องค์ประกอบทางเคมีเละดทธิ์ทางชีวภาพของผักจ๋อนเจ๋นและเจตพังคี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเภสัชเคมีและผลิตภัณฑ์ธรรมมชาติ คณะเภสัชศาสตร์ จุพาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2547
ISBN 974-53-1766-7
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF PTEROCAULON REDOLENS AND CLADOGYNOS ORIENTALIS

$\left.\begin{array}{ll}\text { Thesis Title } & \text { CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF } \\ \text { PTEROCAULON REDOLENS AND CLADOGYNOS ORIENTALIS }\end{array}\right\}$

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

Dean of the Faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

(Associate Professor Sumphan Wongseripipatana, Ph.D.)

Thesis Advisor
(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

(Associate Professor Ekarin Saifah, Ph.D.)

มยุรี กัลยาวัฒนกุล: องค์ประกอบทางเคมีและฤทธิ์ทางชีวภาพของผักจ๋อนแจ๋นและเจตพังคี (CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF PTEROCAULON REDOLENS AND CLADOGYNOS ORIENTALIS) อาจารย์ที่ปรึกษา: รศ. ดร. นิจศิริ เรืองรังษี, อาจารย์ที่ปรึกษาร่วม: Prof. Dr. Tsutomu Ishikawa, 212 หน้า. ISBN: 974-53-1766-7

การศึกษาองค์ประกอบทางเคมีและฤทธิ์ทางชีวภาพของผักจ๋อนแจ๋นและเจตพังคี สามารถแยก สารในกลุ่มคูมารินได้ 7 ชนิด ฟลาโวนอยด์ 3 ชนิด และ เทอร์ปีน 11 ชนิด ซึ่งประกอบด้วย เซสควิเทอร์ ปีน 3 ชนิด ไดเทอร์ปีน 6 ชนิด และไตรเทอร์ปีน 2 ชนิด การพิสูจน์โครงสร้างของสารทั้งหมดที่แยกได้ โดยอาศัยการวิเคราะห์เชิงสเปคตรัมของ UV, IR, MS และ NMR ร่วมกับการเปรียบเทียบข้อมูลกับสารที่ ทราบโครงสร้างแล้ว พบว่าสารที่แยกได้จากส่วนเหนือดินของผักจ๋อนแจ๋นประกอบด้วยสารในกลุ่มคูมารินที่พบครั้งแรกในธรรมชาติ 1 ชนิด คือ 2,3 'dihydroxypuberulin [52] สารกลุ่มคูมารินที่เคยมีรายงาน มาแล้วอีก 6 ชนิด คือ 5 -methoxy-6,7-methylenedioxycomarin [9], ayapin [10], sabandinol [23], puberulin [50], 5-methoxyscopoletin [51] และ isofraxidin [53] นอกจากนี้ยังพบสารกลุ่มฟลาโวนอยด์ที่ เคยมีรายงานมาแล้วอีก 3 ชนิด คือ chrysosplenol C [35], luteolin [54] และ tomentin [55] ส่วนสารที่แยก ได้จากรากเจตพังคีประกอบด้วยกลุ่มเซสควิเทอร์ปีนชนิดใหม่ 1 ชนิด คือ $\left(4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}\right)-8-$ hydroxy- α-guaiene [56] และที่เคยมีรายงานมาแล้วอีก 2 ชนิด คือ spathulenol [57] และ cyperenoic acid [64] กลุ่มไดเทอร์ปีนชนิดใหม่ 4 ชนิด คือ 5 -[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [58], methyl-9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo [5.3.3.0 ${ }^{1,6}$] trideca-5,8-diene-2-carboxylate [59], 6 -[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62] และ 6 -[2-(furan-3-yl)oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2.7}$ dodec-2(7)-en-11-one [63] และที่เคยรายงานมาแล้วอีก 2 ชนิด คือ chettaphanin I [48] และ chettaphanin II [49] สารในกลุ่มไตรเทอร์ปีนที่เคยมีรายงานมาแล้ว 2 ชนิด คือ acetoxyaleuritolate [60] และ taraxerol [61] สารที่แยกได้ทั้งหมด 21 ชนิด ถูกนำไปทดสอบฤทธิ์ทางชีวภาพ ได้แก่ ฤทธิ์ความ เป็นพิษต่อเซลล์ เละถทธ์ต้านเชื้อวัณโรค พบว่า chrysosplenol C [35], chettaphanin II [49], taraxerol [61] และ 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxotricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62] มี ฤทธิ์ความเป็นพิ่ษตตอเซลล์ระดับอ่อนถึงปานกลางและพบว่าสารที่แยยกได้เกือบทุกชนิดมีฤทธิ์ต้านเชื้อวัณโรคอย่างอ่อน ยกเว้น chrysosplenol C [35], 2,3 -dihydroxypuberulin [52] และ acetoxyaleuritolate [60] ไม่มีฤทธิ์ต้านเชื้อวัณโรค

สาขาวิชา เภสัชเคมีและผลิตภัณฑ์ธรรมชาติ

ปีการศึกษา 2547

ลายมือชื่อนิสิต.
ลายมือชื่ออาจารย์ที่ปรึกษา.
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม.
\#\#4376959933 MAJOR: PHARMACEUTICAL CHEMISTRY AND NATURAL PRODUCTS KEY WORDS: COUMARINS/ FLAVONOIDS/ SESQUITERPENES/ DITERPENES/ TRITERPENES/ ANTIMYCOBACTERIAL ACTIVITY/ CYTOTOXICITY/ PTEROCAULON REDOLRNS/ CLADOGYNOS ORIENTALIS

Abstract

MAYUREE KANLAYAVATTANAKUL: CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF PTEROCAULON REDOLENS AND CLADOGYNOS ORIENTALIS THESIS ADVISOR: ASSOCIATE PROFESSOR NIJSIRI RUANGRUNGSI, Ph.D., THESIS CO-ADVISOR: PROFESSOR TSUTOMU ISHIKAWA, Ph.D., 212 pp. ISBN: 974-53-1766-7

Chemical investigation of Pterocaulon redolens (Forst. f) F. Vill. and Cladogynos orientalis Zipp. ex Span. led to the isolation of seven coumarins, three flavonoids and eleven terpenes including three sesquiterpenes, six diterpenes and two triterpenes. The structure determination of these compounds was extensively accomplished by spectroscopic analyses (UV, IR, MS and NMR properties) and by comparison with previously reported data of known compounds. The aerial parts of Pterocaulon redolens provided one new natural coumarin, namely, $2^{\prime}, 3^{\prime}$-dihydroxypuberulin [52], six known coumarins identified as 5 -methoxy-6,7-methylenedioxycoumarin [9], ayapin [10], sabandinol [23], puberulin [50], 5-methoxyscopoletin [51] and isofraxidin [53] and also gave three known flavonoids, chrysosplenol C [35], luteolin [54] and tomentin [55]. The roots of Cladogynos orientalis yielded a new sesquiterpene, $\left(4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}\right)$ - 8 -hydroxy- α-guaiene [56], together with two known sesquiterpenes, spathulenol [57] and cyperenoic acid [64]. In addition, four new diterpenes, namely, 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [58], methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0 ${ }^{1,6}$]trideca-5,8-diene-2-carboxylate [59], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62], 6-[2-(furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]-dodec-2(7)-en-11-one [63], two known diterpenes, chettaphanin I [48] and chettaphanin II [49] and two known triterpenes, acetoxyaleuritolate [60] and taraxerol [61] were afforded. All isolated compounds were evaluated for their cytotoxicity and antimycobacterial activity. It was found that chrysosplenol C [35], chettaphanin II [49], taraxerol [61], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo- [7.2.1.0 $0^{2,7}$]dodec-2(7)-en-11-one [62] were mild to moderate cytotoxic activity. All of them showed weak antimycobacterial activity except chrysosplenol C [35], $2^{\prime}, 3^{\prime}$-dihydroxypuberulin [52] and acetoxyaleuritolate [60], which showed no antimycobacterial activity.

Field of Study; Pharmaceutical Chemistry Student's signature. \qquad
and Natural Products Advisor's signature
\qquad

ACKNOWLEDEGMENTS

The author wishes to express her deepest gratitude to her thesis advisor, Associate Profressor Dr. Nijsiri Ruangrungsi, for his guidance, suggestions and support throughout the course of the studies.

Her gratitude is particularly extended to Professor Dr. Tsutomu Ishikawa and Associate Professor Dr. Toshiko Watanabe, Laboratory of Medicinal Organic Chemistry, Graduates School of Pharmaceutical Sciences, Chiba University, Japan, without whose generous advice, spectroscopic expertise and data supplementation, the completion of this work would not have been possible.

For a partial financial support, she is grateful to the Thailand Research Fund for a Royal Golden Jubille Scholarship, the Association of International Education, Japan and to the Biodiversity Research and Training Program, Thailand for cytotoxic and antimycobacterial activity tests.

For the provision of laboratory facilities, her most sincere thank goes to Laboratory of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan and the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

Her gratitude is sincerely grateful to the thesis committee for their important and constructive suggestions and crucial review of her thesis.

A large debt of her graditude is owed to all the staff members of Laboratory of Medicinal Organic Chemistry, Graduates School of Pharmaceutical Sciences, Chiba University, Japan and her friends at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, who kindly offer their assistance, encouragement and helpful comments throughout this research. Although she received the generosity of too many of them to list them individually in this page, her appreciation is beyond words.

The author's final thank goes to her family. They provided her with every opportunity to succeed in life and the encouragement she needs to succeed, there is no adequate way to express her gratitude.

CONTENTS

Page
ABSTRACT (Thai) iv
ABSTRACT (English) V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES. xi
LIST OF FIGURES xiii
LIST OF SCHEMES xx
LIST OF ABBREVIATIONS AND SYMBOLS xxi
CHAPTER
I INTRODUCTION 1
II HISTORICAL

