-advisor	Professor Tsutomu Ishikawa, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

......Dean of the Faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

(Associate Professor Sumphan Wongseripipatana, Ph.D.)

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

......Member

(Associate Professor Ekarin Saifah, Ph.D.)

.....Member

(Associate Professor Wandee Gritsanapan, Ph.D.)

มชุรี กัลขาวัฒนกุล: องค์ประกอบทางเคมีและฤทธิ์ทางชีวภาพของผักจ๋อนแจ๋นและเจตพังคึ (CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF *PTEROCAULON REDOLENS* AND *CLADOGYNOS ORIENTALIS*) อาจารย์ที่ปรึกษา: รศ. คร. นิจศิริ เรืองรังษี, อาจารย์ที่ปรึกษาร่วม: Prof. Dr. Tsutomu Ishikawa, 212 หน้า. ISBN: 974-53-1766-7

การศึกษาองค์ประกอบทางเคมีและถุทธิ์ทางชีวภาพของผักจ๋อนแจ๋นและเจตพังคื สามารถแยก ้สารในกลุ่มคมารินได้ 7 ชนิด ฟลาโวนอยด์ 3 ชนิด และ เทอร์ปีน 11 ชนิด ซึ่งประกอบด้วย เซสควิเทอร์ ้ปืน 3 ชนิด ใดเทอร์ปีน 6 ชนิด และไ<mark>ตรเทอร์ปีน 2 ชนิ</mark>ด การพิสจน์โครงสร้างของสารทั้งหมดที่แยกได้ โดยอาศัยการวิเคราะห์เชิงสเปคตรัมของ UV, IR, MS และ NMR ร่วมกับการเปรียบเทียบข้อมูลกับสารที ทราบโครงสร้างแล้ว พบว่าสารที่แยกได้จากส่วนเหนือดินของผักจ๋อนแจ๋นประกอบด้วยสารในกลุ่มดูมา-รินที่พบครั้งแรกในธรรมชาติ 1 ชนิด คือ 2,3 -dihydroxypuberulin [52] สารกลุ่มดูมารินที่เคยมีรายงาน มาแล้วอีก 6 ชนิด คือ 5-methoxy-6,7-methylenedioxycomarin [9], ayapin [10], sabandinol [23], puberulin [50], 5-methoxyscopoletin [51] และ isofraxidin [53] นอกจากนี้ยังพบสารกลุ่มฟลาโวนอยค์ที่ เคยมีรายงานมาแล้วอีก 3 ชนิด คือ chrysosplenol C [35], luteolin [54] และ tomentin [55] ส่วนสารที่แยก ใด้จากรากเจตพังกีประกอบด้วยกลุ่มเซสกวิเทอร์ปีนชนิดใหม่ 1 ชนิด กือ (4S*,7R*,8R*,10S*)-8hydroxy-α-guaiene [56] และที่เคยมีรายงานมาแล้วอีก 2 ชนิด คือ spathulenol [57] และ cyperenoic acid [64] กลุ่มใคเทอร์ปีนชนิดใหม่ 4 ชนิด คือ 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8octahydronaphthalene-1-carboxylic acid [58], methyl-9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo [5.3.3.0^{1,6}] trideca-5,8-diene-2-carboxylate [59], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] 1182 6-[2-(furan-3-yl)oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [63] และที่เคยรายงานมาแล้วอีก 2 ชนิด คือ chettaphanin I [48] และ chettaphanin II [49] สารในกลุ่มไตรเทอร์ปืนที่เคยมีรายงานมาแล้ว 2 ชนิด คือ acetoxyaleuritolate [60] และ taraxerol [61] สารที่แยกได้ทั้งหมด 21 ชนิด ถูกนำไปทดสอบฤทธิ์ทางชีวภาพ ได้แก่ ฤทธิ์ความ เป็นพิษต่อเซลล์ และฤทธิ์ต้านเชื้อวัณโรค พบว่า chrysosplenol C [35], chettaphanin II [49], taraxerol [61] IIGE 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxotricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] ม ฤทธิ์ความเป็นพิษต่อเซลล์ระคับอ่อนถึงปานกลางและพบว่าสารที่แยกได้เกือบทุกชนิคมีฤทธิ์ต้านเชื้อวัณ-โรคอย่างอ่อน ยกเว้น chrysosplenol C [35], 2,3 -dihydroxypuberulin [52] และ acetoxyaleuritolate [60] ไม่มีฤทธิ์ต้านเชื้อวัณ โรค 4 4 สา

สาขาวิชา	เภสัชเคมิและผลิตภัณฑ์ธรรมชาติ	ลายมือชิอนีสิต
ปีการศึกษา	1 2547	ลายมือชื่ออาจารย์ที่ปรึกษา
		ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##4376959933 MAJOR: PHARMACEUTICAL CHEMISTRY AND NATURAL PRODUCTS KEY WORDS: COUMARINS/ FLAVONOIDS/ SESQUITERPENES/ DITERPENES/ TRITERPENES/ ANTIMYCOBACTERIAL ACTIVITY/ CYTOTOXICITY/ *PTEROCAULON REDOLRNS/ CLADOGYNOS ORIENTALIS*

MAYUREE KANLAYAVATTANAKUL: CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF *PTEROCAULON REDOLENS* AND *CLADOGYNOS ORIENTALIS* THESIS ADVISOR: ASSOCIATE PROFESSOR NIJSIRI RUANGRUNGSI, Ph.D., THESIS CO-ADVISOR: PROFESSOR TSUTOMU ISHIKAWA, Ph.D., 212 pp. ISBN: 974-53-1766-7

Chemical investigation of Pterocaulon redolens (Forst. f) F. Vill. and Cladogynos orientalis Zipp. ex Span. led to the isolation of seven coumarins, three flavonoids and eleven terpenes including three sesquiterpenes, six diterpenes and two triterpenes. The structure determination of these compounds was extensively accomplished by spectroscopic analyses (UV, IR, MS and NMR properties) and by comparison with previously reported data of known compounds. The aerial parts of Pterocaulon redolens provided one new natural coumarin, namely, 2',3'-dihydroxypuberulin [52], six known coumarins identified as 5-methoxy-6,7-methylenedioxycoumarin [9], ayapin [10], sabandinol [23], puberulin [50], 5-methoxyscopoletin [51] and isofraxidin [53] and also gave three known flavonoids, chrysosplenol C [35], luteolin [54] and tomentin [55]. The roots of Cladogynos orientalis yielded a new sesquiterpene, $(4S^*, 7R^*, 8R^*, 10S^*)$ -8-hydroxy- α -guaiene [56], together with two known sesquiterpenes, spathulenol [57] and cyperenoic acid [64]. In addition, four new diterpenes, namely, 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [58], methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0^{1,6}]trideca-5,8-diene-2-carboxylate [59], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62], 6-[2-(furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]-dodec-2(7)-en-11-one [63], twoknown diterpenes, chettaphanin I [48] and chettaphanin II [49] and two known triterpenes, acetoxyaleuritolate [60] and taraxerol [61] were afforded. All isolated compounds were evaluated for their cytotoxicity and antimycobacterial activity. It was found that chrysosplenol C [35], chettaphanin II [49], taraxerol [61], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo- [7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] were mild to moderate cytotoxic activity. All of them showed weak antimycobacterial activity except chrysosplenol C [35], 2,3'-dihydroxypuberulin [52] and acetoxyaleuritolate [60], which showed no antimycobacterial activity.

Field of Study; Pharmaceutical Chemistry		Student's signature
	and Natural Products	Advisor's signature
Academic yea	r 2004	Co-advisor's signature

ACKNOWLEDEGMENTS

The author wishes to express her deepest gratitude to her thesis advisor, Associate Profressor Dr. Nijsiri Ruangrungsi, for his guidance, suggestions and support throughout the course of the studies.

Her gratitude is particularly extended to Professor Dr. Tsutomu Ishikawa and Associate Professor Dr. Toshiko Watanabe, Laboratory of Medicinal Organic Chemistry, Graduates School of Pharmaceutical Sciences, Chiba University, Japan, without whose generous advice, spectroscopic expertise and data supplementation, the completion of this work would not have been possible.

For a partial financial support, she is grateful to the Thailand Research Fund for a Royal Golden Jubille Scholarship, the Association of International Education, Japan and to the Biodiversity Research and Training Program, Thailand for cytotoxic and antimycobacterial activity tests.

For the provision of laboratory facilities, her most sincere thank goes to Laboratory of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan and the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

Her gratitude is sincerely grateful to the thesis committee for their important and constructive suggestions and crucial review of her thesis.

A large debt of her graditude is owed to all the staff members of Laboratory of Medicinal Organic Chemistry, Graduates School of Pharmaceutical Sciences, Chiba University, Japan and her friends at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, who kindly offer their assistance, encouragement and helpful comments throughout this research. Although she received the generosity of too many of them to list them individually in this page, her appreciation is beyond words.

The author's final thank goes to her family. They provided her with every opportunity to succeed in life and the encouragement she needs to succeed, there is no adequate way to express her gratitude.

CONTENTS

ABSTRACT (Thai)	iv
ABSTRACT (English)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SCHEMES	XX
LIST OF ABBREVIATIONS AND SYMBOLS	xxi
CHAPTER	
I INTRODUCTION	1
II HISTORICAL	
1. Chemical constituents of <i>Pterocaulon</i> spp	6
2. Chemical constituent of <i>Cladogynos orientalis</i>	16
3. Biological Activities of <i>Pterocaulon</i> spp	17
4. Biological Activities of <i>Cladognos orientalis</i>	17
III EXPERIMENTAL	
1. Sources of Plant Materials	18
2. General Techniques	
2.1 Analytical Thin Layer Chromatography	18
2.2 Column Chromatography	
2.2.1 Vacuum Liquid Chromatography	18
2.2.2 Flash Column Chromatography	19
2.2.3 Gel Filtration Chromatography	19
9 2.2.4 Gas Chromatography	19
2.3 Spectroscopy	
2.3.1 Ultraviolet (UV) Absorption Spectra	20
2.3.2 Infrared (IR) Absorption Spectra	20
2.3.3 Mass Spectra	20
2.3.4 Proton and Carbon-13 Nuclear Magnetic resonance	
(¹ H-and ¹³ C-NMR) Spectra	20

Page

	2.4 Physic	cal Properties	
	2.4.1	Melting Points	21
	2.4.2	Optical Rotations	21
	2.4.3	X-ray crystallography	21
	2.5 Solver	nts	21
3.	Extraction	and Isolation	
	3.1 Extra	ction and Isolation of Compounds from Pterocaulon redolen	S
	3.1.1	Extraction.	21
	3.1.2	Isolation of Compound from CHCL ₃ Extract	22
	3.1	1.2.1 Isolation of Compound PRC1	22
	3.1	1.2.2 Isolation of Compound PRC2	22
	3.1	1.2.3 Isolation of Compound PRC3	23
	3.1	1.2.4 Isolation of Compound PRC4	23
	3.	1.2.5 Isolation of Compound PRC5	23
	3.1	1.2.6 Isolation of Compound PRC6	23
	3.1	1.2.7 Isolation of Compound PRC7	23
	3.1.3	Isolation of Compound from BuOH Extract	
	3.1	1.3.1 Isolation of Compound PRB8	23
	3.1	1.3.2 Isolation of Compound PRB9 and PRB10	24
	3.2 Extra	ction and Isolation of Compounds from Cladogynos oriental	is
	3.2.1	Extraction	24
	3.2.2	Isolation of Compound from CHCL ₃ Extract	24
	3.2	2.2.1 Isolation of Compound COC1	24
	3.2	2.2.2 Isolation of Compound COC2	25
	3.2	2.2.3 Isolation of Compound COC3	25
	3.2	2.2.4 Isolation of Compound COC4	25
	3.2	2.2.5 Isolation of Compound COC5	25
	3.2	2.2.6 Isolation of Compound COC6 and COC7	25
	3.2	2.2.7 Isolation of Compound COC8	26
	3.2	2.2.8 Isolation of Compound COC9	26
	3.2	2.2.9 Isolation of Compound COC10	26
	3.2	2.2.10 Isolation of Compound COC11	26

Page

4. Physical and Spectral data of Isolated compounds	
4.1 Compound PRC1	38
4.2 Compound PRC2	38
4.3 Compound PRC3	38
4.4 Compound PRC4	38
4.5 Compound PRC5	39
4.6 Compound PRC6	39
4.7 Compound PRC7	39
4.8 Compound PRB8	39
4.9 Compound PRB9	40
4.10 Compound PRB10	40
4.11 Compound COC1	40
4.12 Compound COC2	41
4.13 Compound COC3	41
4.14 Compound COC4	41
4.15 Compound COC5	42
4.16 Compound COC6	42
4.17 Compound COC7	42
4.18 Compound COC8	42
4.19 Compound COC9	43
4.20 Compound COC10	43
4.21 Compound COC11	43
5. Evaluation of Bilogical Activities	
5.1 Cytotoxic Activity	44
5.2 Antimycobacterial Activity	44
IV RESULTS AND DISCUSSION	
1. Determination of Oil Compositions from <i>Pterocaulon redolens</i>	47
2. Structure Determination of Compounds Isolated from	
Pterocaulon redolens	48
2.1 Structure Determination of Compound PRC1	48
2.2 Structure Determination of Compound PRC2	50
2.3 Structure Determination of Compound PRC3	52

ix

Page

Х

2.4 Structure Determination of Compound PRC4	54
2.5 Structure Determination of Compound PRC5	56
2.6 Structure Determination of Compound PRC6	58
2.7 Structure Determination of Compound PRC7	60
2.8 Structure Determination of Compound PRB8	62
2.9 Structure Determination of Compound PRB9	64
2.10 Structure Determination of Compound PRB10	66
3. Structure Determination of Compounds Isolated from	
Cladogynos orientalis	68
3.1 Structure Determination of Compound COC1	68
3.2 Structure Determination of Compound COC2	72
3.3 Structure Determination of Compound COC3	75
3.4 Structure Determination of Compound COC4	78
3.5 Structure Determination of Compound COC5	82
3.6 Structure Determination of Compound COC6	84
3.7 Structure Determination of Compound COC7	86
3.8 Structure Determination of Compound COC8	89
3.9 Structure Determination of Compound COC9	92
3.10 Structure Determination of Compound COC10	96
3.11 Structure Determination of Compound COC11	100
4. Biological Activities of Isolated Compounds	103
4.1 Biological Activities of the Compounds from	
Pterocaulon redolens	103
4.2 Biological Activities of the Compounds from	
Cladogynos orientalis	103
V CONCLUSION	106
REFERENCES	107
APPENDICES	112
VITA	212

LIST OF TABLES

Table		Page
1	Distribution of coumarins in <i>Pterocaulon</i> spp	6
2	Distribution of flavonoids in <i>Pterocaulon</i> spp	12
3	Distribution of terpenes in <i>Pterocaulon</i> spp	14
4	Distribution of polyacetylenes in <i>Pterocaulon</i> spp	15
5	NMR spectral data of compound PRC1 and 5-methoxy-6,7-	
	methylenedioxycoumarin (CDCl ₃)	49
6	NMR spectral data of compound PRC2 and ayapin (CDCl ₃)	51
7	NMR spectral data of compound PRC3 and puberulin (CDCl ₃)	53
8	NMR spectral data of compound PRC4	
	and 5-methoxyscopoletin (CDCl ₃)	55
9	NMR spectral data of compound PRC5	
	and 2',3'-dihydroxypuberulin (CDCl ₃)	57
10	NMR spectral data of compound PRC6 and isofraxidin (CDCl ₃)	59
11	NMR spectral data of compound PRC7 and sabandinol (DMSO- d_6)	61
12	NMR spectral data of compound PRB8 and luteolin (DMSO- d_6)	63
13	NMR spectral data of compound PRB9 and tomentin (DMSO- d_6)	65
14	NMR spectral data of compound PRB10	
	and chrysosplenol C (DMSO- <i>d</i> ₆)	67
15	NMR spectral data of compound COC1 (CDCl ₃)	71
16	NMR spectral data of compound COC2 and spathulenol (CDCl ₃)	74
17	NMR spectral data of compound COC3 (CDCl ₃)	77
18	NMR spectral data of compound COC4 (CDCl ₃)	81
19 🔍	NMR spectral data of compound COC5	
	and acetoxyaleuritolate (CDCl ₃)	83
20	NMR spectral data of compound COC6 and taraxerol (CDCl ₃)	85
21	NMR spectral data of compound COC7	
	and chettaphanin II (CDCl ₃)	88
22	NMR spectral data of compound COC8 (CDCl ₃)	91
23	NMR spectral data of compound COC9 (CDCl ₃)	95

Table		Page
24	NMR spectral data of compound COC10	
	and chettaphanin I (CDCl ₃)	99
25	Crystal data and structure refinement for compound COC10	201
26	Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement	
	parameters (Å ² × 10 ³) for compound COC10 . U(eq) is defined as	
	one third of the trace of the orthogonalized U _{ij} tensor	202
27	Bond lengths [Å] and angles [°] for compound COC10	203
28	Anisotropic displacement parameters ($Å^2 \times 10^3$)	
	for compound COC10	208
29	Hydrogen coordinates ($\times 10^4$) and isotropic displacement	
	Parameters ($Å^2 \times 10^3$) for compound COC10	209
30	Torsion angles [deg] for compound COC10	210
31	NMR spectral data of compound COC11	
	and cyperenoic acid (CDCl ₃)	102
32	Biological activities of isolated compounds of Pterocaulon redolens	104
33	Biological activities of isolated compounds of Cladogynos orientalis	105

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure		Page
1	Pterocaulon redolens (Forst. f) F. Vill	4
2	Cladogynos orientalis Zipp. ex. Span	5
3	Structure of compounds isolated from	
	Cladogynos orientalis Zipp. ex Span	16
4	Structures of oil compounds from <i>Pterocaulon redolens</i>	47
5	GC Chromatogram of the oil of <i>Pterocaulon redolen</i> aerial parts	113
6	FAB Mass spectrum of compound PRC1	113
7	UV spectrum of compound PRC1 (MeOH)	114
8	IR spectrum of compound PRC1 (KBr disc)	114
9	¹ H-NMR (500 MHz) spectrum of compound PRC1 (CDCl ₃)	115
10	¹³ C-NMR (125 MHz) spectrum of compound PRC1 (CDCl ₃)	115
11	HMQC spectrum of compound PRC1 (CDCl ₃)	116
12	HMBC spectrum of compound PRC1 (CDCl ₃)	116
13	FAB Mass spectrum of compound PRC2	117
14	UV spectrum of compound PRC2 (MeOH)	117
15	IR spectrum of compound PRC2 (KBr disc)	118
16	¹ H-NMR (500 MHz) spectrum of compound PRC2 (CDCl ₃)	118
17	¹³ C-NMR (125 MHz) spectrum of compound PRC2 (CDCl ₃)	119
18	HMQC spectrum of compound PRC2 (CDCl ₃)	119
19	HMBC spectrum of compound PRC2 (CDCl ₃)	120
20	FAB Mass spectrum of compound PRC3	120
21	UV spectrum of compound PRC3 (MeOH)	121
22 0	IR spectrum of compound PRC3 (KBr disc)	121
23	¹ H-NMR (500 MHz) spectrum of compound PRC3 (CDCl ₃)	122
24	¹³ C-NMR (125 MHz) spectrum of compound PRC3 (CDCl ₃)	122
25	HMQC spectrum of compound PRC3 (CDCl ₃)	123
26	HMBC spectrum of compound PRC3 (CDCl ₃)	123
27	NOE spectra of compound PRC3 (CDCl ₃)	124
28	FAB Mass spectrum of compound PRC4	124
29	UV spectrum of compound PRC4 (MeOH)	125

Figure		Page
30	IR spectrum of compound PRC4 (KBr disc)	125
31	¹ H-NMR (500 MHz) spectrum of compound PRC4 (CDCl ₃)	126
32	¹³ C-NMR (125 MHz) spectrum of compound PRC4 (CDCl ₃)	126
33	HMQC spectrum of compound PRC4 (CDCl ₃)	127
34	HMBC spectrum of compound PRC5 (CDCl ₃)	127
35	FAB Mass spectrum of compound PRC5	128
36	UV spectrum of compound PRC5 (MeOH)	128
37	IR spectrum of compound PRC5 (KBr disc)	129
38	¹ H-NMR (500 MHz) spectrum of compound PRC5 (CDCl ₃)	129
39	¹³ C-NMR (125 MHz) spectrum of compound PRC5 (CDCl ₃)	130
40	HMQC spectrum of compound PRC5 (CDCl ₃)	130
41	HMBC spectrum of compound PRC5 (CDCl ₃)	131
42	FAB Mass spectrum of compound PRC6	131
43	UV spectrum of compound PRC6 (MeOH)	132
44	IR spectrum of compound PRC6 (KBr disc)	132
45	¹ H-NMR (500 MHz) spectrum of compound PRC6 (CDCl ₃)	133
46	¹³ C-NMR (125 MHz) spectrum of compound PRC6 (CDCl ₃)	133
47	HMQC spectrum of compound PRC6 (CDCl ₃)	134
48	HMBC spectrum of compound PRC6 (CDCl ₃)	134
49	NOE spectra of compound PRC6 (CDCl ₃)	135
50	FAB Mass spectrum of compound PRC7	135
51	UV spectrum of compound PRC7 (MeOH)	136
52	IR spectrum of compound PRC7 (KBr disc)	136
53	¹ H-NMR (500 MHz) spectrum of compound PRC7 (DMSO- d_6)	137
54	¹³ C-NMR (125 MHz) spectrum of compound PRC7 (DMSO- d_6)	137
55	HMQC spectrum of compound PRC7 (DMSO- d_6)	138
56	HMBC spectrum of compound PRC7 (DMSO- <i>d</i> ₆)	138
57	¹ H- ¹ H COSY spectrum of compound PRC7 (DMSO- d_6)	139
58	FAB Mass spectrum of compound PRB8	139
59	UV spectrum of compound PRB8 (MeOH)	140

Figur	e	Page
60	IR spectrum of compound PRB8 (KBr disc)	14(
61	¹ H-NMR (500 MHz) spectrum of compound PRB8 (DMSO- d_6)	141
62	¹³ C-NMR (125 MHz) spectrum of compound PRB8 (DMSO- d_6)	141
63	HMQC spectrum of compound PRB8 (DMSO- <i>d</i> ₆)	142
64	HMBC spectrum of compound PRB8 (DMSO- <i>d</i> ₆)	142
65	FAB Mass spectrum of compound PRB9	143
66	UV spectrum of compound PRB9 (MeOH)	143
67	IR spectrum of compound PRB9 (KBr disc)	144
68	¹ H-NMR (500 MHz) spectrum of compound PRB9 (DMSO- d_6)	144
69	¹³ C-NMR (125 MHz) spectrum of compound PRB9 (DMSO- d_6)	145
70	HMQC spectrum of compound PRB9 (DMSO- <i>d</i> ₆)	145
71	HMBC spectrum of compound PRB9 (DMSO- <i>d</i> ₆)	146
72	FAB Mass spectrum of compound PRB10	146
73	UV spectrum of compound PRB10 (MeOH)	147
74	IR spectrum of compound PRB10 (KBr disc)	147
75	¹ H-NMR (500 MHz) spectrum of compound PRB10 (DMSO- d_6)	148
76	¹³ C-NMR (125 MHz) spectrum of compound PRB10 (DMSO- d_6)	148
77	HMQC spectrum of compound PRB10 (DMSO- <i>d</i> ₆)	149
78	HMBC spectrum of compound PRB10 (DMSO- <i>d</i> ₆)	149
79	GC Mass spectrum of compound COC1	150
80	UV spectrum of compound COC1 (MeOH)	150
81	IR spectrum of compound COC1 (Neat)	151
82	¹ H-NMR (500 MHz) spectrum of compound COC1 (CDCl ₃)	151
83	Expanded ¹ H-NMR (500 MHz) spectrum of compound COC1 (CDCl ₃)	152
84	¹³ C-NMR (125 MHz) spectrum of compound COC1 (CDCl ₃)	152
85	DEPT135 spectrum of compound COC1 (CDCl ₃)	153
86	HMQC spectra of compound COC1 (CDCl ₃)	153
87	HMBC spectra of compound COC1 (CDCl ₃)	154
88	¹ H- ¹ H COSY spectra of compound COC1 (CDCl ₃)	154
89	NOE spectra of compound COC1 (CDCl ₃)	155
90	FAB Mass spectrum of compound COC2	155
91	IR spectrum of compound COC2 (Neat)	156

Figure		Page
92	¹ H-NMR (500 MHz) spectrum of compound COC2 (CDCl ₃)	156
93	¹³ C-NMR (125 MHz) spectrum of compound COC2 (CDCl ₃)	157
94	HMQC spectrum of compound COC2 (CDCl ₃)	157
95	HMBC spectrum of compound COC2 (CDCl ₃)	158
96	¹ H- ¹ H COSY spectrum of compound COC2 (CDCl ₃)	158
97	NOE spectra of compound COC2 (CDCl ₃)	159
98	FAB Mass spectrum of compound COC3	159
99	UV spectrum of compound COC3 (MeOH)	160
100	IR spectrum of compound COC3 (Neat)	160
101	¹ H-NMR (500 MHz) spectrum of compound COC3 (CDCl ₃)	161
102	Expanded ¹ H-NMR (500 MHz) spectrum of	
	compound COC3 (CDCl ₃)	161
103	¹³ C-NMR (125 MHz) spectrum of compound COC3 (CDCl ₃)	162
104	DEPT135 spectrum of compound COC3 (CDCl ₃)	162
105	HMQC spectrum of compound COC3 (CDCl ₃)	163
106	HMBC spectrum of compound COC3 (CDCl ₃)	163
107	Expanded HMBC spectra of compound COC3 (CDCl ₃)	164
108	¹ H- ¹ H COSY spectrum of compound COC3 (CDCl ₃)	164
109	FAB Mass spectrum of compound COC4	165
110	UV spectrum of compound COC4 (MeOH)	165
111	IR spectrum of compound COC4 (Neat)	166
112	¹ H-NMR (500 MHz) spectrum of compound COC4 (CDCl ₃)	166
113	Expanded ¹ H-NMR (500 MHz) spectrum of	
	compound COC4 (CDCl ₃)	167
114	¹³ C-NMR (125 MHz) spectrum of compound COC4 (CDCl ₃)	167
115	DEPT135 spectrum of compound COC4 (CDCl ₃)	168
116	HMQC spectrum of compound COC4 (CDCl ₃)	168
117	HMBC spectrum of compound COC4 (CDCl ₃)	169
118	Expanded HMBC spectra of compound COC4 (CDCl ₃)	169
119	¹ H- ¹ H COSY spectra of compound COC4 (CDCl ₃)	170
120	NOE spectra of compound COC4 (CDCl ₃)	170

Figur		Page
121	Possible formation of compound COC4 from compound A,	
	the C-5 epimer of chettaphanin	80
122	FAB Mass spectrum of compound COC5	171
123	IR spectrum of compound COC5 (KBr disc)	171
124	¹ H-NMR (500 MHz) spectrum of compound COC5 (CDCl ₃)	172
125	¹³ C-NMR (125 MHz) spectrum of compound COC5 (CDCl ₃)	172
126	DEPT135 spectrum of compound COC5 (CDCl ₃)	173
127	FAB Mass spectrum of compound COC6	173
128	IR spectrum of compound COC6 (KBr disc)	174
129	¹ H-NMR (500 MHz) spectrum of compound COC6 (CDCl ₃)	174
130	¹³ C-NMR (125 MHz) spectrum of compound COC6 (CDCl ₃)	175
131	DEPT135 spectrum of compound COC6 (CDCl ₃)	175
132	FAB Mass spectrum of compound COC7	176
133	UV spectrum of compound COC7 (MeOH)	176
134	IR spectrum of compound COC7 (KBr disc)	177
135	¹ H-NMR (500 MHz) spectrum of compound COC7 (CDCl ₃)	177
136	¹³ C-NMR (125 MHz) spectrum of compound COC7 (CDCl ₃)	178
137	HMQC spectrum of compound COC7 (CDCl ₃)	178
138	HMBC spectrum of compound COC7 (CDCl ₃)	179
139	¹ H- ¹ H COSY spectrum of compound COC7 (CDCl ₃)	179
140	FAB Mass spectrum of compound COC8	180
141	UV spectrum of compound COC8 (MeOH)	180
142	IR spectrum of compound COC8 (Neat)	181
143	¹ H-NMR (500 MHz) spectrum of compound COC8 (CDCl ₃)	181
144	Expanded ¹ H-NMR (500 MHz) spectrum of	
	compound COC8 (CDCl ₃)	182
145	¹³ C-NMR (125 MHz) spectrum of compound COC8 (CDCl ₃)	182
146	DEPT135 spectrum of compound COC6 (CDCl ₃)	183
147	HMQC spectrum of compound COC8 (CDCl ₃)	183
148	HMBC spectrum of compound COC8 (CDCl ₃)	184
149	Expanded HMBC spectra of compound COC8 (CDCl ₃)	184
150	¹ H- ¹ H COSY spectra of compound COC8 (CDCl ₃)	185

		•	•	
XV	1	1	1	

ligure	
151	FAB Mass spectrum of compound COC9
152	UV spectrum of compound COC9 (MeOH)
153	IR spectrum of compound COC9 (KBr disc)
154	¹ H-NMR (500 MHz) spectrum of compound COC9 (CDCl ₃)
155	Expanded ¹ H-NMR (500 MHz) spectrum of
	compound COC9 (CDCl ₃)
156	¹³ C-NMR (125 MHz) spectrum of compound COC9 (CDCl ₃)
157	DEPT135 spectrum of compound COC9 (CDCl ₃)
158	HMQC spectrum of compound COC9 (CDCl ₃)
159	HMBC spectrum of compound COC9 (CDCl ₃)
160	Expanded HMBC spectra of compound COC9 (CDCl ₃)
161	¹ H- ¹ H COSY spectra of compound COC9 (CDCl ₃)
162	NOE spectra of compound COC9 (CDCl ₃)
163	FAB Mass spectrum of compound COC10
164	UV spectrum of compound COC10 (MeOH)
165	IR spectrum of compound COC10 (KBr disc)
166	¹ H-NMR (500 MHz) spectrum of compound COC10 (CDCl ₃)
167	Expanded ¹ H-NMR (500 MHz) spectrum of
	compound COC10 (CDCl ₃)
168	¹³ C-NMR (125 MHz) spectrum of compound COC10 (CDCl ₃)
169	HMQC spectrum of compound COC10 (CDCl ₃)
170	HMBC spectrum of compound COC10 (CDCl ₃)
171	¹ H- ¹ H COSY spectrum of compound COC10 (CDCl ₃)
172	NOE spectra of compound COC10 (CDCl ₃)
173	ORTEP drawing of compound COC10
174	FAB Mass spectrum of compound COC11
175	UV spectrum of compound COC11 (MeOH)
176	IR spectrum of compound COC11 (Neat)
177	¹ H-NMR (500 MHz) spectrum of compound COC11 (CDCl ₃)
178	¹³ C-NMR (125 MHz) spectrum of compound COC11 (CDCl ₃)
179	HMQC spectrum of compound COC11 (CDCl ₃)

Figure		Page
180	HMBC spectrum of compound COC11 (CDCl ₃)	199
181	¹ H- ¹ H COSY spectrum of compound COC11 (CDCl ₃)	200
182	NOE spectra of compound COC11 (CDCl ₃)	200

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Schem	ie	Page
1	Seperation of CHCl ₃ extract of the aerial parts	
	of Pterocaulon redolens	27
2	Seperation of fraction PC3 from the CHCl ₃ extract	
	of the aerial parts of Pterocaulon redolens	28
3	Seperation of fraction PC4 from the CHCl ₃ extract	
	of the aerial parts of <i>Pterocaulon redolens</i>	29
4	Seperation of fraction PC5 from the CHCl ₃ extract	
	of the aerial parts of Pterocaulon redolens	30
5	Seperation of the BuOH extract of the aerial parts	
	of Pterocaulon redolens	31
6	Seperation of the fraction PB5 from the BuOH extract	
	of the aerial parts of <i>Pterocaulon redolens</i>	32
7	Seperation of the CHCl ₃ extract of the roots	
	of Cladogynos orientalis	33
8	Seperation of fraction CC3 from the CHCl ₃ extract	
	of the roots of Cladogynos orientalis	34
9	Seperation of fraction CC4 from the CHCl ₃ extract	
	of the roots of <i>Cladogynos orientalis</i>	35
10	Seperation of fraction CC5 from the CHCl ₃ extract	
	of the roots of Cladogynos orientalis	36
11	Seperation of fraction CC6 from the CHCl ₃ extract	
	of the roots of Cladogynos orientalis	37

LIST OF ABBREVEATIONS AND SYMBOLS

α	=	Alpha
$\left[\alpha\right]_{D}^{t}$	=	Specific rotation at t °C and sodium D line (589 nm)
β	=	Beta
°C	=	Degree Celsius
calcd.	=	Calculated
CDCl ₃	=	Deuterated chloroform
CHCl ₃	=	Chloroform
CH_2Cl_2	=	Dichloromethane
cm ⁻¹	= 🧹	Reciprocal centimeter (unit of wave number)
¹³ C NMR	=	Carbon-13 Nuclear Megnetic Resonance
CO_2	=	Carbon dioxide
2-D NMR	= 🥖	Two Dimensional Nuclear Magnetic resonance
d	= /	Doublet (for NMR spectra)
dd	=	Doublet of Doublets (for NMR spectra)
DEPT	=	Distortionless Enhancement by Polarization Transfer
DMSO	=	Dimethyl sulfoxide
δ	=	Chemical Shift
EtOAc	=	Ethyl acetate
EtOH	=	Ethanol
FABMS	=	Fast Atom Bombardment Mass spectrometry
g	วี ถ.	Gram
GC	5461	Gas Chromatography
hr	50	Hour
¹ H NMR	+ 61	Proton Nuclear Magnetic Resonance
HMBC	=	¹ H-detected Heteronuclear Multiple Bond Coherence
HMQC	=	¹ H-detected Heteronuclear Multiple Quantum Coherence
HRFABMS	=	High Resolution Fast Atom Bombardment Mass spectrometry
Hz	=	Hertz
IC ₅₀	=	Inhibition Concentration at 50%
IR	=	Infrared Spectrum

J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
μg	=	Microgram
μL	=	Microliter
λ_{max}	=	Wavelength at maximal absorption
3	=	Molar absorptivity
M^+	=	Molecular ion
т	=	Multiplet (for NMR spectra)
MeOH	= 1	Methanol
mg	= 🧹	Milligram
$[M+H]^+$	= 🧹	Protonated molecular ion
MHz	=	Megahertz
min	=	minute
mL	=	Milliliter
MW	=	Molecular weight
m/z	=	Mass to charge ratio
MS	=	Mass Spectrometry
nm	-0	Nanometer
NMR	= 1	Nuclear Magnetic Resonance
NOE	=	Nuclear Overhauser Effect
ppm	=	Part per million
spp.	สถ	Species
v_{max}		Wave number at maximal absorption
s	Ta	Singlet (for NMR spectra)
TLC	101	Thin Layer Chromatography
TMS	=	Tetramethylsilane
UV-VIS	=	Ultraviolet and Visible Spectrophotometry

CHAPTER I

INTRODUCTION

The genus *Pterocaulon* belongs to the family Asteraceae. This genus consists of about 25-30 species distributed in tropical America, Madagascar, tropical Asia and Australia (Koyama, 1984).

According to the Acta Phytotaxonamica Et Geobotanica (Koyama, 1984), there is only one species of the genus *Pterocaulon* found in Thailand as followed.

Pterocaulon redolens (Forst. f) F. Vill.ผักง้อนแง้นPahk jawn jan;(Pterocaulon cylindrostachyum Cl.)nobcheese

Pterocaulon redolens (Forst. f) F. Vill. is distributed in India, Southern China, Thailand, Laos, Vietnam, Philippines and Australia. It is an annual herb up to 1.5 m tall. It is erect, branching, pleasantly scented and tap root. Stems and branches are terete, white floccose, glabrescent, light green and ageing brown, oldest parts to 12.0 mm thick, continuous, light green to green wings 2.0-2.5 mm wide which are less conspicuous than the oldest parts. Leaves are blades thin, lanceolate to somewhat spathulate, tip rounded, base narrowed and winged to the insertion, margins shallowly and sharply double serrate less than in younger blades, venation pinnate, midnerve distinct, other venation obscure, youngest blades densely white villous-floccose on both sides, upper surface in mature blades pilose and dull green, lower side villousfloccose and light green, $5.5-12.5 \times 1.2-4.0$ cm. Inflorescence terminate on each branch, numerous on each plant, speciform, 2.0-4.0 cm long, consisting of numerous spirally arranged, confluent, sessile heads, each 4.0-5.0 mm long and concealed in white floccose indumentum. Several involucral bracts in 2-3 series are thin, all similar, spathulate, tip acute with a sharp mucro and upper half green, the tips often pink to dark violet, lower half light green, densely white floccose, 2.5×0.3 mm. Flowers are several in each head, all tubular, glabrous, 3.0-3.5 mm long, outer ones are female and inner ones are bisexual, regular and 5-merous. Pappus is a single whorl of erect, white, glabrous hair as long as the corolla. Female flowers are slender, tube pale light green in the lower part, dark violet in upper part. Two stigmas are spreading, dark violet, 0.5 mm long, style as long as the corolla. Bisexual flowers are more prominent than pigmented and similar size as the female flowers. Five lobes are

ovate-oblong, tip obtuse, 0.5 mm long. Five Stamens are slightly shorter than the corolla, glabrous. Anthers are linear, marginally connate, 2-locular, tip with a thin, rounded extension of the connective which is as wide as and 1/3 as long as the locules; base with a thin, 0.2 mm long appendage on each side, light pink, 1.25 mm long. Filaments are free, inserted on the lower 1/3 of the corolla, pale light greenish, 1 mm long. One style is pale light greenish, 2.0 mm long. Ovary is inferior, cylindric, glabrous, 1-locular with 1 basal ovule, 0.75 mm long. Achenes are cylindric, striate, glabrous, 0.75 mm long, crowned by the pappus (**Figure 1**) (Radanachaless, 1994).

Although *P. redolens* has not been recorded in Thai Plant Names (Smitinand, 2001), however the herbarium specimen of this species has been kept at the National Park, Wildlife and Plant Coservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

The genus *Cladogynos* (Family Euphorbiaceae) consists of only one species distributed in China, Indo-China, Thailand and Philippines. Plants in genus *Cladogynos* are freshy shrubs with copious white latex in all parts. Leaves are spiral. Monoecious. Twigs are densely hairly at least at tip. Male flowers are sepals 2-4, not overlapping, no disc, usually 4 stamens, slender pistillate and female flowers are sepals 5-7, big and leafy, ovary 3-chambered, styles joined at base and above several times forked. Fruits are capsules and splitting into bivalved parts leaving central column (Whitemore, 1973).

According to Smitinand (2001), the species of the genus *Cladogynos* found in Thailand are as *Cladogynos orientalis* Zipp. ex Span (*Adenocleana siamensis* Ridl.). It has a local name as Chettaphangkhi (เทตพังศี), Plao num-ngeon (เปล้าน้ำเงิน) and Bai Lung Kaw (ในหลังงาว). It is a shrubly tree, 90-150 cm high, common in dry evergreen or moist mixed deciduous forest or scrub up to 450 m, frequently on limestone. Leaves are conspicuously white-tomentellous below, coarsely repand-denatate or lobulate. The ovate-elliptic leaves are 10 cm long, stalk 7.5 cm long. Male flowers are small, dense, stalk slender piltillate, not overlapping, no disc, stellate hairy. Female flowers are 5-7 sepals and leafy, ovary 3-chambered, styles joined at base, flower head; cernuous in bug stage. Fruits are capsule, splitting in to bilvalved part leaving a central column. Yellow root-bark is rigid and smell (**Figure 2**) (Shaw, 1972).

During our preliminary evaluation for biological activities. Both plant extracts exhibited cytotoxic and antimycobacterial activities (see Results and Discussion section). Therefore, the following objectives are put forwards:

- 1. Isolation and purification of compounds from the aerial parts of *P. redolens* and the roots of *C. orientalis*
- 2. Determination of the chemical structure of each isolated compound
- 3. Evaluation of each isolate for its cytotoxic and antimycobacterial acitivities

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Flowers

Aerial parts

Figure1 Pterocaulon redolens (Forst. f) F. Vill.

Fruits

Flowers

Dried roots

Figure2 Cladogynos orientalis Zipp. ex Span.

CHAPTER II

HISTORICAL

1. Chemical Constituents of Pterocaulon spp.

Chemical investigations of a number of *Pterocaulon* spp. have shown them to be a good source of coumarins (**Table 1**). In additional, other classes of natural compounds such as flavonoids, polyacetylenes and terpenes have been found (**Table 2-4**). As *Pterocaulon redolens* (Forst. f) F. Vill., no phytochemical study has been reported.

Table 1 Distribution of coumarins in Pterocaulon spi).
--	----

Plant and chemical compounds	Plant part	References
Pterocaulon alopeculoides		
7-(2,3-Dihydroxy-3-methylbutyloxy)-6-methoxycoumarin [1]	Aerial part	Vilegas et al., 1995
7-(2,3-Dihydroxy-3-methylbutyloxy)-5-hydroxy-6-methoxycoumarin [2]	Aerial part	Vilegas et al., 1995
P. balansae		
7-(2,3-Epoxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [3]	Aerial part	Magalhaes <i>et al.</i> , 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [4]	Aerial part	Magalhaes <i>et al.</i> , 1981
HOOH		

Table 1 (continued)		
Plant and chemical compounds	Plant part	References
P. balansae		
7-(3-Methyl-2-butenyloxy)-5,6-methylenedioxycoumarin [5]	Aerial part	Magalhaes et al., 1981
7 (2.2 En erre 2 methodischer) (methodischer in [6]	A arrial mant	Magalhaan et al. 1081
7-(2,3-Epoxy-3-methylbutyloxy)-6-methoxycoumarin [6]	Aerial part	Magalhaes <i>et al.</i> , 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-6-methoxycoumarin [1]	Aerial part	Magalhaes et al., 1981
, L, L,		
НО		
P. lanatum		
7-(2,3-Epoxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [3]	Aerial part	Magalhaes <i>et al.</i> , 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [4]	Aerial part	Magalhaes et al., 1981
	ໄລ້ ມາລັຍ	
но Он	5 1915	
7-(2,3-Dihydroxy-3-methylbutyloxy)-6-methoxycoumarin [1]	Aerial part	Magalhaes et al., 1981

Plant and chemical compounds	Plant part	References
P. lanatum		
2',3'-Epoxypuberulin [7]	Aerial part	Magalhaes <i>et al.</i> , 1981
7 (2 Mathul 2 hutan law) 5 (mathematic [9]		
/-(3-Methyl-2-butenyloxy)-5,6-methoxycoumarin [8]	Aerial part	Magalhaes <i>et al.</i> , 1981
P. polystachium		
5-Methoxy-6,7-methylenedioxycoumarin [9]	Aerial part	Palacios et al., 1999
Ayapin [10]	Aerial part	Palacios <i>et al.</i> , 1999
7-(3-Methyl-2-butenyloxy)-6-methoxycoumarin [11]	Aerial part	Palacios et al., 1999
$F_{H_{3}CO} \rightarrow F_{0}$	Aerial part	Palacios <i>et al.</i> , 1999
Hotoo	ยาลั	8
Scopoletin [13]	Aerial part	Palacios et al., 1999
Aesculetin [14]	Aerial part	Palacios <i>et al.</i> , 1999
HOHO		

Plant and chemical compounds	Plant part	References
P. polystachium		
5-(3-Methyl-2-butenyloxy)-6,7-methylenedioxycoumarin [15]	Aerial part	Palacios et al., 1999
Virgatenol [16]	Aerial part	Palacios <i>et al.</i> , 1999
P. purpurescens		
Purpurenol [17]	Aerial part	Debenedetti et al., 1991
Purpurasol [18] $H_{5CO} + f_{0} + f_$	Aerial part	Debenedetti <i>et al.</i> , 1992
Purpurasolol [19]	Aerial part	Debenedetti <i>et al.</i> , 1996
Fraxetin [20] $fraction = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	Aerial part	Bebenedetti et al., 1996

Plant and chemical compounds	Plant part	References
P. serrulatum		
6,7,8-Trimethoxycoumarin [21]	Aerial part	Macleod and Rasmussen, 1999
H ₃ CO H ₃ CO OCH ₃		
5-Methoxy-6,7-methylenedioxycoumarin [9]	Aerial part	Macleod and Rasmussen, 1999
Ayapin [10] (10)	Aerial part	Macleod and Rasmussen, 1999
P. sphacelatum		
6,7-Dimethoxycoumarin [22]	Aerial part	Johns <i>et al</i> , 1968
6,7,8-Trimethoxycoumarin [21]	Aerial part	Semple <i>et al</i> , 1999
H ₅ CO V O VO	6	
P. virgatum		
5-(3-Methyl-2-butenyloxy)-6,7-methylenedioxycoumarin [15]	Aerial part	Debenedetti et al., 1994
	การ	2
5-Methoxy-6,7-methylenedioxycoumarin [9]	Aerial part	Debenedetti et al., 1994
Sabandinol [23] \downarrow^{OCH_3}	Aerial part	Debenedetti et al., 1997

Plant and chemical compounds	Plant part	References
P. virgatum	A originart	Dehonodotti et al. 1007
Sabandinone [24]	Aeriai part	Debenedetti <i>et al.</i> , 1997
Ayapin [10]	Aerial part	Debenedetti et al., 1998
Scopoletin [13]	Aerial part	Debenedetti et al., 1998
HyCO		
Virgatenol [16]	Aerial part	Debenedetti et al., 1998
H ₃ CO		
HO		
Virgatol [25]	Aerial part	Debenedetti et al., 1998
0		
HO		
OCH ₃	0	
7-(3-Methyl-2-butenyloxy)-6-methoxycoumarin [26]	Aerial part	Debenedetti et al., 1998
HaCO		
o to to		
	00	
7 (2.2 Dihudrary 2 mathulhutulary) 6 mathavyaaymarin [1]	A orial part	Dependenti et $al = 1000$
	Achai part	Debenedetti ei ai., 1999
	1816	
9		
HO		
Isopurpurasol [27]	Aerial part	Debenedetti et al., 1999
H ₃ CO O O O		

Plant and chemical compounds	Plant part	References
<i>P. alopeculoides</i> 7-(3-Methylbut-2-enyloxy)-3,5,3',4'-tetrahydroxy-2,3-dihydroflavonol [28]	Aerial part	Vilegas et al., 1995
ОН		
Сн 0 ст		
P. purpurascens	Aerial part	Debenedetti et al., 1987
Quercetin [29]	1	,
UP		
но он он		
Isorhamnetin [30]	Aerial part	Debenedetti et al., 1987
ОН	· · · · · ·	,,,
HO OCH3		
	A	D-1
Quercetagetin 3, /,4'-trimethylether [31]	Aeriai part	Debenedetti <i>et al.</i> , 1987
H500, 0, , , , , , , , , , , , , , , , ,		
HO OCH3 OCH		
Quercetagetin 3,7-dimethylether [32]	Aerial part	Debenedetti et al., 1987
ОН		
	15	
Quarantagotin 2.2/ dimethylathar [22]	A amial mant	Dehenodetti et $rl = 1007$
	Aerial part	Debenedetti <i>et al.</i> , 1987

Plant and chemical compounds	Plant part	References
P. serrulatum		
Pinocembrin [34]	Aerial part	Macleod and Rasmussen, 1999
P. sphacelatum		
Chrysosplenol C [35] $\underset{H_{3}CO}{\leftarrow + + + + + + + + + + + + + + + + + + +$	Aerial part	Semple <i>et al.</i> , 1999
P. virgatum		
7- <i>O</i> -(2,2-Dimethylallyl)aromadendrin [36]	Aerial part	Bohlmann et al., 1981
7-O-Prenyltaxifolin [37]	Aerial part	Bohlmann <i>et al.</i> , 1981
<u> </u>	เการ	

จุฬาลงกรณ์มหาวิทยาลย

Plant and chemical compounds	Plant part	References
P. serrulatum		
14-Hydroxy-β-caryophyllene [38]	Aerial part	Macleod and Rasmussen, 1999
Пипин ОН		
4,5-Epoxy-13-hydroxy-β-caryophyllene [39]	Aerial part	Macleod and Rasmussen, 1999
HO		
P. virgatum		
Humulene [40]	Root	Bohlmann et al., 1981
Taraxasterone [41]	Root	Bohlmann et al., 1981
Acetyltaraxasterate [42]	Root	Bohlmann <i>et al.</i> , 1981
	ึการ	
Taraxasterol [43]	Root	Bohlmann <i>et al.</i> , 1981

 Table 3 Distribution of terpenes in Pterocaulon spp.
Table 4 Distribution of polyacetylenes in Pterocaulon	spp.	
Plant and chemical compounds	Plant part	References
P. alopeculoides		
Pentayne-ene [44] CH ₃ -[C=C] ₅ -CH=CH ₂	Root	Magalhaes et al., 1989
P. balansae		
Pentayne-ene [44] CH ₃ −[C≡C] ₅ −CH=CH ₂	Root	Magalhaes et al., 1989
Tridec-1,2-dimethoxy-3,5,7,9,11-pentyne [45]	Root	Magalhaes et al., 1989
$CH_3 - [C \equiv C]_5 - CH(OCH_3) - CH_2OCH_3$		
5-[Prop-1"-inylthienyl-(1)]-6'-chloro-5'hydroxyhexa-3',5-diyene [46]	Root	Bohlmann et al., 1981
P. lanatum		
Pentayne-ene [44]	Root	Magalhaes et al., 1989
$CH_3 - [C=C]_5 - CH = CH_2$		
5-[Prop-1''-inylthienyl-(1)]-6'-chloro-5'hydroxyhexa-3',5-diyene [45]	Root	Bohlmann et al., 1981
P. rugasum	2	
Pentayne-ene [44]	Root	Magalhaes et al., 1989
$CH_3-[C=C]_5-CH=CH_2$		
5-[Prop-1''-inylthienyl-(1)]-6'-chloro-5'hydroxyhexa-3',5-diyene [45]	Root	Bohlmann et al., 1981
<u>ุลฬาลงกรกไบหาวิท</u>	ยาล	2
P. virgatum		
5-[Prop-1''-inylthienyl-(1)]-6'-chloro-5'hydroxyhexa-3',5-diyene [45]	Root	Bohlmann et al., 1981
5-Ethinylthienyl-6'-chloro-5'-hydroxyhexa-3',5'-diyene [46]	Root	Bohlmann et al., 1981

l

Table 4 (continued)

Plant and chemical compounds	Plant part	References
P. virgatum		
5'-Methyl-2-[4'-chloro-3'-hydroxybut-1-ynyl]-dithiophene [47]	Root	Bohlmann et al., 1981

2. Chemical Constituents of Cladogynos orientalis

A number of compounds have been isolated from the only one species, *Cladogynos orientalis*. On the literature research, up to the present time only two studies were reported on this plant until now. Chettaphanin I [48] (Sato *et al.*, 1970) and Chettaphanin II [49] (Sato *et al.*, 1971) were isolated from the root of this plant. However, their biological activities have not been reported.

Figure 3 Structures of compounds isolated from *Cladogynos orientalis* Zipp. ex Span.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

3. Traditional Uses and Biological Activities of *Pterocaulon* spp.

Pterocaulon plants have been used in traditional medicine in many countries with several proposes. In Australia, many parts of *P. sphacelatum* are used eg. aerial parts for treatment of infection, colds, blocked sinuses, sores, wounds, inflamed or infected eyes (Semple *et al.*, 1998), crushed leaves for the relief of congestion and as an antiseptic wash, leaves and twigs for treatment of skin disorders such as scabies and ringworm as well as sores and cuts (Macleod and Rasmussen, 1999). In Argentina, aerial parts of *P. polystachium* have been used against flies, fleas and sunstroke (Mongelli *et al.*, 2000). Aerial parts of *P. purpurascens* are used as a digestive and as an insecticide. In southern Brazil and Paraguay, aerial parts of *P. virgatum* are used in traditional medicine as an insecticide and an agent against snake bites (Debenedetti *et al.*, 1998).

A number of biological investigations of *Pterocaulon* species have been reported. Ethanol extract of aerial parts of *P. sphacelatum* showed inhibition of poliovirus-induced cytopathic effect more than 75% in the crystal violet assay at a non-cytotoxic concentration (Semple *et al.*, 1998). The CH₂Cl₂ extract of aerial parts of *P. polystachium* inhibited crown gall tumor at 30% (Mongelli *et al.*, 2000).

4. Traditional Uses and Biological Activities of Cladogynos orientalis

Cladogynos orientalis has been used in traditional medicine as roborant and carminative properties. A decoction of the root of this plant combined with the roots of *Styrax benzoides* had been used as the cardiac or tonic drugs and the trunk had been used as antidiarrhea and flatulence (Pongboonrod, 1976). The ethanol extract of the roots of *C. orientalis* showed 14% inhibition of HIV-I RT activity at 200 µg/mL (Tan, Pezzuto and Kinghorn, 1991).

CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials

The aerial parts of *Pterocaulon redolen* (Forst. f) F. Vill. were collected from Kanchanaburi province, Thailand in August 2000. Authentication of the plant materials was done by comparison with the herbarium specimen (BKF No. 1482) at the National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

The roots of *Cladogynos orientalis* Zipp. ex Span. were collected from the World Biosphere Reserve, Sakaeraj Environmental Research Station, Nakorn-Rachasima province, Thailand in October 2002. Authentication was achieved by comparison with the herbarium specimen (BKF No. 28024) at the National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

Voucher specimens were deposited at the Museum of Natural Medicine, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General Techniques

2.1 Analytical Thin-Layer Chromatography (TLC)

Technique	0:	One Dimension, ascending
Adsorbent	÷.,	Silica gel 60G F ₂₅₄ (E. Merck) precoated plate
Layer thickness	าว่าๆ	0.2 mm
Distance	1	5.0 cm
Temperature	. i s	Laboratory temperature (25-35 °C)
Detection	Ņ	1. Ultraviolet light at wavelengths at 254 and 365 nm
		2. Anisaldehyde-H_2SO_4 reagent and heating at 105 $^\circ C$
		for 10 min

2.2 Column Chromatography

2.2.1 Vacuum Liquid Column Chromatography

Adsorbent : Silica gel 60 (No. 7734) particle size 0.063-0.200 nm

		(E. Merck)
Packing method	:	Dry packing
Sample loading	:	The sample was dissolved in a small amount of organic
		solvent mixed with a small quantity of adsorbent,
		triturated, dried and then placed gently on top of the
		column.
Detection	:	Fractions were examined by TLC observing under light
		at the wavelengths of 254 and 365 nm.
2.2.2	Flash C	olumn Chromatography
Adsorbent	:	1. Silica gel 60 (No. 9385) paricle size 0.040-0.063 nm
		(E. Merck)
		2. Silica gel FL100D (Fuji Silysia Chemical Ltd.)
Packing method	:	Wet Packing
Sample loading	: //	The sample was dissolved in a small volumn of eluent
		and then applied gently on the top of the column.
Detection	:	Fractions were examined in the same way as described
		in section 2.2.1
2.2.3	Gel Filt	ration Chromatography
Gel filter	:	Sephadex LH 20 (Pharmacia)
Packing method	:	Gel filter was suspended in the eluent and left standing
		to swell for 4 hours prior to use. It was then poured
		into the column and allowed to set tightly.
Sample Loading	19	The sample was dissolved in a small volumn of eluent
		and applied on the top of the column.
2.2.4	Gas Chi	romatography
Instrument model	ЧП	Varian Saturn III
Column	:	Fused silica capillary column (30 m \times 0.25 mm i.d.,
		coated with DB-5 (J&W) film thickness 0.25 μ m
Detector type	:	F.I.D. (Flame Ionization Detector)
Column programmin	g:	60 – 240 °C (rate 3 °C/min)
Injector temperature	:	240 °C
Helium carrier gas	:	1 mL/min

Split ratio	:	100 : 1
Accelerating voltage	:	1700 volts
Sample size	:	1 μL
Slovent	:	HPLC grade methanol

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) Absorption Spectra

UV (in MeOH) spectra were obtained on a Shimadzu UV-160A spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand) and a JASCO V-560 UV Spectrophotometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.2 Infrared (IR) Absorption Spectra

IR spectra (KBr disc and film) were recorded on a JASCO FT/IR-300E spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand and Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.3 Mass Spectra

Molecular ion were measured on a JEOL JMS-AM20 mass spectrometer and high-resolution fast atom bombardment mass spectrometry (HRFABMS) on a JEOL JMS-HX110 spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.4 Proton and Carbon-13 Nuclear Magnetic Resonance (¹H- and ¹³C-NMR) spectra

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on a JEOL JNM-ECP400 spectrometer, and ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were obtained on a JEOL JNM-GSX500A spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

Solvents for NMR spectra were deuterated chloroform (CDCl₃) and deuterated dimethyl sulfoxide (DMSO- d_6). Chemical shifts were reported in ppm scale using the chemical shift of the solvent and internal standard (TMS) as the reference signals.

2.4 Physical Properties

2.4.1 Melting Points

Melting points were measured on a micro melting point hot-stage apparatus (Yanagimoto) (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.4.2 Optical rotations

Optical rotations were obtained on a JASCO P-1020 polarimeter (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.4.3 X-ray crystallography

X-ray crystallographic data were measured at -100 °C on a Bruker/SMART 1000 CCD (Chemical Analytical Center, Chiba University, Chiba, Japan).

2.5 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from *Pterocaulon redolens*

3.1.1 Extraction

Essential oil was determined by the method described in the Association of Official Analytical Chemist (method 962.17, AOAC, 1990). The aerial parts was hydrodistillated in Clevenger type apparatus. The exactly weight was put into a 1000 ml round bottom flask and distilled water was added into the flask to around half-full. This flask was then connected to the apparatus for determination of essential oil. The content in this flask was distilled until two consecutive reading taken at one hour interval showed no change in oil content (around four to six hours). After cooling, the essential oil was diluted to 1:100 in methanol and then analysed for its chemical constituents by Gas Chromatography-Mass Spectrometry (GC-MS). The GC-MS condition was described in 2.2.4 and the spectrum was recorded and compared with the terpenes library (Adam, 1995).

The dried aerial parts of *Pterocaulon redolens* (1.5 kg) were chopped, ground and then extracted with hexane (3×4.5 L), chloroform (CHCl₃, 5×4.5 L), and then 95% methanol (MeOH, 4×4.5 L) to give, after removal of the organic solvent, a hexane extract (20.1 g), a chloroform extract (30.8 g) and a methanol extract (12.4 g), respectively.

The methanol extract (12.4 g) was then partition between butanol and water. The butanol layer was dried to yield 4.5 g of a BuOH extract while 7.0 g of an aqueous extract was obtained.

3.1.2 Isolation of Compounds from CHCl₃ Extract

The CHCl₃ extract (30.8 g) was dissolved in a small amount of CHCl₃, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then fractionated by vacumn liquid column chromatography using sintered glass filter column of silica gel (No. 7734). Elution was completed in a polarity gredient manner with mixture of hexane, CHCl₃ and MeOH. The eluate was collected 200 mL per fraction and examined by TLC (Silica gel, 40% hexane in CHCl₃). Fractions (42 fractions) with similar chromatographic pattern were combined to yield 8 fractions: Fractions PC1 (1.2 g), PC2 (5.3 g), PC3 (3.9 g), PC4 (6.8 g), PC5 (1.4 g), PC6 (3.1 g), PC7 (4.7 g) and PC8 (3.4 g).

3.1.2.1 Isolation of Compound PRC1 (5-Methoxy-6,7-methylenedioxycoumarin)

Fraction PC2 (5.3 g) was further purified on a silica gel column chromatography (40% hexane in CHCl₃). The eluates were examined by TLC using 30% hexane in CHCl₃, as developing solvent. Fractions with similar chromatographic pattern were combined to yield 6 fractions (P21-P26). Fraction PC22 (720.0 mg) was recrystallized from CHCl₃-MeOH mixture to afford white crystals of compound **PRC1** (60.0 mg). This compound was eventually identified as 5-methoxy-6,7-methylenedioxycoumarin [**9**].

3.1.2.2 Isolation of Compound PRC2 (Ayapin)

Fraction PC24 (680.0 mg) was fractionated on a silica gel column using isocratic elution with 35% hexane in CHCl₃ to give white crystals of compound **PRC2** (30.8 mg). This compound was later identified as ayapin [10].

3.1.2.3 Isolation of Compound PRC3 (Puberulin)

Fraction PC3 (3.9 g) was separated on a silica gel column chromatography (30% hexane in CHCl₃). Fractions (35 fractions) with similar chromatographic pattern were combined by TLC, to give 8 fractions (PC31 to PC38). Fraction PC34 (600.0 mg) was chromatographed on Sephadex LH20 (50% acetone in MeOH) column and repurified on sephadex LH20 using acetone as eluent to obtain compound **PRC3** (18.0 mg). It was subsequently identified as puberulin [**50**].

3.1.2.4 Isolation of Compound PRC4 (5-Methoxyscopoletin)

Compound **PRC4** (20.0 mg) was obtained as white crystal from fraction PC36 (900.0 mg) by separation on sephadex LH20 (50% CHCl₃ in MeOH) column. It was identified as 5-methoxyscopoletin [51].

3.1.2.5 Isolation of Compound PRC5 (2',3'-Dihydroxypuberulin)

Fraction PC4 (6.8 g) was rechromatographed on a silica gel column chromatography. Gradient elution (30% hexane in CHCl₃) was performed to give 10 fractions (PC41 to PC410). Fraction PC48 (0.9 g) was further fractionated by repeated column chromatography (30% hexane in EtOAc gradient elution) to furnish compound **PRC5** (40.1 mg). This compound was identified as 2',3'-dihydroxypuberu-lin [**52**]. Here is the first time to isolate this compound from natural source.

3.1.2.6 Isolation of Compound PRC6 (Isofraxidin)

Fraction PC49 (720.0 mg) was purified on a silica gel column chromatography (20% hexane in EtOAc) to afford compound **PRC6** (10.1 mg). This compound was identified as isofraxidin [**53**].

3.1.2.7 Isolation of Compound PRC7 (Sabandinol)

Fraction PC5 (1.4 g) was repeated a silica gel column chromatography (10% hexane in CHCl₃) to give compound **PRC7** (20.3 mg) as white crystals. It was identified as sabandinol [**23**].

3.1.3 Isolation of Compounds from BuOH Extract

The BuOH extract (4.5 g) was separated on sephadex LH20 (MeOH) to obtain 6 fractions (fraction PB1 to PB6)

3.1.3.1 Isolation of Compound PRB8 (Luteolin)

Fraction PB2 (900.0 mg) was rechromatographed on sephadex LH20 (acetone) to afford 5 fractions (PB21 to PB25). Fraction PB22 (250.0 mg) was futher

purified on sephadex LH20 (70% acetone in MeOH) to give compound **PRB8** as yellow crystals (20.9 mg). This compound was eventually identified as luteolin [54].

3.1.3.2 Isolation of Compound PRB9 (Tomentin) and Compound PRB10 (Chrysosplenol C)

Fraction PB5 (490.0 mg) was separated on sephadex LH20 (50% CHCl₃ in MeOH) to acquire 5 fractions (PB51to PB55). Compound **PRB9** (tomentin [**55**], 12.0 mg) was obtained as yellow crystals on sephadex LH20 (50% CHCl₃ in MeOH) from fraction PB51. Fraction PB54 (120.0 mg) was futher purified on sephadex LH20 (50% acetone in MeOH) to furnish compound **PRB10** (25.0 mg) as yellow crystals. It was identified as chrysosplenol C [**35**].

3.2 Extraction and Isolation of Compounds from *Cladogynos orientalis* 3.2.1 Extraction

The roots of *Cladogynos orientalis* (4.5 kg) were minced and extracted successively with CHCl₃ (5×20.0 L) and then with MeOH (3×20.0 L). Removal of the solvent from the extract under reduced pressure gave a CHCl₃ extract (208.6 g) and a MeOH extract (227.3 g), respectively.

3.2.2 Isolation of Compounds from CHCl₃ Extract

The CHCl₃ extract (208.6 g) was dissolved a small amount of CHCl₃, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then fractionated by vacumn liquid column chromatography using sintered glass filter column of silica gel (No. 7734). Elution was completed in a polarity gradient manner with mixture of hexane, CHCl₃, and MeOH. The eluated was collected 500 mL per fraction and examined by TLC (Silica gel, 30% hexane in CHCl₃). Fractions (83 fractions) with similar chromatographic pattern were combined to yield 8 fractions: Fraction CC1-CC8.

3.2.2.1 Isolation of Compound COC1 (8-Hydroxy-α-guaiene)

Fraction CC2 (18.2 g) was fractionated on a silica gel column using gradient elution with 90% hexane in CHCl₃ to give 5 fractions (CC21 to CC25). Fraction CC23 (3.8 g) was futher purified with 50% hexane in EtOAc to furnish compound **COC1** (50.7 mg). This compound was later identified as a new guaiene sesquiterpene, namely, $(4S^*, 7R^*, 8R^*, 10S^*)$ -8-hydroxy- α -guaiene [56].

3.2.2.2 Isolation of Compound COC2 (Spathulenol)

Fraction CC3 (6.8 g) was rechromatographed on a silica gel column chromatography. Gradient elution (5% EtOAc in hexane) was performed to give 7 fractions (CC31 to CC37). Fraction CC32 (1.0 g) was repeated a silica gel column chromatography (5% ether in hexane) to give compound **COC2** (62.5 mg). It was identified as spathulenol [**57**].

3.2.2.3 Isolation of Compound COC3 (5-[2-(Furan-3-yl)ethyl]-1,5,6trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic Acid)

Fraction CC33 (192.0 mg) was further purified on a silica gel column chromatography (2.5% CH_2Cl_2 in hexane) to obtain compound COC3 (3.2 mg) as a new 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [**58**].

3.2.2.4 Isolation of Compound COC4 (Methyl 9-(Furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0^{1,6}]trideca-5,8diene-2-carboxylate)

Fraction CC35 (1.3 g) was further purified on a silica gel column chromatography (10% CH_2Cl_2 in hexane) to obtain compound **COC4** (32.7 mg) as methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0^{1,6}]trideca-5,8-diene-2-carboxylate [**59**].