1. Chemical constituents of Pterocaulon spp. 6
2. Chemical constituent of Cladogynos orientalis. 16
3. Biological Activities of Pterocaulon spp. 17
4. Biological Activities of Cladognos orientalis 17
III EXPERIMENTAL
5. Sources of Plant Materials 18
6. General Techniques
2.1 Analytical Thin Layer Chromatography 18
2.2 Column Chromatography
2.2.1 Vacuum Liquid Chromatography. 18
2.2.2 Flash Column Chromatography 19
จฬ゚ 2.2.3 Gel Filtration Chromatography 19
2.2.4 Gas Chromatography. 19
2.3 Spectroscopy
2.3.1 Ultraviolet (UV) Absorption Spectra 20
2.3.2 Infrared (IR) Absorption Spectra 20
2.3.3 Mass Spectra 20
2.3.4 Proton and Carbon-13 Nuclear Magnetic resonance (${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-NMR) Spectra 20
Page
2.4 Physical Properties
2.4.1 Melting Points 21
2.4.2 Optical Rotations 21
2.4.3 X-ray crystallography 21
2.5 Solvents 21
7. Extraction and Isolation
3.1 Extraction and Isolation of Compounds from Pterocaulon redolens
3.1.1 Extraction 21
3.1.2 Isolation of Compound from CHCL_{3} Extract 22
3.1.2.1 Isolation of Compound PRC1 22
3.1.2.2 Isolation of Compound PRC2 22
3.1.2.3 Isolation of Compound PRC3 23
3.1.2.4 Isolation of Compound PRC4 23
3.1.2.5 Isolation of Compound PRC5 23
3.1.2.6 Isolation of Compound PRC6 23
3.1.2.7 Isolation of Compound PRC7 23
3.1.3 Isolation of Compound from BuOH Extract
3.1.3.1 Isolation of Compound PRB8 23
3.1.3.2 Isolation of Compound PRB9 and PRB10 24
3.2 Extraction and Isolation of Compounds from Cladogynos orientalis
3.2.1 Extraction. 24
3.2.2 Isolation of Compound from CHCL_{3} Extract 24
6 63.2.2.1 Isolation of Compound COC1 24
3.2.2.2 Isolation of Compound COC2 25
จ9/円 3.2.2.3 Isolation of Compound $\mathbf{C O C} 3$ 25
3.2.2.4 Isolation of Compound COC4 25
3.2.2.5 Isolation of Compound COC5 25
3.2.2.6 Isolation of Compound COC6 and COC7 25
3.2.2.7 Isolation of Compound COC8 26
3.2.2.8 Isolation of Compound COC9 26
3.2.2.9 Isolation of Compound COC10 26
3.2.2.10 Isolation of Compound COC11 26
Page
8. Physical and Spectral data of Isolated compounds
4.1 Compound PRC1 38
4.2 Compound PRC2 38
4.3 Compound PRC3 38
4.4 Compound PRC4 38
4.5 Compound PRC5 39
4.6 Compound PRC6 39
4.7 Compound PRC7 39
4.8 Compound PRB8 39
4.9 Compound PRB9 40
4.10 Compound PRB10 40
4.11 Compound COC1. 40
4.12 Compound COC2 41
4.13 Compound COC3 41
4.14 Compound COC4 41
4.15 Compound COC5 42
4.16 Compound COC6 42
4.17 Compound COC7 42
4.18 Compound COC8 42
4.19 Compoūnd COC9 43
4.20 Compound COC10 43
4.21 Compound COC11 43
9. Evaluation of Bilogical Activities
5.1 Cytotoxic Activity 44
5.2 Antimycobacterial Activity. 44
IV RESULTS AND DISCUSSION
10. Determination of Oil Compositions from Pterocaulon redolens 47
11. Structure Determination of Compounds Isolated from Pterocaulon redolens 48
2.1 Structure Determination of Compound PRC1 48
2.2 Structure Determination of Compound PRC2 50
2.3 Structure Determination of Compound PRC3 52
Page
2.4 Structure Determination of Compound PRC4 54
2.5 Structure Determination of Compound PRC5 56
2.6 Structure Determination of Compound PRC6 58
2.7 Structure Determination of Compound PRC7 60
2.8 Structure Determination of Compound PRB8 62
2.9 Structure Determination of Compound PRB9 64
2.10 Structure Determination of Compound PRB10 66
12. Structure Determination of Compounds Isolated from
Cladogynos orientalis 68
3.1 Structure Determination of Compound COC1 68
3.2 Structure Determination of Compound COC2 72
3.3 Structure Determination of Compound COC3 75
3.4 Structure Determination of Compound COC4 78
3.5 Structure Determination of Compound COC5 82
3.6 Structure Determination of Compound COC6 84
3.7 Structure Determination of Compound COC7 86
3.8 Structure Determination of Compound COC8 89
3.9 Structure Determination of Compound COC9. 92
3.10 Structure Determination of Compound COC10 96
3.11 Structure Determination of Compound COC11 100
13. Biological Activities of Isolated Compounds 103
4.1 Biological Activities of the Compounds from Pterocaulon redolens 103
4.2 Biological Activities of the Compounds fromCladogynos orientalis103
V CONCLUSION 106
REFERENCES 107
APPENDICES 112
VITA 212

LIST OF TABLES

Table Page
1 Distribution of coumarins in Pterocaulon spp 6
2 Distribution of flavonoids in Pterocaulon spp 12
3 Distribution of terpenes in Pterocaulon spp 14
4 Distribution of polyacetylenes in Pterocaulon spp. 15
5 NMR spectral data of compound PRC1 and 5-methoxy-6,7- methylenedioxycoumarin $\left(\mathrm{CDCl}_{3}\right)$. 49
6 NMR spectral data of compound PRC2 and ayapin $\left(\mathrm{CDCl}_{3}\right)$. 51
7 NMR spectral data of compound PRC3 and puberulin $\left(\mathrm{CDCl}_{3}\right)$. 53
8 NMR spectral data of compound PRC4 and 5-methoxyscopoletin $\left(\mathrm{CDCl}_{3}\right)$ 55
9 NMR spectral data of compound PRC5 and 2',3'-dihydroxypuberulin $\left(\mathrm{CDCl}_{3}\right)$ 57
10 NMR spectral data of compound PRC6 and isofraxidin $\left(\mathrm{CDCl}_{3}\right)$ 59
11 NMR spectral data of compound PRC7 and sabandinol (DMSO- d_{6}). 61
12 NMR spectral data of compound PRB8 and luteolin (DMSO- d_{6}). 63
13 NMR spectral data of compound PRB9 and tomentin (DMSO- d_{6}) 65
14 NMR spectral data of compound PRB10 and chrysosplenol C (DMSO- d_{6}) 67
15 NMR spectral data of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 71
16 NMR spectral data of compound $\mathbf{C O C} 2$ and spathulenol $\left(\mathrm{CDCl}_{3}\right)$ 74
17 NMR spectral data of compound $\mathrm{COC} 3\left(\mathrm{CDCl}_{3}\right)$ 77
18 NMR spectral data of compound $\mathbf{C O C} 4\left(\mathrm{CDCl}_{3}\right)$ 81
19 NMR spectral data of compound COC5 and acetoxyaleuritolate $\left(\mathrm{CDCl}_{3}\right)$. 83
20 NMR spectral data of compound COC6 and taraxerol $\left(\mathrm{CDCl}_{3}\right)$ 85
21 NMR spectral data of compound COC7 and chettaphanin II $\left(\mathrm{CDCl}_{3}\right)$ 88
22 NMR spectral data of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 91
23 NMR spectral data of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$ 95
Table Page
24 NMR spectral data of compound COC10 and chettaphanin $\mathrm{I}\left(\mathrm{CDCl}_{3}\right)$ 99
25 Crystal data and structure refinement for compound $\mathbf{C O C 1 0}$ 201
26 Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound COC10. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor. 202
27 Bond lengths [\AA] and angles [${ }^{\circ}$] for compound COC10 203
28 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound COC10 208
29 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement Parameters ($\AA^{2} \times 10^{3}$) for compound $\mathbf{C O C 1 0}$ 209
30 Torsion angles [deg] for compound COC10 210
31 NMR spectral data of compound COC11 and cyperenoic acid $\left(\mathrm{CDCl}_{3}\right)$ 102
32 Biological activities of isolated compounds of Pterocaulon redolens 104
33 Biological activities of isolated compounds of Cladogynos orientalis... 105

สถาบันวิทยบริการ

LIST OF FIGURES

Figure Page
1 Pterocaulon redolens (Forst. f) F. Vill 4
2 Cladogynos orientalis Zipp. ex. Span 5
3 Structure of compounds isolated from
Cladogynos orientalis Zipp. ex Span 16
4 Structures of oil compounds from Pterocaulon redolens 47
5 GC Chromatogram of the oil of Pterocaulon redolen aerial parts 113
6 FAB Mass spectrum of compound PRC1 113
7 UV spectrum of compound PRC1 (MeOH) 114
8 IR spectrum of compound PRC1 (KBr disc) 114
$9{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$ 115
$10{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$ 115
11 HMQC spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$ 116
12 HMBC spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$ 116
13 FAB Mass spectrum of compound PRC2 117
14 UV spectrum of compound PRC2 (MeOH) 117
15 IR spectrum of compound PRC2 (KBr disc) 118
$16{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC2 $\left(\mathrm{CDCl}_{3}\right)$ 118
$17{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{P R C} 2\left(\mathrm{CDCl}_{3}\right)$ 119
18 HMQC spectrum of compound PRC2 $\left(\mathrm{CDCl}_{3}\right)$ 119
19 HMBC spectrum of compound $\operatorname{PRC} 2\left(\mathrm{CDCl}_{3}\right)$ 120
20 FAB Massspectrum of compound PRC3 120
21 UV spectrum of compound PRC3 (MeOH).. 121
22 IR spectrum of compound PRC3 (KBr disc) 121
$23{ }^{9} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$ 122
$24{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{P R C} 3\left(\mathrm{CDCl}_{3}\right)$ 122
25 HMQC spectrum of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$ 123
26 HMBC spectrum of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$ 123
27 NOE spectra of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$ 124
28 FAB Mass spectrum of compound PRC4 124
29 UV spectrum of compound PRC4 (MeOH) 125
Figure Page
30 IR spectrum of compound PRC4 (KBr disc) 125
$31{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC4 $\left(\mathrm{CDCl}_{3}\right)$ 126
$32{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRC4 $\left(\mathrm{CDCl}_{3}\right)$ 126
33 HMQC spectrum of compound PRC4 $\left(\mathrm{CDCl}_{3}\right)$ 127
34 HMBC spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$ 127
35 FAB Mass spectrum of compound PRC5 128
36 UV spectrum of compound PRC5 (MeOH) 128
37 IR spectrum of compound PRC5 (KBr disc) 129
$38{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$ 129
$39{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$ 130
40 HMQC spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$ 130
41 HMBC spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$. 131
42 FAB Mass spectrum of compound PRC6 131
43 UV spectrum of compound PRC6 (MeOH) 132
44 IR spectrum of compound PRC6 (KBr disc) 132
$45{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$ 133
$46{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$ 133
47 HMQC spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$ 134
48 HMBC spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$ 134
49 NOE spectra of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$ 135
50 FAB Mass spectrum of compound PRC7 135
51 UV spectrum of compound PRC7 (MeOH). 136
52 IR spectrum of compound PRC7 (KBr disc) 136
$53{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC7 (DMSO-d ${ }_{6}$) 137
$54{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz) spectrum of compound PRC7 (DMSO- d_{6}). 137
55 HMQC spectrum of compound PRC7 (DMSO- d_{6}). 138
56 HMBC spectrum of compound PRC7 (DMSO- d_{6}) 138
$57{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound PRC7 $\left(\mathrm{DMSO}-d_{6}\right)$ 139
58 FAB Mass spectrum of compound PRB8 139
59 UV spectrum of compound PRB8 (MeOH) 140
Figure Page
60 IR spectrum of compound PRB8 (KBr disc) 140
$61{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRB8 (DMSO- d_{6}) 141
$62{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRB8 (DMSO- d_{6}) 141
63 HMQC spectrum of compound PRB8 (DMSO- d_{6}) 142
64 HMBC spectrum of compound PRB8 (DMSO- d_{6}) 142
65 FAB Mass spectrum of compound PRB9 143
66 UV spectrum of compound PRB9 (MeOH) 143
67 IR spectrum of compound PRB9 (KBr disc) 144
$68{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRB9 (DMSO- d_{6}) 144
$69{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRB9 $\left(\right.$ DMSO- $\left.d_{6}\right)$ 145
70 HMQC spectrum of compound PRB9 (DMSO- d_{6}) 145
71 HMBC spectrum of compound PRB9 (DMSO- d_{6}) 146
72 FAB Mass spectrum of compound PRB10 146
73 UV spectrum of compound PRB10 (MeOH) 147
74 IR spectrum of compound PRB10 (KBr disc) 147
75 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$) spectrum of compound PRB10 (DMSO- d_{6}) 148
76
${ }^{13} \mathrm{C}-$ NMR (125 MHz) spectrum of compound PRB10 (DMSO- d_{6}) 148
77 HMQC spectrum of compound PRB10 (DMSO- d_{6}) 149
78 HMBC spectrum of compound PRB10 (DMSO- d_{6}). 149
79 GC Mass spectrum of compound COC1 150
80 UV spectrum of compound COC1 (MeOH). 150
81 IR spectrum of compound COC1 (Neat) 151
$82{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathrm{COC1}\left(\mathrm{CDCl}_{3}\right)$ 151
83 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 152
$84{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathrm{COC1}\left(\mathrm{CDCl}_{3}\right)$ 152
85 DEPT135 spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 153
86 HMQC spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 153
87 HMBC spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 154
$88{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 154
89 NOE spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$ 155
90 FAB Mass spectrum of compound COC2 155
91 IR spectrum of compound COC2 (Neat) 156
Figure Page
$92{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$. 156
$93{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$ 157
94 HMQC spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$ 157
95 HMBC spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$ 158
$96{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C 2}\left(\mathrm{CDCl}_{3}\right)$ 158
97 NOE spectra of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$ 159
98 FAB Mass spectrum of compound COC3 159
99 UV spectrum of compound COC3 (MeOH) 160
100 IR spectrum of compound COC3 (Neat) 160
$101{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right) \ldots$ 161
102 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz) spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$ 161
$103{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$ 162
104 DEPT135 spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$ 162
105 HMQC spectrum of compound COC3 $\left(\mathrm{CDCl}_{3}\right)$ 163
106 HMBC spectrum of compound $\mathrm{COC} 3\left(\mathrm{CDCl}_{3}\right)$ 163
107 Expanded HMBC spectra of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$ 164
$108{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathrm{COC} 3\left(\mathrm{CDCl}_{3}\right)$ 164
109 FAB Mass spectrum of compound COC4 165
110 UV spectrum of compound $\mathbf{C O C 4}(\mathrm{MeOH})$ 165
111 IR spectrum of compound $\mathbf{C O C 4}$ (Neat) 166
$112{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 166
113 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of | d compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 167
$114{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathrm{COC4}\left(\mathrm{CDCl}_{3}\right)$. 167
115 DEPT135 spectrum of compound COC4 $\left(\mathrm{CDCl}_{3}\right)$ 168
116 HMQC spectrum of compound $\mathrm{COC} 4\left(\mathrm{CDCl}_{3}\right)$ 168
117 HMBC spectrum of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 169
118 Expanded HMBC spectra of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 169
$119{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 170
120 NOE spectra of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$ 170
Figure Page
121 Possible formation of compound COC 4 from compound A , the $\mathrm{C}-5$ epimer of chettaphanin 80
122 FAB Mass spectrum of compound COC5. 171
123 IR spectrum of compound $\mathbf{C O C 5}$ (KBr disc) 171
$124{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 5}\left(\mathrm{CDCl}_{3}\right)$ 172
$125{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 5}\left(\mathrm{CDCl}_{3}\right)$. 172
126 DEPT135 spectrum of compound $\mathrm{COC5}\left(\mathrm{CDCl}_{3}\right)$. 173
127 FAB Mass spectrum of compound COC6. 173
128 IR spectrum of compound $\mathbf{C O C 6}$ (KBr disc). 174
$129{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 6}\left(\mathrm{CDCl}_{3}\right)$. 174
$130{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 6\left(\mathrm{CDCl}_{3}\right)$ 175
131 DEPT135 spectrum of compound COC6 $\left(\mathrm{CDCl}_{3}\right)$. 175
132 FAB Mass spectrum of compound COC7. 176
133 UV spectrum of compound $\mathrm{COC} 7(\mathrm{MeOH})$ 176
134 IR spectrum of compound COC 7 (KBr disc) 177
$135{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$ 177
$136{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ speetrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$ 178
137 HMQC spectrum of compound $\mathbf{C O C 7}\left(\mathrm{CDCl}_{3}\right)$ 178
138 HMBC spectrum of compound $\mathbf{C O C 7}\left(\mathrm{CDCl}_{3}\right)$ 179
$139{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathrm{COC} 7\left(\mathrm{CDCl}_{3}\right)$. 179
140 FAB Mass spectrum of compound COC8 180
141 UV spectrum of compound $\mathrm{COC8}(\mathrm{MeOH})$. 180
142 IR spectrum of compound $\mathbf{C O C 8}$ (Neat) 181
$143{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 181
144 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 182
$145{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 182
146 DEPT135 spectrum of compound COC6 $\left(\mathrm{CDCl}_{3}\right)$. 183
147 HMQC spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 183
148 HMBC spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 184
149 Expanded HMBC spectra of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 184
$150{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$ 185
Figure Page
151 FAB Mass spectrum of compound COC9. 185
152 UV spectrum of compound COC9 (MeOH) 186
153 IR spectrum of compound $\mathbf{C O C 9}$ (KBr disc) 186
$154{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$ 187
155 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 9}\left(\mathrm{CDCl}_{3}\right)$ 187
$156{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C}\left(\mathrm{CDCl}_{3}\right)$ 188
157 DEPT135 spectrum of compound COC9 $\left(\mathrm{CDCl}_{3}\right)$ 188
158 HMQC spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$ 189
159 HMBC spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$ 189
160 Expanded HMBC spectra of compound $\mathrm{COC} 9\left(\mathrm{CDCl}_{3}\right)$ 190
$161{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C}\left(\mathrm{CDCl}_{3}\right)$ 190
162 NOE spectra of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$ 191
163 FAB Mass spectrum of compound COC10 191
164 UV spectrum of compound COC10 (MeOH) 192
165 IR spectrum of compound COC10 (KBr disc) 192
$166{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$. 193
167 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$. 193
$168{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$ 194
169 HMQC spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$ 194
170 HMBC spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$ 195
$171{ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$. 195
172 NOE spectra of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.. 196
173 ORTEP drawing of compound COC10 98
174 FAB Mass spectrum of compound COC11 196
175 UV spectrum of compound COC11 (MeOH) 197
176 IR spectrum of compound COC11 (Neat) 197
$177{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$ 198
$178{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$ 198
179 HMQC spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$ 199
Figure Page
180 HMBC spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$. 199
$181{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$ 200
182 NOE spectra of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$ 200