3.2.2.5 Isolation of Compound COC5 (Acetoxyaleuritolate)

Fraction CC4 (16.6 g) was chromatographed on a silica gel column chromatography. Gradient elution (20% ether in hexane) was performed to give 9 fractions (CC41 to CC49). Fraction CC42 (2.1 g) was crystallized from a hexane-CHCl₃ mixture to give compound **COC5** (62.5 mg). It was identified as acetoxyaleuritolate [**60**].

3.2.2.6 Isolation of Compound COC6 (Taraxerol) and compound COC7 (Chettaphanin II)

Fraction CC47 (1.4 g) was crystallized from a hexane-CHCl₃ mixture to afford compound **COC6** (79.0 mg). It was identified as taraxerol [61]. The mother liquid of fraction CC47 was futher purified on silica gel column (50% CH_2Cl_2 in hexane) to obtain compound **COC7** (25.2 mg) as chettaphanin II [49].

3.2.2.7 Isolation of Compound COC8 (6-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11one)

Fraction CC5 (20.2 g) was chromatographed on a silica gel column chromatography. Gradient elution (40% hexane in CHCl₃) was performed to give 6 fractions (CC51 to CC56). Fraction CC52 (75.0 mg) was further fractionated by repeated column chromatography (80% CHCl₃ in EtOAc gradient elution) to furnish compound **COC8** (4.1 mg). This compound was newly identified as 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one) [**62**].

3.2.2.8 Isolation of Compound COC9 (6-[2-(Furan-3-yl)oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11one)

Fraction CC56 (10.0 g) was further fractionated by repeated column chromatography (CH₂Cl₂) to furnish compound **COC9** (33.4 mg). This compound was newly identified as 6-[2-(furan-3-yl)oxo]ethyl]-1,5-6-trimethyl-10-oxatricyclo [7.2.1.0^{2,7}]dodec-2(7)-en-11-one) [63].

3.2.2.9 Isolation of Compound COC10 (Chettaphanin I)

Fraction CC6 (9.8 g) was further purified on a silica gel column chromatography (30% hexane in EtOAc gradient elution) to obtain 4 fractions (CC61 to CC64). Fraction CC62 (1.2 g) was repeated a silica gel column chromatography (15% EtOAc in CH_2Cl_2) to give compound **COC10** (258.0 mg). It was identified as chettaphanin I [**48**].

3.2.2.10 Isolation of Compound COC11 (Cyperenoic Acid)

Fraction CC7 (113.9 g) was crystallized with hexane-CHCl₃ mixture to give compound COC11 (295.9 mg) as cyperenoic acid [64].

Scheme 2 Seperation of fraction PC3 from the CHCl₃ extract of the aerial parts of *Pterocaulon redolens*

Scheme 3 Seperation of fraction PC4 from the CHCl₃ extract of the aerial parts of *Pterocaulon redolens*

BuOH extract (4.5 g) from the aerial parts of *Pterocaulon redolens*

Scheme 5 Seperation of the BuOH extract of the aerial parts of *Pterocaulon redolens*

CHCl₃ extract (208.6 g) from the roots of *Cladogynos orientalis*

Scheme 7 Seperation of the CHCl₃ extract of the roots of *Cladogynos orientalis*

Scheme 9 Seperation of fraction CC4 from the CHCl₃ extract of the roots of *Cladogynos orientalis*

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound PRC1 (5-Methoxy-6,7-methylenedioxycoumarin)

Compound **PRC1** was obtained as white crystals, soluble in CHCl₃ (60.0 mg, 4.0×10^{-3} % based on dried weight of the aerial parts).

FABMS	$: [M+H]^+ m/z 221$, Figure 6
UV	: λ_{max} nm (log ε), in MeOH; 238 (3.25), 269 (4.12), 316 (4.13), Figure7
IR	: v _{max} cm ⁻¹ , KBr; 3077, 2920, 1737, 1628, 1481, 1248, 1046, Figure 8
¹ H NMR	: δ _H ppm, 500 MHz, in CDCl ₃ , Table 5 and Figure 9
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in CDCl ₃ , Table 5 and Figure 10

4.2 Compound PRC2 (Ayapin)

Compound **PRC2** was obtained as colourless needles, soluble in CHCl₃ (30.8 mg, 2.0×10^{-3} % based on dried weight of the aerial parts).

FABMS	: [M+H] ⁺ <i>m/z</i> 191, Figure 13
UV	: λ_{max} nm (log ε), in MeOH; 234 (4.34), 294 (3.79), 346 (4.20), Figure 14
IR	: v _{max} cm ⁻¹ , KBr; 3079, 2919, 1702, 1630, 1453, 1256, 940, 888, Figure 15
¹ H NMR	: $\delta_{\rm H}$ ppm, 500 MHz, in CDCl ₃ , Table 6 and Figure 16
13C NIMD	S man 125 MILE in CDCL Table Card Figure 17

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 6 and Figure 17

4.3 Compound PRC3 (Puberulin)

Compound PRC3 was obtained as white crystals, soluble in CHCl₃ (18.0 mg,

 1.2×10^{-3} % based on dried weight of the aerial parts).

FABMS	: [M+H] ⁺ <i>m/z</i> 291, Figure 20
UV	: λ_{max} nm (log ε), in MeOH; 227 (4.13), 260 (3.46), 297(4.05), Figure 21
IR	: v _{max} cm ⁻¹ , KBr; 3020, 2941, 1729, 1605, 1565, 1459, 1120, 976, Figure 22

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 7** and **Figure 23**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 7 and Figure 24

4.4 Compound PRC4 (5-Methoxyscopoletin)

Compound PRC4 was obtained as white solid, soluble in CHCl₃ (20.0 mg,

 1.3×10^{-3} % based on dried weight of the aerial parts).

FABMS	: [M+H] ⁺	<i>m/z</i> 223,	Figure	28
-------	----------------------	-----------------	--------	----

- UV : λ_{max} nm (log ε), in MeOH; 222 (4.13), 266 (3.06), 328 (4.13), Figure 29
- IR : v_{max} cm⁻¹, KBr; 3413, 3085, 2952, 1722, 1608, 1468, 1140, 824, Figure 30

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, see **Table 8** and **Figure 31**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 8 and Figure 32

4.5 Compound PRC5 (2['],3[']-Dihydroxypuberulin)

Compound **PRC5** was obtained as white crystals, soluble in CHCl₃ (40.1 mg, 2.7×10^{-3} % based on dried weight of the aerial parts).

FABMS	: $[M+H]^+ m/z$ 325, Figure 35
$\left[\alpha\right]^{23}{}_{D}$	$(c \ 0.9, \text{CHCl}_3)$
UV	: λ_{max} nm (log ε), in MeOH; 228 (4.32), 296 (4.06), 343(3.90), Figure 36
IR	: v _{max} cm ⁻¹ , KBr; 3474, 1716, 1605, 1566, 1459, 1125, 984, Figure 37
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 9 and Figure 38
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in CDCl ₃ , Table 9 and Figure 39
4.6 C	ompound PRC6 (Isofraxidin)

Compound **PRC6** was obtained as yellow crystals, soluble in CHCl₃ (10.1 mg, (7.10^{4}) of the state of t

 6.7×10^{-4} % based on dried weight of the aerial parts).

FABMS	$[M+H]^{m/z} 223, Figure 42$
UV	: λ_{max} nm (log ϵ), in MeOH; 228 (4.39), 268 (3.36), 345(4.28), Figure 43
IR	: v _{max} cm ⁻¹ , KBr; 3369, 1706, 1600, 1575, 1456, 1120, 1084, Figure 44
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 10 and Figure 45
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in CDCl ₃ , Table 10 and Figure 46

4.7 Compound PRC7 (Sabandinol)

Compound PRC7 was obtained as white crystals, soluble in MeOH (20.3 mg,

 1.4×10^{-3} % based on dried weight of the aerial parts).

FABMS	$[M+H]^+ m/z$ 309, Figure 50
$\left[\alpha\right]^{25}$ D	$:+30.9^{\circ}$ (<i>c</i> 0.65, MeOH)
UV	: λ_{max} nm (log ε), in MeOH; 220 (4.12), 239 (2.94), 320 (3.84), Figure 51
IR	: v_{max} cm ⁻¹ , KBr; 3438, 1715, 1638, 1579, 1473, 1249, 1131, 938, Figure 52
¹ H NMR	: $\delta_{\rm H}$ ppm, 500 MHz, in DMSO- d_6 , Table 11 and Figure 53
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in DMSO- d_6 , Table 11 and Figure 54
4.8 (Compound PRB8 (Luteolin)

Compound **PRB8** was obtained as yellow crystals, soluble in MeOH (20.9 mg, 1.4×10^{-3} % based on dried weight of the aerial parts).

FABMS : $[M+H]^+ m/z$ 287, **Figure 58**

UV : λ_{max} nm (log ε), in MeOH; 212 (4.49), 270 (3.22), 317 (4.11), Figure 59

IR : v_{max} cm⁻¹, KBr; 3347, 1654, 1609, 1490, 1260, 1032, 840, Figure 60

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in DMSO- d_6 , **Table 12** and **Figure 61**

¹³C NMR : δ_C ppm, 125 MHz, in DMSO- d_6 , Table 12 and Figure 62

4.9 Compound PRB9 (Tomentin)

Compound **PRB9** was obtained as yellow crystals, soluble in MeOH (12.0 mg, 8.0×10^{-4} % based on dried weight of the aerial parts).

FABMS	$[M+H]^+ m/z$ 347, Figure 65
UV	: λ_{max} nm (log ε), in MeOH; 213 (4.54), 303 (3.92), 347 (4.37), Figure 66
IR	: v _{max} cm ⁻¹ , KBr; 3369, 1655, 1609, 1560, 1491, 1290, 796, Figure 67
¹ H NMR	: $\delta_{\rm H}$ ppm, 500 MHz, in DMSO- d_6 , Table 13 and Figure 68
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in DMSO- d_6 , Table 13 and Figure 69

4.10 Compound PRB10 (Chrysosplenol C)

Compound **PRB10** was obtained as yellow solid, soluble in MeOH (25.0 mg, 1.7×10^{-3} % based on dried weight of the aerial parts).

FABMS	: [M+H] ⁺ <i>m/z</i> 361, Figure 72
UV	: λ_{max} nm (log ε), in MeOH; 214 (4.68), 281 (4.37), 349 (4.53), Figure 73

IR : v_{max} cm⁻¹, KBr; 3392, 1668, 1608, 1491, 1285, 940, 880, Figure 74

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in DMSO- d_6 , **Table 14** and **Figure 75**

¹³C NMR : δ_C ppm, 125 MHz, in DMSO- d_6 , Table 14 and Figure 76

4.11 Compound COC1 ((4*S**, 7*R**, 8*R**, 10*S**)-8-Hydroxy-α-guaiene)

Compound **COC1** was obtained as pale yellow oil, soluble in CHCl₃ (50.7 mg, 1.1×10^{-3} % based on dried weight of the roots).

FABMS	: [M+H] ⁺ <i>m/z</i> 220, Figure 79
HRFABMS	: $[M+K]^+ m/z 259.1487$ (calcd. for $C_{15}H_{24}OK = 259.1464$)
$\left[\alpha\right]^{23}{}_{\mathrm{D}}$: - 65.1° (<i>c</i> 0.03, MeOH)
UV	: λ_{max} nm (log ε), in MeOH; 206 (3.85), 263 (2.99), Figure 80
IR	: v _{max} cm ⁻¹ , Neat; 3448, 3100, 2926,1457, 1023, Figure 81
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 15 and Figure 82-83
¹³ C NMR	: δ_C ppm, 125 MHz, in CDCl ₃ , Table 15 and Figure 84

4.12 Compound COC2 (Spathulenol)

Compound COC2 was obtained as pale yellow oil, soluble in CHCl₃ (62.5 mg, 1.4×10^{-3} % based on dried weight of the roots).

FABMS : $[M+H]^+ m/z$ 221, **Figure 90**

IR : v_{max} cm⁻¹, Neat; 3384, 3080, 2926,1458, 1375, 889, Figure 91

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 16** and **Figure 92**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 16 and Figure 93

4.13 Compound COC3 (5-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6, -7,8-octahydronaphthalene-1-carboxylic acid)

Compound **COC3** was obtained as pale yellow oil, soluble in CHCl₃ (3.2 mg, 0.7×10^{-4} % based on dried weight of the roots).

FABMS	: [M+H] ⁺ <i>m/z</i> 317, Figure 98	
-------	---	--

HRFABMS : $[M+H]^+ m/z 317.2108$ (calcd. for $C_{20}H_{29}O_3 = 317.2117$)

$\left[\alpha\right]_{D}^{23}$	- 23.2° (<i>c</i> 0.0013, MeOH)
--------------------------------	----------------------------------

UV : λ_{max} nm (log ε), in MeOH; 299 (3.23), Figure 99

- IR : v_{max} cm⁻¹, Neat; 3600-2400, 2929, 1699, 1458, 1190, 938, Figure 100
- ¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 17** and **Figure 101-102**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 17 and Figure 103

4.14 Compound COC4 (Methyl-9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10oxatricyclo [5.3.3.0^{1,6}] trideca-5,8-diene-2-carboxylate)

Compound COC4 was obtained as pale yellow oil, soluble in CHCl₃ (32.7 mg, 7.2×10^{-4} % based on dried weight of the roots).

HRFABMS : $[M+H]^+ m/z$ 357.1685 (calcd. for C₂₁H₂₅O₅ = 357.1702)

 $[\alpha]^{23}_{D}$: + 56.1° (*c* 0.015, MeOH)

UV : λ_{max} nm (log ε), in MeOH; 239 (4.19), Figure 110

IR : v_{max} cm⁻¹, Neat; 3150, 1736, 1676, 1456, 1227, 1020, 920, Figure 111

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 18** and **Figure 112-113**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 18 and Figure 114

4.15 Compound COC5 (Acetoxyaleuritolate)

Compound **COC5** was obtained as white solid, soluble in CHCl₃ (162.5 mg, 3.6×10^{-3} % based on dried weight of the roots).

FABMS : $[M+H]^+ m/z$ 499, Figure 122

IR : v_{max} cm⁻¹, KBr; 3423, 2937, 2856, 1736, 1687, 1458, 1365, 1244, Figure 123

¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 19** and **Figure 124**

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 19 and Figure 125

4.16 Compound COC6 (Taraxerol)

Compound COC6 was obtained as white solid, soluble in CHCl₃ (79.0 mg,

 1.8×10^{-3} % based on dried weight of the roots).

FABMS	: [M+H] ⁺ <i>m/z</i> 427, Figure 127				
IR	: v _{max} cm ⁻¹ , KBr; 3483, 2933, 2852, 1473, 1385, 816, Figure 128				
¹ H NMR	: δ _H ppm, 500 MHz, in CDCl ₃ , Table 20 and Figure 129				

¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 20 and Figure 130

4.17 Compound COC7 (Chettaphanin II)

Compound COC7 was obtained as yellow solid, soluble in CHCl₃ (25.2 mg,

 5.6×10^{-3} % based on dried weight of the roots).

FABMS	$[M+H]^+ m/z$ 341, Figure 132
UV	: λ_{max} nm (log ε), in EtOH; 242 (3.68), 294 (3.48), Figure 133
IR	: v _{max} cm ⁻¹ , KBr; 3167, 2964, 1722, 1682, 1576, 1149, 1280, 816, Figure 134
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 21 and Figure 135
¹³ C NMR	: $\delta_{\rm C}$ ppm, 125 MHz, in CDCl ₃ , Table 21 and Figure 136

4.18 Compound COC8 (6-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one)

Compound **COC8** was obtained as pale yellow oil, soluble in CHCl₃ (4.1 mg, 0.9×10^{-4} % based on dried weight of the roots).

FABMS	: [M+H] ⁺ <i>m/z</i> 315, Figure 140
HRFABMS	: $[M+H]^+ m/z \ 315.1990$ (calcd. for $C_{20}H_{27}O_3 = 315.1960$)
$[\alpha]^{23}{}_D$: - 88.6° (<i>c</i> 0.0017, MeOH)
UV	: λ_{max} nm (log $\epsilon),$ in MeOH; 204 (4.19) , Figure 141
IR	: v _{max} cm ⁻¹ , Neat; 3124, 1773, 1459, 1290, 1024, 873, Figure 142

- ¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 22** and **Figure 143-144**
- ¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 22 and Figure 145
 - 4.19 Compound COC9 (6-[2-(Furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one)

Compound **COC9** was obtained as yellow solid, soluble in CHCl₃ (33.4 mg, 7.4×10^{-4} % based on dried weight of the roots).

FABMS	: $[M+H]^+ m/z$ 329, Figure 151		
HRFABMS	: $[M+H]^+ m/z$ 329.1727 (calcd. for $C_{20}H_{25}O_4 = 329.1753$)		
$\left[\alpha\right]^{23}{}_{D}$: - 151.5° (<i>c</i> 0.017, CHCl ₃)		
UV	: λ_{max} nm (log ϵ), in MeOH; 230 (4.13) , Figure 152		
IR	: v _{max} cm ⁻¹ , KBr; 3122, 1757, 1671, 1509, 1276, 872, Figure 153		
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 23 and Figure 154-155		
¹³ C NMR	: δ_{C} ppm, 125 MHz, in CDCl ₃ , Table 23 and Figure 156		
4.20 Compound COC10 (Chettaphanin I)			

Compound COC10 was obtained as white crystals, soluble in CHCl₃ (258.0

mg, 5.8×10^{-30} % based on dried weight of the roots).

FABMS	$: [M+H]^+ m/z$ 375, Figure 163			
UV	: λ_{max} nm (log ε), in EtOH; 248 (4.07) , Figure 164			
IR	: v _{max} cm ⁻¹ , KBr; 3423, 3140, 2956, 1731, 1653, 1462, 1281,			
	1153, 997, Figure 165			
¹ H NMR	: δ_H ppm, 500 MHz, in CDCl ₃ , Table 24 and Figure 166-167			
¹³ C NMR	: δ_C ppm, 125 MHz, in CDCl ₃ , Table 24 and Figure 168			
4.21	4.21 Compound COC11 (Cyperenoic acid)			
Com	pound COC11 was obtained as white solid, soluble in CHCl ₃ (259.9 mg,			
5.8×10^{-3} % based on dried weight of the roots).				
FABMS	: [M+H] ⁺ <i>m/z</i> 235, Figure 174			
UV	: λ_{max} nm (log ϵ), in MeOH; 241 (4.01) , Figure 175			
23				

- $[\alpha]^{23}_{D}$: 7.8° (*c* 0.08, CHCl₃)
- IR : v_{max} cm⁻¹, Neat; 3200-2400, 1672, 1435, 1286, 951, Figure 176
- ¹**H NMR** : $\delta_{\rm H}$ ppm, 500 MHz, in CDCl₃, **Table 31** and **Figure 177**
- ¹³C NMR : δ_C ppm, 125 MHz, in CDCl₃, Table 31 and Figure 178

5. Evaluation of biological Activities

5.1 Cytotoxic Activity

In vitro cytotoxicity test (Skehan *et al.*, 1990) was assessed using the sulforhodamine B (SRB)-assay using human tumor cell lines of KB (human oral epidermoid carcinoma of nasopharynx), BC (human breast cancer) and NCI-H 187 (human small cell lung cancer). The cell lines were incubated at 37 $^{\circ}$ C for 72 hr, at which time the SRB was added. The results were expressed as IC₅₀ of tested compounds.

5.2 Antimycobacterial Activity

In vitro antimycobacterial activity was performed by a Microplate Alamar Blue Assay (Collins and Franzblau, 1997). *Mycobacterium tuberculosis* H37Ra was used as the tested microorganism. The Minimum Inhibitory Concentrations (MICs) of the test compounds were measured in µg/mL.

CHAPTER IV

RESULTS AND DISCUSSION

Preliminary bioactivity screening revealed that *Pterocaulon redolens* and *Cladogynos orientalis* exhibited cytotoxic and antimycobacterial activities. These results of bioactivities are summarized as shown below.

	Cytotoxicity			Antimycobacterial
Crude extact		IC ₅₀ (µg/mL)	activity	
	KB ^a	BC ^b	NCI-H 187 ^c	MIC ($\mu g/mL$) ^d
P. redolens				
The hexane extract	> 20	> 20	> 20	inactive
The CHCl ₃ extract	> 20	5.0	> 20	50
The BuOH extract	> 20	4.2	5.7	50
C. orientalis	3.4.20	Trable		
The CHCl ₃ extract	> 20	4.4	0.7	12.5
The MeOH extract	> 20	> 20	> 20	inactive

^a KB; Oral human epidermoid carcinoma cell lines of nasopharynx

^b BC; Human breast cancer cell lines

^c NCI-H 187; Human small cell lung cancer cell lines

^d Antimycobacterial activity toward *Mycobacterium tuberculosis* H37Ra

IC₅₀; Inhibition Concentration at 50%

* $IC_{50} (\mu g/mL) > 20$; inactive

10-20; weakly active

5-10; moderately active

< 5; strongly active

MIC; Minimun Inhibition Concentration

The dried aerial parts of *P. redolens* were extracted with $CHCl_3$ and MeOH to give a $CHCl_3$ extract (30.8 g) and a MeOH extract (10.2 g), respectively. The MeOH extract was then partitioned with BuOH and water to obtain the BuOH extract (4.5 g). The $CHCl_3$ extract was further purified using several chromatography techniques to

yield 7 pure compounds (compound **PRC1** to compound **PRC7**). By the repetitive chromatography, 3 compounds (compound **PRB8** to compound **PRB10**) were obtained from the BuOH extract.

The CHCl₃ extract (208.6 g) from the roots of *C. orientalis* were separated using several chromatographic techniques to afford 11 pure compounds (compound **COC1** to compound **COC11**).

The structures of all isolates were determined by interpletation of their UV, IR, NMR and MS data and further confirmed by comparison with literature values. Additionally, their cytotoxic and antimycobacterial activities were also discussed.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

1. Determination of Volatile Oil Compositions from Pterocaulon redolens

The volatile oil obtained from the aerial parts of *P. redolen* is yellow. After analysis by GC-MS, the percentages of normal terpenes were determined and reported in the following table. GC-MS chromatogram (**Figure 5**) is demonstrated in Appendices part.

Peak number	Component name	% Area
1	linalool [65]	6.27
2	β-elemene [66]	2.76
3	9- <i>epi-β</i> -caryophyllene [67]	59.93
4	α-humulene [68]	8.22
5	β-selinene [69]	1.57
6	a-selinene [70]	0.92
7	germacrene A [71]	6.94
8 🥖	Z-nerolidol [72]	0.83
9	caryophyllene oxide [73]	12.56

Figure 4 Structures of volatile oil compositions from Pterocaulon redolens

2. Structure Determination of Compounds Isolated from Pterocaulon redolens

2.1 Structure Determination of Compound PRC1

Compound PRC1 was obtained as white crystals with m.p. 200-202 °C. The FAB mass spectrum (Figure 6) showed the protonated molecular ion peak $[M+H]^+$ at m/z 221, consistent with its molecular formula $C_{11}H_8O_5$. The UV spectrum (Figure 7) showed absorption maxima at 238, 269 and 316 nm. The IR spectrum (Figure 8) displayed absorption bands at 1737 (conjugated C=O stretching) and 1628 and 1481 (aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound PRC1 (Figure 9) showed three singlet signals at $\delta_{\rm H}$ 4.14 (3H, s), 6.01 (2H, s) and 6.53 (1H, s) attributed to methoxy, methylenedioxy and methine groups, respectively, and two doublet signals at $\delta_{\rm H}$ 6.20 (H-3, d, J = 9.5 Hz) and 7.94 (H-4, d, J = 9.5 Hz) assigned to vinyl protons. The latter doublet proton signal at C-4 suggested that there is an oxygen substituent at C-5 (Steck and Mazurek, 1972). The HMBC spectrum of compound **PRC1** (Figure 12) showed the correlation from δ_H 7.94 (H-4) and 4.14 (OCH₃-5) to $\delta_{\rm C}$ 138.0 (C-5), suggesting the presence of methoxy group at C-5. The singlet signal at δ_H 6.53 was assigned to H-8, confirmed by the HMBC correlations from $\delta_{\rm H}$ 6.53 (H-8) to $\delta_{\rm C}$ 106.6 (C-4a), 151.5 (C-8a), 131.7 (C-6) and 152.6 (C-7). The ¹H-NMR data exhibited close similarity to those in the literature (Maldonado, Hernandez and Ortega, 1992). The ¹³C-NMR spectrum of compound PRC1 (Figure 10) showed signals of the carbon 7 and 8a at $\delta_{\rm C}$ 152.6 and 151.5 ppm, respectively. These signals had been conversely assigned in the literature. Based on the above spectral evidence and the assignment by the HMQC (Figure 11), HMBC (Figure 12 and Table 5) experiments, compound PRC1 was identified as 5-methoxy-6,7methylenedioxycoumarin [9]. This compound was previously found in Simsia cronquistii (Maldonado, Hernandez and Ortega, 1992).

	Compound PRC1			5-Methoxy-6,7-	
position				methylenedioxycoumarin	
	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
2	-	161.3	H-3*, H-4	-	161.4
3	6.20 (1H, <i>d</i> , 9.5)	111.7	-	6.17 (1H, <i>d</i> , 10.0)	111.7
4	7.94 (1H, <i>d</i> , 9.5)	138.8	-	7.89 (1H, <i>d</i> , 10.0, 1.0)	138.7
4a	-	106.6	H-3, H-8	-	106.6
5	-	138.0	H-4, OCH ₃ -5	-	138.0
6	-	131.7	OCH ₂ O, H-8	-	131.7
7	-	152.6	OCH ₂ O, H-8*	-	151.5
8	6.53 (1H, <i>s</i>)	92.3		6.46 (1H, <i>d</i> , 1.0)	92.4
8a	-	151.5	H-4, H-8*	-	152.6
OCH ₂ O	6.01 (2H, <i>s</i>)	101.8	-	5.97 (2H, <i>s</i>)	101.8
OCH ₃	4.14 (3H, <i>s</i>)	59.9	Juniter Al -	4.11 (3H, <i>s</i>)	59.9

 Table 5 NMR spectral data of compound PRC1 and 5-methoxy-6,7-methylenedioxycoumarin (CDCl₃)

The bold values are revised assignments.

* Two bond coupling

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2.2 Structure Determination of Compound PRC2

Compound **PRC2**, $[M+H]^+$ at m/z 191 in FAB mass spectrum (Figure 13) agreeing with the molecular formula $C_{10}H_6O_4$, was isolated as colourless needles with m.p. 220-221 °C. The UV spectrum (Figure 14) provided at 234, 294 and 346 nm. The IR spectrum (Figure 15) displayed the presence of a lactone carbonyl, typical of coumarin, at 1702 cm⁻¹ together with the bands of an aromatic ring at 1630 and 1453 cm⁻¹. The ¹H-NMR spectrum of compound **PRC2** (Figure 16) showed a typical pair of doublets at $\delta_{\rm H}$ 6.28 and 7.58 (1H each, d, J = 9.7 Hz) for H-3 and H-4, respectively. The relatively high field position of H-4 in compound PRC2 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972). The presence of 6,7dioxygenated aromatic ring was suggested by two singlet signals at δ_H 6.828 and 6.833 (each 1H, s), referring to H-5 and H-8. The presence of two protons signal at $\delta_{\rm H}$ 6.07 as a singlet is characteristic of a methylenedioxy group. All signals of $^1\text{H-}$ NMR and ¹³C-NMR spectra of compound PRC2 (Figure 17) were corresponding to those of the literature (Debenedetti et al., 1998). The literature noted that 3 signals were observed at $\delta_{\rm C}$ 143.4 (overlapped), 144.9 and 151.3 due to the carbon 4, 6, 8a and 7. Precise examination of the ¹³C-NMR spectrum showed that the corresponding signals were separatedly observed at $\delta_{\rm C}$ 143.4, 144.9, 151.2 and 151.3, assignable to carbons 4, 6, 7 and 8a. This present study completely assigned the ¹H- and ¹³C-NMR data of this compound by HMQC (Figure 18), HMBC (Figure 19 and Table 6) experiments and compound PRC2 was identified as ayapin [10]. This compound has been reported to be present widely in plants such as Pterocaulon virgatum (Debenedetti et al., 1998) and P. polystachium (Palacios et al., 1999).

	Compound PRC2			Ayapin	
position	δ_{H} (ppm), J (Hz)	δ_{C} (ppm)	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
2	-	161.2	H-3*, H-4	-	161.2
3	6.28 (1H, <i>d</i> , 9.7)	113.4	-	6.28 (1H, <i>d</i> , 9.5)	113.4
4	7.58 (1H, <i>d</i> , 9.7)	143.4	H-5	7.58 (1H, <i>d</i> , 9.5)	143.4
4a	-	112.7	H-3, H-4*, H-5*, H-8	-	112.7
5	6.828 (1H, <i>s</i>) ^a	105.0	H-4	6.82 (1H, <i>s</i>)	105.0
6	- 2	144.9	OCH ₂ O, H-5*, H-8	-	143.4
7	-	151.2 ^a	OCH ₂ O, H-5, H-8*	-	151.3
8	6.833 (1H, <i>s</i>) ^a	98.4	-	6.82 (1H, <i>s</i>)	98.4
8a	-	151.3 ^a	H-4, H-5, H-8*	-	144.9
OCH ₂ O	6.07 (2H, <i>s</i>)	102.3	-	6.10 (2H, <i>s</i>)	102.3

Table 6 NMR spectral data of compound PRC2 and ayapin (CDCl₃)

The bold values are revised assignments.

^a Assignment may be interchanged.

* Two bond coupling

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2.3 Structure Determination of Compound PRC3

Compound **PRC3** was obtained as white crystals with m.p. 92-93 °C. The FAB mass spectrum (Figure 20) showed $[M+H]^+$ at m/z 291, corresponding to the molecular formula $C_{16}H_{18}O_5$. The UV spectrum (Figure 21) showed 227, 260 and 297 nm. The IR spectrum (Figure 22) displayed absorption bands at 1729 cm⁻¹ (a coumaryl lactone group) and 1605 and 1459 cm⁻¹ (aromatic ring). The ¹H-NMR spectrum of compound PRC3 (Figure 23) defined eighteen protons. The two doublets at $\delta_{\rm H}$ 6.34 and 7.61 (each 1H, d, J = 9.5 Hz) were due to H-3 and H-4. The chemical shift of the latter showed that C-5 must contain no oxygen function otherwise it would appear at $\delta_{\rm H}$ 7.8-8.2 (Steck and Mazurek, 1972), accordingly, the one proton singlet at $\delta_{\rm H}$ 6.66 is assigned to H-5. The presence of two methoxy signals at $\delta_{\rm H}$ 3.89 and 4.09 and a prenyl substituent [a methylene doublet at $\delta_{\rm H}$ 4.64 (H₂-1', d, J = 7.0 Hz), a coupled olefinic triplet like at $\delta_{\rm H}$ 5.57 (H-2['], t like, J = 7.0 Hz) and two non-equivalent methyl resonances at $\delta_{\rm H}$ 1.71 and 1.77 (H₃-4' and H₃-5', s)] confirmed that these three substituents should accupy the remaining vacant positions. The relative positions of these substituents were confirmly established by HMQC (Figure 25), HMBC (Figure 26 and Table 7) and NOE (Figure 27) experiments that observed from H-5 ($\delta_{\rm H}$ 6.66) to H-4 ($\delta_{\rm H}$ 7.61) by 12.1% and H₃-6 ($\delta_{\rm H}$ 3.89) by 10.0%, from OCH₃-6 ($\delta_{\rm H}$ 3.89) to H-5 ($\delta_{\rm H}$ 6.66) by 18.1% and H-2 ($\delta_{\rm H}$ 5.56) by 12.5% and from OCH₃-8 ($\delta_{\rm H}$ 4.09) to H-1['] ($\delta_{\rm H}$ 4.64) by 8.5% and H-2['] ($\delta_{\rm H}$ 5.56) by 2.1%. Its ¹H-NMR properties were in agreement with previously published values (Jackson, Campbell and Davidowitz, 1990). Additionally, the ¹³C-NMR spectrum (Figure 24) showed signals at $\delta_{\rm C}$ 141.7, 143.0, 144.9 and 150.6 which had been previously assigned to C-8a, C-8, C-6 and C-7. They should be revised to C-8, C-8a, C-7 and C-6, respectively. Compound PRC3 was identified as puberulin [50] based on the above spectral data, a coumarin first isolated from the aerial parts of Agathosma puberula (Finkelstein and Rivett, 1976)

Table 7	NMR sp	ectral data of	of compound	PRC3 a	and puberulin	$(CDCl_3)$
---------	--------	----------------	-------------	--------	---------------	------------

	Compound PRB3			Puberulin	
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
2	-	160.6	H-3*, H-4	-	160.6
3	6.34. (1H, <i>d</i> , 9.5)	115.1	-	6.31 (1H, <i>d</i> , 9.6)	115.1
4	7.61 (1H, <i>d</i> , 9.5)	143.4	-	7.58 (1H, <i>d</i> , 9.4)	143.5
4a	- / / /	114.4	H-3, H-4*	-	114.4
5	6.66 (1H, s)	103.6	H-4	6.63 (1H, <i>s</i>)	103.6
6	- / / 3	150.6	H-5*, OCH ₃ -6	-	144.9
7	- // /	144.9	H-5, H ₂ -1'	-	150.7
8	- / /	141.7	OCH ₃ -8	-	143.0
8a	-	143.0	H-4, H-5	-	141.8
1'	4 .64 (2H, <i>d</i> , 7.0)	70.2	-	4.61 (2H, <i>d</i> , 8.0)	70.3
2'	5.56 (1H, <i>t</i> like, 7.0)	119.1	H ₂ -1'*, H ₃ -4', H ₃ -5'	5.55 (1H, <i>t</i> , 8.0)	120.0
3'	<u></u>	139.3	H ₂ -1', H ₃ -4'*, H ₃ -5'*	-	139.3
4′	1.71 (3H, s)	17.9	H-4′	1.68 (3H, <i>s</i>)	17.9
5'	1.77 (3H, s)	25.8	Н-5′	1.74 (3H, <i>s</i>)	25.8
OCH ₃ -6	3.89 (3H, <i>s</i>)	56.3	10 Ease	3.91 (3H, <i>s</i>)	56.3
OCH ₃ -8	4.09 (3H, <i>s</i>)	61.7	נו וזנ עו	4.00 (3H, s)	-

The bold values are revised assignments.

* Two bond coupling

2.4 Structure Determination of Compound PRC4

Compound **PRC4**, white solid with m.p. 147-148 $^{\circ}$ C, showed [M+H]⁺ at m/z 223 in the FABMS (Figure 28), suggesting the molecular formula C₁₁H₁₀O₅. The UV spectrum (Figure 29) showed absorptions at 222, 266 and 328 nm. The IR spectrum (Figure 30) revealed absorption at λ_{max} 3413 (OH stretching), 1722 (conjugated C=O stretching) and 1608 and 1468 (aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound **PRC4** (Figure 31) showed two signals at $\delta_{\rm H}$ 6.23 (*d*, *J* = 9.8 Hz) and 7.91 (d, J = 9.8 Hz) assigned to the vinylic protons H-3 and H-4. The deshielded nature of the H-4 suggested that there was an oxygen function at the C-5 (Steck and Mazurek, 1972). The presence of only one aromatic proton at $\delta_{\rm H}$ 6.70, clearly indicated a trisubstituted aromatic moiety. The ¹H-NMR of compound PRC4 showed two aromatic methoxy signals at $\delta_{\rm H}$ 3.94 and 3.99 and one aromatic hydroxyl signal at $\delta_{\rm H}$ 6.43. Detection of HMBC correlations, from $\delta_{\rm H}$ 6.23 (H-3) and 6.70 (H-8) to $\delta_{\rm C}$ 107.2 (C-4a), from $\delta_{\rm H}$ 7.91 (H-4) to $\delta_{\rm C}$ 148.4 (C-5), 151.6 (C-8a) and 161.4 (C-2), from $\delta_{\rm H}$ 3.99 (H₃-5) to $\delta_{\rm C}$ 148.4 (C-5), from $\delta_{\rm H}$ 3.94 (H₃-6), 6.43 (OH-7) and 6.70 (H-8) to $\delta_{\rm C}$ 136.3 (C-6) and from $\delta_{\rm H}$ 6.43 (OH-7) to $\delta_{\rm C}$ 98.8 (C-8), confirmed that compound PRC4 was 5,6,7-substitution of coumarin system and also defined location of the methoxy groups at C-5 and C-6 and the hydroxy group at C-7. The ¹H-NMR (Figure 31) showed the signal at 3.94 and 3.99 due to the protons OCH₃-6 and OCH₃-5, respectively. These were revised from previous report (Wagner and Bladt, 1975). From the above ¹H-NMR and ¹³C-NMR spectral data (Figure 32), together with the information from the HMQC (Figure 33) and HMBC (Figure 34 and Table 8) experiments, compound PRC4 was identified as 5-methoxyscopoletin [51]. This compound was firstly isolated from the roots of *Pelargonium reniforme* (Wagner and Bladt, 1975).

		5-Methoxyscopoletin		
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)
2	-	161.4	H-3*, H-4	-
3	6.23 (1H, <i>d</i> , 9.8)	112.4	-	6.23 (1H, <i>d</i> , 9.5)
4	7.91 (1H, <i>d</i> , 9.8)	138.6	-	7.94 (1H, <i>d</i> , 9.5)
4a	-	107.2	H-3, H-8	-
5		148.4	H-4, OCH ₃ -5	-
6		136.3	ОСН ₃ -6, ОН-7, Н-8	-
7	-	153.3	H-8	-
8	6.70 (1H, <i>s</i>)	98.8	OH-7	6.72 (1H, s)
8a	-	151.6	H-4, H-8	-
ОСН ₃ -5	3.99 (3H, s)	61.5	-	3.95 (3H, s)
OCH ₃ -6	3.94 (3H, s)	61.2	-	4.03 (3H, s)
OH-7	6.43 (1H, <i>br s</i>)	1 2 6	-	6.78 (1H, <i>br s</i>)

Table 8 NMR spectral data of compound PRC4 and 5-methoxyscopoletin (CDCl₃)

The bold values are revised assignments.

* Two bond coupling

2.5 Structure Determination of Compound PRC5

Compound PRC5 was isolated as white crystals, with m.p. 78-80 °C. The FAB mass spectrum (Figure 35) showed $[M+H]^+$ at m/z 325, corresponding to $C_{16}H_{20}O_7$. The UV absorptions were observed at 228, 296 and 343 nm (Figure 36). The IR spectrum (Figure 37) exhibited absorption bands due to the presence of hydroxyl group (3474 cm⁻¹), conjugated carbonyl group (1716 cm⁻¹) and aromatic ring (1605 and 1459 cm⁻¹). The ¹H-NMR spectrum of compound PRC5 (Figure 38) showed a typical pair of doublets at $\delta_{\rm H}$ 6.37 and 7.62 (1H each, d, J = 9.4 Hz) for H-3 and H-4, respectively. The relatively high field position of H-4 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972) and the presence of only one singlet aromatic proton at δ_H 6.70 confirmed a trisubstituent aromatic moiety. The singlet signals at δ_H 3.92 and 4.07 (3H each) were assigned as two methoxy group on aromatic nucleus. More characteristically, two pairs of doublet of doublets at $\delta_H 4.00$ (Ha-1', dd, J = 10.4, 7.8 Hz), 4.54 (Hb-1', dd, J = 10.4, 2.6 Hz) and a doublet of doublet of doublet at $\delta_{\rm H}$ 3.67 (H-2', ddd, J = 7.8, 3.6, 2.6 Hz) corresponded to methylene and methine in -O-CH₂-CH-OH fragment. The singlet signals at $\delta_{\rm H}$ 1.23 and 1.28 (3H each) corresponded to a gem-dimethyl group and the hydroxy groups were assigned at $\delta_{\rm H}$ 2.71 (OH-3', s) and 3.87 (OH-2', d, J = 3.6 Hz). The positions of a trisubstituent aromatic moiety were analyzed by the HMBC correlations from δ_H 6.70 (H-5) to δ_C 142.4 (C-8a), 143.3 (C-4), 144.6 (C-7) and 149.7 (C-6), from δ_H 3.92 (OCH₃-6) to δ_{C} 149.7 (C-6), from δ_{H} 4.00 (Ha-1') to δ_{C} 144.6 (C-7) and from δ_{H} 4.07 (OCH₃-8) to $\delta_{\rm C}$ 141.0 (C-8). The ¹H-NMR data of compound **PRC5** showed all signals corresponding to the literature (Magalhaes et al., 1981) and also confirmed by the optical rotation; $\left[\alpha\right]^{23}_{D}$ +25° (c 0.9 in CHCl₃), which was related to that of 2',3'dihydroxypuberulin [52]. It should be noted that the isolation of this compound from a natural source is the first time. This compound was known, however, the ¹³C-NMR (Figure 39), HMQC (Figure 40) and HMBC (Figure 41 and Table 9) were presented at the first time in this study.

 Table 9 The ¹H- and ¹³C-NMR data of compound PRC5 in CDCl₃

	Co	mpound PF	RC5	2',3'-Dihydropuberulin
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)
2	-	160.1	H-3*, H-4	-
3	6.37 (1H, <i>d</i> , 9.4)	115.5	-	6.45 (1H, <i>d</i>)
4	7.62 (1H, <i>d</i> , 9.4)	143.3	H-5	7.75 (1H, <i>d</i>)
4a	-	114.8	Н-3	-
5	6.70 (1H, <i>s</i>)	103.8	H-4	6.81 (1H, <i>s</i>)
6	-	149.7	H-5*, OCH ₃ -6	-
7	- / / 🖄	144.6	H-5, Ha-1	-
8	- /	141.0	OCH ₃ -8	-
8a	- 155	142.4	H-4, H-5	-
1′	4.00 (1Ha, dd, 10.4, 7.8)**	76.3	OH-2'	4.70 (2H, <i>m</i>)
	4.54 (1Hb, <i>dd</i> , 10.4, 2.6)**			
2	3.67 (1H, <i>ddd</i> , 7.8, 3.6, 2.6)**	75.7	Hb-1'*, OH-3', H ₃ -4', H ₃ -5'	3.80 (1H, <i>m</i>)
3′		71.3	OH-2 ['] , OH-3 ['] *, H ₃ -4 ['] *, H ₃ -5 ['] *	-
OCH ₃ -4 [′]	1.23 (s)	25.1	OH-3', H ₃ -5'	1.26 (s)
OCH ₃ -5 [′]	1.28 (s)	26.7	OH-3', H ₃ -4'	1.30 (s)
OCH ₃ -6	3.92 (3H, s)	56.3	เขารถาร	3.98 (3H, s)
OCH ₃ -8	4.07 (3H, <i>s</i>)	62.0		4.03 (3H, <i>s</i>)
OH-2 [′]	3.87 (1H, <i>d</i> , 3.6)**			-
OH-3	2.71 (1H, s)	KJ (n i jviej i na	- I

* Two bond coupling

** Precise assignment of coupling constants, see; $\delta_{\rm H}$ 3.67 (*ddd*, $J_{\rm H-2', Ha-1'}$ = 7.8 Hz, $J_{\rm H-2', OH-2'}$ = 3.6 Hz, $J_{\rm H-2', Hb-1'}$ = 2.6 Hz), 3.87 (*d*, $J_{\rm OH-2', H-2'}$ = 3.6 Hz), 4.00 (*dd*, $J_{\rm Ha-1', Hb-2'}$ = 10.4 Hz, $J_{\rm Ha-1', H-2'}$ = 7.8 Hz), 4.54 (*dd*, $J_{\rm Hb-1', Ha-1'}$ = 10.4 Hz, $J_{\rm Hb-1', H-2'}$ = 2.6 Hz)

2.6 Structure Determination of Compound PRC6

Compound PRC6 was characterized as yellow crystals, with m.p. 149-150 °C. The FAB mass spectrum (Figure 42) demonstrated the molecular ion peak $[M+H]^+$ at m/z 223, harmonizing with the molecular formular $C_{11}H_{10}O_5$. The UV spectrum (Figure 43) revealed absorptions at λ_{max} 228, 268 and 345 nm. The IR spectrum (Figure 44) exhibited absorption bands at 3369 (hydroxy stretching), 1706 (conjugated carbonyl group) and 1600 and 1456 (aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound PRC6 exhibited the diagnostic H-3 and H-4 olefinic doublets in the aromatic region ($\delta_{\rm H}$ 6.28 and 7.60, d, J = 9.5 Hz). The relatively high field position of H-4 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972). The aromatic region in the spectrum additionally displayed a oneproton singlet at $\delta_{\rm H}$ 6.66, consistent with a trisubstitution pattern on the aromatic ring The ¹H-NMR spectrum (Figure 45) showed all signals in each instance. corresponding to those in the literature and the ¹³C-NMR spectrum (Figure 46) has been reported already (Panichayupakaranant et al., 1995) but some positions should be revised as C-3 (δ_C 113.6), C-5 (δ_C 103.2), C-7 (δ_C 142.4), C-8 (δ_C 134.5) and C-8a $(\delta_{\rm C}$ 143.1). This assignment was determined by HMQC (Figure 47) and HMBC (Figure 48 and Table 10) experiments. The NOE difference spectra (Figure 49) confirmed the position of the methoxy group at C-6 and C-8 of the coumarin nucleus. Thus, irradiation of the H-5 at $\delta_{\rm H}$ 6.66 caused an enhancement of the methoxy signal at $\delta_{\rm H}$ 3.95 (OCH₃-6) and olefinic proton at $\delta_{\rm H}$ 7.60 (H-4). Futhermore, NOEs were observed between the methoxy signal at δ_H 3.95 (OCH₃-6) and the methine signal at $\delta_{\rm H}$ 6.66 (H-5) and between the methoxy signal at $\delta_{\rm H}$ 4.10 (OCH₃-8) and the hydroxy signal at $\delta_{\rm H}$ 6.13 (OH-7).

Based on the above spectral evidence, compound **PRC6** was analyzed as isofraxedin [53], previously characterized from *Carduus tenuiflorus* (Cardona *et al.*, 1992)

[53]

	Compound PRC6			Isofraxidin	
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}(\rm ppm)$
2	-	160.6	H-3*, H-4	-	160.6
3	6.28 (1H, <i>d</i> , 9.5)	113.6	-	6.28 (1H, <i>d</i> , 10.0)	103.2
4	7.60 (1H, <i>d</i> , 9.5)	143.8	-	7.60 (1H, <i>d</i> , 10.0, 1.0)	143.8
4a	-	111.2	H-3, H-4*, H-5*	-	111.2
5	6.66 (1H, s)	103.2	H-4	6.66 (1H, s)	113.5
6	-	144.6	OCH ₃ -6	-	144.6
7	-	142.4	-	-	134.5
8	-	134.5	OCH ₃ -8	-	143.1
8a	-	143.1	H-4, H-5	-	142.5
OCH ₃ -6	3.95 (3H, <i>s</i>)	56.5	-	3.94 (3H, <i>s</i>)	56.5
OCH ₃ -8	4.10 (3H, <i>s</i>)	61.6	-	4.09 (3H, <i>s</i>)	61.6
OH-7	6.13 (1H, <i>br s</i>)		-	-	-

Table 10 NMR spectral data of compound PRC6 and isofraxidin (CDCl₃)

The bold values are revised assignments.

* Two bond coupling

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Compound PRC7, white crystals with m.p. 150-151°C, showed its protonated molecular ion $[M+H]^+$ at m/z 309 in FAB mass spectrum (Figure 50), indicating a molecular of $C_{15}H_{16}O_7$. The UV spectrum (Figure 51) showed maximum absorption at 220, 239 and 320 nm. The IR spectrum (Figure 52) displayed 3438 (hydroxyl group), 1715 (conjugated carbonyl group) and 1638 and 1473 (aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound **PRC7** (Figure 53) showed the characteristic coumarin C-3/C-4 doublet pair appearing at $\delta_{\rm H}$ 6.27 and 8.15 (each 1H, d, J = 9.8 Hz). The latter, corresponding to H-4, suggested that there was an oxygen substitution at C-5 (Steck and Mazurek, 1972). Additionally, the ¹H-NMR indicated the presence of an aromatic proton at $\delta_{\rm H}$ 6.80 (H-8, s), consistent with a trisubstitution pattern on the aromatic ring. The signal at $\delta_{\rm H}$ 6.11 was assigned to a methylenedioxyphenyl group. The remaining signals at $\delta_{\rm H}$ 1.02 (H₃-4', s), 1.22 (H₃-5', s), 3.53 (H-2', ddd, J = 8.6, 5.8, 2.5 Hz), 4.11 (Ha-1', dd, J = 10.1, 8.6 Hz), 4.40 (OH-3', s), 4.60 (Hb-1', dd, J = 10.1, 2.5 Hz) and 5.13 (OH-2', d, J = 5.8 Hz) were attributed to a 2',3'-dihydroxy-3'-methylbutyloxy substituent, which could be placed at $\delta_{\rm C}$ 137.1 (C-5). In HMBC experiments, these were confirmed by the three-bond correlations from $\delta_{\rm H}$ 4.11 (Ha-1'), 4.60 (Hb-1') and 8.15 (H-4) to $\delta_{\rm C}$ 137.1 (C-5) and from $\delta_{\rm H}$ 6.80 (H-8) to $\delta_{\rm C}$ 106.6 (C-4a) and 132.2 (C-6), from $\delta_{\rm H}$ 5.13 (OH-2) to $\delta_{\rm C}$ 74.4 (C-1) and 70.6 (C-3), from 1.02 (H₃-4), 1.22 (H₃-5) and 4.40 (OH-3) to $\delta_{\rm C}$ 76.1 (C-2'). The $\left[\alpha\right]^{24}_{D}$ + 30.9° (c 0.65 in MeOH) and the ¹H-NMR spectrum data exhibited close similarity to those in the literature (Debenedetti et al., 1997). The ¹³C-NMR spectrum (Figure 54) showed the signals of the C-2' and C-3' at $\delta_{\rm C}$ 76.1 and 70.6 ppm, respectively. These were revised from previous report (Debenedetti et al., 1997). This assignment was confirmed by the application of HMQC (Figure 55), HMBC (Figure 56 and Table 11) and ¹H-¹H COSY (Figure 57) experiments and compound **PRC7** was identified as 5-(2',3'-dihydroxy-3'-methylbutyl-oxo-6,7methylenedioxycoumarin (sabandinol) [23]. This compound has been reported to be present wildly in plants such as Ruta pinnata (Gonzalez et al., 1973) and Pterocaulon virgatum (Debenedetti et al., 1997).

Table 11 NMR spectral data of compound PRC7 (DMSO-d₆) and sabandinol (CDCl₃)

	Compound PRC7			Sabandinol [23]	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$
2	-	160.3	H-3*, H-4	-	161.2
3	6.27 (1H, <i>d</i> , 9.8)	111.2	- 19	6.23 (1H, <i>d</i> , 9.7)	112.1
4	8.15 (1H, <i>d</i> , 9.8)	139.6	-	7.96 (1H, <i>d</i> , 9.7)	138.6
4a	-	106.6	H-3, H-8	-	107.0
5	-	137.1	Ha-1', Hb-1', H-4	-	136.8
6	-	132.2	-OCH ₂ O-, H-8	-	132.3
7	-	152.4	-OCH ₂ O-, H-8*	-	151.5
8	6.80 (1H, <i>s</i>)	92.2	-	6.57 (1H, s)	93.1
8a	-	150.9	H-8*	-	152.4
1′	4.11 (1Ha, <i>dd</i> , 10.1, 8.6)**	74.4	H-2 ['] *, OH-2 [']	4.37 (1Ha, dd, 10.4, 8.1)	73.8
	4.60 (1Hb, <i>dd</i> , 10.1, 2.5)**			4.51 (1Hb, <i>dd</i> , 10.4, 2.9)	
2	3.53 (1H, <i>ddd</i> , 8.6, 5.8, 2.5)**	76.1	H ₃ -4 ['] , H ₃ -5 ['] , OH-2 ['] , OH-3 [']	3.80 (1H, <i>m</i>)	71.6
3′	-	70.6	H-2 [′] , H ₃ -4 [′] , H ₃ -5 [′] , OH-2 [′] ,	-	76.5
	d a a a	1.18	OH-3'		
CH ₃ -4 [′]	1.02 (3H, s)	24.3	H ₃ -5 [′]	1.33 (3H, s)	24.8
CH ₃ -5 [′]	1.22 (3H, s)	27.6	H ₃ -4 [′] , OH-3 [′]	1.33 (3H, <i>s</i>)	24.8
OCH ₂ O	6.11 (2H, <i>s</i>)	102.3	าเหว่าทย	6.06 (2H, s)	102.1
OH-2 [′]	5.13 (1H, <i>d</i> , 5.8)	0.01			-
OH-3 [′]	4.40 (1H, <i>s</i>)	-	-	-	-

The bold values are revised assignments.

* Two bond coupling

** Precise assignment of coupling constant, see; $\delta_{\rm H} 3.53 \ (ddd, J_{\rm H-2', Ha-1'} = 8.6 \text{ Hz}, J_{\rm H-2', OH-2'} = 5.8 \text{ Hz}, J_{\rm H-2', Hb-1'} = 2.5 \text{ Hz})$, 4.11 (dd, $J_{\rm Ha-1', Hb-2'} = 10.1 \text{ Hz}, J_{\rm Ha-1', H-2'} = 8.6 \text{ Hz}$), 4.60 (dd, $J_{\rm Hb-1', Ha-1'} = 10.1 \text{ Hz}, J_{\rm Hb-1', H-2'} = 2.5 \text{ Hz}$), 5.13 (d, $J_{\rm OH-2', H-2'} = 5.8 \text{ Hz}$)

2.8 Structure Determination of Compound PRB8

Compound **PRB8** was obtained yellow crystals with m.p. 351-352 °C and observed a molecular formula as $C_{15}H_{10}O_6$. The FAB mass spectrum (**Figure 58**) exhibited a $[M+H]^+$ at m/z 287. The UV spectrum (**Figure 59**) showed maxima absorption bands at 212, 270 and 317 nm. The IR absorption spectrum (**Figure 60**) displayed v_{max} at 3347 (hydroxyl stretching), 1654 (carbonyl stretching) and 1609 and 1490 (aromatic ring) cm⁻¹.

The ¹H-NMR spectrum of compound **PRB8** (**Figure 61**) showed a Hbonded phenolic proton at $\delta_{\rm H}$ 12.97 (OH-5), indicating a 5-hydroxyflavone structure. The protons in B-ring (H-2', H-5' and H-6') formed a characteristic ABX pattern at $\delta_{\rm H}$ 6.87 (H-5', d, J = 8.5 Hz), 7.39 (H-2', d, J = 2.0 Hz) and 7.41 (H-6', dd, J = 2.0, 8.5Hz) while the signals of H-6 and H-8 in A-ring appeared as a pair of doublets at $\delta_{\rm H}$ 6.18 (H-6, d, J = 2.0 Hz) and 6.43 (H-8, d, J = 2.0 Hz), respectively. An olefinic singlet proton at $\delta_{\rm H}$ 6.66 was assigned to H-3 by its HMBC correlations with C-10 ($\delta_{\rm C}$ 157.3) and C-1' ($\delta_{\rm C}$ 121.5).

The ¹³C-NMR spectrum of compound **PRB8** (**Figure 62**) showed fifteen signals for carbon atoms. The types of carbons are classified by analysis of the DEPT135 experiment (**Table 12**).

Based on the above spectral evidences, and comparison of the spectral data of compound **PRB8** with those previously reported (Agrawal, 1989), together with the information from the HMQC (**Figure 63**) and HMBC experiments (**Figure 64** and **Table 12**), compound **PRB8** was identified as luteolin [**54**]. This compound occurred in many plants of the family Leguminosae, Umbelliferae, Asteraceae and Cistaceae (Buckingham, 2001).

		Luteolin		
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	HMBC correlation	$\delta_{C}(ppm)$
2	-	163.9 (C)	H-3*, H-2 [′] , H-6 [′]	164.5
3	6.66 (1H, <i>s</i>)	102.8 (CH)	-	103.3
4	-	181.6 (C)	H-3*	182.2
5	-	161.5 (C)	-	162.1
6	6.18 (1H, <i>d</i> , 2.0)	98.8 (CH)	OH-5, H-8	99.2
7	-	164.1 (C)	H-6*, H-8*	164.7
8	6.43 (1H, <i>d</i> , 2.0)	93.8 (CH)	Н-6	94.2
9	-	103.7 (C)	-	104.2
10	-	157.3 (C)	H-3, H-6, H-8, OH-5	157.9
1′	-	121.5 (C)	H-3, H-5 [′]	122.1
2	7.39 (1H, <i>d</i> , 2.0)	113.3 (CH)	Н-б	113.8
3′	- / / / /	145.7 (C)	H-2'*, H-5'	146.2
4	-	149.7 (C)	H-2 ['] , H-5 ['] *, H-6 [']	150.1
5′	6.87 (1H, <mark>d,</mark> 8.5)	116.0 (CH)	-	116.4
6	7.41 (1H, <i>dd</i> , 2.0, 8.5)	119.0 (CH)	H-2 [′]	119.3
OH-5	12.97 (1H, <i>s</i>)	16400 <u>1</u> 9777	9 -	-
	10.68 (1H, s) ^a	19/10 - 10/10	-	-
	9.69 $(1H, s)^{a}$	-		-

 Table 12 NMR spectral data of compound PRB8 and luteolin (DMSO-d₆)

^a Assignment may be interchanged.

* Two bond coupling

[#] Carbon types were deduced from DEPT135 experiment.

63

2.9 Structure Determination of Compound PRB9

Compound **PRB9** was obtained as yellow crystals with m.p. 183-185 °C. The FAB mass spectrum (**Figure 65**) exhibited a $[M+H]^+$ at m/z 347, indicating molecular formula as $C_{17}H_{14}O_8$. The UV spectrum (**Figure 66**) showed maxima absorption bands at 213, 303 and 347 nm. The IR absorption spectrum (**Figure 67**) displayed v_{max} at 3369 (hydroxyl stretching), 1655 (carbonyl stretching) and 1609 and 1491 (aromatic ring) cm⁻¹.

The ¹H-NMR spectrum of compound **PRB9** (Figure 68) showed a Hbonded phenolic proton at $\delta_{\rm H}$ 12.36 (OH-5), indicating a 5-hydroxyflavone structure. The protons in B-ring (H-2', H-5' and H-6') formed a characteristic ABX pattern at $\delta_{\rm H}$ 6.90 (H-5', d, J = 8.5 Hz), 7.47 (H-6', dd, J = 2.0, 8.5 Hz) and 7.58 (H-2', d, J = 2.0Hz) while the signal of H-8 in A-ring appeared as a singlet at $\delta_{\rm H}$ 6.83.

The ¹³C-NMR spectrum of compound **PRB9** (**Figure 69**) showed seventeen signals for carbon atoms. The types of carbons are classified by analysis of the DEPT135 experiment (**Table 13**), including two methoxy carbons at δ_C 56.3 (OCH₃-7) and 59.6 (OCH₃-3), four aromatic methine carbons at δ_C 90.8 (C-8), 115.5 (C-2'), 115.7 (C-5') and 120.5 (C-6') and eleven aromatic quaternary carbons at δ_C 105.5 (C-10), 121.0 (C-1'), 129.6 (C-6), 137.5 (C-3), 145.2 (C-3'), 148.6 (C-4'), 148.8 (C-9), 146.7 (C-5), 154.5 (C-7), 155.6 (C-2) and 178.1 (C-4). Based on the careful analysis of the above spectra, 2D technique such as HMQC (**Figure 70**) and HMBC (**Figure 71** and **Table 13**) and comparison with those previously reported (Ulubelen, Kerr and Mabry, 1980), compound **PRB9** was identified as tomentin [**55**]. This compound has been isolated from many plants such as *Neurolaena oaxacana* (Ulubelen, Kerr and Mabry, 1980) and *Parthenium hysterophorus* (Shen *et al.*, 1976).

[55]

	Compound PRB9			Tomentin
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}({\rm ppm})^{\#}$	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)
2	-	155.6 (C)	H-2 [′] , H-6 [′]	-
3	-	137.5 (C)	OCH ₃ -3	-
4	-	178.1 (C)	-	-
5	-	146.7 (C)	-	-
6	-	129.6 (C)	H-8, OH-5	-
7	-	154.5 (C)	H-8*, OCH ₃ -7	-
8	6.83 (1H, <i>s</i>)	90.8 (CH)	-	6.50 (1H, <i>s</i>)
9	-	148.8 (C)	H-8*	-
10	-	105.5 (C)	H-8, OH-5	-
1΄	-	121.0 (C)	H-5 [′]	-
2	7.58 (1H, <i>d</i> , 2.0)	115.5 (CH)	H-6 [′]	7.60 (1H, <i>d</i> , 2.5)
3′	-	145.2 (CH)	H-2'*, H-5'	-
4	- 3	148.6 (C)	H-2 [′] , H-6 [′] , H-5 [′] *	-
5'	6.90 (1H, <mark>d,</mark> 8.5)	115.7 (C)	-	6.38 (1H, <i>d</i> , 9.0)
6	7.47 (1H, <i>dd</i> , 2.0, 8.5)	120.5 (CH)	H-2 [′]	7.55 (1H, dd, 2.5, 9.0)
OCH ₃ -3	3.78 (3H, s)	59.6 (CH ₃)	-	-
OCH3-7	3.90 (3H, s)	56.3 (CH ₃)	-	-
OH-5	12.36 (1H, <i>s</i>)	2001-2182	-	-
OH-6	9.77 (1H, <i>s</i>) ^a	-		-
OH-3 [′]	9.35 (1H, s) ^a	-	- 4	-
OH-4 [′]	8.70 (1H, s) ^a	-	- 11	-

Table 13 NMR spectral data of compound PRB9 and tomentin (DMSO-d₆)

^a Assignment may be interchanged.

* Two bond coupling

[#] Carbon types were deduced from DEPT135 experiment.

2.10 Structure Determination of Compound PRB10

Compound **PRB10**, a yellow solid with m.p. 218-220 °C, was analyzed for $C_{18}H_{16}O_8$ from its $[M+H]^+$ at m/z 361 in FABMS spectrum (Figure 72). The UV spectrum displayed absorption bands at 214, 281 and 349 nm (Figure 73). The IR spectrum exhibited absorption bands at 3392 (OH stretching), 1668 (C=O stretching) and 1608 and 1491 (C=C stretching) cm⁻¹ (Figure 74). The ¹H-NMR spectrum of compound **PRB10** (Figure 75) showed a H-bond phenolic proton at $\delta_{\rm H}$ 12.35, indicating a 5-hydroxy flavone structure. The protons in B-ring ring showed a characteristic ABX pattern at $\delta_{\rm H}$ 6.95 (H-5', d, J = 8.5 Hz), 7.61 (H-6', dd, J = 2.5, 8.5 Hz) and 7.66 (H-2', d, J = 2.5 Hz), while the signals of H-8 in A-ring appeared as a singlet at $\delta_{\rm H}$ 6.89. The ¹³C-NMR spectrum of compound **PRB10** (Figure 76) displayed resonances for eighteen carbons. The two signals at δ_C 55.8 and 56.3 were within the range typical for the carbon of an aromatic methoxy group with at least one free ortho position (55.0-57.0 ppm) and the signal at $\delta_{\rm C}$ 59.7 was characteristic of the carbon of a methoxy group attached to C-3 on a flavone (Agrawal, 1989). The remaining fifteen signals occurred within the $\delta_{\rm C}$ 90.0-200.0 range typical of the nucleus of a 2,3-unsaturated flavonoid; six signals consistent with non-oxygenated aromatic carbons ($\delta_{\rm C}$ 91.0, 105.5, 112.0, 115.6, 121.0 and 122.2), eight signals consistent with oxyaryl carbons (8c 129.6, 137.6, 145.6, 147.5, 148.8, 149.7, 154.5 and 155.5) and one signal at $\delta_{\rm C}$ 178.1, within the range typical for the carbon of the 4keto function of a flavone (Agrawal, 1989). The ¹H-NMR and ¹³C-NMR assignments were performed using the HMQC (Figure 77) and HMBC (Figure 78 and Table 14) experiments. Thus, compound PRB10 possessed the 3,7,3'-trimethoxy-5,6,4'trihydroxyflavone.

Compound **PRB10** was identified as chrysosplenol C [**35**] based on the above spectral data and comparison of those previously reported (Semple *et al.*, 1999). This compound has been isolated from *Pterocaulon sphacelatum* (Semple *et al.*, 1999) and the other plant species including *Tanacetum parathenium* (William *et al.*, 1995).

Table 14 NMR spectral data of compound PRB10 and chrysosplenol C (DMSO-d₆)

	C	ompound PRE	310	Chrysosplen	ol C
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	HMBC correlation	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
2	-	155.5 (C)	H-2′, H-6′	-	155.5
3	-	137.6 (C)	OCH ₃ -3	-	137.6
4	-	178.1 (C)	-	-	178.1
5	-	145.6 (C)	OH-5*	-	145.7
6	-	129.6 (C)	ОН-5, Н-8	-	129.6
7	-	154.5 (C)	OCH ₃ -7, H-8*	-	154.5
8	6.89 (1H, <i>s</i>)	91.0 (CH)	-	6.87 (1H)	91.0
9	-	148.8 (C)	H-8*	-	148.8
10	-	105.5 (C)	H-8, OH-5	-	105.5
1΄	-	121.0 (C)	H-2'*, H-5'	-	121.0
2	7.66 (1H, <i>d</i> , 2.5)	112.0 (CH)	alaise -	7.65 (1H)	112.0
3΄		147.5 (C)	H-2'*, H-5', OCH ₃ -3'	-	147.5
4	- 4	149.7 (C)	H-2', H-5'*, H-6'	-	149.7
5'	6.95 (1H, <i>d</i> , 8.5)	115.6 (CH)	- 0	6.95 (1H)	115.6
6	7.61 (1H, <i>dd</i> , 2.5, 8.5)	122.2 (CH)	H-2 [′]	7.60 (1H)	122.2
OCH ₃ -3	3.80 (3H, s)	59.7 (CH ₃)		3.80 (3H, s)	59.7
OCH3-7	3.87 (3H, <i>s</i>)	56.3 (CH ₃)	ยบว่า เว	3.87 (3H, s)	56.3
OCH ₃ -3 [′]	3.90 (3H, <i>s</i>)	55.8 (CH ₃)	-	3.90 (3H, s)	55.8
OH-5	12.35 (1H, s)	5819	เหลาจากยา	12.34 (1H)	-
OH-6	9.91 (1H, <i>s</i>) ^a	00100		8.69 (1H)	-
OH-4′	8.71 (1H, <i>s</i>) ^a	-	-	9.88 (1H)	-

^a Assignment may be interchanged.

* Two bond coupling

[#] Carbon types were deduced from DEPT135 experiment.