LIST OF SCHEMES

Scheme Page
1 Seperation of CHCl_{3} extract of the aerial parts of Pterocaulon redolens 27
2 Seperation of fraction PC 3 from the CHCl_{3} extract of the aerial parts of Pterocaulon redolens 28
3 Seperation of fraction PC4 from the CHCl_{3} extract of the aerial parts of Pterocaulon redolens. 29
4 Seperation of fraction PC5 from the CHCl_{3} extract of the aerial parts of Pterocaulon redolens. 30
5 Seperation of the BuOH extract of the aerial parts of Pterocaulon redolens 31
6 Seperation of the fraction PB5 from the BuOH extract of the aerial parts of Pterocaulon redolens 32
7 Seperation of the CHCl_{3} extract of the roots of Cladogynos orientalis 33
8 Seperation of fraction CC 3 from the CHCl_{3} extract of the roots of Cladogynos orientalis 34
9 Seperation of fraction CC 4 from the CHCl_{3} extract of the roots of Cladogynos orientalis 35
10 Seperation of fraction CC5 from the CHCl_{3} extract of the roots of Cladogynos orientalis. 36
11 Seperation of fraction CC 6 from the CHCl_{3} extract37
of the roots of Cladogynos σ^{2} rientalis.....................................
จพาลงกร้ณมมหาว่ทยาลย

LIST OF ABBREVEATIONS AND SYMBOLS

α	$=$	Alpha
$[\alpha]_{\mathrm{D}}^{\mathrm{t}}$	$=$	Specific rotation at $\mathrm{t}^{\circ} \mathrm{C}$ and sodium D line (589 nm)
β	=	Beta
${ }^{\circ} \mathrm{C}$	=	Degree Celsius
calcd.	$=$	Calculated
CDCl_{3}	=	Deuterated chloroform
CHCl_{3}	$=$	Chloroform
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	=	Dichloromethane
cm^{-1}	=	Reciprocal centimeter (unit of wave number)
${ }^{13} \mathrm{C}$ NMR	$=$	Carbon-13 Nuclear Megnetic Resonance
CO_{2}		Carbon dioxide
2-D NMR	$=$	Two Dimensional Nuclear Magnetic resonance
d	$=$	Doublet (for NMR spectra)
$d d$	=	Doublet of Doublets (for NMR spectra)
DEPT	$=$	Distortionless Enhancement by Polarization Transfer
DMSO	$=$	Dimethyl sulfoxide
δ		Chemical Shift
EtOAc		Ethyl acetate
EtOH	$=$	Ethanol
FABMS	=	Fast Atom Bombardment Mass spectrometry
g		
GC		Gas Chromatography \square d d
$\begin{aligned} & \mathrm{hr} \\ & { }^{1} \mathrm{H} \text { NMR } \end{aligned}=6 \quad \begin{aligned} & \text { Hour } \\ & \text { Proton Nuclear Magnetic Resonance } \end{aligned}$		
HMBC	$=$	${ }^{1} \mathrm{H}$-detected Heteronuclear Multiple Bond Coherence
HMQC	$=$	${ }^{1} \mathrm{H}$-detected Heteronuclear Multiple Quantum Coherence
HRFABMS	=	High Resolution Fast Atom Bombardment Mass spectrometry
Hz	=	Hertz
IC_{50}	=	Inhibition Concentration at 50\%
IR	$=$	Infrared Spectrum

CHAPTER I

INTRODUCTION

The genus Pterocaulon belongs to the family Asteraceae. This genus consists of about 25-30 species distributed in tropical America, Madagascar, tropical Asia and Australia (Koyama, 1984).

According to the Acta Phytotaxonamica Et Geobotanica (Koyama, 1984), there is only one species of the genus Pterocaulon found in Thailand as followed.

Pterocaulon redolens (Forst. f) F. Vill. ผักจ๋อนเจ๋น Pahk jawn jan;
(Pterocaulon cylindrostachyum Cl .) nobcheese

Pterocaulon redolens (Forst. f) F. Vill. is distributed in India, Southern China, Thailand, Laos, Vietnam, Philippines and Australia. It is an annual herb up to 1.5 m tall. It is erect, branching, pleasantly scented and tap root. Stems and branches are terete, white floccose, glabrescent, light green and ageing brown, oldest parts to 12.0 mm thick, continuous, light green to green wings $2.0-2.5 \mathrm{~mm}$ wide which are less conspicuous than the oldest parts. Leaves are blades thin, lanceolate to somewhat spathulate, tip rounded, base narrowed and winged to the insertion, margins shallowly and sharply double serrate less than in younger blades, venation pinnate, midnerve distinct, other venation obscure, youngest blades densely white villous-floccose on both sides, upper surface in mature blades pilose and dull green, lower side villousfloccose and light green, $5.5-12.5 \times 1.2-4.0 \mathrm{~cm}$. Inflorescence terminate on each branch, numerous on each plant, speciform, 2.0-4.0 cm long, consisting of numerous spirally arranged, confluent, ssessite heads, each $4.0-5.0 \mathrm{~mm}$ long and concealed in white floccose indumentum. Several involucral bracts in 2-3 series are thin, all similar, spathulate, tip acute with a sharp mucro and upper half green, the tips often pink to dark violet, lower half light green, densely white floccose, $2.5 \times 0.3 \mathrm{~mm}$. Flowers are several in each head, all tubular, glabrous, $3.0-3.5 \mathrm{~mm}$ long, outer ones are female and inner ones are bisexual, regular and 5 -merous. Pappus is a single whorl of erect, white, glabrous hair as long as the corolla. Female flowers are slender, tube pale light green in the lower part, dark violet in upper part. Two stigmas are spreading, dark violet, 0.5 mm long, style as long as the corolla. Bisexual flowers are more prominent than pigmented and similar size as the female flowers. Five lobes are
ovate-oblong, tip obtuse, 0.5 mm long. Five Stamens are slightly shorter than the corolla, glabrous. Anthers are linear, marginally connate, 2-locular, tip with a thin, rounded extension of the connective which is as wide as and $1 / 3$ as long as the locules; base with a thin, 0.2 mm long appendage on each side, light pink, 1.25 mm long. Filaments are free, inserted on the lower $1 / 3$ of the corolla, pale light greenish, 1 mm long. One style is pale light greenish, 2.0 mm long. Ovary is inferior, cylindric, glabrous, 1-locular with 1 basal ovule, 0.75 mm long. Achenes are cylindric, striate, glabrous, 0.75 mm long, crowned by the pappus (Figure 1) (Radanachaless, 1994).

Although P. redolens has not been recorded in Thai Plant Names (Smitinand, 2001), however the herbarium specimen of this species has been kept at the National Park, Wildlife and Plant Coservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

The genus Cladogynos (Family Euphorbiaceae) consists of only one species distributed in China, Indo-China, Thailand and Philippines. Plants in genus Cladogynos are freshy shrubs with copious white latex in all parts. Leaves are spiral. Monoecious. Twigs are densely hairly at least at tip. Male flowers are sepals 2-4, not overlapping, no disc, usually 4 stamens, slender pistillate and female flowers are sepals 5-7, big and leafy, ovary 3-chambered, styles joined at base and above several times forked. Fruits are capsules and splitting into bivalved parts leaving central column (Whitemore, 1973).