3. Structure Determination of Compounds Isolated from *Cladogynos* orientalis

3.1 Structure Determination of Compound COC1

Compound **COC1**, pale yellow oil, possessed a quasimolecular ion $[M+K]^+$ at m/z 259.1487 (calcd. 259.1464) in the HRFABMS, corresponding to the molecular formula C₁₅H₂₄O. The UV spectrum (**Figure 80**) showed λ_{max} at 206 and 263 nm. The IR spectrum (**Figure 81**) showed ν_{max} 3448 cm⁻¹(OH streching). The optical rotation of compound **COC1** was negative, $[\alpha]^{23}{}_{D}$ -65.1° (*c* 0.03, MeOH).

The ¹H-NMR spectra (**Figure 82-83**) of compound **COC1** showed signals of one methyl singlet proton at $\delta_{\rm H}$ 1.80 (H₃-13, *s*), two methyl doublet protons at $\delta_{\rm H}$ 0.98 (H₃-14, *d*, *J* = 7.0 Hz) and 1.06 (H₃-15, *d*, *J* = 7.5 Hz), two singlet signals of exocyclic methylene proton at $\delta_{\rm H}$ 4.78 (Ha-12, *s*) and 5.02 (Hb-12, *s*), four methylene multiplet protons at $\delta_{\rm H}$ 1.26-1.32 (Ha-3, *m*), 1.67-1.77 (Ha-6, *m* and Ha-9, *m*), 1.93-2.01 (Hb-3, *m* and Hb-9, *m*), 2.10-2.17 (Ha-2, *m*), 2.43-2.56 (Hb-2, *m* and Hb-6, *m*), three methine multiplet protons at $\delta_{\rm H}$ 2.43-2.56 (H-4, *m* and H-7, *m*) and 3.97-4.01 (H-8, *m*), one methine broad singlet proton at $\delta_{\rm H}$ 2.32 (H-10, *br s*) and a hydroxyl proton at $\delta_{\rm H}$ 1.57 (OH-8, *s*).

The ¹³C NMR (**Figure 84**) and DEPT135 (**Figure 85** and **Table 15**) spectra of compound **COC1** revealed the presence of three methyl carbons at δ_C 23.0 (C-13), 20.0 (C-14) and 21.6 (C-15), five methylenes at δ_C 33.8 (C-2), 30.8 (C-3), 26.0 (C-6), 42.0 (C-9) and 112.3 (C-12), four methine carbons at δ_C 46.1 (C-4), 49.7 (C-7), 68.3 (C-8) and 29.2 (C-10) and three quaternary carbons at δ_C 139.6 (C-1), 140.9 (C-5) and 148.0 (C-11).

The ¹H-NMR spectral data exhibited resonances of an oxygenated methine proton at $\delta_{\rm H}$ 3.97-4.01 (H-8, *m*) and exocyclic methylene proton at $\delta_{\rm H}$ 4.78 (Ha-12, *s*) and 5.02 (Hb-12, *s*). The HMBC spectrum (**Figure 87**) showed correlations from $\delta_{\rm H}$ 4.78 (Ha-12) and 5.02 (Hb-12) to $\delta_{\rm C}$ 49.7 (C-7) and 23.0 (C-13), from $\delta_{\rm H}$ 2.43-2.56 (H-7) to $\delta_{\rm C}$ 112.3 (C-12), 23.0 (C-13) and 140.9 (C-5), from $\delta_{\rm H}$ 3.97-4.01 (H-8) to $\delta_{\rm C}$ 26.0 (C-6), from $\delta_{\rm H}$ 2.32 (H-10) to $\delta_{\rm C}$ 68.3 (C-8), from $\delta_{\rm H}$ 1.67-1.77 (Ha-6) to $\delta_{\rm C}$ 139.6 (C-1), from $\delta_{\rm H}$ 1.80 (H₃-13) to $\delta_{\rm C}$ 112.3 (C-12) and from $\delta_{\rm H}$ 1.06 (H₃-15) to $\delta_{\rm C}$ the cross peaks of methine protons from $\delta_{\rm H}$ 2.43-2.56 (Hb-7) to 3.97-4.01 (H-8), from $\delta_{\rm H}$ 3.97-4.01 (H-8) to 1.67-1.77 (Ha-7) and 1.93-2.01 (Hb-9) and from $\delta_{\rm H}$ 1.67-1.77 (Ha-9) to 2.32 (H-10). Based on these spectral data the first fragment of compound **COC1** is proposed as shown below.

The ¹H-¹H COSY spectrum (**Figure 88**) of compound **COC1** displayed the correlations between $\delta_{\rm H}$ 1.26-1.32 (Ha-3) to 2.10-2.17 (Ha-2) and 2.43-2.56 (H-4), while the HMBC spectrum (**Figure 87**) of compound **COC1** showed the correlations from $\delta_{\rm H}$ 0.98 (H₃-14) to $\delta_{\rm C}$ 140.9 (C-5) and 30.8 (C-3), from $\delta_{\rm H}$ 2.32 (H-10) to $\delta_{\rm C}$ 33.8 (C-2) and from $\delta_{\rm H}$ 1.26-1.32 (H-3) to $\delta_{\rm C}$ 139.6 (C-1) and 140.9 (C-5), therefore the second fragment of compound **COC1** is assembled as shown.

Combination of the first and the second fragments established a gross structure of compound **COC1**. The relative stereochemistry of compound **COC1** was proven by NOE experiments (**Figure 89**). On irradiation at δ_H 3.97-4.01 (H-8), NOE spectrum was observed on the methine protons resonance at δ_H 2.43-2.56 (H-7), 2.32 (H-10) and the methyl proton at δ_H 1.80 (H₃-13). Additionally, on irradiation at δ_H 0.98 (H₃-14), NOE was observed on the methylene protons resonated at δ_H 2.10-2.17 (H-2a) and 1.26-1.32 (H-3a) and at δ_H 1.06 (H₃-15), NOE was also observed at δ_H 2.10-2.17 (H-2a). The basis of these spectral data, biosynthesis consideration and the literature indicated that the substitutions at those positions were situated in *cis* orientation to each other. Thus, compound **COC1** was assigned as a hydroxylated derivative of the known α -guaiene (Rakotonirainy *et al.*,1997) and identified as a new compound namely, $(4S^*, 7R^*, 8R^*, 10S^*)$ -8-hydroxy- α -guaiene [**56**].

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	Compound COC1				
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$			
1	-	139.6 (C)			
2	2.10-2.17 (1Ha, <i>m</i>)	33.8 (CH ₂)			
	2.43-2.56 (1Hb, <i>m</i>)	Control of			
3	1.26-1.32 (1Ha, <i>m</i>)	30.8 (CH ₂)			
	1.93-2.01 (1Hb, <i>m</i>)				
4	2.43-2.56 (1H, <i>m</i>)	46.1 (CH)			
5	-	140.9 (C)			
6	1.67-1.77 (1Ha, <i>m</i>)	26.0 (CH ₂)			
	2.43-2.56 (1Hb, <i>m</i>)				
7	2.43-2.56 (1H, <i>m</i>)	49.7 (CH)			
8	3.97-4.01 (1H, <i>m</i>)	68.3 (CH)			
9	1.67-1.77 (1Ha, <i>m</i>)	42.0 (CH ₂)			
	1.93-2.01 (1Hb, <i>m</i>)	STATA			
10	2.32 (1H, <i>br s</i>)	29.2 (CH)			
11	- 4	148.0 (C)			
12	4.78 (1Ha, s)	112.3 (CH ₂)			
	5.02 (1Hb, <i>s</i>)	11.2/1.2/1.20			
13	1.80 (3H, <i>s</i>)	23.0 (CH ₃)			
14	0.98 (3H, <i>d</i> , 7.0)	20.0 (CH ₃)			
15	1.06 (3H, <i>d</i> , 7.5)	21.6 (CH ₃)			
OH-8	1.57 (1H, s)	-			

 Table 15
 NMR spectral data of compound COC1 (CDCl₃)

[#] Carbon types were deduced from DEPT135 experiment.

จุฬาลงกรณ์มหาวิทยาลัย

3.2 Structure Determination of Compound COC2

Compound **COC2** was obtained as pale yellow oil. The FAB mass spectrum (**Figure 90**) displayed $[M+H]^+$ at m/z 221, consistent with C₁₅H₂₄O. The IR spectrum (**Figure 91**) showed absorptions at v_{max} 3384 cm⁻¹ (hydroxyl group), 3080 cm⁻¹ (CH stretching) and 1458 and 1375 cm⁻¹ (CH bending). The ¹H-NMR spectrum (**Figure 92**) of compound **COC2** exhibited three singlet protons at δ_H 1.02 (H₃-13), 1.03 (H₃-12) and 1.25 (H₃-15), one exocyclic methylene proton at δ_H 4.64 and 4.67 (1H each, Ha-14 and Hb-14, *s*), four methylene protons at δ_H 0.95-1.00 (Ha-8, *m*), 1.50-1.63 (Ha-2 and Ha-3, *m*), 1.75 (Hb-3, *dd*, *J* = 7.0, 12.5 Hz), 1.84-1.90 (Hb-2, *m*), 1.93-1.99 (Hb-8, *m*), 2.02 (Ha-9, *dd*, *J* = 13.0, 13.0 Hz) and 2.40 (Hb-9, *dd*, *J* = 6.3, 13.0 Hz) and four methine protons at 0.44 (H-6, *dd*, *J* = 9.5, 11.3 Hz), 0.69 (H-7, *ddd*, *J* = 6.0, 9.5, 11.0 Hz), 1.25-1.31 (H-5, *m*) and 2.17 (H-1, *ddd*, *J* = 6.2, 10.6, 10.6 Hz). The ¹³C-NMR (**Figure 93**) and DEPT135 (**Table 16**) spectra of compound **COC2** showed three methyl, five methylene, four methine and three quaternary carbons, one of which carried a hydroxyl group.

The HMBC spectrum of compound **COC2** (Figure 95) showed the correlations from $\delta_{\rm H}$ 1.75 (Hb-3), 4.64 (Ha-14), 4.67 (Hb-14) to $\delta_{\rm C}$ 53.4 (C-1), from $\delta_{\rm H}$ 1.25-1.31 (H-5) to $\delta_{\rm C}$ 26.7 (C-2), from $\delta_{\rm H}$ 1.25 (H₃-15) to $\delta_{\rm C}$ 41.7 (C-3), from $\delta_{\rm H}$ 0.44 (H-6) and 1.84-1.90 (Hb-2) to $\delta_{\rm C}$ 80.9 (C-4), from $\delta_{\rm H}$ 1.75 (Hb-3), 1.50-1.63 (Ha-2) and 1.25 (H₃-15) to $\delta_{\rm C}$ 54.2 (C-5) and from $\delta_{\rm H}$ 1.84-1.90 (Hb-2) to $\delta_{\rm C}$ 153.3 (C-10), while ¹H-¹H COSY spectrum of compound **COC2** (Figure 96) showed cross peaks from $\delta_{\rm H}$ 1.84-1.90 (Hb-2) to 1.75 (Hb-3) and 2.17 (H-1) and from $\delta_{\rm H}$ 1.25-1.31 (H-5) to 0.44 (H-6) and 2.17 (H-1). Assignment of the first substructure was constructed as shown.

The HMBC spectrum (Figure 95) were observed from δ_H 2.40 (Hb-9) to δ_C 53.4 (C-1), from δ_H 2.17 (H-1) to δ_C 54.2 (C-5) and 29.9 (C-6), from δ_H 1.02 (H₃-

13) to δ_{C} 28.6 (C-12), from 1.03 (H₃-12), 2.02 (Ha-9) and 2.40 (Hb-9) to δ_{C} . 27.4 (C-7), from δ_{H} 2.17 (H-1) and 2.02 (Ha-9) to δ_{C} 106.2 (C-14), from δ_{H} 4.64 (Ha-14) and 4.67 (Hb-14) to δ_{C} 38.8 (C-9), from δ_{H} 0.95-1.00 (Ha-8), 1.25-1.31 (H-5) and 1.93-1.99 (Hb-8) to δ_{C} 153.3 (C-10), while ¹H-¹H COSY spectrum (**Figure 96**) exhibited the correlation of δ_{H} 0.69 (H-7) to 0.44 (H-6), δ_{H} 0.95-1.00 (Ha-8), 1.93-1.99 (Hb-8) and δ_{H} 0.95-1.00 (Ha-8) to 2.02 (Ha-9) and 2.40 (Hb-9). Based upon these spectral data, the second partial structure of compound **COC2** was established as shown.

The relative stereochemistry of compound **COC2** was detected by NOE difference technique (**Figure 97**). On irradiation at the methine proton resonance H-6 ($\delta_{\rm H}$ 0.44), NOE was observed on the H-1 ($\delta_{\rm H}$ 2.17), H-7 ($\delta_{\rm H}$ 0.69), H₃-12 ($\delta_{\rm H}$ 1.03) and H₃-15 ($\delta_{\rm H}$ 1.25). When the methyl proton resonance H₃-12 ($\delta_{\rm H}$ 1.03) was irradiated, NOE was observed on the methine proton resonance H-1 ($\delta_{\rm H}$ 2.17), H-6 ($\delta_{\rm H}$ 0.44) and H-7 ($\delta_{\rm H}$ 0.69). Moreover, the methyl proton resonance H₃-13 ($\delta_{\rm H}$ 1.02) was irradiated, NOE was observed on the methine proton resonance H₃-13 ($\delta_{\rm H}$ 1.02) was irradiated, NOE was observed on the methine proton resonance H₃-13 ($\delta_{\rm H}$ 1.25-1.31). Thus, the configuration at the junction between the five and seven-membered rings was deduced to be *trans* configuration. By analysis of the above spectroscopic data and comparison with reported data (Inagaki and Abe, 1985), compound **COC2** was determined as spathulenol [**57**], an aromadendrane sesquiterpene previously isolated from several plants eg. *Panax ginseng* (Iwabuchi, Yoshikura and Kamisako, 1989) and *Citrus junos* (Inagaki and Abe, 1985)

Table 16	NMR spectral	data of compound	COC2 and	spathulenol	(CDCl ₃)
----------	--------------	------------------	----------	-------------	----------------------

	Compound COC2		Spathulenol	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)
1	2.17 (1H, <i>ddd</i> , 6.2, 10.6, 10.6)	53.4 (CH)	2.20 (1H)	53.4
2	1.50-1.63 (1Ha, <i>m</i>)	26.7 (CH ₂)	1.64 (1Ha)	26.7
	1.84-1.90 (1Hb, <i>m</i>)		1.91 (1Hb)	
3	1.50-1.63 (1Ha, <i>m</i>)	41.7 (CH ₂)	1.54 (1Ha)	41.8
	1.75 (1Hb, <i>dd</i> , 7.0, 12.5)		1.78 (1Hb)	
4	- 3.64	80.9 (C)	-	80.9
5	1.25-1.31 (1H, <i>m</i>)	54.2 (CH)	1.31 (1H)	53.4
6	0.44 (1H, <i>dd</i> , 9.5, 11.3)	29.9 (CH)	0.46 (1H)	30.0
7	0.69 (1H, <i>ddd</i> , 6.0, 9.5, 11.0)	27.4 (CH)	0.71 (1H)	27.7
8	0.95-1.00 (1Ha, <i>m</i>)	24.7 (CH ₂)	1.01 (1Ha)	24.9
	1.93-1.99 (1Hb, <i>m</i>)		1.96 (1Hb)	
9	2.02 (1Ha, dd, 13.0, 13.0)	38.8 (CH ₂)	2.04 (1Ha, <i>m</i>)	39.0
	2.40 (1Hb, <i>dd</i> , 6.3, 13.0)		2.42 (1Hb, <i>m</i>)	
10	<u> </u>	153.3 (C)	-	153.5
11		20.2 (C)	-	20.3
12	1.03 (3H, <i>s</i>)	28.6 (CH ₃)	1.05 (3H)	28.7
13	1.02 (3H, <i>s</i>)	16.3 (CH ₃)	1.04 (3H)	16.4
14	4.64 (1Ha, <i>s</i>)	106.2 (CH ₂)	4.66 (1Ha, s)	106.3
4	4.67 (1Hb, <i>s</i>)	PAN I	4.69 (1Hb, <i>s</i>)	
15	1.25 (3H, s)	26.0 (CH ₃)	1.28 (3H, s)	26.1
OH-8	1.41 (1H, <i>brs</i>)	-	-	-

[#] Carbon types were deduced from DEPT135 experiment.

3.3 Structure Determination of Compound COC3

Compound **COC3** was obtained as pale yellow oil. The HRFABMS spectrum displayed the protonated molecular ion $[M+H]^+$ at m/z 317.2108 (calcd. 317.2117), consistent with C₂₀H₂₈O₃. The UV absorption bands (**Figure 99**) appeared at λ_{max} 299 nm. The IR absorption spectrum (**Figure 100**) showed v_{max} at 3600-2400 and 1699 (carboxylic acid) cm⁻¹. The optical rotation provided negative, $[\alpha]^{23}_{D}$ -23.2° (*c* 0.0013, MeOH).

The ¹H-NMR spectra (**Figure 101-102**) of compound **COC3** displayed signals of two methyl singlets at $\delta_{\rm H}$ 1.30 (3H, *s*) and 0.86 (3H, *s*), one methyl doublet at $\delta_{\rm H}$ 0.87 (3H, *d*, *J* = 7.0 Hz), seven methylene multiplets at $\delta_{\rm H}$ 1.34-1.44 (Ha-6, *m*), $\delta_{\rm H}$ 1.50-1.56 (H₂-7, *m*), 1.64-1.69 (Ha-3, *m* and H₂-11, *m*), 1.74-1.81 (H₂-2, *m*), 1.89-2.02 (Ha-1, *m*, Hb-3, *m* and Hb-6, *m*), 2.07-2.17 (Hb-1, *m* and Ha-12, *s*) and 2.33-2.40 (Hb-12, *s*), one methine multiplet at $\delta_{\rm H}$ 1.78-1.81 (1H, *m*) and three olefenic protons at $\delta_{\rm H}$ 6.36, 7.20 and 7.34 (each 1H, H-14, H-16 and H-15)

The ¹³C-NMR (**Figure 103**) and DEPT135 (**Figure 104** and **Table 17**) spectral data of compound **COC3** revealed 20 signals as three methyl carbons , seven methylene carbons, four methine carbons and six quaternary carbons. A carbonyl group was found in **COC3**, as one singlet resonance at δ_C 181.3 (C-18). In addition, HMBC spectral data (**Figure 106-107**) demonstrated the correlations from δ_H 1.30 (H₃-19) to δ_C 35.4 (C-3), 47.4 (C-4), δ_C 131.0 (C-5) and 183.1 (C-18), from δ_H 0.86 (H₃-20) to δ_C 33.3 (C-8), 36.5 (C-11) and 136.0 (C-10), from δ_H 0.87 (H₃-17) to δ_C 26.8 (C-7) and 40.9 (C-9) and from δ_H 1.64-1.69 (H₂-11) to δ_C 33.3 (C-8). The ¹H-¹H COSY spectrum (**Figure 108**) showed the cross peaks of H₂-7 (δ_H 1.50-1.56) to Ha-6 (δ_H 1.34-1.44) and H-8 (δ_H 1.74-1.81). Based on these data the first substructure of compound **COC3** was assembled as shown.

The HMBC spectra (**Figure 106-107**) displayed the correlations from H₂-11 ($\delta_{\rm H}$ 1.64-1.69) to C-13 ($\delta_{\rm C}$ 125.8), from Hb-12 ($\delta_{\rm H}$ 2.33-2.40) to C-14 ($\delta_{\rm C}$ 111.0) and C-16 ($\delta_{\rm C}$ 138.4), from H-14 ($\delta_{\rm H}$ 6.26) to C-16 ($\delta_{\rm C}$ 138.4), from H-15 ($\delta_{\rm H}$ 7.34) to C-13 ($\delta_{\rm C}$ 125.8) and from H-16 ($\delta_{\rm H}$ 7.20) to C-14 ($\delta_{\rm C}$ 111.0), while ¹H-¹H COSY spectrum (**Figure 108**) of compound **COC3** revealed the correlations between Hb-12 ($\delta_{\rm H}$ 2.33-2.40) and H₂-11 ($\delta_{\rm H}$ 1.64-1.69) and between H-14 ($\delta_{\rm H}$ 6.26) and H-15 ($\delta_{\rm H}$ 7.34). The construction of the second partial structure was analysed by the above spectral data.

Combination of the first and the second fragments established a gross structure of **COC3**. The relative stereochemistry of compound **COC3** could not be completely established by application of NOE experiments. However, it would be reasonable deduced that three methyl groups at C-17 (δ_C 16.0), C-19 (δ_C 22.9) and C-20 (δ_C 20.8) in *cis* orientation because of the biogenesis considerations and the agreement of the crystal structure of compound **COC10**, chettaphanin I [48]. Therefore, compound **COC3** was identified as a new compound, 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [58] and has been given the trivial name as chettaphanin III. The structurally related crotohalimaneic acid, a 4-epimer of compound **COC10**, had been isolated as a natural product from *Croton oblongifolius* (Roengsumran *et al.*, 2004)

Table 17 NMR spectral data of compound COC3 (CDCl₃)

	Compound COC3	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$
1	1.89-2.02 (1Ha, <i>m</i>)	25.1 (CH ₂)
	2.07-2.17 (1Hb, <i>m</i>)	
2	1.74-1.81 (2H, <i>m</i>)	19.5 (CH ₂)
3	1.64-1.69 (1Ha, <i>m</i>)	35.4 (CH ₂)
	1.89-2.02 (1Hb, m)	Comp 4
4	- 12	47.4 (C)
5	- 1 554	131.0 (C)
6	1.34-1.44 (1Ha, <i>m</i>)	25.9 (CH ₂)
	1.89-2.02 (1Hb, <i>m</i>)	and and and
7	1.50-1.56 (2H, <i>m</i>)	26.8 (CH ₂)
8	1.74-1.81 (1H, <i>m</i>)	33.3 (CH)
9	-	40.9 (C)
10	-	136.0 (C)
11	1.64-1.69 (2H, <i>m</i>)	36.5 (CH ₂)
12	2.07-2.17 (1Ha, s)	19.5 (CH)
	2.33-2.40 (1Hb, s)	ۍ د
13	าลงกรร	125.8 (C)
14	6.26 (1H, <i>dd</i> , 0.8, 0.8)	111.0 (CH)
15	7.34 (1H, <i>dd</i> , 1.5, 1.5)	142.6 (CH)
16	7.20 (1H, s)	138.4 (CH)
17	0.87 (3H, <i>d</i> , 7.0)	16.0 (CH ₃)
18	-	183.1 (C)
19	1.30 (3H, s)	22.9 (CH ₃)
20	0.86 (3H, s)	20.8 (CH ₃)

[#] Carbon types were deduced from DEPT135 experiment.

3.4 Structure Determination of Compound COC4

Compound **COC4** was obtained pale yellow oil. The molecular formula was determined as $C_{21}H_{24}O_5$ by HRFABMS spectrum of its $[M+H]^+$ at m/z 357.1685 (calcd 357.1702). The IR spectrum (**Figure 111**) showed absorption bands due to a keto carbonyl group (1676 cm⁻¹), an ester carbonyl (1736 and 1277 cm⁻¹) and a furan ring (3150, 1458, 920 cm⁻¹) and the UV absorption at 239 nm (**Figure 110**). The optical rotation was positive, $[\alpha]^{23}_{D} + 56.1^{\circ}$ (*c* 0.015, MeOH).

The ¹H-NMR spectra (Figure 112-113) showed signals for four methyl protons at $\delta_{\rm H}$ 0.88 (H₃-17, d, J = 7 Hz), 1.17 (H₃-20, s), 1.42 (H₃-19, s) and 3.54 (H₃-21, s), three methylene protons at $\delta_{\rm H}$ 1.37-1.41 (Ha-7, m), 1.89 (Ha-6, dd, J = 4.8, 13.3 Hz), 2.12-2.20 (Hb-7, m), 2.34 (Hb-6, dd, J = 4.8, 13.3 Hz), 2.38 (Ha-3, d, J =16.3 Hz) and 2.39 (Hb-3, d, J = 16.3 Hz), six methine protons, three protons of which at $\delta_{\rm H}$ 6.40, 7.33 and 7.47 (1H each, H-14, H-15 and H-16) were characteristic of furan proton and the other protons at $\delta_{\rm H}$ 1.92-1.97 (H-8, m), 4.80 (H-11, s) and 5.90 (H-1, s). The ¹³C-NMR (Figure 114) and DEPT135 (Figure 115 and Table 18) spectra showed four methyl carbons, three methylene carbons, six methine carbons and eight quaternary carbons. The HMBC spectra (Figure 117-118) showed the correlations from δ_H 2.12-2.20 (Hb-7) to δ_C 79.5 (C-5), from δ_H 5.90 (H-1) to δ_C 45.5 (C-3), 79.5 (C-5), from $\delta_{\rm H}$ 2.38 (Ha-3) and 2.39 (Hb-3) to $\delta_{\rm C}$ 20.1 (C-19), 79.5 (C-5) and 173.9 (C-18), from $\delta_{\rm H}$ 1.42 (H₃-19) to $\delta_{\rm C}$ 45.5 (C-3), 79.5 (C-5) and 173.9 (C-18), from $\delta_{\rm H}$ 1.17 (H₃-20), 1.95 (H-8) and 2.34 (H-6) to $\delta_{\rm C}$ 157.7 (C-10) and from $\delta_{\rm H}$ 0.88 (H₃-17) to $\delta_{\rm C}$ 26.5 (C-7) and 41.4 (C-9). The ¹H-¹H COSY spectrum (Figure 119) displayed the correlations from $\delta_{\rm H}$ 2.12-2.20 (Hb-7) to 1.92-1.97 (H-8) and 1.89 (Ha-6). Based on these spectral data the first substructure of compound COC4 is proposed as shown below.

The HMBC spectra (**Figure 117-118**) showed the correlations from $\delta_{\rm H}$ 4.80 (H-11) to $\delta_{\rm C}$ 157.7 (C-10) and 22.3 (C-20) and from $\delta_{\rm H}$ 1.17 (H₃-20) and 1.95 (H-8) to $\delta_{\rm C}$ 103.2 (C-11), therefore the second fragment of compound **COC4** is assembled as shown.

The ¹H-¹H COSY spectrum of compound COC4 (Figure 119) displayed a correlation between $\delta_{\rm H}$ 6.40 (H-14) and 7.33 (H-15), while the HMBC spectra (Figure 117-118) showed the correlations from $\delta_{\rm H}$ 6.40 (H-14) to $\delta_{\rm C}$ 139.5 (C-16), from $\delta_{\rm H}$ 7.33 (H-15) and 4.80 (H-11) to $\delta_{\rm C}$ 121.3 (C-13) and from $\delta_{\rm H}$ 7.47 (H-16) to $\delta_{\rm C}$ 107.2 (C-14). Therefore the third partial structure is created as shown.

The combination of the three fragments established a gross structure of compound COC4. The NOE experiments (Figure 120) indicated interactions of H₃-17 with H₃-20 and H-1, H₃-21 with H-16. The agreement of the spectroscopic data and NOE interactions and biogenesis consideration led us to assign the structure of compound COC4 including the relative configuration. This is a new compound, methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0^{1,6}]trideca-5,8-di-ene-2-carboxylate [59] and has been named chettaphanin IV.

To our knowledge, it is reasonable to suppose that the ether bridge between C-5 ($\delta_{\rm C}$ 79.5) and C-12 ($\delta_{\rm C}$ 146.2) in compound COC4 could be built up by intramolecular hemiacetal formation of the 12-keto group with a *cis*-oriented OH-5 group, as in compound A, the C-5 epimer of compound COC10 (chettaphanin I), followed by dehydration as shown in Figure 121. However, compound A has not been isolated until now.

Figure 121 Possible formation of compound **COC4** from compound A, the C-5 epimer of chettaphanin I.

	Compound COC4		
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	
1	5.90 (1H, s)	121.8 (CH)	
2	-	196.4 (C)	
3	2.38 (1Ha, <i>d</i> , 16.3)	45.5 (CH ₂)	
	2.39 (1Hb, <i>d</i> , 16.3)		
4	-	51.4 (C)	
5	-	79.5 (C)	
6	1.89 (1Ha, <i>dd</i> , 4.8, 13.3)	31.7 (CH ₂)	
	2.34 (1Hb, <i>dd</i> , 4.8, 13.3)		
7	1.37-1.41 (1Ha, <i>m</i>)	26.5 (CH ₂)	
	2.12-2.20 (1Hb, <i>m</i>)		
8	1.92-1.97 (1H, <i>m</i>)	42.5 (CH)	
9	- / / 5.7	41.4 (C)	
10	- 103	157.7 (C)	
11	4.80 (1H, <i>s</i>)	103.2 (CH)	
12	- 26	146.2 (C)	
13	- Osisisia	121.3 (C)	
14	6.40 (1H, <i>dd</i> , 0.8, 0.8)	107.2 (CH)	
15	7.33 (1H, <i>dd</i> , 1.8, 1.8)	143.2 (CH)	
16	7.47 (1H, <i>d</i> , 1.0)	139.5 (CH)	
17	0.88 (3H, <i>d</i> , 7.0)	14.3 (CH ₃)	
18	- 10	173.9 (C)	
19	1.42 (3H, <i>s</i>)	20.1 (CH ₃)	
20	1.17 (3H, s)	22.3 (CH ₃)	
21	3.54 (3H, <i>s</i>)	52.1 (CH ₃)	

 Table 18 NMR spectral data of compound COC4 (CDCl₃)

[#] Carbon types were deduced from DEPT135 experiment.

3.5 Structure Determination of Compound COC5

Compound COC5, white solid with m.p. 297-299 °C, showed a protonated molecular ion $[M+H]^+$ at m/z 499 in FAB mass spectrum (Figure 122), corresponding to molecular formula C₃₂H₅₀O₄. The IR spectrum showed absorption bands of carboxylic group (1687, 3423 cm⁻¹), ester carbonyl group (1736, 1244 cm⁻¹) and hydrocarbon group (2937, 2856, 1458, 1365 cm⁻¹) (Figure 123). The ¹H-NMR spetrum (Figure 124) showed signals for a vinyl proton at δ_H 5.43 (H-15) and a methine proton at 4.46 (H-3). Signals for seven methyl protons at $\delta_{\rm H}$ 0.85-0.96, one carbomethyl proton at δ_H 2.04, ten methylene and three methine protons at δ_H 1.03-1.99 were observed. The ¹³C-NMR (Figure 125) and DEPT135 (Figure 126 and **Table 19**) spectra displayed 32 carbon signals, including eight methyl carbons at $\delta_{\rm C}$ 15.6, 16.6, 21.3, 22.4, 26.2, 27.9, 28.6 and 31.8, ten methylene carbons at δ_C 17.3, 18.7, 23.5, 30.7, 31.3, 33.3, 33.7, 35.3, 37.4 and 40.7, five methine carbons at $\delta_{\rm C}$ 41.4, 49.1, 55.6, 80.9 and 116.9, nine quaternary carbons at $\delta_{\rm C}$ 29.3, 37.3, 37.7, 37.9, 39.0, 51.5, 160.5, 171.0 and 184.3. The ¹³C-NMR chemical shifts of C-22 and C-29 of this compound were assigned as δ_C 33.3 and 31.8, respectively, since these appeared as methylene and methyl carbon in DEPT135 experiment. In previous report (Carpenter et al., 1980), the ¹³C-NMR chemical shifts of C-22 and C-29 of acetoxyaleuritolate were assigned as $\delta_{\rm C}$ 31.8 and 33.3, respectively, these assignments were transposed. From all of the above spectroscopic data in comparison with reported data, compound COC5 was assigned as acetoxyaleuritolate [60]. This compound had been isolated from other Euphorbiaceae family such as Panadenia thwaitesii (Carpenter et al., 1980) and Sapium baccatum (Ray, Misra and Khastgir, 1975).

	Compound COC5		Acetoxyaleuritolate
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	δ _C (ppm)
1	1.55-1.85 (2H, <i>m</i>)	37.4 (CH ₂)	37.4
2	1.55-1.85 (2H, <i>m</i>)	23.5 (CH ₂)	23.4
3	4.46 (1H, <i>dd</i> , <i>J</i> = 5.5, 10.0)	80.9 (CH)	80.8
4	-	37.7 (C)	37.6
5	0.85-0.95 (1H, <i>m</i>)	55.6 (CH)	55.6
6	1.55-1.85 (2H, <i>m</i>)	18.7 (CH ₂)	18.7
7	1.00-1.35 (2H, <i>m</i>)	35.3 (CH ₂)	35.3
8	-	39.0 (C)	39.0
9	1.40-1.55 (1H, <i>m</i>)	49.1 (CH)	49.0
10	-	37.3 (C)	37.3
11	1.40-1.55 (2H, <i>m</i>)	17.3 (CH ₂)	17.3
12	1.90-2.00 (1Ha, <i>m</i>)	31.3 (CH ₂)	31.2
	2.37 (1Hb, <i>m</i>)		
13	- 6123	37.9 (C)	37.9
14	- 2.440	160.5 (C)	160.5
15	5.54 (1H, dd, J = 3.3, 7.8)	116.9 (CH)	116.8
16	1.40-1.85 (2H, <i>m</i>)	30.7 (CH ₂)	30.6
17	- 3225211221	51.5 (C)	51.5
18	2.27 (1H, dd, 3.3, 14.3)	41.4 (CH)	41.3
19	1.90-2.00 (2H, <i>m</i>)	40.7 (CH ₂)	40.7
20		29.3 (C)	29.3
21	1.00-1.35 (2H, <i>m</i>)	33.7 (CH ₂)	33.6
22	1.55-1.85 (2H, <i>m</i>)	33.3 (CH ₂)	31.8
23	0.85 (3H, <i>s</i>)	27.9 (CH ₃)	27.9
24	0.89 (3H, <i>s</i>)	16.6 (CH ₃)	16.6
25	0.96 (3H, <i>s</i>)	15.6 (CH ₃)	15.7 🔍
26	0.91 (3H, <i>s</i>)	28.6 (CH ₃)	28.6
27	0.96 (3H, <i>s</i>)	26.2 (CH ₃)	26.2
28	-	184.3 (C)	184.4
29	0.94 (3H, <i>s</i>)	31.8 (CH ₃)	33.3
30	0.92 (3H, <i>s</i>)	22.4 (CH ₃)	22.4
31	-	171.0 (C)	-
32	2.04 (3H, <i>s</i>)	21.3 (CH ₃)	-

Table 19 NMR spectral data of compound COC5 and acetoxyaleuritolate (CDCl₃)

The bold values are revised assignments.

[#] Carbon types were deduced from DEPT135 experiment.

3.6 Structure Determination of Compound COC6

Compound COC6, white solid with m.p. 281-282 °C, showed a protonated molecular ion $[M+H]^+$ at m/z 427 in FAB mass spectrum (Figure 127), corresponding to the molecular formula $C_{30}H_{50}O$. The IR spectrum (Figure 128) showed absorption at v_{max} 3483 (hydroxy group) and 2933, 2852, 1473 and 1385 (hydrocarbon system) cm⁻¹. The ¹H-NMR spectrum (Figure 129) displayed signals for a vinyl proton at $\delta_{\rm H}$ 5.55 (H-15) and a carbinol proton at $\delta_{\rm H}$ 3.20 (H-3). Signals for eight methyl protons between δ 0.79-1.11, ten methylene and three methine protons at $\delta_{\rm H}$ 0.93-2.06. The ¹³C-NMR (Figure 130) and DEPT135 (Figure 131 and Table 20) spectra showed 30 carbon signals, corresponding to eight methyl carbons at δ_{C} 15.4, 15.5, 21.4, 25.9, 28.1, 29.9, 30.0 and 33.4, ten methylene carbons at δ_C 17.6, 18.9, 27.3, 33.3, 33.9, 35.4, 36.8, 37.8, 37.9 and 41.5, five methine carbons at δ_c 49.1, 49.5, 55.7, 79.1 and 117.0 and seven quaternary carbons at δ_{C} 28.9, 35.8, 37.7, 38.1, 38.9, 39.1 and 158.3. The ¹H-NMR spectra of taraxerol and isotaraxerol showed the expected differences in the carbinol proton region. The H-3 in isotaraxerol appeared as a well defined triplet center at $\delta_{\rm H}$ 3.38 (J = 3.0 Hz), typical of an equatorial proton associated with 3α hydroxy group in ring A of triterpene, whereas the H-3 in taraxerol appeared as illdefined quartet ($\delta_{\rm H}$ 3.22), typical of the axial proton associated with a 3 β -hydroxy group. The melting point of taraxerol was 282-283 °C whereas that of isotaraxerol was 267-269 °C (Corbett and Cumming, 1972). The ¹³C-NMR chemical shifts of C-10 and C-12 of compound COC6 were assigned as $\delta_{\rm C}$ 35.8 and 37.8, respectively, since these appeared as quaternary and methylene carbons in DEPT135 experiment. In previous report (Sakurai, Yaguchi and Inoue, 1987), the ¹³C-NMR chemical shifts of C-10 and C-12 of taraxerol were assigned as $\delta_{\rm C}$ 37.9 and 35.9, respectively. Thus, these assignments were transposed. Compound COC6 was identified as taraxerol [61] by analysis of the above spectra data and confirmed by comparison with an authentic sample. This compound was obtained previously from Myrica rubra (Sakurai, Yaguchi and Inoue, 1987).

	Compound COC6		Taraxerol
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	δ _C (ppm)
1	0.93-1.10 (1Ha, <i>m</i>)	37.9 (CH ₂)	38.1
	1.25-2.06 (1Hb, <i>m</i>)		
2	1.25-1.67 (2H, <i>m</i>)	27.3 (CH ₂)	27.3
3	3.20 (1H, q, J = 5.5)	79.1 (CH)	79.2
4	-	39.1 (C)	39.1
5	0.79-0.84 (1H, <i>m</i>)	55.7 (CH)	55.7
6	1.25-1.67 (2H, <i>m</i>)	18.9 (CH ₂)	19.0
7	0.93-1.10 (1Ha, <i>m</i>)	35.4 (CH ₂)	35.3
	1.25-1.67 (1Hb, <i>m</i>)		
8	- ///	38.9 (C)	38.3
9	0.93-1.10 (1H, <i>m</i>)	49.5 (CH)	48.9
10		35.8 (C)	37.9
11	1.25-1.67 (2H, <i>m</i>)	17.6 (CH ₂)	17.7
12	1.25-1.67 (1Ha, <i>m</i>)	37.8 (CH ₂)	35.9
	1.93 (1Hb, <i>brd</i> , <i>J</i> = 14.5)		
13	- 3.44.05	37.7 (C)	37.9
14	- 1332	158.3 (C)	158.1
15	5.55 (1H, dd, J = 3.0, 8.0)	117.0 (CH)	117.0
16	0.93-1.10 (1Ha, <i>m</i>)	36.8 (CH ₂)	36.9
	1.25-1.67 (1Hb, <i>m</i>)	and -	
17		38.8 (C)	38.1
18	1.25-1.67 (1H, <i>m</i>)	49.5 (CH)	49.4
19	1.25-1.67 (1Ha, <i>m</i>)	41.5 (CH ₂)	41.4
	2.05 (1Hb, <i>brd</i> , <i>J</i> = 12.5)		
20	dooring	28.9 (C)	29.0
21	1.25-1.67 (2H, <i>m</i>)	33.9 (CH ₂)	33.9
22	1.25-1.67 (2H, <i>m</i>)	33.3 (CH ₂)	32.2
23	0.93-1.10 (3H)	28.1 (CH ₃)	28.1
24	0.79-0.84 (3H)	15.5 (CH ₃) ^a	15.6
25	0.93-1.10 (3H)	15.4 (CH ₃) ^a	15.6
26	0.79-0.84 (3H)	29.9 (CH ₃) ^b	30.1
27	1.11 (3H)	25.9 (CH ₃)	26.0
28	0.93-1.10 (3H)	$30.0(CH_3)^{b}$	30.1
29	0.93-1.10 (3H)	33.4 (CH ₃)	33.5
30	0.93-1.10 (3H)	21.4 (CH ₃)	21.5

 Table 20
 NMR spectral data of compound COC6 and taraxerol (CDCl₃)

^{a,b} Assignment may be interchanged. The bold values are revised assignments.

[#] Carbon types were deduced from DEPT135 experiment.

3.7 Structure Determination of Compound COC7

Compound COC7 was characterized as yellow solid, with m.p. 127-128 °C The FAB mass spectrum (Figure 132) demonstrated $[M+H]^+$ at m/z 341, harmonizing with the molecular formula $C_{21}H_{24}O_4$. The UV spectrum (Figure 133) showed absorption maxima at 242 and 294 nm. The IR absorption spectrum (Figure 134) displayed v_{max} at 1722 and 1280 (ester group), 1682 (carbonyl group) and 3167, 1576 and 816 (furan ring) cm⁻¹. The ¹H-NMR spectrum (Figure 135) showed signals for β -substituted of furan ring proton at $\delta_{\rm H}$ 7.00, 7.42 and 8.57 (H-14, H-15 and H-16). The ester methyl proton gave rise to a singlet at $\delta_{\rm H}$ 3.57 (H-21, s). Singlets at $\delta_{\rm H}$ 0.99 (H₃-20, s) and 1.38 (H₃-19, s) and doublet at $\delta_{\rm H}$ 0.97 (H₃-17, d, J = 6.0 Hz) demonstrated the presence of three methyl groups. The ¹³C-NMR (Figure 136) and DEPT135 (Table 21) spectra exhibited 21 carbon signals, corresponding to four methyl carbons, four methylene carbons, four methine carbons and nine quaternary carbons that included a keto carbonyl (δ_c 195.1, C-2) and an ester carbonyl carbons $(\delta_{\rm C} 174.6, \text{ C-18})$. The HMBC spectrum (Figure 138) showed the correlations from $\delta_{\rm H}$ 2.45 (Ha-3) and 2.82 (Hb-3) to $\delta_{\rm C}$ 22.3 (C-19), 128.0 (C-1) and 174.6 (C-18), from $\delta_{\rm H}$ 3.57 (H₃-21) to $\delta_{\rm C}$ 174.6 (C-18), from $\delta_{\rm H}$ 1.38 (H₃-19) to $\delta_{\rm C}$ 125.1 (C-5) and $\delta_{\rm C}$ 174.6 (C-18), from $\delta_{\rm H}$ 2.20-2.38 (H₂-6) to $\delta_{\rm C}$ 37.1 (C-8) and 150.4 (C-10), from $\delta_{\rm H}$ 1.50-1.73 (H₂-7) to δ_{C} 125.1 (C-5) and 42.4 (C-9), from δ_{H} 0.97 (H₃-17) to δ_{C} 27.1 (C-7) and 42.4 (C-9) and from $\delta_{\rm H}$ 0.99 (H_3-20) to $\delta_{\rm C}$ 37.1 (C-8). The $^1H^{-1}H$ COSY spectrum (Figure 138) exhibited the correlation between H₂-6 ($\delta_{\rm H}$ 2.20-2.38) and H₂-7 ($\delta_{\rm H}$ 1.50-1.73). These spectral data assisted the construction of the first partial structure of compound COC7 as shown.

¹H-¹³C HMBC ¹H-¹H COSY
The HMBC spectrum of compound **COC7** (**Figure 138**) revealed the correlations from $\delta_{\rm H}$ 2.65 (Ha-11) and 2.72 (Hb-11) to $\delta_{\rm C}$ 20.3 (C-20), 37.1 (C-8), 121.9 (C-13), 128.0 (C-1) and 150.4 (C-10), from $\delta_{\rm H}$ 0.99 (H₃-20) to $\delta_{\rm C}$ 50.3 (C-11), from $\delta_{\rm H}$ 7.00 (H-14) to $\delta_{\rm C}$ 139.7 (C-12) and 146.3 (C-16), from $\delta_{\rm H}$ 7.42 (H-15) to $\delta_{\rm C}$ 121.9 (C-13) and from $\delta_{\rm H}$ 8.57 (H-16) to $\delta_{\rm C}$ 111.0 (C-14), while the ¹H-¹H COSY (**Figure 139**) showed a correlation between $\delta_{\rm H}$ 7.00 (H-14) and 7.42 (H-15). Combination of these fragments established a gross structure of compound **COC7** as shown below.

The stereochemistry of compound COC7 had been presumed by biosynthesis considerations, the X-ray crystallography of its derivative (Sato *et al.*, 1971). The absolute configuration had been established by its chemical correlation to *ent*-halimic acid, a bicyclic diterpene with a known absolute configuration (Marcos *et al.*, 2002). Based on the spectroscopic data, stereochemical information and comparison with the previous report (Marcos *et al.*, 2002), compound COC7 was identified as chettaphanin II [49], which is a known compound previously isolated from the root of *Adenocleana siamensis* (*Cladogynos orientalis*) (Sato *et al.*, 1971).

	Compound COC7		Chettaphanin II [49]	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} \left(\rm ppm \right)^{\#}$	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
1	-	128.0 (C)	-	127.9
2	-	195.1 (C)	-	195.1
3	2.82 (1Ha, d, 15.8)	52.1 (CH ₂)	2.81 (1Ha, d, 15.7)	52.1
	2.45 (1Hb, <i>d</i> , 15.8)	A hadron of	2.45 (1Hb, <i>d</i> , 15.7)	
4	-	48.5 (C)	-	48.4
5	-	125.1 (C)		125.1
6	2.20-2.38 (2H, <i>m</i>)	23.7 (CH ₂)	2.37 (1Ha, <i>ddd</i> , 6.2, 10, 18)	23.7
			2.25 (1Hb, <i>ddd</i> , 9.2, 1.0, 18)	
7	1.50-1.73 (2H, <i>m</i>)	27.1 (CH ₂)	1.58-1.66 (2H, <i>m</i>)	27.0
8	1.50-1.73 (1H, <i>m</i>)	37.1 (CH)	1.56-1.59 (1H, <i>m</i>)	37.1
9	-	42.4 (C)	-	42.4
10	-	150.4 (C)	-	150.3
11	2.65 (1Ha, <i>d</i> , 16.8)	50.3 (CH ₂)	2.66 (1Ha, d, 16.9)	50.3
	2.72 (1Hb, <i>d</i> , 16.8)	STATL	2.71 (1Hb, <i>d</i> , 16.9)	
12	- / / 8	139.7 (C)	-	139.7
13	-	121.9 (C)	-	121.8
14	7.00 (1H, <i>d</i> , 1.5)	111.0 (CH)	7.00 (1H, <i>s</i>)	111.0
15	7.42 (1H, <i>dd</i> , 0.75, 1.5)	142.7 (CH)	7.43 (1H, <i>s</i>)	142.7
16	8.57 (1H, s)	146.3 (CH)	8.57 (1H, s)	146.3
17	0.97 (3H, <i>d</i> , 6.0)	16.4 (CH ₃)	0.97 (3H, <i>d</i> , 6.2)	16.4
18		174.6 (C)		174.6
19	1.38 (3H, s)	22.3 (CH ₃)	1.38 (3H, <i>s</i>)	22.3
20	0.99 (3H, s)	20.3 (CH ₃)	0.99 (3H, <i>s</i>)	20.3
21	3.57 (3H, <i>s</i>)	52.3 (CH ₃)	3.57 (3H, s)	52.3
		1010		

Table 21 NMR spectral data of compound COC7 and chettaphanin II [49] (CDCl₃)

3.8 Structure Determination of Compound COC8

Compound **COC8** was isolated as pale yellow oil. The HRFABMS spectrum exhibited $[M+H]^+$ at m/z 315.1990 (calcd. 315.1690), indicating a molecular formula of C₂₀H₂₆O₃. The optical rotation was negative, $[\alpha]^{23}{}_{D} - 88.6^{\circ}$ (*c* 0.0017, MeOH). The IR absorption spectrum (**Figure 142**) revealed at v_{max} 3124, 1459 and 873 (furan ring), 1773 and 1290 (ester carbonyl group) cm⁻¹ and the UV absorption at 204 nm (**Figure 141**). The¹H-NMR spectra (**Figure 143-144**) were showed one secondary methyl protons at δ_{H} 0.88 (H₃-17, *d*, *J* = 7.0 Hz) and two tertiary methyl protons at δ_{H} 0.90 (H₃-20, *s*) and 1.31 (H₃-19, *s*), six methylene protons at δ_{H} 1.38-1.46 (Ha-7, *m*), 1.58-1.59 (Ha-11, *m*), 1.61-1.65 (Hb-7, *m*), 1.67-1.76 (Hb-11, *m*), δ_{H} 1.96 (Ha-3, *d*, 11.0 Hz), 1.99-2.21 (H₂-6, *m* and Ha-12, *m*), 2.13 (Hb-3, *dd*, 5.5, 11.0 Hz), 2.27-2.35 (Hb-12, *m*) and 2.39-2.45 (H₂-1, *m*) and two methine protons at δ_{H} 6.40 (H-14, *s*), 7.33 (H-15, *dd*, *J* = 1.5, 1.5 Hz) and 7.19 (H-16, *d*, *J* = 1.0 Hz) were characteristic of a β -substitued furan ring.

The ¹³C-NMR (**Figure 145**) and DEPT135 (**Figure 146** and **Table 22**) spetra showed three methyl carbons, six methylene carbons, five methine carbons and six quaternary carbons. The HMBC spectra (**Figure 148-149**) demonstrated the correlations from δ_H 1.31 (H₃-19) and 1.96 (Ha-3) to δ_C 178.8 (C-18) and from δ_H 2.13 (Hb-3) to δ_C 31.2(C-1), 74.4 (C-2) and 43.5 (C-4), while the ¹H-¹H COSY spectrum (**Figure 150**) showed cross peaks from δ_H 4.81 (H-2) to δ_H 2.13 (Hb-3) and 2.39-2.45 (H₂-1), establishing the first substructure of compound **COC8** as shown below.

The HMBC spectra (**Figure 148** and **149**) revealed the correlations from $\delta_{\rm H}$ 1.31 (H₃-19) and 1.96 (Ha-3) to $\delta_{\rm C}$ 133.5 (C-5), from $\delta_{\rm H}$ 0.90 (H₃-20), 1.58-1.59 (Ha-11), 1.67-1.76 (H-8) and 4.81 (H-2) to $\delta_{\rm C}$ 133.9 (C-10) and from $\delta_{\rm H}$ 0.88 (H₃-17) to $\delta_{\rm C}$ 26.2 (C-7), while the ¹H-¹H COSY spectrum (**Figure 150**) showed cross peaks from $\delta_{\rm H}$ 1.38-1.46 (Ha-7) to 1.67-1.76 (H-8) and 1.99-2.21 (H₂-6), establishing the second substructure of compound **COC8** as shown.

The HMBC spectra (**Figure 148** and **149**) of compound **COC8** showed the correlations from δ_H 2.27-2.35 (Hb-12) to δ_C 37.9 (C-11) and 110.9 (C-14), from δ_H 6.24 (H-14) to δ_C 138.5 (C-16), from δ_H 7.33 (H-15) to 125.3 (C-13) and from δ_H 7.19 (H-16) to 110.9 (C-14), while the ¹H-¹H COSY spectrum (**Figure 150**) showed cross peak from δ_H 6.24 (H-14) to 7.33 (H-15). The construction of the third partial structure was by analyses of the above spectral data.

Combination of these fragments allowed us to deduced compound **COC8** as shown below. The relative stereochemistry of compound **COC8** could not be completely established by application of NOE experiments. We supposed the stereochemistry at $\delta_C 0.88$ (C-17), 0.90 (C-20) and 1.31 (C-19) were *cis* orientation as same as the other diterpene isolates in this plant. Thus, the structure of compound **COC8** was newly assigned as 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo [7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] and has been given the trivial name as chettaphanin V.

	Compound COC8				
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$			
1	2.39-2.45 (2H, <i>m</i>)	31.2 (CH ₂)			
2	4.81 (1H, <i>ddd</i> , 2.5, 2.8, 5.5) **	74.4 (CH)			
3	1.96 (1Ha, d, 11.0) **	41.2 (CH ₂)			
	2.13 (1Hb, <i>dd</i> , 5.5, 11.0) **				
4	- 3.0	43.5 (C)			
5	- Statil	133.5 (C)			
6	1.99-2.21 (2H, <i>m</i>)	24.5 (CH ₂)			
7	1.38-1.46 (1Ha, <i>m</i>)	26.2 (CH ₂)			
	1.61-1.65 (1Hb, <i>m</i>)				
8	1.67-1.76 (1H, <i>m</i>)	32.4 (CH)			
9		39.9 (C)			
10	· ·	133.9 (C)			
11	1.58-1.59 (1Ha, <i>m</i>)	37.9 (CH ₂)			
	1.67-1.76 (1Hb, <i>m</i>)				
12	1.99-2.21 (1Ha, <i>m</i>)	19.1 (CH ₂)			
	2.27-2.35 (1Hb, <i>m</i>)	เมธิภา			
13	6161 1019 9115	125.3 (C)			
14	6.24 (1H, s)	110.9 (CH)			
15	7.33 (1H, <i>dd</i> , 1.5, 1.5)	142.7 (CH)			
16	7.19 (1H, <i>d</i> , 1.0)	138.5 (CH)			
17	0.88 (3H, <i>d</i> , 7.0)	15.7 (CH ₃)			
18	-	178.8 (C)			
19	1.31 (3H, <i>s</i>)	17.0 (CH ₃)			
20	0.90 (3H, <i>s</i>)	21.4 (CH ₃)			

Table 22	NMR spectral	data of compound	COC8	(CDCl ₃)
				() /

** Precise assignment of coupling constant, see; $\delta_{\rm H}$ 1.96 (*d*, $J_{\rm Ha-3, Hb-3}$ = 11.0 Hz), 2.13 (*dd*, $J_{\rm Hb-3, Ha-3}$ = 11.0 Hz, $J_{\rm Hb-3, H-2}$ = 5.5 Hz), 4.81 (*ddd*, $J_{\rm H-2, Hb-3}$ = 5.5 Hz, $J_{\rm H-2, Ha-1}$ and $H_{\rm b-1}$ = 2.5 and 2.8 Hz)

3.9 Structure Determination of Compound COC9

Compound **COC9** was obtained as yellow solid with m.p. 103-105 °C. It showed $[M+H]^+$ ion at m/z 329.1727 (calcd. 329.1753) in HRFABMS, corresponding to the molecular formula $C_{20}H_{24}O_4$. The IR spectrum (**Figure 153**) showed absorption bands due to a keto carbonyl (1671 cm⁻¹), a lactone ring (1757, 1276 cm⁻¹) and a furan ring (3122, 1509, 872 cm⁻¹) and the UV absorption at 230 nm (**Figure 152**). The optical rotation was negative, $[\alpha]^{23}_{D} - 151.5^{\circ}$ (*c* 0.017, CHCl₃).

The ¹H NMR spectra (**Figure 154-155**) showed one secondary methyl proton at $\delta_{\rm H}$ 0.86 (H₃-17, *d*, *J* = 7.0 Hz), two tertiary methyl protons at $\delta_{\rm H}$ 1.07 (H₃-20, *s*) and 1.32 (H₃-19, *s*), five methylene proton at $\delta_{\rm H}$ 1.42-1.49 (Ha-7, *m*), 1.74-1.81 (Hb-7, *m*), 1.93 (Ha-3, *d*, *J* = 11.0 Hz), 2.10-2.19 (H₂-6, *m*), 2.13 (Hb-3, *dd*, *J* = 6.0, 11.0 Hz), 2.33 (Ha-1, *dd*, *J* = 2.7, 17.9 Hz), 2.40 (Hb-1, *dddd*, *J* = 2.5, 2.8, 2.8, 17.9 Hz), 2.74 (Ha-11, *d*, *J* = 15.5 Hz) and 2.85 (Hb-11, *d*, *J* = 15.5 Hz) and five methine protons, three of which at $\delta_{\rm H}$ 6.73, 7.41 and 7.95 were assigned to be a furan ring signals for H-14, H-15 and H-16, respectively and the other at $\delta_{\rm H}$ 2.01-2.08 (H-8, *m*) and 4.76 (H-2, *ddd*, 2.7, 2.8, 6.0 Hz).

The ¹³C-NMR spectrum (**Figure 156**) and DEPT135 experiments (**Figure 157** and **Table 23**) showed three methyl carbons, five methylene carbons, five methine carbons, and seven quaternary carbons. The HMBC spectra (**Figure 159-160**) demonstrated the correlations from H₃-19 ($\delta_{\rm H}$ 1.32) and Ha-3 ($\delta_{\rm H}$ 1.93) to C-18 ($\delta_{\rm C}$ 178.3) and from Hb-3 ($\delta_{\rm H}$ 2.13) to C-2 ($\delta_{\rm C}$ 74.0) and C-4 ($\delta_{\rm C}$ 43.6), while the ¹H-¹H COSY spectrum (**Figure 161**) displayed a cross peak from H-2 ($\delta_{\rm H}$ 4.76) to Hb-3 ($\delta_{\rm H}$ 1.93), establishing the first substructure of compound **COC9** as shown below.

The HMBC spectra (**Figure 159-160**) revealed correlations from H₃-20 ($\delta_{\rm H}$ 1.07) to C-10 ($\delta_{\rm C}$ 132.4) and C-8 ($\delta_{\rm C}$ 33.2), from H₃-17 ($\delta_{\rm H}$ 0.86) to C-7 ($\delta_{\rm C}$ 25.5) and C-9 ($\delta_{\rm C}$ 40.3), from Ha-7 ($\delta_{\rm H}$ 1.42-1.49) to C-9 ($\delta_{\rm C}$ 40.3), C-6 ($\delta_{\rm C}$ 22.2) and C-5 ($\delta_{\rm C}$ 132.1), from H₂-6 ($\delta_{\rm H}$ 2.10-2.19) to C-4 ($\delta_{\rm C}$ 43.6), from H₃-19 ($\delta_{\rm H}$ 1.32), Ha-3 ($\delta_{\rm H}$

1.93) and Hb-3 ($\delta_{\rm H}$ 2.13) to C-5 ($\delta_{\rm C}$ 132.1), from H-2 ($\delta_{\rm H}$ 4.76) to C-10 ($\delta_{\rm C}$ 132.4) and from Ha-1 ($\delta_{\rm H}$ 2.33) to C-2 ($\delta_{\rm C}$ 74.0), while ¹H-¹H COSY spectrum (**Figure 161**) revealed the correlation from Ha-1 ($\delta_{\rm H}$ 2.33) to H-2 ($\delta_{\rm H}$ 4.76) and from H₂-6 ($\delta_{\rm H}$ 2.10-2.19) to Ha-7 ($\delta_{\rm H}$ 1.42-1.49). Therefore, the second substructure of compound **COC9** was assembled as shown.

The HMBC spectra (**Figure 159-160**) displayed the correlations from H₃-20 ($\delta_{\rm H}$ 1.07) to C-11 ($\delta_{\rm C}$ 47.7), from Ha-11 ($\delta_{\rm H}$ 2.74) and Hb-11 ($\delta_{\rm H}$ 2.85) to C-8 ($\delta_{\rm C}$ 33.2), C-9 ($\delta_{\rm C}$ 40.3), C-10 ($\delta_{\rm C}$ 132.4), C-12 ($\delta_{\rm C}$ 193.6) and C-20 ($\delta_{\rm C}$ 21.9). A typical of furan ring was found in compound **COC9**, exhibiting three olefinic protons at $\delta_{\rm H}$ 6.73, 7.41 and 7.95 (H-14, H-15 and H-16), the HMBC spectra revealed the correlations from H-14 ($\delta_{\rm H}$ 6.73) to C-16 ($\delta_{\rm C}$ 147.6), from H-15 ($\delta_{\rm H}$ 7.41) to C-13 ($\delta_{\rm C}$ 129.3) and from H-16 ($\delta_{\rm H}$ 7.95) to C-14 ($\delta_{\rm C}$ 108.7), while ¹H-¹H COSY spectrum (**Figure 161**) showed cross peak between H-14 ($\delta_{\rm H}$ 6.73) and H-15 ($\delta_{\rm H}$ 7.41). Based on these spectral data, the third substructure was created as shown.

The NOE experiments (**Figure 162**) indicated interactions of H₃-17 ($\delta_{\rm H}$ 0.86) with H₃-20 ($\delta_{\rm H}$ 1.07), Ha-7 ($\delta_{\rm H}$ 1.42-1.49) and Hb-11 ($\delta_{\rm H}$ 2.85); from these interactions, the absence of the other significant interactions, biosynthetic considerations and the agreement of the crystal structure of compound **COC10**, which

was also isolated in this study, we assigned the relative configuration of three methyl groups as *cis* orientation.

A gross structure of compound **COC9** was assembled by the combination of these substructures, leading to newly identify as 6-[2-(furan-3-yl)-2-oxoethyl-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [**63**] and has been given name as chettaphanin VI.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	Compound COC9				
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$			
1	2.33 (1Ha, dd, 2.7, 17.9) **	31.6 (CH ₂)			
	2.40 (1Hb, <i>dddd</i> , 2.5, 2.8, 2.8, 17.9) **				
2	4.76 (1H, <i>ddd</i> , 2.7, 2.8, 6.0) **	74.0 (CH)			
3	1.93 (1Ha, <i>d</i> , 11.0) **	41.1 (CH ₂)			
	2.13 (1Hb, dd, 6.0, 11.0) **				
4	-	43.6 (C)			
5	-	132.1 (C)			
6	2.10-2.19 (2H, <i>m</i>)	22.2 (CH ₂)			
7	1.42-1.49 (1Ha, <i>m</i>)	25.5 (CH ₂)			
	1.74-1.81 (1Hb, <i>m</i>)				
8	2.01-2.08 (1H, <i>m</i>)	33.2 (CH)			
9	-2.0	40.3 (C)			
10	- 33234	132.4 (C)			
11	2.74 (1Ha, d, 15.5)	47.7 (CH ₂)			
	2.85 (1Hb, <i>d</i> , 15.5)				
12	A Contraction and a second as a	193.6 (C)			
13	1-71WILK-911-11-5	129.3 (C)			
14	6.73 (1H, <i>dd</i> , 1.0, 2.0)	108.7 (CH)			
15	7.41 (1H, <i>dd</i> , 1.5, 2.0)	144.2 (CH)			
16	7.95 (1H, <i>dd</i> , 0.5, 1.5)	147.6 (CH)			
17	0.86 (3H, <i>d</i> , 7.0)	15.2 (CH ₃)			
18		178.3 (C)			
19	1.32 (3H, <i>s</i>)	16.5 (CH ₃)			
20	1.07 (3H, s)	21.9 (CH ₃)			

 Table 23 NMR spectral data of compound COC9 (CDCl₃)

** Precise assignment of coupling constant, see; $\delta_{\rm H}$ 1.93 (*d*, $J_{\rm Ha-3, Hb-3}$ = 11.0 Hz), 2.13 (*dd*, $J_{\rm Hb-3, Ha-3}$ = 11.0 Hz, $J_{\rm Hb-3, H-2}$ = 6.0 Hz), 2.33 (*dd*, $J_{\rm Ha-1, Hb-1}$ = 17.9 Hz, $J_{\rm Ha-1, H-2}$ = 2.7 Hz), 2.40 (*dddd*, $J_{\rm Hb-1, Ha-1}$ = 17.9 Hz, $J_{\rm Hb-1, H-2}$ = 2.8 Hz, $J_{\rm Hb-1, Hb-3}$ = 2.8 Hz, $J_{\rm Hb-1, H-6}$ = 2.5 Hz), 4.76 (*ddd*, $J_{\rm H-2, Hb-3}$ = 6.0 Hz, $J_{\rm H-2, Ha-1}$ = 2.7 Hz, $J_{\rm H-2, Hb-1}$ = 2.8 Hz)

3.10 Structure Determination of Compound COC10

Compound COC10, white crystals with m.p. 157-159 °C, showed a protonated molecular ion $[M+H]^+$ at m/z 375 in FAB mass spectrum (Figure 163), corresponding to the molecular formular $C_{21}H_{26}O_6$. The UV spectrum (Figure 164) showed absorption at λ_{max} 248 nm. The IR bands (Figure 165) of a hydroxyl group (3423 cm⁻¹), a keto carbonyl groups (1653 cm⁻¹), an ester carbonyl group (1731 and 1281 cm⁻¹) and a furan ring (3140, 1462 and 997 cm⁻¹) were observed. The ¹H-NMR spectra (Figure 166-167) revealed four methyl protons at $\delta_{\rm H}$ 0.84 (H₃-17, d, J = 6.5 Hz), 1.14 (H₃-20, s), 1.32 (H₃-19, s) and 3.66 (H₃-21, s), four methylene protons at $\delta_{\rm H}$ 1.45 (Ha-7, dddd, J = 3.0, 3.5, 4.0, 14.0 Hz), 1.72 (Hb-7, dddd, J = 3.0, 14.0, 14.0, 14.0 Hz), 1.96 (Ha-6, ddd, J = 3.0, 3.0, 14.0 Hz), 2.31 (Hb-6, ddd, J = 4.0, 14.0, 14.0) Hz), 2.47 (Ha-3, d, J = 17.0 Hz), 2.67 (Hb-3, d, J = 17.0 Hz), 3.09 (Ha-11, d, J = 19.0 Hz) and 3.23 (Hb-11, d, J = 19.0 Hz), five methine protons; three protons of which showed a characteristic furan protons at $\delta_{\rm H}$ 6.61, 7.37 and 7.97 (1H each, H-14, H-15 and H-16), the other signals at $\delta_{\rm H}$ 2.15 (H-8, m) and 5.76 (H-1, s) and one hydroxyl proton at $\delta_{\rm H}$ 2.44. The ¹³C-NMR (Figure 168) and DEPT135 (Table 24) spectra showed four methyl carbons, four methylene carbons, five methine carbons and eight The HMBC spectrum of compound COC10 (Figure 170) quaternary carbons. demonstrated the correlations from $\delta_{\rm H}$ 5.76 (H-1) to $\delta_{\rm C}$ 41.1 (C-9), 43.2 (C-3), 72.4 (C-5) and 198.1 (C-2), from δ_H 2.47 (Ha-3) and 2.67 (Hb-3) to δ_C 19.4 (C-19), 72.4 (C-5), 174.6 (C-18) and 198.1 (C-2), from $\delta_{\rm H}$ 1.32 (H₃-19) to $\delta_{\rm C}$ 43.2 (C-3), 72.4 (C-5) and 174.6 (C-18), from $\delta_{\rm H}$ 1.96 (Ha-6), 2.31 (Hb-6) and 1.14 (H₃-20) to $\delta_{\rm C}$ 35.1 (C-8), from $\delta_{\rm H}$ 1.45 (Ha-7) to $\delta_{\rm C}$ 16.7 (C-17), from $\delta_{\rm H}$ 0.84 (H₃-17) to $\delta_{\rm C}$ 25.0 (C-7) and 35.1 (C-9) and from $\delta_{\rm H}$ 2.15 (H-8) to $\delta_{\rm C}$ 31.6 (C-6) and 25.8 (C-20), while the ¹H-¹H COSY spectrum (Figure 171) showed cross peaks from δ_H 1.45 (Ha-7) and 1.72 (Hb-7) to $\delta_{\rm H}$ 1.96 (Ha-6), 2.31 (Hb-6) and 2.15 (H-8). These spectral data assisted in the construction of the first partial structure of compound COC10 as shown.