According to Smitinand (2001), the species of the genus Cladogynos found in Thailand are as Cladogynos orientalis Zipp. ex Span (Adenocleana siamensis Ridl.). It has a local name as Chettaphangkhi (คคตพังคี), Plao num-ngeon (เปล้าน้ำเงิน) and Bai Lung Kaw (ใบหลังขาว). It is a shrubly tree, $90-150 \mathrm{~cm}$ high, common in dry evergreen or moist mixed deciduous forest or scrub up to 450 m , frequently on limestone. Leaves are conspicuously white-tomentellous below, coarsely repand-denatate or lobulate. The ovate-elliptic leaves are 10 cm long, stalk 7.5 cm long. Male flowers are small, dense, stalk slender piltillate, not overlapping, no disc, stellate hairy. Female flowers are $5-7$ sepals and leafy, ovary 3 -chambered, styles joined at base, flower head; cernuous in bug stage. Fruits are capsule, splitting in to bilvalved part leaving a central column. Yellow root-bark is rigid and smell (Figure 2) (Shaw, 1972).

During our preliminary evaluation for biological activities. Both plant extracts exhibited cytotoxic and antimycobacterial activities (see Results and Discussion section). Therefore, the following objectives are put forwards:

1. Isolation and purification of compounds from the aerial parts of P. redolens and the roots of C. orientalis
2. Determination of the chemical structure of each isolated compound
3. Evaluation of each isolate for its cytotoxic and antimycobacterial acitivities

Aerial parts
Figure1 Pterocaulon redolens (Forst. f) F. Vill.

Flowers

จ9/9คล 9 Dried roots a
Figure2 Cladogynos orientalis Zipp. ex Span.

CHAPTER II

HISTORICAL

1. Chemical Constituents of Pterocaulon spp.

Chemical investigations of a number of Pterocaulon spp. have shown them to be a good source of coumarins (Table 1). In additional, other classes of natural compounds such as flavonoids, polyacetylenes and terpenes have been found (Table 2-4). As Pterocaulon redolens (Forst. f) F. Vill., no phytochemical study has been reported.

Table 1 Distribution of coumarins in Pterocaulon spp.

Table 1 (continued)

Plant and chemical compounds	Plant part	References
P. balansae		
7-(3-Methyl-2-butenyloxy)-5,6-methylenedioxycoumarin [5]	Aerial part	Magalhaes et al., 1981
7-(2,3-Epoxy-3-methylbutyloxy)-6-methoxycoumarin [6]	Aerial part	Magalhaes et al., 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-6-methoxycoumarin [1]	Aerial part	Magalhaes et al., 1981
P. lanatum		
7-(2,3-Epoxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [3]	Aerial part	Magalhaes et al., 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-5,6-methylenedioxycoumarin [4]	Aerial part	Magalhaes et al., 1981
7-(2,3-Dihydroxy-3-methylbutyloxy)-6-methoxycoumarin [1]	Aerial part	Magalhaes et al., 1981

Table 1 (continued)

Table 1 (continued)

| Plant and chemical compounds | Plant part | References |
| :--- | :--- | :--- | :--- |
| P. polystachium | Aerial part | Palacios et al., 1999 |
| 5-(3-Methyl-2-butenyloxy)-6,7-methylenedioxycoumarin [15] | | |
| Fraxetin [20] | | |
| Purpurenol [17] | | |

Table 1 (continued)

Plant and chemical comp
P. serrulatum
6,7,8-Trimethoxycoumarin [21]

5-Methoxy-6,7-methylenedioxycoumarin [9]

Ayapin [10]
Aerial part
Macleod and Rasmussen, 1999

Johns et al, 1968

Semple et al, 1999
6,7,8-Trimethoxycoumarin [21]
P. virgatum

5-(3-Methyl-2-butenyloxy)-6,7-methylenedioxycoumarin [15]
Aerial part

Sabandinol [23]

Table 1 (continued)

Table 2 Distribution of flavonoids in Pterocaulon spp.

Table 2 (continued)

| Plant and chemical compounds | Plant part | References |
| :--- | :--- | :--- | :--- |
| P. serrulatum | | |
| Pinocembrin [34] | Aerial part | Macleod and Rasmussen, 1999 |
| P. sphacelatum | | |
| Chrysosplenol C [35] | | |
| 7-O-(2,2-Dimethylallyl)aromadendrin [36] | | |

Table 3 Distribution of terpenes in Pterocaulon spp.

Table 4 Distribution of polyacetylenes in Pterocaulon spp.

Table 4 (continued)

Plant and chemical compounds	Plant part	References
P. virgatum		
5'-Methyl-2-[4'-chloro-3'-hydroxybut-1-ynyl]-dithiophene [47]	Root	Bohlmann et al., 1981

2. Chemical Constituents of Cladogynos orientalis

A number of compounds have been isolated from the only one species, Cladogynos orientalis. On the literature research, up to the present time only two studies were reported on this plant until now. Chettaphanin I [48] (Sato et al., 1970) and Chettaphanin II [49] (Sato et al., 1971) were isolated from the root of this plant. However, their biological activities have not been reported.

Figure 3 Structures of compounds isolated from Cladogynos orientalis Zipp. ex Span.

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

3. Traditional Uses and Biological Activities of Pterocaulon spp.

Pterocaulon plants have been used in traditional medicine in many countries with several proposes. In Australia, many parts of P. sphacelatum are used eg. aerial parts for treatment of infection, colds, blocked sinuses, sores, wounds, inflamed or infected eyes (Semple et al., 1998), crushed leaves for the relief of congestion and as an antiseptic wash, leaves and twigs for treatment of skin disorders such as scabies and ringworm as well as sores and cuts (Macleod and Rasmussen, 1999). In Argentina, aerial parts of P. polystachium have been used against flies, fleas and sunstroke (Mongelli et al., 2000). Aerial parts of P. purpurascens are used as a digestive and as an insecticide. In southern Brazil and Paraguay, aerial parts of P. virgatum are used in traditional medicine as an insecticide and an agent against snake bites (Debenedetti et al., 1998).

A number of biological investigations of Pterocaulon species have been reported. Ethanol extract of aerial parts of P. sphacelatum showed inhibition of poliovirus-induced cytopathic effect more than 75% in the crystal violet assay at a non-cytotoxic concentration (Semple et al., 1998). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of aerial parts of P. polystachium inhibited crown gall tumor at 30% (Mongelli et al., 2000).

4. Traditional Uses and Biological Activities of Cladogynos orientalis

Cladogynos orientalis has been used in traditional medicine as roborant and carminative properties. A decoction of the root of this plant combined with the roots of Styrax benzoides had been used as the cardiac or tonic drugs and the trunk had been used as antidiarrhea and flatulence (Pongboonrod, 1976). The ethanol extract of the roots of C. orientalis showed 14% inhibition of HIV-I RT activity at $200 \mu \mathrm{~g} / \mathrm{mL}$ (Tan, Pezzuto and Kinghorns 1991) ヶ 6

CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials

The aerial parts of Pterocaulon redolen (Forst. f) F. Vill. were collected from Kanchanaburi province, Thailand in August 2000. Authentication of the plant materials was done by comparison with the herbarium specimen (BKF No. 1482) at the National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

The roots of Cladogynos orientalis Zipp. ex Span. were collected from the World Biosphere Reserve, Sakaeraj Environmental Research Station, NakornRachasima province, Thailand in October 2002. Authentication was achieved by comparison with the herbarium specimen (BKF No. 28024) at the National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand.

Voucher specimens were deposited at the Museum of Natural Medicine, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General Techniques

2.1 Analytical Thin-Layer Chromatography (TLC)

Technique \quad : One Dimension, ascending
Adsorbent : Silica gel 60G F 254 (E. Merck) precoated plate

Temperature \quad Laboratory temperature $\left(25-35^{\circ} \mathrm{C}\right)$
Detection 6. . Ultraviolet light at cwavelengths at 254 and 365 nm
2. Anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent and heating at $105{ }^{\circ} \mathrm{C}$ for 10 min

2.2 Column Chromatography

2.2.1 Vacuum Liquid Column Chromatography

Adsorbent : Silica gel 60 (No. 7734) particle size $0.063-0.200 \mathrm{~nm}$

	(E. Merck)
Packing method	Dry packing
Sample loading	The sample was dissolved in a small amount of organic solvent mixed with a small quantity of adsorbent, triturated, dried and then placed gently on top of the column.
Detection	Fractions were examined by TLC observing under light at the wavelengths of 254 and 365 nm .
2.2.2 Flash Column Chromatography	
Adsorbent	Silica gel 60 (No. 9385) paricle size $0.040-0.063 \mathrm{~nm}$ (E. Merck) Silica gel FL100D (Fuji Silysia Chemical Ltd.)
Packing method	
Sample loading	The sample was dissolved in a small volumn of eluent and then applied gently on the top of the column.
Detection	Fractions were examined in the same way as described in section 2.2.1
2.2.3 Gel Filtration Chromatography	
Gel filter	Sephadex LH 20 (Pharmacia)
Packing method	Gel filter was suspended in the eluent and left standing to swell for 4 hours prior to use. It was then poured into the column and allowed to set tightly.
Sample Loading $: 9$ The sample was dissolved in a small volumn of eluent and applied on the top of the column.	
2.2.4 Ga: Instrument model	Varian Saturn III
Column	Fused silica capillary column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d., coated with DB-5 (J\&W) film thickness $0.25 \mu \mathrm{~m}$
Detector type	F.I.D. (Flame Ionization Detector)
Column programming:	$60-240{ }^{\circ} \mathrm{C}$ (rate $3^{\circ} \mathrm{C} / \mathrm{min}$)
Injector temperature :	$240{ }^{\circ} \mathrm{C}$
Helium carrier gas	$1 \mathrm{~mL} / \mathrm{min}$

Split ratio : $100: 1$
Accelerating voltage : 1700 volts
Sample size : $1 \mu \mathrm{~L}$
Slovent : HPLC grade methanol

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) Absorption Spectra

UV (in MeOH) spectra were obtained on a Shimadzu UV-160A spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand) and a JASCO V-560 UV Spectrophotometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.2 Infrared (IR) Absorption Spectra

IR spectra (KBr disc and film) were recorded on a JASCO FT/IR-300E spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand and Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.3 Mass Spectra

Molecular ion were measured on a JEOL JMS-AM20 mass spectrometer and high-resolution fast atom bombardment mass spectrometry (HRFABMS) on a JEOL JMS-HX110 spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.3.4 Proton and Carbon-13 Nuclear Magnetic Resonance (${ }^{1} \mathrm{H}$ - and ${ }^{13}$ C-NMR) spectra

20 $0^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ spectra were obtained on a JEOL JNM-ECP400 spectrometer, and ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were obtained on a JEOL JNM-GSX500A spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

Solvents for NMR spectra were deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ and deuterated dimethyl sulfoxide (DMSO- d_{6}). Chemical shifts were reported in ppm scale using the chemical shift of the solvent and internal standard (TMS) as the reference signals.

2.4 Physical Properties

2.4.1 Melting Points

Melting points were measured on a micro melting point hot-stage apparatus (Yanagimoto) (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.4.2 Optical rotations

Optical rotations were obtained on a JASCO P-1020 polarimeter (Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan).

2.4.3 X-ray crystallography

X-ray crystallographic data were measured at $-100{ }^{\circ} \mathrm{C}$ on a Bruker/SMART 1000 CCD (Chemical Analytical Center, Chiba University, Chiba, Japan).
2.5 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from Pterocaulon redolens

3.1.1 Extraction

Essential oil was determined by the method described in the Association of Official Analytical Chemist (method 962.17, AOAC, 1990). The aerial parts was hydrodistillated in Clevenger type apparatus. The exactly weight was put into a 1000 ml round bottom flask and distilled water was added into the flask to around half-full. This flask was then connected to the apparatus for determination of essential oil. The content in this flask was distilled until two consecutive reading taken at one hour interval showed no change in oil content (around four to six hours). After cooling, the essential oil was diluted to 1:100 in methanol and then analysed for its chemical constituents by Gas Chromatography-Mass Spectrometry (GC-MS). The GC-MS condition was described in 2.2.4 and the spectrum was recorded and compared with the terpenes library (Adam, 1995).

The dried aerial parts of Pterocaulon redolens (1.5 kg) were chopped, ground and then extracted with hexane $(3 \times 4.5 \mathrm{~L})$, chloroform $\left(\mathrm{CHCl}_{3}, 5 \times 4.5 \mathrm{~L}\right)$, and then 95% methanol $(\mathrm{MeOH}, 4 \times 4.5 \mathrm{~L})$ to give, after removal of the organic solvent, a hexane extract (20.1 g), a chloroform extract (30.8 g) and a methanol extract (12.4 g), respectively.

The methanol extract (12.4 g) was then partition between butanol and water. The butanol layer was dried to yield 4.5 g of a BuOH extract while 7.0 g of an aqueous extract was obtained.

3.1.2 Isolation of Compounds from $\mathbf{C H C l}_{3}$ Extract

The CHCl_{3} extract (30.8 g) was dissolved in a small amount of CHCl_{3}, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then fractionated by vacumn liquid column chromatography using sintered glass filter column of silica gel (No. 7734). Elution was completed in a polarity gredient manner with mixture of hexane, CHCl_{3} and MeOH . The eluate was collected 200 mL per fraction and examined by TLC (Silica gel, 40% hexane in CHCl_{3}). Fractions (42 fractions) with similar chromatographic pattern were combined to yield 8 fractions: Fractions PC1 (1.2 g), PC2 (5.3 g), PC3 (3.9 g), PC4 (6.8 g), PC5 (1.4 g), PC6 (3.1 g), $\operatorname{PC} 7(4.7 \mathrm{~g})$ and PC8 (3.4 g).

3.1.2.1 Isolation of Compound PRC1 (5-Methoxy-6,7-methylenedioxycoumarin)

Fraction PC2 $(5.3 \mathrm{~g})$ was further purified on a silica gel column chromatography (40% hexane in CHCl_{3}). The eluates were examined by TLC using 30% hexane in CHCl_{3}, as developing solvent. Fractions with similar chromatographic pattern were combined to yield 6 fractions (P21-P26). Fraction PC22 (720.0 mg) was recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixture to afford white crystals of compound PRC1 (60.0 mg). This compound was eventually identified as 5-methoxy-6,7methylenedioxycoumarin [9].

3.1.2.2 Isolation of Compound PRC2 (Ayapin)

Fraction PC24 (680.0 mg) was fractionated on a silica gel column using isocratic elution with 35% hexane in CHCl_{3} to give white crystals of compound PRC2 (30.8 mg). This compound was later identified as ayapin [10].

3.1.2.3 Isolation of Compound PRC3 (Puberulin)

Fraction PC3 (3.9 g) was separated on a silica gel column chromatography (30% hexane in CHCl_{3}). Fractions (35 fractions) with similar chromatographic pattern were combined by TLC, to give 8 fractions (PC31 to PC38). Fraction PC34 (600.0 mg) was chromatographed on Sephadex LH20 (50% acetone in MeOH) column and repurified on sephadex LH20 using acetone as eluent to obtain compound PRC3 (18.0 mg). It was subsequently identified as puberulin [50].

3.1.2.4 Isolation of Compound PRC4 (5-Methoxyscopoletin)

Compound PRC4 (20.0 mg) was obtained as white crystal from fraction PC36 (900.0 mg) by separation on sephadex $\mathrm{LH} 20\left(50 \% \mathrm{CHCl}_{3}\right.$ in MeOH$)$ column. It was identified as 5-methoxyscopoletin [51].

3.1.2.5 Isolation of Compound PRC5 ($\mathbf{2}^{\prime}, \mathbf{3}$ '-Dihydroxypuberulin)

Fraction PC4 (6.8 g) was rechromatographed on a silica gel column chromatography. Gradient elution (30% hexane in CHCl_{3}) was performed to give 10 fractions (PC41 to PC410). Fraction PC48 (0.9 g) was further fractionated by repeated column chromatography (30% hexane in EtOAc gradient elution) to furnish compound PRC5 (40.1 mg). This compound was identified as $22^{\prime}, 3^{\prime}$-dihydroxypuberulin [52]. Here is the first time to isolate this compound from natural source.

3.1.2.6 Isolation of Compound PRC6 (Isofraxidin)

Fraction PC49 (720.0 mg) was purified on a silica gel column chromatography (20% hexane in EtOAc) to afford compound PRC6 (10.1 mg). This compound was identified as isofraxidin [53].

3.1.2.7 Isolation of Compound PRC7 (Sabandinol)

Fraction PC5 (1.4 g) was repeated a silica gel column chromatography $\left(10 \%\right.$ hexane in $\left.\mathrm{CHCl}_{3}\right)$ to give compound PRC7 $(20.3 \mathrm{mg})$ as white crystals. It was identified as sabandinol [23].

3.1.3 Isolation of Compounds from BuOH Extract

The BuOH extract (4.5 g) was separated on sephadex LH20 (MeOH) to obtain 6 fractions (fraction PB1 to PB6)

3.1.3.1 Isolation of Compound PRB8 (Luteolin)

Fraction PB2 (900.0 mg) was rechromatographed on sephadex LH20 (acetone) to afford 5 fractions (PB21 to PB25). Fraction PB22 (250.0 mg) was futher
purified on sephadex LH20 (70% acetone in MeOH) to give compound PRB8 as yellow crystals (20.9 mg). This compound was eventually identified as luteolin [54].

3.1.3.2 Isolation of Compound PRB9 (Tomentin) and Compound PRB10 (Chrysosplenol C)

Fraction PB5 (490.0 mg) was separated on sephadex LH20 (50\% CHCl_{3} in MeOH) to acquire 5 fractions (PB51to PB55). Compound PRB9 (tomentin [55], 12.0 mg) was obtained as yellow crystals on sephadex $\mathrm{LH} 20\left(50 \% \mathrm{CHCl}_{3}\right.$ in $\mathrm{MeOH})$ from fraction PB51. Fraction PB54 (120.0 mg) was futher purified on sephadex LH20 (50% acetone in MeOH) to furnish compound PRB10 $(25.0 \mathrm{mg})$ as yellow crystals. It was identified as chrysosplenol C [35].

3.2 Extraction and Isolation of Compounds from Cladogynos orientalis

3.2.1 Extraction

The roots of Cladogynos orientalis (4.5 kg) were minced and extracted successively with $\mathrm{CHCl}_{3}(5 \times 20.0 \mathrm{~L})$ and then with $\mathrm{MeOH}(3 \times 20.0 \mathrm{~L})$. Removal of the solvent from the extract under reduced pressure gave a CHCl_{3} extract (208.6 g) and a MeOH extract (227.3 g), respectively.

3.2.2 Isolation of Compounds from $\mathbf{C H C l}_{3}$ Extract

The CHCl_{3} extract (208.6 g) was dissolved a small amount of CHCl_{3}, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then fractionated by vacumn liquid column chromatography using sintered glass filter column of silica gel (No. 7734). Elution was completed in a polarity gradient manner with mixture of hexane, CHCl_{3}, and MeOH .0 The eluated was collected 500 mL per fraction and examined by TLC (Silica gel, 30% hexane in CHCl_{3}). Fractions (83 fractions) with similar chromatographic pattern were combined to yield 8 fractions: Fraction CC1-CC8.

3.2.2.1 Isolation of Compound COC1 (8-Hydroxy- α-guaiene)

Fraction CC2 (18.2 g) was fractionated on a silica gel column using gradient elution with 90% hexane in CHCl_{3} to give 5 fractions (CC 21 to CC 25). Fraction CC23 (3.8 g) was futher purified with 50% hexane in EtOAc to furnish compound COC1 (50.7 mg). This compound was later identified as a new guaiene sesquiterpene, namely, $\left(4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}\right)$ - 8 -hydroxy- α-guaiene [56].

3.2.2.2 Isolation of Compound COC2 (Spathulenol)

Fraction CC3 (6.8 g) was rechromatographed on a silica gel column chromatography. Gradient elution (5\% EtOAc in hexane) was performed to give 7 fractions (CC31 to CC37). Fraction CC32 (1.0 g) was repeated a silica gel column chromatography (5% ether in hexane) to give compound COC2 $(62.5 \mathrm{mg}$). It was identified as spathulenol [57].
3.2.2.3 Isolation of Compound COC3 (5-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic Acid)

Fraction CC33 (192.0 mg) was further purified on a silica gel column chromatography ($2.5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane) to obtain compound COC3 $(3.2 \mathrm{mg})$ as a new 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1carboxylic acid [58].
3.2.2.4 Isolation of Compound COC4 (Methyl 9-(Furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo $\left[5.3 .3 .0^{1,6}\right]$ trideca-5,8-diene-2-carboxylate)

Fraction CC35 (1.3 g) was further purified on a silica gel column chromatography ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane) to obtain compound COC4 (32.7 mg) as methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0 ${ }^{1,6}$]trideca-5,8-diene-2-carboxylate [59].

3.2.2.5 Isolation of Compound COC5 (Acetoxyaleuritolate)

Fraction CC4 (16.6 g) was chromatographed on a silica gel column chromatography. Gradient elution (20% ether in hexane) was performed to give 9 fractions (CC41 to CC49). Fraction CC42 (2.1 g) was crystallized from a hexaneCHCl_{3} mixture to give compound COC5 $(62.5 \mathrm{mg}$), It was identified as acetoxyaleuritolate [60].

3.2.2.6 Isolation of Compound COC6 (Taraxerol) and compound COC7 (Chettaphanin II)

Fraction CC47 (1.4 g) was crystallized from a hexane- CHCl_{3} mixture to afford compound COC6 (79.0 mg). It was identified as taraxerol [61]. The mother liquid of fraction CC47 was futher purified on silica gel column $\left(50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane) to obtain compound $\mathbf{C O C} 7(25.2 \mathrm{mg})$ as chettaphanin II [49].

3.2.2.7 Isolation of Compound COC8 (6-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11one)

Fraction CC5 (20.2 g) was chromatographed on a silica gel column chromatography. Gradient elution (40% hexane in CHCl_{3}) was performed to give 6 fractions (CC51 to CC56). Fraction CC52 (75.0 mg) was further fractionated by repeated column chromatography ($80 \% \mathrm{CHCl}_{3}$ in EtOAc gradient elution) to furnish compound COC8 $(4.1 \mathrm{mg})$. This compound was newly identified as 6 -[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one) [62].
3.2.2.8 Isolation of Compound COC9 (6-[2-(Furan-3-yl)oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11one)

Fraction CC56 (10.0 g) was further fractionated by repeated column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to furnish compound $\mathbf{C O C} 9(33.4 \mathrm{mg})$. This compound was newly identified as 6-[2-(furan-3-yl)oxo]ethyl]-1,5-6-trimethyl-10-oxatricyclo [7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one) [63].

3.2.2.9 Isolation of Compound COC10 (Chettaphanin I)

Fraction CC6 $(9.8 \mathrm{~g})$ was further purified on a silica gel column chromatography (30\% hexane in EtOAc gradient elution) to obtain 4 fractions (CC61 to CC64). Fraction CC62 (1.2 g) was repeated a silica gel column chromatography ($15 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound $\mathbf{C O C 1 0}$ (258.0 mg). It was identified as chettaphanin I [48].

Fraction $\mathrm{CC} 7(113.9 \mathrm{~g})$ was crystallized with hexane- CHCl_{3} mixture to give compound COC11 (295.9 mg) as cyperenoic acid [64],

Scheme 2 Seperation of fraction PC3 from the CHCl_{3} extract of the aerial parts of Pterocaulon redolens

Scheme 5 Seperation of the BuOH extract of the aerial parts of Pterocaulon redolens

Sephadex LH20 ($50 \% \mathrm{CHCl}_{3}$ in MeOH)

Compound PRB9 ($\mathbf{1 2 . 0} \mathbf{~ m g}$)

Scheme 6 Seperation of the fraction PB5 from the BuOH extract of the aerial parts of Pterocaulon redolens

Scheme 7 Seperation of the CHCl_{3} extract of the roots of Cladogynos orientalis

Compound COC3 (3.2 mg)

Scheme 8 Seperation of fraction CC 3 from the CHCl_{3} extract of the roots of Cladogynos orientalis

Scheme 9 Seperation of fraction CC4 from the CHCl_{3} extract of the roots of Cladogynos orientalis

Compound COC8 (4.1 mg)

Compound COC9 (33.4 mg)

Scheme 10 Seperation of fraction CC 5 from the CHCl_{3} extract of the roots of Cladogynos orientalis

Compound COC10 (258.0 mg)

Scheme 11 Seperation of fraction CC 6 from the CHCl_{3} extract of the roots of Cladogynos orientalis

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound PRC1 (5-Methoxy-6,7-methylenedioxycoumarin)

Compound PRC1 was obtained as white crystals, soluble in CHCl_{3} (60.0 mg , $4.0 \times 10^{-3} \%$ based on dried weight of the aerial parts).

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 221$, Figure 6
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 238$ (3.25), 269 (4.12), 316 (4.13), Figure7
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3077,2920,1737,1628,1481,1248,1046$, Figure 8
${ }^{1}$ H NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 5 and Figure 9
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 5 and Figure 10

4.2 Compound PRC2 (Ayapin)

Compound PRC2 was obtained as colourless needles, soluble in $\mathrm{CHCl}_{3}(30.8$ $\mathrm{mg}, 2.0 \times 10^{-3} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 191, Figure 13
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH; 234 (4.34), 294 (3.79), 346 (4.20), Figure 14
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3079,2919,1702,1630,1453,1256,940,888$, Figure 15
${ }^{1} \mathrm{H}$ NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 6 and Figure 16
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 6 and Figure 17

4.3 Compound PRC3 (Puberulin)

Compound PRC3 was obtained as white crystals, soluble in $\mathrm{CHCl}_{3}(18.0 \mathrm{mg}$, $1.2 \times 10^{-3} \%$ based on dried weight of the aerial parts).
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 291, Figure 20
UV
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3020,2941,1729,1605,1565,1459,1120,976$, Figure 22
${ }^{\mathbf{1}} \mathbf{H}$ NMR
${ }^{13} \mathbf{C}$ NMR $\quad: \quad \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 7 and Figure 23
$\delta_{\mathrm{C}}^{6} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 7 and Figure 24

4.4 Compound PRC4 (5-Methoxyscopoletin)

Compound PRC4 was obtained as white solid, soluble in $\mathrm{CHCl}_{3}(20.0 \mathrm{mg}$, $1.3 \times 10^{-3} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 223, Figure 28
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 222$ (4.13), 266 (3.06), 328 (4.13), Figure 29
IR $: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3413,3085,2952,1722,1608,1468,1140,824$, Figure 30
${ }^{1} \mathbf{H}$ NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, see Table 8 and Figure 31
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table $\mathbf{8}$ and Figure 32

4.5 Compound PRC5 (2',3'-Dihydroxypuberulin)

Compound PRC5 was obtained as white crystals, soluble in $\mathrm{CHCl}_{3}(40.1 \mathrm{mg}$, $2.7 \times 10^{-3} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 325$, Figure 35
$[\alpha]_{\mathrm{D}}^{23} \quad:+25^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right)$
UV $\quad \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 228$ (4.32), 296 (4.06), 343(3.90), Figure 36
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3474,1716,1605,1566,1459,1125,984$, Figure 37
${ }^{1} \mathbf{H}$ NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 9 and Figure 38
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 9 and Figure 39

4.6 Compound PRC6 (Isofraxidin)

Compound PRC6 was obtained as yellow crystals, soluble in $\mathrm{CHCl}_{3}(10.1 \mathrm{mg}$, $6.7 \times 10^{-4} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 223$, Figure 42
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH; 228 (4.39), 268 (3.36), 345(4.28), Figure 43
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3369,1706,1600,1575,1456,1120,1084$, Figure 44
${ }^{1}$ H NMR $: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 10 and Figure 45
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 10 and Figure 46

4.7 Compound PRC7 (Sabandinol)

Compound PRC7 was obtained as white crystals, soluble in $\mathrm{MeOH}(20.3 \mathrm{mg}$, $1.4 \times 10^{-3} \%$ based on dried weight of the aerial parts).
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 309$, Figure 50
$[\alpha]^{25}$ D $99^{\circ}:+30.9^{\circ}(c 0.65, \mathrm{MeOH})$
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 220$ (4.12), 239 (2.94), 320 (3.84), Figure 51
IR $\quad: v_{\text {max }} \mathrm{cm}^{-1}, \mathrm{KBr} ; 3438,1715,1638,1579,1473,1249,1131,938$, Figure 52
${ }^{1}$ H NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in DMSO- d_{6}, Table 11 and Figure 53
${ }^{13}$ C NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in DMSO- d_{6}, Table 11 and Figure 54

4.8 Compound PRB8 (Luteolin)

Compound PRB8 was obtained as yellow crystals, soluble in MeOH (20.9 $\mathrm{mg}, 1.4 \times 10^{-3} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 287, Figure 58
UV $\quad \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH ; 212 (4.49), 270 (3.22), 317 (4.11), Figure 59
IR $\quad: v_{\text {max }} \mathrm{cm}^{-1}, \mathrm{KBr} ; 3347,1654,1609,1490,1260,1032,840$, Figure 60
${ }^{1}$ H NMR $: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in DMSO- d_{6}, Table 12 and Figure 61
${ }^{13}$ C NMR $: \delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in DMSO- d_{6}, Table 12 and Figure 62

4.9 Compound PRB9 (Tomentin)

Compound PRB9 was obtained as yellow crystals, soluble in MeOH (12.0 $\mathrm{mg}, 8.0 \times 10^{-4} \%$ based on dried weight of the aerial parts).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 347$, Figure 65
UV $\quad \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 213$ (4.54), 303 (3.92), 347 (4.37), Figure 66
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3369,1655,1609,1560,1491,1290,796$, Figure 67
${ }^{1}$ H NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in DMSO- d_{6}, Table 13 and Figure 68
${ }^{13}$ C NMR $\quad: \delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in DMSO- d_{6}, Table 13 and Figure 69

4.10 Compound PRB10 (Chrysosplenol C)

Compound PRB10 was obtained as yellow solid, soluble in MeOH (25.0 mg ,
$1.7 \times 10^{-3} \%$ based on dried weight of the aerial parts).
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 361, Figure 72
UV $\quad \lambda_{\text {max }} n m(\log \varepsilon)$, in $\mathrm{MeOH} ; 214$ (4.68), 281 (4.37), 349 (4.53), Figure 73
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3392,1668,1608,1491,1285,940,880$, Figure 74
${ }^{1}$ H NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in DMSO- d_{6}, Table 14 and Figure 75
${ }^{13}$ C NMR $\quad: \delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in DMSO- d_{6}, Table 14 and Figure 76
4.11 Compound COC1 ($\left(4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}\right)$-8-Hydroxy- α-guaiene)

Compound COC1 was obtained as pale yellow oil, soluble in $\mathrm{CHCl}_{3}(50.7$
$\mathrm{mg}, 1.1 \times 10^{-3} \%$ based on dried weight of the roots). $9 / \mathrm{e}$? Cl
FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 220$, Figure 79
HRFABMS : $[\mathrm{M}+\mathrm{K}]^{+} \mathrm{m} / \mathrm{z} 259.1487\left(\right.$ calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{OK}=259.1464\right)$
$[\alpha]^{23}{ }_{\mathrm{D}} \quad:-65.1^{\circ}(c 0.03, \mathrm{MeOH})$
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH; 206 (3.85), 263 (2.99), Figure 80
IR $\quad: v_{\max } \mathrm{cm}^{-1}$, Neat; 3448, 3100, 2926,1457, 1023, Figure 81
${ }^{1} \mathbf{H}$ NMR $: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 15 and Figure 82-83
${ }^{13}$ C NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 15 and Figure 84

4.12 Compound COC2 (Spathulenol)

Compound $\mathbf{C O C} 2$ was obtained as pale yellow oil, soluble in CHCl_{3} (62.5 $\mathrm{mg}, 1.4 \times 10^{-3} \%$ based on dried weight of the roots).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 221$, Figure 90
IR
: $v_{\text {max }} \mathrm{cm}^{-1}$, Neat; 3384, 3080, 2926,1458, 1375, 889, Figure 91
${ }^{1} \mathrm{H}$ NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 16 and Figure 92
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 16 and Figure 93
4.13 Compound COC3 (5-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6, -7,8-octahydronaphthalene-1-carboxylic acid)
Compound $\mathbf{C O C} 3$ was obtained as pale yellow oil, soluble in $\mathrm{CHCl}_{3}(3.2 \mathrm{mg}$, $0.7 \times 10^{-4} \%$ based on dried weight of the roots).

FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 317$, Figure 98
HRFABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 317.2108$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3}=317.2117$)
$[\alpha]^{23} \quad:-23.2^{\circ}(c 0.0013, \mathrm{MeOH})$
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH; 299 (3.23), Figure 99
IR $\quad: v_{\max } \mathrm{cm}^{-1}$, Neat; 3600-2400, 2929, 1699, 1458, 1190, 938, Figure 100
${ }^{1}$ H NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}$, 500 MHz , in CDCl_{3}, Table 17 and Figure 101-102
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 17 and Figure 103
4.14 Compound COC4 (Methyl-9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10oxatricyclo [5.3.3. $\left.0^{1,6}\right]$ trideca-5,8-diene-2-carboxylate)
Compound COC4 was obtained as pale yellow oil, soluble in CHCl_{3} (32.7 $\mathrm{mg}, 7.2 \times 10^{-4} \%$ based on dried weight of the roots).

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{\dagger} m / z$ 357, Figure 109

HRFABMS $:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 357.1685$ (calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}=357.1702$) $[\alpha]^{23}{ }_{D}$
$:+56.1^{\circ}(c 0.015, \mathrm{MeOH})$
UV
: $\lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH; 239 (4.19), Figure 110
IR $\quad: v_{\max } \mathrm{cm}^{-1}$, Neat; 3150, 1736, 1676, 1456, $1227,1020,920$, Figure 111
${ }^{1}$ H NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 18 and Figure 112-113
${ }^{13}$ C NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 18 and Figure 114

4.15 Compound COC5 (Acetoxyaleuritolate)

Compound COC5 was obtained as white solid, soluble in $\mathrm{CHCl}_{3}(162.5 \mathrm{mg}$, $3.6 \times 10^{-3} \%$ based on dried weight of the roots).

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z$ 499, Figure 122
IR
: $v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr}$; 3423, 2937, 2856, 1736, 1687, 1458, 1365, 1244, Figure 123
${ }^{1} \mathbf{H}$ NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 19 and Figure 124
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 19 and Figure 125

4.16 Compound COC6 (Taraxerol)

Compound COC6 was obtained as white solid, soluble in $\mathrm{CHCl}_{3}(79.0 \mathrm{mg}$, $1.8 \times 10^{-3} \%$ based on dried weight of the roots).
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 427$, Figure 127
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3483,2933,2852,1473,1385,816$, Figure 128
${ }^{1} \mathbf{H}$ NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 20 and Figure 129
${ }^{13} \mathbf{C ~ N M R ~ : ~} \delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 20 and Figure 130

4.17 Compound COC7 (Chettaphanin II)

Compound COC7 was obtained as yellow solid, soluble in $\mathrm{CHCl}_{3}(25.2 \mathrm{mg}$, $5.6 \times 10^{-3} \%$ based on dried weight of the roots).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 341$, Figure 132
UV : $\lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in EtOH; 242 (3.68), 294 (3.48), Figure 133
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3167,2964,1722,1682,1576,1149,1280,816$, Figure 134
${ }^{1} \mathbf{H}$ NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 21 and Figure 135
${ }^{13} \mathbf{C}$ NMR $\quad \delta_{C}$ ppm, 125 MHz, in CDCl_{3}, Table 21 and Figure 136
4.18 Compound COC8 (6-[2-(Furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one)
Compound COC8 was obtained as pale yellow oil, soluble in $\mathrm{CHCl}_{3}(4.1 \mathrm{mg}$, $0.9 \times 10^{-4} \%$ based on dried weight of the roots).

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 315$, Figure 140
HRFABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 315.1990$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3}=315.1960$)
$[\alpha]^{23}{ }_{\mathrm{D}} \quad:-88.6^{\circ}(c 0.0017, \mathrm{MeOH})$
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 204$ (4.19), Figure 141
IR $\quad: v_{\max } \mathrm{cm}^{-1}$, Neat; 3124, 1773, 1459, 1290, 1024, 873, Figure 142
${ }^{1} \mathbf{H}$ NMR $: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 22 and Figure 143-144
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 22 and Figure 145
4.19 Compound COC9 (6-[2-(Furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one)

Compound COC9 was obtained as yellow solid, soluble in $\mathrm{CHCl}_{3}(33.4 \mathrm{mg}$, $7.4 \times 10^{-4} \%$ based on dried weight of the roots).
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 329$, Figure 151
HRFABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 329.1727$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4}=329.1753$)
$[\alpha]^{23}{ }_{\mathrm{D}} \quad:-151.5^{\circ}\left(c 0.017, \mathrm{CHCl}_{3}\right)$
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in MeOH; 230 (4.13), Figure 152
IR $\quad: v_{\text {max }} \mathrm{cm}^{-1}, \mathrm{KBr}, 3122,1757,1671,1509,1276,872$, Figure 153
${ }^{1}$ H NMR $\quad: \delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 23 and Figure 154-155
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 23 and Figure 156

4.20 Compound COC10 (Chettaphanin I)

Compound $\mathbf{C O C 1 0}$ was obtained as white crystals, soluble in $\mathrm{CHCl}_{3}(258.0$ $\mathrm{mg}, 5.8 \times 10^{-3} \%$ based on dried weight of the roots).

FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 375$, Figure 163
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in $\mathrm{EtOH} ; 248$ (4.07), Figure 164
IR $\quad: v_{\max } \mathrm{cm}^{-1}, \mathrm{KBr} ; 3423,3140,2956,1731,1653,1462,1281$, 1153, 997, Figure 165
${ }^{1}$ H NMR : $\delta_{\mathrm{H}} \mathrm{ppm}$, 500 MHz , in CDCl_{3}, Table 24 and Figure 166-167
${ }^{13} \mathbf{C}$ NMR $\quad \delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 24 and Figure 168

4.21 Compound COC11 (Cyperenoic acid)

Compound COC11 was obtained as white solid, soluble in $\mathrm{CHCl}_{3}(259.9 \mathrm{mg}$, $5.8 \times 10^{-3} \%$ based on dried weight of the roots).

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z$ 235, Figure 174
UV $\quad: \lambda_{\max } \mathrm{nm}(\log \varepsilon)$, in $\mathrm{MeOH} ; 241$ (4.01), Figure 175
$[\alpha]^{23}{ }_{\mathrm{D}} \quad:-7.8^{\circ}\left(c 0.08, \mathrm{CHCl}_{3}\right)$
IR $\quad: v_{\text {max }} \mathrm{cm}^{-1}$, Neat; 3200-2400, 1672, 1435, 1286, 951, Figure 176
${ }^{1} \mathbf{H}$ NMR : $\delta_{\mathrm{H}} \mathrm{ppm}, 500 \mathrm{MHz}$, in CDCl_{3}, Table 31 and Figure 177
${ }^{13} \mathbf{C}$ NMR : $\delta_{\mathrm{C}} \mathrm{ppm}, 125 \mathrm{MHz}$, in CDCl_{3}, Table 31 and Figure 178

5. Evaluation of biological Activities

5.1 Cytotoxic Activity

In vitro cytotoxicity test (Skehan et al., 1990) was assessed using the sulforhodamine B (SRB)-assay using human tumor cell lines of KB (human oral epidermoid carcinoma of nasopharynx), BC (human breast cancer) and NCI-H 187 (human small cell lung cancer). The cell lines were incubated at $37{ }^{\circ} \mathrm{C}$ for 72 hr , at which time the SRB was added. The results were expressed as IC_{50} of tested compounds.

5.2 Antimycobacterial Activity

In vitro antimycobacterial activity was performed by a Microplate Alamar Blue Assay (Collins and Franzblau, 1997). Mycobacterium tuberculosis H37Ra was used as the tested microorganism. The Minimum Inhibitory Concentrations (MICs) of the test compounds were measured in $\mu \mathrm{g} / \mathrm{mL}$.

สถาบันวิทยบริการ

CHAPTER IV

RESULTS AND DISCUSSION

Preliminary bioactivity screening revealed that Pterocaulon redolens and Cladogynos orientalis exhibited cytotoxic and antimycobacterial activities. These results of bioactivities are summarized as shown below.

Crude extact		Cytotoxicity $\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL}) *$		Antimycobacterial activity$\operatorname{MIC}(\mu \mathrm{g} / \mathrm{mL})^{d}$
	KB	$\mathrm{BC}^{\text {b }}$	NCI-H $187{ }^{\text {c }}$	
P. redolens				
The hexane extract	20	> 20	>20	inactive
The CHCl_{3} extract		5.0	>20	50
The BuOH extract	20	4.2	5.7	50
C. orientalis				
The CHCl_{3} extract	20	4.4	0.7	12.5
The MeOH extract	>20	>20	>20	inactive

${ }^{a} \mathrm{~KB}$; Oral human epidermoid carcinoma cell lines of nasopharynx
${ }^{b} \mathrm{BC}$; Human breast cancer cell lines
${ }^{c}$ NCI-H 187; Human small cell lung cancer cell lines
${ }^{d}$ Antimycobacterial activity toward Mycobacterium tuberculosis H37Ra
IC_{50}; Inhibition Concentration at 50%
${ }^{*}{ } \mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL}) \quad 6>20$; inactive

MIC; Minimun Inhibition Concentration

The dried aerial parts of P. redolens were extracted with CHCl_{3} and MeOH to give a CHCl_{3} extract (30.8 g) and a MeOH extract (10.2 g), respectively. The MeOH extract was then partitioned with BuOH and water to obtain the BuOH extract $(4.5 \mathrm{~g})$. The CHCl_{3} extract was further purified using several chromatography techniques to
yield 7 pure compounds (compound PRC1 to compound PRC7). By the repetitive chromatography, 3 compounds (compound PRB8 to compound PRB10) were obtained from the BuOH extract.

The CHCl_{3} extract $(208.6 \mathrm{~g})$ from the roots of C. orientalis were separated using several chromatographic techniques to afford 11 pure compounds (compound COC1 to compound COC11).

The structures of all isolates were determined by interpletation of their UV, IR, NMR and MS data and further confirmed by comparison with literature values. Additionally, their cytotoxic and antimycobacterial activities were also discussed.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

1. Determination of Volatile Oil Compositions from Pterocaulon redolens

The volatile oil obtained from the aerial parts of P. redolen is yellow. After analysis by GC-MS, the percentages of normal terpenes were determined and reported in the following table. GC-MS chromatogram (Figure 5) is demonstrated in Appendices part.

Peak number	Component name	\% Area
1	linalool [65]	6.27
2	β-elemene [66]	2.76
3	9 -epi- β-caryophyllene [67]	59.93
4	α-humulene [68]	8.22
5	β-selinene [69]	1.57
6	α-selinene [70]	0.92
7	germacrene A [71]	6.94
8	Z-nerolidol [72]	0.83
9	caryophyllene oxide [73]	12.56

[65]

[67]

[71]

[72]

[73]

Figure 4 Structures of volatile oil compositions from Pterocaulon redolens

2. Structure Determination of Compounds Isolated from Pterocaulon redolens

2.1 Structure Determination of Compound PRC1

Compound PRC1 was obtained as white crystals with m.p. 200-202 ${ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 6) showed the protonated molecular ion peak $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 221$, consistent with its molecular formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5}$. The UV spectrum (Figure 7) showed absorption maxima at 238, 269 and 316 nm . The IR spectrum (Figure 8) displayed absorption bands at 1737 (conjugated $\mathrm{C}=\mathrm{O}$ stretching) and 1628 and 1481 (aromatic ring) cm^{-1}. The ${ }^{1} \mathrm{H}$-NMR spectrum of compound PRC1 (Figure 9) showed three singlet signals at $\delta_{H} 4.14(3 \mathrm{H}, s), 6.01(2 \mathrm{H}, s)$ and $6.53(1 \mathrm{H}, s)$ attributed to methoxy, methylenedioxy and methine groups, respectively, and two doublet signals at $\delta_{\mathrm{H}} 6.20(\mathrm{H}-3, d, J=9.5 \mathrm{~Hz})$ and $7.94(\mathrm{H}-4, d, J=9.5 \mathrm{~Hz})$ assigned to vinyl protons. The latter doublet proton signal at C-4 suggested that there is an oxygen substituent at C-5 (Steck and Mazurek, 1972). The HMBC spectrum of compound PRC1 (Figure 12) showed the correlation from $\delta_{\mathrm{H}} 7.94(\mathrm{H}-4)$ and 4.14 $\left(\mathrm{OCH}_{3}-5\right)$ to $\delta_{\mathrm{C}} 138.0(\mathrm{C}-5)$, suggesting the presence of methoxy group at $\mathrm{C}-5$. The singlet signal at $\delta_{\mathrm{H}} 6.53$ was assigned to $\mathrm{H}-8$, confirmed by the HMBC correlations from $\delta_{\mathrm{H}} 6.53(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 106.6(\mathrm{C}-4 \mathrm{a}), 151.5(\mathrm{C}-8 \mathrm{a}), 131.7(\mathrm{C}-6)$ and $152.6(\mathrm{C}-7)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data exhibited close similarity to those in the literature (Maldonado, Hernandez and Ortega, 1992). The ${ }^{13} \mathrm{C}$-NMR spectrum of compound PRC1 (Figure 10) showed signals of the carbon 7 and 8 a at $\delta_{C} 152.6$ and 151.5 ppm , respectively. These signals had been conversely assigned in the literature. Based on the above spectral evidence and the assignment by the HMQC (Figure 11), HMBC (Figure 12 and Table 5) experiments, compound PRC1 was identified as 5-methoxy-6,7methylenedioxycoumarin [9]. This compound was previously found in Simsia cronquistii (Maldonado, Hernandez and Ortega, 1992). \& G GE

[9]

Table 5 NMR spectral data of compound PRC1 and 5-methoxy-6,7-methylenedioxycoumarin $\left(\mathrm{CDCl}_{3}\right)$

position	Compound PRC1			5-Methoxy-6,7- methylenedioxycoumarin	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$
2	-	161.3	$\mathrm{H}-3^{*}, \mathrm{H}-4$	-	161.4
3	$6.20(1 \mathrm{H}, d, 9.5)$	111.7		$6.17(1 \mathrm{H}, d, 10.0)$	111.7
4	$7.94(1 \mathrm{H}, d, 9.5)$	138.8		$7.89(1 \mathrm{H}, d, 10.0,1.0)$	138.7
4 a	-	106.6	$\mathrm{H}-3, \mathrm{H}-8$	-	106.6
5	-	138.0	$\mathrm{H}-4, \mathrm{OCH}_{3}-5$	-	138.0
6	-	131.7	OCH $_{2} \mathrm{O}, \mathrm{H}-8$	-	131.7
7	-	$\mathbf{1 5 2 . 6}$	$\mathrm{OCH}_{2} \mathrm{O}, \mathrm{H}-8^{*}$	-	$\mathbf{1 5 1 . 5}$
8	$6.53(1 \mathrm{H}, s)$	92.3	-	$6.46(1 \mathrm{H}, d, 1.0)$	92.4
8 a	-	$\mathbf{1 5 1 . 5}$	$\mathrm{H}-4, \mathrm{H}-8^{*}$	-	$\mathbf{1 5 2 . 6}$
$\mathrm{OCH}_{2} \mathrm{O}$	$6.01(2 \mathrm{H}, s)$	101.8	-	$5.97(2 \mathrm{H}, s)$	101.8
OCH_{3}	$4.14(3 \mathrm{H}, s)$	59.9		$4.11(3 \mathrm{H}, s)$	59.9

The bold values are revised assignments.

* Two bond coupling

สถาบันวิทยบริการ

2.2 Structure Determination of Compound PRC2

Compound PRC2, $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 191$ in FAB mass spectrum (Figure 13) agreeing with the molecular formula $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4}$, was isolated as colourless needles with m.p. 220-221 ${ }^{\circ} \mathrm{C}$. The UV spectrum (Figure 14) provided at 234, 294 and 346 nm. The IR spectrum (Figure 15) displayed the presence of a lactone carbonyl, typical of coumarin, at $1702 \mathrm{~cm}^{-1}$ together with the bands of an aromatic ring at 1630 and 1453 cm^{-1}. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC2 (Figure 16) showed a typical pair of doublets at $\delta_{\mathrm{H}} 6.28$ and $7.58(1 \mathrm{H}$ each, $d, J=9.7 \mathrm{~Hz})$ for $\mathrm{H}-3$ and $\mathrm{H}-4$, respectively. The relatively high field position of H-4 in compound PRC2 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972). The presence of 6,7dioxygenated aromatic ring was suggested by two singlet signals at $\delta_{\mathrm{H}} 6.828$ and 6.833 (each $1 \mathrm{H}, \mathrm{s}$), referring to $\mathrm{H}-5$ and $\mathrm{H}-8$. The presence of two protons signal at $\delta_{\mathrm{H}} 6.07$ as a singlet is characteristic of a methylenedioxy group. All signals of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$-NMR spectra of compound PRC2 (Figure 17) were corresponding to those of the literature (Debenedetti et al., 1998). The literature noted that 3 signals were observed at $\delta_{C} 143.4$ (overlapped), 144.9 and 151.3 due to the carbon $4,6,8$ a and 7. Precise examination of the ${ }^{13} \mathrm{C}$-NMR spectrum showed that the corresponding signals were separatedly observed at $\delta_{C} 143.4,144.9,151.2$ and 151.3 , assignable to carbons $4,6,7$ and 8 a. This present study completely assigned the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of this compound by HMQC (Figure 18), HMBC (Figure 19 and Table 6) experiments and compound PRC2 was identified as ayapin [10]. This compound has been reported to be present widely in plants such as Pterocaulon virgatum (Debenedetti et al., 1998) and P. polystachium (Patacios et al., 1999).
จุหาลงกรณหบไว่วยาลัย

Table 6 NMR spectral data of compound PRC2 and ayapin $\left(\mathrm{CDCl}_{3}\right)$

position	Compound PRC2			Ayapin	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC correlation	$\delta_{\text {H }}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$
2	-	161.2	H-3*, H-4	-	161.2
3	$6.28(1 \mathrm{H}, d, 9.7)$	113.4	-	$6.28(1 \mathrm{H}, d, 9.5)$	113.4
4	7.58 (1H, $d, 9.7)$	143.4	H-5	7.58 (1H, $d, 9.5)$	143.4
4 a	-	112.7	H-3, H-4*, H-5*, H-8	-	112.7
5	$6.828(1 \mathrm{H}, s)^{\text {a }}$	105.0	H-4	$6.82(1 \mathrm{H}, s)$	105.0
6	-	144.9	$\mathrm{OCH}_{2} \mathrm{O}, \mathrm{H}-5^{*}, \mathrm{H}-8$	-	143.4
7	-	$151.2^{\text {a }}$	OCH2 $\mathrm{O}, \mathrm{H}-5, \mathrm{H}-8^{*}$	-	151.3
8	$6.833(1 \mathrm{H}, s)^{\text {a }}$	8.4		$6.82(1 \mathrm{H}, s)$	98.4
8 a	-	$151.3{ }^{\text {a }}$	H-4, H-5, H-8*	-	144.9
$\mathrm{OCH}_{2} \mathrm{O}$	$6.07(2 \mathrm{H}, s)$	02.3		$6.10(2 \mathrm{H}, s)$	102.3

The bold values are revised assignments.
${ }^{\text {a }}$ Assignment may be interchanged.

* Two bond coupling

สถาบันวิทยบริการ

2.3 Structure Determination of Compound PRC3

Compound PRC3 was obtained as white crystals with m.p. $92-93{ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 20) showed $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 291, corresponding to the molecular formula $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}$. The UV spectrum (Figure 21) showed 227, 260 and 297 nm . The IR spectrum (Figure 22) displayed absorption bands at $1729 \mathrm{~cm}^{-1}$ (a coumaryl lactone group) and 1605 and $1459 \mathrm{~cm}^{-1}$ (aromatic ring). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC3 (Figure 23) defined eighteen protons. The two doublets at $\delta_{\mathrm{H}} 6.34$ and 7.61 (each $1 \mathrm{H}, d, J=9.5 \mathrm{~Hz}$) were due to $\mathrm{H}-3$ and $\mathrm{H}-4$. The chemical shift of the latter showed that C-5 must contain no oxygen function otherwise it would appear at δ_{H} 7.8-8.2 (Steck and Mazurek, 1972), accordingly, the one proton singlet at $\delta_{\mathrm{H}} 6.66$ is assigned to $\mathrm{H}-5$. The presence of two methoxy signals at $\delta_{\mathrm{H}} 3.89$ and 4.09 and a prenyl substituent [a methylene doublet at $\delta_{\mathrm{H}} 4.64\left(\mathrm{H}_{2}-1^{\prime}, d\right.$, $J=7.0 \mathrm{~Hz}$), a coupled olefinic triplet like at $\delta_{\mathrm{H}} 5.57\left(\mathrm{H}-2^{\prime}, t\right.$ like, $\left.J=7.0 \mathrm{~Hz}\right)$ and two non-equivalent methyl resonances at $\delta_{\mathrm{H}} 1.71$ and $1.77\left(\mathrm{H}_{3}-4^{\prime}\right.$ and $\left.\left.\mathrm{H}_{3}-5^{\prime}, s\right)\right]$ confirmed that these three substituents should accupy the remaining vacant positions. The relative positions of these substituents were confirmly established by HMQC (Figure 25), HMBC (Figure 26 and Table 7) and NOE (Figure 27) experiments that observed from $\mathrm{H}-5\left(\delta_{\mathrm{H}} 6.66\right)$ to $\mathrm{H}-4\left(\delta_{\mathrm{H}} 7.61\right)$ by 12.1% and $\mathrm{H}_{3}-6\left(\delta_{\mathrm{H}} 3.89\right)$ by 10.0%, from $\mathrm{OCH}_{3}-6\left(\delta_{\mathrm{H}} 3.89\right)$ to $\mathrm{H}-5\left(\delta_{\mathrm{H}} 6.66\right)$ by 18.1% and $\mathrm{H}-2^{\prime}\left(\delta_{\mathrm{H}} 5.56\right)$ by 12.5% and from $\mathrm{OCH}_{3}-8\left(\delta_{\mathrm{H}} 4.09\right)$ to $\mathrm{H}-1^{\prime}\left(\delta_{\mathrm{H}} 4.64\right)$ by 8.5% and $\mathrm{H}-2^{\prime}\left(\delta_{\mathrm{H}} 5.56\right)$ by 2.1%. Its ${ }^{1} \mathrm{H}-$ NMR properties were in agreement with previously published values (Jackson, Campbell and Davidowitz, 1990). Additionally, the ${ }^{13} \mathrm{C}$-NMR spectrum (Figure 24) showed signals at $\delta_{\mathrm{C}} 141.7,143.0,144.9$ and 150.6 which had been previously assigned to C-8a, C-8, C-6 and C-7. They should be revised to C-8, C-8a, C-7 and C6, respectively. Compound PRC3 was identified as puberulin [50] based on the above spectral data, a coumarin first isolated from the aerial parts of Agathosma puberula (Finkelstein and Rivett, 1976)

[50]

Table 7 NMR spectral data of compound PRC3 and puberulin $\left(\mathrm{CDCl}_{3}\right)$

position	- Compound PRB3			Puberulin	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$
2		160.6	H-3*, H-4	-	160.6
3	6.34. (1H, $d, 9.5)$	115.1		$6.31(1 \mathrm{H}, d, 9.6)$	115.1
4	$7.61(1 \mathrm{H}, d, 9.5)$	143.4		7.58 (1H, $d, 9.4)$	143.5
4a		114.4	H-3, H-4*	-	114.4
5	$6.66(1 \mathrm{H}, s)$	103.6	H-4	$6.63(1 \mathrm{H}, s)$	103.6
6		150.6	$\mathrm{H}-5^{*}, \mathrm{OCH}_{3}-6$	-	144.9
7		144.9	$\mathrm{H}-5, \mathrm{H}_{2}-1^{\prime}$	-	150.7
8	-	141.7	$\mathrm{OCH}_{3}-8$	-	143.0
8 a	-	143.0	H-4, H-5	-	141.8
1^{\prime}	4.64 (2H, $d, 7.0)$	210.2	- -	4.61 (2H, $d, 8.0)$	70.3
2^{\prime}	$5.56(1 \mathrm{H}, t$ like, 7.0)	119.1	$\mathrm{H}_{2}-1^{\prime *}, \mathrm{H}_{3}-4^{\prime}, \mathrm{H}_{3}-5^{\prime}$	$5.55(1 \mathrm{H}, t, 8.0)$	120.0
3^{\prime}		139.3	$\mathrm{H}_{2}-1^{\prime}, \mathrm{H}_{3}-4^{\prime} *, \mathrm{H}_{3}-5^{\prime *}$	-	139.3
4^{\prime}	1.71 (3H, s)	17.9	H-4'	$1.68(3 \mathrm{H}, s)$	17.9
5^{\prime}	$1.77(3 \mathrm{H}, s)$	25.8	H-5'	1.74 (3H, s)	25.8
$\mathrm{OCH}_{3}-6$	$3.89(3 \mathrm{H}, s)$	- 56.3	$\sim \sim$	$3.91(3 \mathrm{H}, s)$	56.3
$\mathrm{OCH}_{3}-8$	$64.09(3 H, s)$	61.7	0 - d	4.00 (3H, s)	-

The bold values are revised assignments.

* Two bond coupling

2.4 Structure Determination of Compound PRC4

Compound PRC4, white solid with m.p. $147-148{ }^{\circ} \mathrm{C}$, showed $[\mathrm{M}+\mathrm{H}]^{+}$at $m / \mathrm{z} 223$ in the FABMS (Figure 28), suggesting the molecular formula $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{5}$. The UV spectrum (Figure 29) showed absorptions at 222, 266 and 328 nm . The IR spectrum (Figure 30) revealed absorption at $\lambda_{\max } 3413$ (OH stretching), 1722 (conjugated $\mathrm{C}=\mathrm{O}$ stretching) and 1608 and 1468 (aromatic ring) cm^{-1}. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC4 (Figure 31) showed two signals at $\delta_{\mathrm{H}} 6.23$ ($d, J=9.8$ $\mathrm{Hz})$ and $7.91(d, J=9.8 \mathrm{~Hz})$ assigned to the vinylic protons $\mathrm{H}-3$ and $\mathrm{H}-4$. The deshielded nature of the $\mathrm{H}-4$ suggested that there was an oxygen function at the $\mathrm{C}-5$ (Steck and Mazurek, 1972). The presence of only one aromatic proton at $\delta_{\mathrm{H}} 6.70$, clearly indicated a trisubstituted aromatic moiety. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound PRC4 showed two aromatic methoxy signals at $\delta_{\mathrm{H}} 3.94$ and 3.99 and one aromatic hydroxyl signal at $\delta_{\mathrm{H}} 6.43$. Detection of HMBC correlations, from $\delta_{\mathrm{H}} 6.23(\mathrm{H}-3)$ and $6.70(\mathrm{H}-$ 8) to $\delta_{\mathrm{C}} 107.2(\mathrm{C}-4 \mathrm{a})$, from $\delta_{\mathrm{H}} 7.91(\mathrm{H}-4)$ to $\delta_{\mathrm{C}} 148.4(\mathrm{C}-5), 151.6(\mathrm{C}-8 \mathrm{a})$ and 161.4 $(\mathrm{C}-2)$, from $\delta_{\mathrm{H}} 3.99\left(\mathrm{H}_{3}-5\right)$ to $\delta_{\mathrm{C}} 148.4(\mathrm{C}-5)$, from $\delta_{\mathrm{H}} 3.94\left(\mathrm{H}_{3}-6\right), 6.43(\mathrm{OH}-7)$ and $6.70(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 136.3(\mathrm{C}-6)$ and from $\delta_{\mathrm{H}