The HMBC spectrum of compound **COC10** (Figure 170) appeared the correlations from $\delta_H 3.09$ (Ha-11) and 3.23 (Hb-11) to $\delta_C 25.8$ (C-20), 35.1 (C-8) and 190.9 (C-12), from $\delta_H 3.09$ (Ha-11) to $\delta_C 167.8$ (C-10), from $\delta_H 6.61$ (H-14) to $\delta_C 146.3$ (C-16), from $\delta_H 7.37$ (H-15) to $\delta_C 127.9$ (C-13) and from $\delta_H 7.97$ (H-16) to $\delta_C 108.3$ (C-14), along with the ¹H-¹H COSY correlation (Figure 171) between $\delta_H 6.61$ (H-14) and 7.37 (H-15). The construction of the second partial structure was by analyses of the above spectral data.

A gross structure of compound **COC10** was assembled by combination of the two partial structures and comparison with the previous report (Marcos *et al.*, 2003). Thus, compound **COC10** was identified as chettaphanin I [48], which was previously isolated from *Adenochleana siamensis* (Sato *et al.*, 1970) and *Croton crassifolius* (Boonyarathanakornkit *et al.*, 1988).

Although the structure of this compound was determined spectroscopically and chemically, the stereochemistry was unknown even by X-ray crystallography (Marcos *et al.*, 2003). In this study, NOE experiments (**Figure 172**) indicated interactions from H₃-20 ($\delta_{\rm H}$ 1.14) with H-1 ($\delta_{\rm H}$ 5.76), OH-5 ($\delta_{\rm H}$ 2.44) and H₃-17 ($\delta_{\rm H}$ 0.84) and from H₃-19 ($\delta_{\rm H}$ 1.32) with OH-5 ($\delta_{\rm H}$ 2.44). Additionally, we succeeded in preparing a single crystal of compound **COC10** carrying CHCl₃ in its molecule by recrystallization from hexane-CHCl₃. The X-ray crystallographic analysis (**Figure** **173** and **Table 25-30**) of the CHCl₃-contained crystal indicated that the reported stereochemistry of compound **COC10** including absolute configurations at C-4, C-5, C-8 and C-9 is in the *S*, *S*, *R*, *S* configuration.

Figure 173 ORTEP drawing of compound COC10. The chloroform molecule is omitted for clarity.

	Compound COC10	Chettaphanin I [48]		
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C} (\rm ppm)^{\#}$	$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
1	5.76 (1H, <i>s</i>)	125.4 (CH)	5.84 (1H, <i>s</i>)	125.6
2	-	198.1 (C)	-	197.6
3	2.47 (1Ha, d, 17.0)	43.2 (CH ₂)	2.57 (1Ha, d, 17.4)	43.1
	2.67 (1Hb, <i>d</i> , 17.0)		2.69 (1Hb, <i>d</i> , 17.4)	
4	-	53.0 (C)	-	52.9
5	-	72.4 (C)	-	72.7
6	1.96 (1Ha, <i>ddd</i> , 3.0, 3.0, 14.0)	31.6 (CH ₂)	2.00 (1Ha, <i>ddd</i> , 3.0, 3.0, 14.0)	31.8
	2.31 (1Hb, <i>ddd</i> , 4.0, 14.0, 14.0)		2.40 (1Hb, <i>ddd</i> , 3.6, 14.0, 14.0)	
7	1.45 (1Ha, <i>dddd</i> , 3.0, 3.5, 4.0, 14.0)	25.0 (CH ₂)	1.2-1.3 (1H, <i>m</i>)	25.0
	1.72 (1Hb, <i>dddd</i> , 3.0, 14.0, 14.0, 14.0)		1.5-1.8 (1H, <i>m</i>)	
8	2.15 (1H, <i>m</i>)	35.1 (CH)	2.40 (1H, <i>m</i>)	35.2
9		41.1 (C)	-	41.2
10	- 100200	167.8 (C)	-	167.4
11	3.09 (1Ha, <i>d</i> , 19.0)	47.7 (CH ₂)	3.14 (1Ha, <i>d</i> , 18.0)	47.8
	3.23 (1Hb, <i>d</i> , 19.0)		3.25 (1Hb, <i>d</i> , 18.0)	
12	- Detablistic i Prin	190.9 (C)	-	190.8
13		127.9 (C)	-	127.6
14	6.61 (1H, <i>dd</i> , 0.5, 2.0)	108.3 (CH)	6.64 (1H, <i>s</i>)	108.3
15	7.37 (1H, <i>dd</i> , 1.5, 1.5)	144.0 (CH)	7.41 (1H, <i>s</i>)	144.1
16	7.97 (1H, <i>s</i>)	146.3 (CH)	7.98 (1H, s)	146.3
17	0.84 (3H, <i>d</i> , 6.5)	16.7 (CH ₃)	0.89 (3H, <i>d</i> , 6.8)	16.7
18		174.6 (C)	-	174.5
19	1.32 (3H, <i>s</i>)	19.4 (CH ₃)	1.38 (3H, <i>s</i>)	19.4
20	1.14 (3H, s)	25.8 (CH ₃)	1.20 (3H, <i>s</i>)	25.9
21	3.66 (3H, <i>s</i>)	52.3 (CH ₃)	3.71 (3H, s)	52.4
OH-5	2.44 (1H, s)	หาวง	ายาลย	

Table 24 NMR spectral data of compound COC10 and chettaphanin I (CDCl₃)

3.11 Structure Determination of Compound COC11

Compound COC11 was isolated as white solid with m.p. 161-163 °C. The FABMS spectrum (Figure 174) showed $[M+H]^+$ at m/z 235, harmonizing with the molecular formula C₁₅H₂₂O₂. The UV absorptions at 241 nm suggested the presence of such a conjugated chromophore in compound COC11 (Figure 175). The IR absorption peaks (Figure 176) at 3200-2400 cm⁻¹ and 1672 cm⁻¹ revealed a carboxylic acid group. The ¹H-NMR spectrum (Figure 177) showed signals for methyl, methylene and methine of alicyclic at $\delta_{\rm H}$ 0.82-2.84. The ¹³C-NMR (Figure 178) and DEPT135 (**Table 31**) spectra displayed 15 signals; three methyl carbons ($\delta_{\rm C}$ 18.0, 19.3 and 26.2), five methylene carbons (δ_{C} 25.7, 26.9, 27.9, 31.3 and 36.3), two methine carbons (δ_c 36.0 and 48.1) and two quaternary carbons (δ_c 41.7 and 68.2), in addition to two olefinic carbons ($\delta_{\rm C}$ 123.1 and 173.1) and a carboxylic acid moiety ($\delta_{\rm C}$ 170.9). The HMBC spectrum of compound COC11 (Figure 180) demonstrated the correlations from δ_H 0.89 (H₃-15) and 2.67-2.84 (H₂-3) to δ_C 68.2 (C-1), from δ_H 1.49-1.56 (Ha-2) and 2.24 (Ha-6) to $\delta_{\rm C}$ 123.1 (C-4), from $\delta_{\rm H}$ 1.76 (Hb-2), 2.67-2.84 (H₂-3) and 2.06 (H-10) to δ_C 173.1 (C-5) and from δ_H 2.67-2.84 (H₂-3) to δ_C 170.9 (C-14), in addition to the ¹H-¹H COSY spectrum of compound COC11 (Figure 181), displaying a correlation between $\delta_{\rm H}$ 1.76 (Hb-2) to $\delta_{\rm H}$ 2.67-2.84 (H₂-3). Therefore the first fragment of compound COC11 is assembled as shown.

The ¹H-¹H COSY spectrum of compound **COC11** (Figure 181) demonstrated for the cross peak of methylene proton from $\delta_{\rm H}$ 2.67-2.84 (Hb-6) to 1.96 (H-7). The HMBC spectrum of compound **COC11** (Figure 180) showed the correlations from $\delta_{\rm H}$ 0.82 (H₃-13) and 0.99 (H₃-12) to $\delta_{\rm C}$ 68.2 (C-1), from $\delta_{\rm H}$ 1.76 (Hb-2) and 2.24 (Ha-6) to $\delta_{\rm C}$ 41.7 (C-11), from $\delta_{\rm H}$ 0.99 (H₃-12) and 0.82 (H₃-13) to $\delta_{\rm C}$ 48.1 (C-7), from $\delta_{\rm H}$ 0.99 (H₃-12) and 1.96 (H-7) to $\delta_{\rm C}$ 26.2 (C-13), from $\delta_{\rm H}$ 0.82 (H₃-13) and 1.96 (H-7) to $\delta_{\rm C}$ 19.3 (C-12) and from $\delta_{\rm H}$ 1.96 (H-7) to $\delta_{\rm C}$ 173.1 (C-5).

Based on these spectral data the second substructure of compound **COC11** is proposed as shown below.

The ¹H-¹H COSY spectrum of compound **COC11** (**Figure 181**) displayed a cross peak from δ_H 1.36 (Ha-8) to 1.12 (Ha-9), while the HMBC correlations from δ_H 1.12 (Ha-9) to δ_C 68.2 (C-1), from δ_H 2.06 (H-10) to δ_C 41.7 (C-11), from δ_H 1.89 (Hb-8) to δ_C 31.3 (C-6), 41.7 (C-11) and 36.0 (C-10) and from δ_H 2.24 (Ha-6) to δ_C 26.9 (C-8). Therefore the third partial structure is created as shown below.

Combination of the first, the second, and the third fragments established a gross structure of compound **COC11**. The relative configuration of compound **COC11** was assumed to be the same as that previously reported (Jacobs *et al.*, 1987) due to the same negative rotations { $[\alpha]^{23}_{D} - 7.8^{\circ}$ (*c* 0.08, CHCl₃)} observed. In addition, this assumption was confirmed by NOE experiments (**Figure 182**) on irradiation at δ_{H} 2.06 (H-10), in which an enhancement was observed at δ_{H} 0.99 (H₃-12). When methyl proton at δ_{H} 0.99 (H₃-12) was irradiated, the enhancement was observed at δ_{H} 0.82 (H₃-13) and 2.06 (H-10). By analysis of the above spectroscopic data and comparison of its ¹H- and ¹³C-NMR data with the previous report. Compound **COC11** was identified as patchoulane type sesquiterpene, namely cyperenoic acid [64] which is a known substance previously isolated from *Sandwithia guyanensis* (Jacobs, Lachmansing and Ramdayal, 1987) and *Croton crassifolius* (Boonyaratavej and Roengsumran, 1988)

 Table 31 NMR spectral data of compound COC11 and cyperenoic acid (CDCl3)

	Compound COC11	Cyperenoic	acid	
position	δH (ppm), J (Hz) $ δC ($		$\delta_{\rm H}$ (ppm), J (Hz)	δ_{C} (ppm)
1	- // /	68.2 (C)	-	68.2
2	1.49-1.56 (1Ha, <i>m</i>)	25.7 (CH ₂)	1.53 (1H)	25.7
	1.76 (1Hb, <i>ddd</i> , 9.8, 9.8, 13.3)		1.75 (1H)	
3	2.67-2.84 (2H, <i>m</i>)	36.3 (CH ₂)	2.69 (1H)	36.3
			2.79 (1H)	
4	-	123.1 (C)	-	123.1
5	- 3.500	173.1 (C)	-	173.2
6	2.24 (1Ha, brd, 20.0)	31.3 (CH ₂)	2.25 (1H)	31.3
	2.67-2.84 (1Hb, <i>m</i>)		2.76 (1H)	
7	1.96 (1H, <i>dd</i> , 3.0, 3.5)	48.1 (CH)	1.95 (1H)	48.1
8	1.36 (1Ha, <i>dddd</i> , 3.0, 6.0, 6.0, 6.0)	26.9 (CH ₂)	1.30 (1H)	26.9
	1.89 (1Hb, <i>m</i>)		1.88 (1H)	
9	1.12 (1Ha, <i>m</i>)	27.9 (CH ₂)	1.11 (1H)	27.9
	1.49-1.56 (1Hb, <i>m</i>)		1.51 (1H)	
10	2.06 (1H, <i>m</i>)	36.0 (CH)	2.07 (1H)	36.0
11	<u> </u>	41.7 (C)	-	41.7
12	0.99 (3H, <i>s</i>)	19.3 (CH ₃)	0.99 (3H)	19.3
13	0.82 (3H, <i>s</i>)	26.2 (CH ₃)	0.82 (3H)	26.2
14	ฟาวงเจรณ์แ	170.9 (C)	101220	170.9
15	0.89 (3H, <i>d</i> , 6.5)	18.0 (CH ₃)	0.82 (3H)	18.0

4. Biological Activities of Isolated Compounds

The results of biological activities including cytotoxic and antimycobacterial activities are shown in **Tables 32** and **33**.

4.1 Biological Activities of the Compounds from Pterocaulon redolens

Compounds **PRC1**, **2**, **3**, **4**, **6** and **7** and **PRB 8** and **9** have displayed mild antimycobacterial activity toward *Mycobacterium tuberculosis* H37Ra and compound **PRB10** exhibited moderate cytotoxicity to BC and NCI-H187 cell line. These results are shown in **Table 32**.

4.2. Biological Activities of the Compounds from Cladogynos orientalis

Compounds COC6, 7 and 8 possessed weak to moderate cytotoxicity, while all isolates showed mild antimycobacterial activity toward *Mycobacterium tuberculosis* H37Ra except compound COC5. These results are demonstrated in Table 33.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

		~			
		Cytot	oxicity		Antimycobacterial activity "
compounds	$IC_{50}(\mu g/mL)^*$			MIC (µg/mL)	
	Vero cell	KB ^{<i>a</i>}	BC ^b	NCI-H 187 ^c	
PRC1	> 50	> 20	> 20	> 20	200
PRC2	> 50	> 20	> 20	> 20	200
PRC3	> 50	> 20	> 20	> 20	100
PRC4	> 50	> 20	> 20	> 20	100
PRC5	> 50	> 20	> 20	> 20	inactive
PRC6	> 50	> 20	> 20	> 20	200
PRC7	> 50	> 20	> 20	> 20	200
PRC8	> 50	> 20	> 20	> 20	100
PRC9	> 50	> 20	> 20	> 20	100
PRC10	> 50	> 20	5.5	9.3	inactive

 Table 32 Biological activities of isolated compounds of Pterocaulon redolens.

^a KB; Human epidermoid carcinoma cell lines of nasopharynx

^b BC; Human breast cancer cell lines

^c NCI-H 187; Human small cell lung cancer cell lines

^d Antimycobacterial activity against *Mycobacterium tuberculosis* H37Ra

IC₅₀; Inhibition Concentration at 50%

* $IC_{50} (\mu g/mL) > 20$; inactive

10-20; weakly active

5-10; moderately active

< 5; strongly active

MIC; Minimun Inhibition Concentration

		~			
	Cytotoxicity			Antimycobacterial activity "	
compounds	$IC_{50} (\mu g/mL)^*$			MIC (µg/mL)	
	Vero cell	KB ^{<i>a</i>}	BC ^b	NCI-H 187 ^c	
COC1	> 50	> 20	> 20	> 20	200
COC2	> 50	> 20	> 20	> 20	50
COC3	> 50	> 20	> 20	> 20	50
COC4	> 50	> 20	> 20	> 20	200
COC5	> 50	> 20	> 20	> 20	inactive
COC6	> 50	> 20	> 20	12.2	100
COC7	> 50	> 20	> 20	17.4	100
COC8	> 50	17.1	15.8	8.3	100
COC9	> 50	> 20	> 20	> 20	200
COC10	> 50	> 20	> 20	> 20	200
COC11	> 50	> 20	> 20	> 20	100

 Table 33 Biological activities of isolated compounds of Cladogynos orientalis.

^{*a*} KB; Human epidermoid carcinoma cell lines of nasopharynx

^{*b*} BC; Human breast cancer cell lines

^c NCI-H 187; Human small cell lung cancer cell lines

^d Antimycobacterial activity against Mycobacterium tuberculosis H37Ra

IC₅₀; Inhibition Concentration at 50%

* IC₅₀ (μ g/mL) > 20; inactive

10-20; weakly active

5-10; moderately active

< 5; strongly active

MIC; Minimun Inhibition Concentration

CHAPTER V

CONCLUSION

In this investigation, from the aerial parts of *Pterocaulon redolens* (Forst. f) F. Vill, a new natural product, namely 2',3'-dihydroxypuberulin [**52**], was isolated along with 9 known compounds. These known compounds are 5-methoxy-6,7-methylenedioxycoumarin [**9**], ayapin [**10**], puberulin [**50**], 5-methoxyscopoletin [**51**], isofraxidin [**53**], sabandinol [**23**], luteolin [**54**], tomentin [**55**] and chrysosplenol C [**35**]. Chrysosplenol C [**35**] possessed moderate cytotoxicity against human breast cancer (BC) and human small cell lung cancer (NCI-H187) cell lines with IC₅₀ 5.5 and 9.3 µg/mL, respectively.

Chemical examination of the roots of *Cladogynos orientalis* Zipp. ex Span. led to isolation of 5 new compounds, namely ($4S^*$, $7R^*$, $8R^*$, $10S^*$)-8-hydroxy- α -guaiene [56], 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-otahydronaphthalene-1carboxylic acid [58], methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo [5.3.3.0^{1,6}]trideca-5,8-diene-2-carboxylate [**59**], 6-[2-(furan-3-yl)ethyl]-1,5,6trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] and 6-[2-(furan-3-yl)-2oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [63] along with 6 known compounds. These known compounds are chettaphanin I [48], chettaphanin II [49], spathulenol [57], acetoxyaleuritolate [60], taraxerol [61] and cyperenoic acid [64]. Chettaphanin II [49], taraxerol [61] and 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] showed mild to moderate cytotoxicity to NCI-H187 cell line with IC₅₀ 17.4, 12.2 and 8.3 µg/mL, respectively. Additionally, 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0^{2,7}]dodec-2(7)-en-11-one [62] possessed mild cytotoxicity to KB and BC cell lines with IC₅₀ 17.1 and 15.8 µg/mL, respectively. All of 21 isolated compounds showed mild antimycobacterial activity toward Microbacterium tuberculosis H37Ra (MIC 50-200 µg/mL) except chrysosplenol C [35], 2,3'-dihydroxypuberulin [52] and acetoxyaleuritolate [60]. The structures of some isolated compounds were revised and completed by ¹H- and ¹³C-NMR assignments.

REFERENCES

- Adam, R. P. 1995. <u>Identification of essential oil components by Gas</u> <u>Chromatography/Mass Spectrometry.</u> Illinois, USA: Allured Publishing Corporation.
- Agrawal, P. K. 1989. <u>Carbon-13 NMR of flavonoids</u>. Amsterdam, Oxford, New York, Tokyo: Elsevier.
- Bohlmann, F., Abraham, W. R., King, R. M., and Robison, H. 1981. Thiophene acetylenes and flavonoids from *Pterocaulon virgatum*. <u>Phytochemistry</u> 20: 825-827.
- Boonyaratavej, S., and Roengsumran, S. 1988. X-ray structure of cyperenoic acid from *Croton crassifolius*. J. Nat. Prod. 51: 769-770.
- Boonyaratthanakornkit, L., Che, C. T., Fong, H. H. S., and Farnsworth, N. 1988. Constituents of *Croton crassifolius* roots. <u>Planta Med.</u> 74: 61-63.
- Buckingham, J. 2001. Dictionary of Natural Products [Computer software]. Chapman&Hall/CRC netbase.
- Cardona, L., Garcia, B., Pedro, J. R., and Perez, J. 1992. 6-Prenyloxy-7-methyoxy-coumarin, a coumarin-hemiterpene ether from *Carduus tenuiflorus*.
 <u>Phytochemistry</u> 31: 3989-3991.
- Carpenter, R. C., Sotheeswaran, S., Sultanbawa, M. U. S., and Balasubramaniam, S. 1980. Triterpenes of five Euphorbiaceae species of Sri Lanka. <u>Phytochemistry</u> 19: 1171-1174.
- Carpenter, R. C., Sotheeswaran, S., Sultanbawa, M. U. S., and Ternai, B. 1980. ¹³C NMR studies of some lupane and taraxerane triterpenes. <u>Org. Magn. Reson.</u> 14: 462-465.
- Collin, L. A., and Franzblau, S. G. 1997. Microplate Alamar Blue Assay versus BACTEC460 system for high-throughput screening of compound against *Mycobacterium tuberculosis* and *Mycobacterium avium*. <u>Antimicrob. Agents</u> <u>Chemother</u>. 41: 1004-1009.
- Corbett, R. E., Cumming, S. D. 1972. Lichens and fungi. J. Chem. Soc. Perkin <u>Trans. I</u> 2827-2829.
- Debenedetti, S. L., Kimpe, N. D., Boeykens, M., Coussio, J. D., and Kesteleyn, B.
 1997. Structure revision of four coumarins from *Pterocaulon* species.
 <u>Phytochemistry</u> 45: 1515-1517.

- Debenedetti, S. L., Nadinic, E. L., Coussio, J. D., Kimpe, N. D., and Boeykens, M.
 1998. Two 6,7-dioxygenated coumarins from *Pterocaulon virgatum*.
 <u>Phytochemistry</u> 48: 707-710.
- Debenedetti, S. L., Nadinic, E. L., Coussio, J. D., Kimpe, N. D., Dupont, J. F., and Declercq, J. P. 1991. Purpurenol, a highly oxygenated coumarin from *Pterocaulon purpurascens*. <u>Phytochemistry</u> 30: 2757-2758.
- Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., and Coussio, J. D. 1987.
 Polyphenols isolated from *Pterocaulon purpurascens*, 6-hydroxyflavonoids.
 <u>J. Nat. Prod.</u> 50: 512-513.
- Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., Coussio, J. D., Kimpe, N. D., and Boeykens, M. 1992. Purpurasol, a highly oxygenated coumarin from *Pterocaulon purpurascens*. <u>Phytochemistry</u> 31: 3284-3285.
- Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., Coussio, J. D., Kimpe, N. D., and Boeykens, M. 1996. Purpurasolol, a highly oxygenated coumarin from *Pterocaulon purpurascens*. <u>Phytochemistry</u> 42: 563-564.
- Debenedetti, S. L., Palacios, P. S., Nadinic, E. L., and Coussio, J. D. 1994. 5-(3methyl-2-butenyloxy)-6,7-Methylenedioxycoumarin, a 5,6,7-trioxygenated coumarin from *Pterocaulon virgatum*. J. Nat. Prod. 57: 1539-1542.
- Debenedetti, S. L., Tehrani, K. A., Puyvelde, L. V., and Kimpe, N. D. 1999.
 Isopurpurasol, a coumarin from *Pterocaulon virgatum*. <u>Phytochemistry</u> 51: 701-703.
- Finkelstein, N., and Rivett, D. E. A. 1976. Puberulin, a new prenyloxy coumarin from *Agathosma puberula*. <u>Phytochemistry</u> 15: 1080-1081.
- Gonzalez, A. G., Esteuez, R., Arencibia, J. B., and Perez, T. R. 1973. Nuevas fuentes de cumarinas naturals. <u>An. Quim.</u> 69: 1141-1147.
- Inagaki, F., and Abe, A. 1985. Analysis of ¹H and ¹³C Nuclear Magnetic Resonance spectra of spathulenol by two-dimensional methods. <u>J. Chem. Soc. Perkin</u> <u>Trans. II</u> 1773-1785.
- Iwabuchi, H., Yoshikura, M., and Kamisako, W. 1989. Studies on the sesquiterpenoids of *Panax ginseng* C. A. Meyer. III. <u>Chem. Pharm. Bull</u>. 37: 509-510.

- Jackson, G. E., Campbell, W. E., and Davidowitz, B. 1990. Two dimension NMR study of some natural coumarins. <u>Spectroscopy Lett</u>. 23: 359-367.
- Jacobs, H., Lachmansing, S. S., Ramdayal, F. 1987. Applications of 2D-NMR spectroscopy to phytochemical studies: cyperenol and cyperenoic acid. <u>J. Nat.</u> <u>Prod.</u> 50: 835-842.
- Johns, S. R., Lamberton, J. A., Price, J. R., and Sioumis, A. A. 1968. Identification of coumarins isolated from *Lepiniopsis ternatensis* (Apocynaceae), *Pterocaulon sphacelatum* (Compositae) and *Melicope melanophloia* (Rutaceae). <u>Aust. J. Chem</u>. 21: 3079-3080.
- Koyama, H. 1984. Taxonomic studies in the Compositae of Thailand. <u>Acta</u> <u>Phytotax. Geobot.</u> 15: 124.
- Macleod, J. K., and Rasmussen, H. B. 1999. A hydroxy-β-caryophyllene from *Pterocaulon serrulatum*. <u>Phytochemistry</u> 50: 105-108.
- Magalhaes, A. F., Magalhaes, E. G., Filho, H. F. L., Frighetto, R. T. S., and Barros, S. M. G. 1981. Coumarins from *Pterocaulon balensae* and *P. lanatum*. <u>Phytochemistry</u> 20: 1369-1371.
- Magalhaes, A. F., Magalhaes, E. G., Junior, V. N., Filho, H. F. L. 1989. Polyacetylenes from *Pterocaulon* species. <u>Phytochemistry</u> 28: 2497-2499.
- Maldonado, E., Hernandez, E., and Ortega, A. 1992. Amides, coumarins and other constituents from *Simsia cronquistii*. <u>Phytochemistry</u> 31: 1413-1414.
- Marcos, I. S., *et al.* 2002. Synthesis and absolute configuration of (-)-chettaphanin II. <u>Tetrahedron Lett</u>. 43: 1243-1245.
- Marcos, I. S., *et al.* 2003. Synthesis and absolute configuration of (-)-chettaphanin I and (-)-chettaphanin II. <u>Tetrahedron</u> 59: 685-694.
- Mongelli, E., Pampuro, S., Coussio, J., Salomon, H., and Ciccia, G. 2000. Cytotoxic and DNA interaction activities of extracts from medicinal plants used in Argentina. J. Ethnopharmacol. 71: 145-151.
- Palacios, P. S., Rojo, A. A., Coussio, J. D., Kimpe, N. D., and Debenedetti, S. L. 1999. 6,7-Dioxygenated and 5,6,7-trioxygenated coumarins from *Pterocaulon polystachium*. <u>Planta Med</u>. 65: 294-295.

- Panichayupakaranant, P., Noguchi, H., De-eknamkul, W., and Sankawa, U. 1995.
 Naphthoquinones and coumarins from *Impatiens balsamina* root cultures.
 <u>Phytochemistry</u> 40: 1141-1143.
- Pongboonrod, S. 1976. Mai Tet Maung Thai. Bangkok: Kasembunnakich Press.
- Radanachaless, T., and Maxwell, J. F. 1994. <u>Weeds of soybean fields in Thailand</u>. Chiangmai: Multiple Cropping Center.
- Rakotonirainy, O., Gaydou, E. M., Faure, R., and Bombarda, I. 1997. Sesquiterpenes from Patchouli (*Pogostemon cablin*) essential oil. Assignment of proton and carbon-13 NMR spectra. J. Essent. Oil Res. 9: 321-327.
- Ray, T. K., Misra, D. R., and Khastgir, H. N. 1975. Phytosterols in Euphorbiaceae and Rutaceae. <u>Phytochemistry</u> 14: 1876-1877.
- Roengsumran, S., et al. 2004. New Halimane Diterpenoids from *Croton oblongifolius*. <u>Planta Med</u>. 70: 87-89.
- Sakurai, N., Yaguchi, Y., and Inoue, T. 1987. Triterpenoids from *Myrica rubra*. <u>Phytochemistry</u> 26: 217-219.
- Sato, A., Kurabayashi, M., Nogahori, H., Ogiso, A., and Mishima, H. 1970. Chettphanin-I a novel furanoditerpenoids. <u>Tetrahedron Lett</u>. 11: 1095-1098.
- Sato, A., Kurabayashi, M., Nogahori, H., Ogiso, A., and Mishima, H. 1971. Chettphanin-II a novel furanoditerpenoids. <u>Tetrahedron Lett</u>. 12: 839-842.
- Semple, S. J., Nobbs, S. F., Pyke, S. M., Reynolds, G. D., and Flower, R. L. P. 1999. Antiviral flavonoid from *Pterocaulon sphacelatum*, an Australian aboriginal medicine. J. Ethnopharmacol. 68: 283-288.
- Semple, S. J., Reynolds, G. D., Oleary, M. C., and Flower, R. L. P. 1998. Screening on Australian medicinal plants for antiviral activity. <u>J. Ethnopharmacol</u>. 60: 163-172.
- Shaw, H. K. 1972. The Euphorbiaceae of Siam. Kew Bull. 26: 191-233.
- Shen, M. C., Rodriguez, E., Kerr, K., and Mabry, T. J. 1976. Flavonoids of four species of *Parthenium* (Compositae). <u>Phytochemistry</u>. 15: 1045-1047.
- Skehan, P., et al. 1990. New colorimetric cytotoxic assay for anticancer drug screening. <u>J. Natl. Cancer Inst</u>. 82: 1107-1112.
- Smitinand, T. 2001. <u>Thai plant names</u> (bonical names vernacular names) revised Edition. Bankgkok: The Forest Herbarium, Royal Forest Department.

- Steck, W., and Mazurek, M. 1972. Identification of natural coumarins by NMR spectroscopy. J. Nat. Prod. 35: 418-438.
- Tan, G. T., Pezzuto, J. M., and Kinghorn, A. D. 1991. Evaluation of natural products as inhibitors of human immunodeficiency virus type I (HIV I) reverse transcriptase. <u>J. Nat. Prod</u>. 54: 143-154.
- Ulubelen, A., Kerr, K. M., and Mabry, T. J. 1980. New 6-hydroxyflavonoids and their methyl ethers and glycosides from *Neurolaena oaxacana*. <u>Phytochemistry</u> 19: 1761-1766.
- Vilegas, W., Boralle, N., Cabrera, A., Bernardi, A. C., Pozetti, G. L., and Arantes, S.
 F. 1995. Coumarins and a flavonoids from *Pterocaulon alopeculoides*. <u>Phytochemistry</u> 38: 1017-1019.
- Wagner, H., and Bladt, S. 1975. Cumarine aus sudafrikanischen *Pelargonium*-arten. <u>Phytochemistry</u> 14: 2061-2064.
- Whitemore, T. C. 1973. Euphorbiaceae. Tree flora of Malaya. 2: 78.
- William, C. A., Hoult, J. R. S., Horborne, J. B., Greenham, J., and Eagles, J. 1995. A biologically active lipophilic flavonol from *Tanacetum parthenium*. <u>Phytochemistry</u> 38: 267-270.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDICES

Figure 5 GC Chromatogram of the oil of Pterocaulon redolens aerial parts.

Figure 6 FAB Mass spectrum of compound PRC1.

Figure 7 UV spectrum of compound PRC1 (MeOH).

Figure 8 IR spectrum of compound PRC1 (KBr disc).

Figure 9 ¹H-NMR (500 MHz) spectrum of compound PRC1 (CDCl₃).

Figure 10⁻¹³C-NMR (125 MHz) spectrum of compound PRC1 (CDCl₃).

Figure 11 HMQC spectrum of compound PRC1 (CDCl₃).

Figure 12 HMBC spectrum of compound PRC1 (CDCl₃).

Figure 13 FAB Mass spectrum of compound PRC2.

Figure 14 UV spectrum of compound PRC2.

Figure 15 IR spectrum of compound PRC2 (KBr disc).

Figure 16 ¹H-NMR (500 MHz) spectrum of compound PRC2 (CDCl₃).

Figure 18 HMQC spectrum of compound PRC2 (CDCl₃).

119

Figure 19 HMBC spectrum of compound PRC2 (CDCl₃).

Figure 20 FAB Mass spectrum of compound PRC3.

Figure 22 IR spectrum of compound PRC3 (KBr disc).

Figure 23 ¹H-NMR (500 MHz) spectrum of compound PRC3 (CDCl₃).

Figure 24 ¹³C-NMR (125 MHz) spectrum of compound PRC3 (CDCl₃).

122

Figure 25 HMQC spectrum of compound PRC3 (CDCl₃).

Figure 26 HMBC spectrum of compound PRC3 (CDCl₃).

Figure 27 NOE spectra of compound PRC3 (CDCl₃).

Figure 28 FAB Mass spectrum of compound PRC4.

Figure 29 UV spectrum of compound PRC4 (MeOH).

Figure 30 IR spectrum of compound PRC4 (KBr disc).

Figure 31 ¹H-NMR (500 MHz) spectrum of compound PRC4 (CDCl₃).

Figure 32¹³C-NMR (125 MHz) spectrum of compound PRC4 (CDCl₃).

126

Figure 33 HMQC spectrum of compound PRC4 (CDCl₃).

Figure 34 HMBC spectrum of compound PRC4 (CDCl₃).

Figure 35 FAB Mass spectrum of compound PRC5.

Figure 36 UV spectrum of compound PRC5 (MeOH).

Figure 37 IR spectrum of compound PRC5 (KBr disc).

Figure 38 ¹H-NMR (500 MHz) spectrum of compound **PRC5** (CDCl₃).

Figure 39¹³C-NMR (125 MHz) spectrum of compound PRC5 (CDCl₃).

Figure 40 HMQC spectrum of compound PRC5 (CDCl₃).

Figure 41 HMBC spectrum of compound PRC5 (CDCl₃).

Figure 42 FAB Mass spectrum of compound PRC6.

Figure 43 UV spectrum of compound PRC6 (MeOH).

Figure 44 IR spectrum of compound PRC6 (KBr disc).

Figure 45 ¹H-NMR (500 MHz) spectrum of compound PRC6 (CDCl₃).

Figure 46¹³C-NMR (125 MHz) spectrum of compound PRC6 (CDCl₃).

Figure 47 HMQC spectrum of compound PRC6 (CDCl₃).

Figure 48 HMBC spectrum of compound PRC6 (CDCl₃).

Figure 49 NOE spectra of compound PRC6 (CDCl₃).

Figure 50 FAB Mass spectrum of compound PRC7.

135

Figure 51 UV spectrum of compound PRC7 (MeOH).

Figure 52 IR spectrum of compound PRC7 (KBr disc).

Figure 53 ¹H-NMR (500 MHz) spectrum of compound PRC7 (DMSO- d_6).

Figure 54 ¹³C-NMR (125 MHz) spectrum of compound **PRC7** (DMSO- d_6).

Figure 55 HMQC spectrum of compound PRC7 (DMSO-*d*₆).

Figure 56 HMBC spectrum of compound PRC7 (DMSO-*d*₆).

Figure 57 1 H- 1 H COSY spectrum of compound PRC7 (DMSO- d_{6}).

Figure 58 FAB Mass spectrum of compound PRB8.

Figure 59 UV spectrum of compound PRB8 (MeOH).

Figure 60 IR spectrum of compound PRB8 (KBr disc).

Figure 61 ¹H-NMR (500 MHz) spectrum of compound PRB8 (DMSO- d_6).

Figure 62 ¹³C-NMR (125 MHz) spectrum of compound PRB8 (DMSO- d_6).

Figure 63 HMQC spectrum of compound PRB8 (DMSO- d_6).

Figure 64 HMBC spectrum of compound **PRB8** (DMSO- d_6).

Figure 65 FAB Mass spectrum of compound PRB9.

Figure 66 UV spectrum of compound PRB9 (MeOH).

Figure 67 IR spectrum of compound PRB9 (KBr disc).

Figure 68 ¹H-NMR (500 MHz) spectrum of compound **PRB9** (DMSO- d_6).

Figure 69 ¹³C-NMR (125 MHz) spectrum of compound PRB9 (DMSO- d_6).

Figure 70 HMQC spectrum of compound PRB9 (DMSO-*d*₆).

Figure 71 HMBC spectrum of compound PRB9 (DMSO- d_6).

Figure 72 FAB Mass spectrum of Compound PRB10.

Figure 73 UV spectrum of Compound PRB10 (MeOH).

Figure 74 IR spectrum of Compound PRB10 (KBr disc).

Figure 75 ¹H-NMR (500 MHz) spectrum of Compound **PRB10** (DMSO- d_6).

Figure 76 13 C-NMR (125 MHz) spectrum of Compound PRB10 (DMSO- d_6).

Figure 77 HMQC spectrum of Compound PRB10 (DMSO-*d*₆).

Figure 78 HMBC spectrum of Compound PRB10 (DMSO-*d*₆).

Figure 79 GC Mass spectrum of compound COC1.

Figure 80 UV spectrum of compound COC1 (MeOH).

Figure 81 IR spectrum of compound COC1 (Neat).

Figure 82 ¹H-NMR (500 MHz) spectrum of compound COC1 (CDCl₃).

151

Figure 83 Expanded ¹H-NMR (500 MHz) spectrum of compound COC1 (CDCl₃).

Figure 84 ¹³C-NMR (125 MHz) spectrum of compound COC1 (CDCl₃).

Figure 85 DEPT135 spectrum of compound COC1 (CDCl₃).

Figure 86 HMQC spectra of compound COC1 (CDCl₃).

Figure 87 HMBC spectra of compound COC1 (CDCl₃).

Figure 88 ¹H-¹H COSY spectra of compound **COC1** (CDCl₃).

Figure 89 NOE spectrum of compound COC1 (CDCl₃).

Figure 90 FAB Mass spectrum of compound COC2.

Figure 91 IR spectrum of compound COC2 (Neat).

Figure 92 ¹H-NMR (500 MHz) spectrum of compound COC2 (CDCl₃)

Figure 93 ¹³C-NMR (125 MHz) spectrum of compound COC2 (CDCl₃)

Figure 94 HMQC spectrum of compound COC2 (CDCl₃).

Figure 95 HMBC spectrum of compound COC2 (CDCl₃).

Figure 97 NOE spectra of compound COC2 (CDCl₃).

Figure 98 FAB Mass spectrum of compound COC3.

Figure 99 UV spectrum of compound COC3 (MeOH).

Figure 100 IR spectrum of compound COC3 (Neat).

Figure 101 ¹H-NMR (500 MHz) spectrum of compound COC3 (CDCl₃).

Figure 102 Expanded ¹H-NMR (500 MHz) spectrum of compound COC3 (CDCl₃).

Figure 103 ¹³C-NMR (125 MHz) spectrum of compound COC3 (CDCl₃).

Figure 104 DEPT135 spectrum of compound COC3 (CDCl₃).

162

Figure 105 HMQC spectrum of compound COC3 (CDCl₃).

Figure 106 HMBC spectrum of compound COC3 (CDCl₃).

Figure 107 Expanded HMBC spectra of compound COC3 (CDCl₃).

Figure 108 ¹H-¹H COSY spectrum of compound COC3 (CDCl₃).

Figure 109 FAB Mass spectrum of compound COC4.

Figure 110 UV spectrum of compound COC4 (MeOH).

Figure 111 IR spectrum of compound COC4 (Neat).

Figure 112 ¹H-NMR (500 MHz) spectrum of compound COC4 (CDCl₃).

Figure 113 Expanded ¹H-NMR (500 MHz) spectrum of compound COC4 (CDCl₃).

Figure 114 ¹³C-NMR (125 MHz) spectrum of compound COC4 (CDCl₃).

Figure 115 DEPT135 spectrum of compound COC4 (CDCl₃).

Figure 116 HMQC spectrum of compound COC4 (CDCl₃).

Figure 117 HMBC spectrum of compound COC4 (CDCl₃).

Figure 118 Expanded HMBC spectra of compound COC4 (CDCl₃).

Figure 119 ¹H-¹H COSY spectra of compound **COC4** (CDCl₃).

Figure 120 NOE spectra of compound COC4 (CDCl₃).

Figure 122 FAB Mass spectrum of compound COC5.

Figure 123 IR spectrum of compound COC5 (KBr disc).

Figure 125¹³C-NMR (125MHz) spectrum of compound COC5 (CDCl₃).

Figure 126 DEPT135 spectrum of compound COC5 (CDCl₃).

Figure 127 FAB Mass spectrum of compound COC6.

Figure 128 IR spectrum of compound COC6 (KBr disc).

Figure 129 ¹H-NMR (500 MHz) spectrum of compound COC6 (CDCl₃).

Figure 130 ¹³C-NMR (125 MHz) spectrum of compound COC6 (CDCl₃).

Figure 131 DEPT135 spectrum of compound COC6 (CDCl₃).

Figure 132 FAB Mass spectrum of compound COC7.

Figure 133 UV spectrum of compound COC7 (EtOH).

Figure 134 IR spectrum of compound COC7 (KBr disc).

Figure 135 ¹H-NMR (500 MHz) spectrum of compound COC7 (CDCl₃).

Figure 136 ¹³C-NMR (125 MHz) spectrum of compound COC7 (CDCl₃).

Figure 137 HMQC spectrum of compound COC7 (CDCl₃).

Figure 138 HMBC spectrum of compound COC7 (CDCl₃).

Figure 139 ¹H-¹H COSY spectrum of compound COC7 (CDCl₃).

Figure 140 FAB Mass spectrum of compound COC8.

Figure 141 UV spectrum of compound COC8 (MeOH).

Figure 142 IR spectrum of compound COC8 (Neat).

Figure 143 ¹H-NMR (500 MHz) spectrum of compound COC8 (CDCl₃).

Figure 144 Expanded ¹H-NMR (500 MHz) spectrum of compound COC8 (CDCl₃).

Figure 145 ¹³C-NMR (125 MHz) spectrum of compound COC8 (CDCl₃).

Figure 146 DEPT135 spectrum of compound COC8 (CDCl₃).

Figure 147 HMQC spectrum of compound COC8 (CDCl₃).

Figure 148 HMBC spectrum of compound COC8 (CDCl₃).

Figure 149 Expanded HMBC spectra of compound COC8 (CDCl₃).

Figure 150 ¹H-¹H COSY spectra of compound **COC8** (CDCl₃).

Figure 151 FAB Mass spectrum of compound COC9.

Figure 152 UV spectrum of compound COC9 (MeOH).

Figure 153 IR spectrum of compound COC9 (KBr disc).

Figure 154 ¹H-NMR (500 MHz) spectrum of compound COC9 (CDCl₃).

Figure 155 Expanded ¹H-NMR (500 MHz) spectrum of compound COC9 (CDCl₃).

Figure 156 ¹³C-NMR (125 MHz) spectrum of compound COC9 (CDCl₃).

Figure 157 DEPT135 spectrum of compound COC9 (CDCl₃).

Figure 158 HMQC spectrum of compound COC9 (CDCl₃).

Figure 159 HMBC spectrum of compound COC9 (CDCl₃).

Figure 160 Expanded HMBC spectra of compound COC9 (CDCl₃).

Figure 161 ¹H-¹H COSY spectra of compound **COC9** (CDCl₃).

Figure 162 NOE spectrum of compound COC9 (CDCl₃).

Figure 163 FAB Mass spectrum of compound COC10.

Figure 164 UV spectrum of compound COC10 (EtOH).

Figure 165 IR spectrum of compound COC10 (KBr disc).

Figure 166 ¹H-NMR (500 MHz) spectrum of compound COC10 (CDCl₃).

Figure 167 Expanded ¹H-NMR (500 MHz) spectrum of compound COC10 (CDCl₃).

Figure 169 HMQC spectrum of compound COC10 (CDCl₃).

194

Figure 171 ¹H-¹H COSY spectrum of compound **COC10** (CDCl₃).

Figure 172 NOE spectra of compound COC10 (CDCl₃).

Figure 174 FAB Mass spectrum of compound COC11.

Figure 175 UV spectrum of compound COC11(MeOH).

Figure 176 IR spectrum of compound COC11 (KBr disc).

Figure 177 ¹H-NMR (500 MHz) spectrum of compound COC11 (CDCl₃).

Figure 179 HMQC spectrum of compound COC11 (CDCl₃).

Figure 180 HMBC spectrum of compound COC11 (CDCl₃).

Figure 181 ¹H-¹H COSY spectrum of compound **COC11** (CDCl₃).

Figure 182 NOE spectra of compound COC11 (CDCl₃).

Chemical formula	C ₂₂ H ₂₉ Cl ₃ O ₆
Formula weight	495.80
Crystal system	Orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁
Crystal colour and shape	colourless block
Crystal size	0.20 x 0.20 x 0.10
<i>a</i> (Å)	7.338(3)
b (Å)	11.777(5)
<i>c</i> (Å)	26.354(12)
$V(\text{\AA}^3)$	2277.5(18)
Ζ	4
<i>T</i> (K)	173(2)
$D_{\rm c} (\rm g \cdot \rm cm^{-3})$	1.446
μ (mm ⁻¹)	0.439
Scan range (°)	$1.55 < \theta < 28.67$
Unique reflections	5438
Reflections used $[I>2\sigma(I)]$	2094
Absolute structure parameters	0.15(19)
R _{int}	0.1894
Final <i>R</i> indices $[I>2\sigma(I)]$	0.1195, <i>wR</i> ₂ 0.2671
R indices (all data)	$0.2263, wR_2 0.3330$
Goodness-of-fit	0.905
Max, Min $\Delta \rho/e$ (Å ⁻³)	1.048, -0.669

 Table 25
 Crystal data and structure refinement for compound COC10.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 26 Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters (Å² × 10³) for 4101. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	У	Z	U (eq)
C(1)	683(11)	- 481(7)	- 1085(3)	45(2)
C(2)	2206(11)	139(8)	-1339(3)	52(2)
C(3)	3640(11)	-581(7)	-1565(4)	54(2)
C(4)	3092(11)	-1696(7)	-1753(3)	49(2)
C(5)	1376(11)	-2093(7)	-1742(3)	46(2)
C(6)	862(10)	-3173(7)	-2025(3)	46(2)
C(7)	-757(10)	-3826(8)	-1780(3)	51(2)
C(8)	-2220(11)	-3062(7)	-1579(3)	50(2)
C(9)	-1447(11)	-2220(8)	-1193(3)	50(2)
C(10)	-120(10)	-1399(7)	-1472(3)	46(2)
C(11)	-813(12)	347(8)	-922(3)	57(2)
C(12)	1472(13)	-1061(8)	-639(3)	55(2)
C(13)	963(15)	-1767(10)	193(3)	78(3)
C(14)	2458(11)	-4023(7)	-2081(3)	50(2)
C(15)	3148(11)	-4577(7)	-1622(3)	48(2)
C(16)	3982(11)	-5696(8)	-1669(4)	58(2)
C(17)	4874(12)	-6359(8)	-1298(4)	63(2)
C(18)	5311(13)	-7332(10)	-1520(4)	73(3)
C(19)	4026(12)	-6314(8)	-2092(4)	65(3)
C(20)	373(11)	-2789(8)	-2569(3)	51(2)
C(21)	-1591(13)	-4725(9)	-2133(4)	70(3)
C(22)	6194(13)	1054(9)	470(4)	64(3)
O(1)	3063(8)	-1403(6)	-607(2)	64(2)
O(2)	287(8)	-1209(6)	-246(2)	67(2)
O(3)	5249(7)	-244(5)	-1612(2)	63(2)
O(4)	-1073(7)	-814(5)	-1866(2)	52(2)
O(5)	3017(8)	-4175(6)	-1186(2)	61(2)
O(6)	4825(9)	-7359(6)	-2019(3)	71(2)
Cl(1)	7211(4)	2204(3)	169(1)	81(1)
Cl(2)	5054(4)	194(3)	35(1)	86(1)
Cl(3)	4754(4)	1493(3)	952(1)	86(1)

	1
C(1)-C(12)	1.477(12)
C(1)-C(2)	1.494(11)
C(1)-C(10)	1.599(11)
C(1)-C(11)	1.530(11)
C(2)-C(3)	1.477(11)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-O(3)	1.252(10)
C(3)-C(4)	1.461(12)
C(4)-C(5)	1.343(11)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.522(11)
C(5)-C(10)	1.543(11)
C(5)-H(5)	1.0000
C(6)-C(20)	1.546(11)
C(6)-C(14)	1.548(11)
C(6)-C(7)	1.555(11)
C(7)-C(8)	1.498(11)
C(7)-C(21)	1.537(12)
С(7)-Н(7)	1.0000
C(8)-C(9)	1.530(11)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.556(11)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-O(4)	1.430(9)
С(11)-Н(11А)	0.9800
С(11)-Н(11В)	0.9800
С(11)-Н(11С)	0.9800
C(12)-O(1)	1.237(11)
C(12)-O(2)	1.362(10)
C(13)-O(2)	1.421(11)
С(13)-Н(13А)	0.9800

Table 27Bond lengths [Å] and angles [°] for compound COC10.

ริการ วิทยาลัย

C(13)-H(13C)0.9800C(14)-C(15)1.465(12)C(14)-H(14A)0.9900C(14)-H(14B)0.9900C(15)-C(5)1.244(10)C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(13)-H(13B)	0.9800
C(14)-C(15)1.465(12)C(14)-H(14A)0.9900C(14)-H(14B)0.9900C(15)-O(5)1.244(10)C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(13)-Н(13С)	0.9800
C(14)-H(14A)0.9900C(14)-H(14B)0.9900C(15)-O(5)1.244(10)C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21B)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(14)-C(15)	1.465(12)
C(14)-H(14B)0.9900C(15)-O(5)1.244(10)C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21B)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(14)-H(14A)	0.9900
C(15)-O(5)1.244(10)C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(14)-H(14B)	0.9900
C(15)-C(16)1.458(12)C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(15)-O(5)	1.244(10)
C(16)-C(19)1.333(13)C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(15)-C(16)	1.458(12)
C(16)-C(17)1.413(13)C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(16)-C(19)	1.333(13)
C(17)-C(18)1.327(14)C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(16)-C(17)	1.413(13)
C(17)-H(17)0.9500C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(17)-C(18)	1.327(14)
C(18)-O(6)1.363(12)C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(17)-Н(17)	0.9500
C(18)-H(18)0.9500C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(18)-O(6)	1.363(12)
C(19)-O(6)1.377(11)C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(18)-H(18)	0.9500
C(19)-H(19)0.9500C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(19)-O(6)	1.377(11)
C(20)-H(20A)0.9800C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(19)-Н(19)	0.9500
C(20)-H(20B)0.9800C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(20)-Н(20А)	0.9800
C(20)-H(20C)0.9800C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(20)-Н(20В)	0.9800
C(21)-H(21A)0.9800C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(20)-Н(20С)	0.9800
C(21)-H(21B)0.9800C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(21)-Н(21А)	0.9800
C(21)-H(21C)0.9800C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(21)-Н(21В)	0.9800
C(22)-Cl(3)1.732(10)C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	С(21)-Н(21С)	0.9800
C(22)-Cl(1)1.737(10)C(22)-Cl(2)1.744(10)C(22)-H(22)1.0000O(4)-H(4)0.8400	C(22)-Cl(3)	1.732(10)
C(22)-Cl(2) 1.744(10) C(22)-H(22) 1.0000 O(4)-H(4) 0.8400	C(22)-Cl(1)	1.737(10)
C(22)-H(22) 1.0000 O(4)-H(4) 0.8400	C(22)-Cl(2)	1.744(10)
O(4)-H(4) 0.8400	С(22)-Н(22)	1.0000
	O(4)-H(4)	0.8400

C(12)-C(1)-C(2)	106.8(7)	21915
C(12)-C(1)C(11)	110.7(7)	
C(2)-C(1)-C(11)	110.5(7)	
C(12)-C(1)C(10)	109.8(7)	
C(2)-C(1)-C(10)	108.7(6)	
C(11)-C(1)C(10)	110.2(6)	
C(3)-C(2)-C(1)	115.7(7)	
C(3)-C(2)H(2A)	108.4	
C(1)-C(2)H(2A)	108.4	
C(3)-C(2)-H(2B)	108.4	
C(1)-C(2)-H(2B)	108.4	
H(2A)-C(2)-H(2B)	107.4	

รการ วิทยาลัย

O(3)-C(3)-C(4)	120.8(8)
O(3)-C(3)-C(2)	122.0(8)
C(4)-C(3)-C(2)	117.2(7)
C(5)-C(4)-C(3)	124.3(7)
C(5)-C(4)-H(4A)	106.3
C(3)-C(4)-H(4A)	106.3
C(5)-C(4)-H(4B)	106.3
C(3)-C(4)-H(4B)	106.3
H(4A)-C(4)-H(4B)	106.4
C(4)-C(5)-C(6)	120.8(7)
C(4)-C(5)-C(10)	119.6(7)
C(6)-C(5)-C(10)	119.5(7)
C(4)-C(5)-H(5)	91.3
C(6)-C(5)-H(5)	91.3
C(10)-C(5)-H(5)	91.3
C(5)-C(6)-C(20)	105.5(7)
C(5)-C(6)-C(14)	113.6(6)
C(20)-C(6)-C(14)	106.1(6)
C(5)-C(6)-C(7)	113.6(7)
C(20)-C(6)-C(7)	110.6(7)
C(14)-C(6)-C(7)	107.3(6)
C(8)-C(7)-C(21)	110.1(7)
C(8)-C(7)-C(6)	113.4(7)
C(21)-C(7)-C(6)	113.2(7)
C(8)-C(7)-H(7)	106.5
С(21)-С(7)-Н(7)	106.5
C(6)-C(7)-H(7)	106.5
C(7)-C(8)-C(9)	111.1(7)
C(7)-C(8)-H(8A)	109.4
C(9)-C(8)-H(8A)	109.4
C(7)-C(8)-H(8B)	109.4
C(9)-C(8)-H(8B)	109.4
H(8A)-C(8)-H(8B)	108.0
C(8)-C(9)-C(10)	108.7(6)
C(8)-C(9)-H(9A)	110.0
С(10)-С(9)-Н(9А)	110.0
C(8)-C(9)-H(9B)	110.0
С(10)-С(9)-Н(9В)	110.0
H(9A)-C(9)-H(9B)	108.3

การ ทยาลัย

O(4)-C(10)-C(5)	105.5(6)
O(4)-C(10)-C(9)	109.7(6)
C(5)-C(10)-C(9)	109.5(7)
O(4)-C(10)-C(1)	108.5(6)
C(5)-C(10)-C(1)	112.9(6)
C(9)-C(10)-C(1)	110.4(6)
С(1)-С(11)-Н(11А)	109.5
С(1)-С(11)-Н(11В)	109.5
H(11A)-C(11)-H(11B)	109.5
С(1)-С(11)-Н(11С)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(1)-C(12)-O(2)	120.7(8)
O(1)-C(12)-C(1)	124.9(8)
O(2)-C(12)-C(1)	114.4(8)
O(2)-C(13)-H(13A)	109.5
O(2)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(2)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15)-C(14)-C(6)	118.1(7)
С(15)-С(14)-Н(14А)	107.8
C(6)-C(14)-H(14A)	107.8
С(15)-С(14)-Н(14В)	107.8
C(6)-C(14)-H(14B)	107.8
H(14A)-C(14)-H(14B)	107.1
O(5)-C(15)-C(16)	117.1(8)
O(5)-C(15)-C(14)	124.4(8)
C(16)-C(15)-C(14)	118.5(8)
C(19)-C(16)-C(17)	105.5(8)
C(19)-C(16)-C(15)	125.2(9)
C(17)-C(16)-C(15)	129.4(9)
C(18)-C(17)-C(16)	106.5(9)
С(18)-С(17)-Н(17)	126.8
С(16)-С(17)-Н(17)	126.8
C(17)-C(18)-O(6)	112.5(9)
С(17)-С(18)-Н(18)	123.8
O(6)-C(18)-H(18)	123.8
•	

การ ทยาลัย

C(16)-C(19)-H(19)	123.8
O(6)-C(19)-H(19)	123.8
C(6)-C(20)-H(20A)	109.5
C(6)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(6)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(7)-C(21)-H(21A)	109.5
C(7)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(7)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
Cl(3)-C(22)-Cl(1)	111.3(6)
Cl(3)-C(22)-Cl(2)	111.3(5)
Cl(1)-C(22)-Cl(2)	111.0(5)
Cl(3)-C(22)-H(22)	107.7
Cl(1)-C(22)-H(22)	107.7
Cl(2)-C(22)-H(22)	107.7
C(12)-O(2)-C(13)	117.0(7)
C(10)-O(4)-H(4)	109.5
C(18)-O(6)-C(19)	103.1(8)

112.4(9)

C(16)-C(19)-O(6)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย **Table 28** Anisotropic displacement parameters ($Å^2 \times 10^3$) for compound COC10.

The anisotropic displacement factor exponent takes the form:

-2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(1)	30(4)	54(5)	50(5)	-1(4)	1(3)	4(3)
C(2)	24(4)	60(5)	74(6)	-4(4)	2(4)	4(4)
C(3)	25(4)	50(5)	87(6)	8(4)	0(4)	4(3)
C(4)	30(4)	53(5)	63(5)	-6(4)	-1(4)	5(3)
C(5)	34(4)	49(5)	55(5)	-2(4)	5(3)	-1(4)
C(6)	17(4)	58(5)	62(5)	-3(4)	3(3)	3(3)
C(7)	27(4)	61(5)	64(5)	11(4)	9(3)	-5(4)
C(8)	30(4)	59(5)	61(5)	12(4)	5(4)	-4(4)
C(9)	32(4)	55(5)	63(5)	-8(4)	3(4)	-3(4)
C(10)	24(4)	61(5)	54(4)	-3(4)	2(3)	2(4)
C(11)	36(4)	67(5)	68(5)	12(5)	4(4)	7(4)
C(12)	49(5)	62(5)	54(5)	4(4)	0(4)	-8(4)
C(13)	78(7)	103(8)	52(5)	16(6)	0(5)	25(6)
C(14)	30(4)	57(5)	64(5)	3(4)	6(4)	6(4)
C(15)	25(4)	58(5)	91(7)	0(5)	-1(4)	2(4)
C(17)	35(5)	76(6)	78(6)	13(5)	4(4)	12(5)
C(18)	37(5)	87(7)	94(8)	18(6)	14(5)	10(5)
C(19)	39(5)	65(6)	93(7)	-1(6)	-2(5)	2(5)
C(20)	37(5)	59(5)	56(5)	4(4)	0(3)	-4(4)
C(21)	37(5)	74(6)	98(7)	23(6)	8(5)	11(5)
C(22)	40(5)	74(6)	79(6)	9(5)	2(4)	1(5)
O(1)	35(3)	84(5)	74(4)	6(3)	-4(3)	9(3)
O(2)	51(4)	99(5)	52(3)	11(3)	1(3)	-9(4)
O(3)	22(3)	63(4)	103(5)	-2(3)	5(3)	-4(3)
O(4)	26(3)	60(3)	68(4)	5(3)	-5(2)	5(3)
O(5)	42(4)	70(4)	72(4)	-7(3)	-2(3)	-2(3)
O(6)	47(4)	64(4)	103(5)	-1(4)	0(4)	9(3)
Cl(1)	55(2)	84(2)	104(2)	12(2)	9(1)	-9(1)
Cl(2)	53(2)	95(2)	109(2)	-5(2)	-10(1)	-11(2)
Cl(3)	72(2)	85(2)	102(2)	16(2)	21(2)	14(2)

	х	У	Z	U(eq)
H(2A)	1685	622	-1610	63
H(2B)	2782	649	-1087	63
H(4A)	3483	-1729	-2113	59
H(4B)	3845	-2258	-1569	59
H(5)	1632	-2532	-1425	56
H(7)	-249	-4244	-1482	61
H(8A)	-3180	-3526	-1415	60
H(8B)	-2783	-2640	-1863	60
H(9A)	-789	-2634	-922	60
H(9B)	-2450	-1783	-1034	60
H(11A)	-1874	-80	-802	85
H(11B)	-1167	818	-1213	85
H(11C)	-356	834	-649	85
H(13A)	1443	-2514	98	116
H(13B)	-26	-1861	439	116
H(13C)	1939	-1311	344	116
H(14A)	2068	-4626	-2319	60
H(14B)	3487	-3617	-2242	60
H(17)	5114	-6149	-956	76
H(18)	5898	-7942	-1350	87
H(19)	3558	-6062	-2409	79
H(20A)	-690	-2285	-2557	76
H(20B)	90	-3456	-2777	76
H(20C)	1409	-2382	-2717	76
H(21A)	-2379	-5232	-1935	0 105
H(21B)	-614	-5168	-2291	105
H(21C)	-2313	-4349	-2397	105
H(22)	7185	589	627	77
H(4)	-1915	-423	-1739	77

Table 29 Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters(Å² × 10³) for compound COC10.

C(12)-C(1)-C(2)-C(3)	66.1(10)
C(11)-C(1)-C(2)-C(3)	-173.3(7)
C(10)-C(1)-C(2)-C(3)	-52.3(10)
C(1)-C(2)-C(3)-O(3)	-152.1(8)
C(1)-C(2)-C(3)-C(4)	30.4(12)
O(3)-C(3)-C(4)-C(5)	-176.3(9)
C(2)-C(3)-C(4)-C(5)	1.3(14)
C(3)-C(4)-C(5)-C(6)	169.6(8)
C(3)-C(4)-C(5)-C(10)	-5.9(14)
C(4)-C(5)-C(6)-C(20)	-87.1(9)
C(10)-C(5)-C(6)-C(20)	88.4(8)
C(4)-C(5)-C(6)-C(14)	28.6(11)
C(10)-C(5)-C(6)-C(14)	-155.9(7)
C(4)-C(5)-C(6)-C(7)	151.6(8)
C(10)-C(5)-C(6)-C(7)	-32.9(10)
C(5)-C(6)-C(7)-C(8)	38.6(10)
C(20)-C(6)-C(7)-C(8)	-79.7(9)
C(14)-C(6)-C(7)-C(8)	165.0(7)
C(5)-C(6)-C(7)-C(21)	165.0(8)
C(20)-C(6)-C(7)-C(21)	46.6(10)
C(14)-C(6)-C(7)-C(21)	-68.6(10)
C(21)-C(7)-C(8)-C(9)	175.4(7)
C(6)-C(7)-C(8)-C(9)	-56.6(10)
C(7)-C(8)-C(9)-C(10)	66.1(9)
C(4)-C(5)-C(10)-O(4)	99.8(9)
C(6)-C(5)-C(10)-O(4)	-75.8(9)
C(4)-C(5)-C(10)-C(9)	-142.2(8)
C(6)-C(5)-C(10)-C(9)	42.2(9)
C(4)-C(5)-C(10)-C(1)	-18.7(11)
C(6)-C(5)-C(10)-C(1)	165.8(7)
C(8)-C(9)-C(10)-O(4)	59.0(9)
C(8)-C(9)-C(10)-C(5)	-56.5(8)
C(8)-C(9)-C(10)-C(1)	178.5(6)
C(12)-C(1)-C(10)-O(4)	172.8(6)
C(2)-C(1)-C(10)-O(4)	-70.6(7)

Table 30Torsion angles [deg] for compound COC10.

C(11)-C(1)-C(10)-O(4)	50.6(8)
C(12)-C(1)-C(10)-C(5)	-70.5(9)
C(2)-C(1)-C(10)-C(5)	46.0(9)
C(11)-C(1)-C(10)-C(5)	167.2(7)
C(12)-C(1)-C(10)-C(9)	52.5(9)
C(2)-C(1)-C(10)-C(9)	169.1(7)
C(11)-C(1)-C(10)-C(9)	-69.7(8)
C(2)-C(1)-C(12)-O(1)	-29.5(12)
C(11)-C(1)-C(12)-O(1)	-149.9(9)
C(10)-C(1)-C(12)-O(1)	88.3(11)
C(2)-C(1)-C(12)-O(2)	150.8(7)
C(11)-C(1)-C(12)-O(2)	30.4(10)
C(10)-C(1)-C(12)-O(2)	-91.5(9)
C(5)-C(6)-C(14)-C(15)	67.7(10)
C(20)-C(6)-C(14)-C(15)	-176.9(7)
C(7)-C(6)-C(14)-C(15)	-58.6(10)
C(6)-C(14)-C(15)-O(5)	-25.2(12)
C(6)-C(14)-C(15)-C(16)	152.2(7)
O(5)-C(15)-C(16)-C(19)	171.0(9)
C(14)-C(15)-C(16)-C(19)	-6.5(13)
O(5)-C(15)-C(16)-C(17)	-8.3(13)
C(14)-C(15)-C(16)-C(17)	174.2(8)
C(19)-C(16)-C(17)-C(18)	-2.5(10)
C(15)-C(16)-C(17)-C(18)	176.9(9)
C(16)-C(17)-C(18)-O(6)	1.8(11)
C(17)-C(16)-C(19)-O(6)	2.4(10)
C(15)-C(16)-C(19)-O(6)	-177.1(8)
O(1)-C(12)-O(2)-C(13)	0.0(13)
C(1)-C(12)-O(2)-C(13)	179.7(8)
C(17)-C(18)-O(6)-C(19)	-0.4(10)
C(16)-C(19)-O(6)-C(18)	-1.3(10)

Miss Mayuree Kanlayavattanakul was born on April 1, 1976 in Chiang Mai, Thailand. She received her Bechelor's degree of Science in Pharmacy (1st class honor) from the Faculty of Pharmacy, Chiang Mai University in 1998. She was granted a 1998 Royal Golden Jubilee Ph.D. Scholarship from Thailand Research Fund (TRF).

Publications

- Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. 2003. Chemical constituents of *Pterocaulon redolens*. <u>Heterocycles</u>. 61: 183-187.
- Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., Kawahata, M., Therrien, B., Yamaguchi, K., and Ishikawa, T. 2005. *ent*-Halimane Diterpenes and a Guaiane Sesquiterpene from *Cladogynos orientalis*. J. Nat. Prod. 68: 7-10.

Poster Presentations

- 1. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. Chemical constituents of *Pterocaulon redolens*. The 19th Annual Research Meeting in Pharmaceutical Sciences, December, 2002, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok.
- Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. Chemical constituents of *Pterocaulon redolens*. 124th the Annual Meeting of the Pharmaceutical Society of Japan (Osaka) 2004.
- Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., Kawahata, M., Therrien, B., Yamaguchi, K., and Ishikawa, T. 2005. Chemical Constituents of *Cladogynos orientalis*. RGJ-Ph.D. Congress VI, April 28-30, 2005, Pattaya, Chonburi.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย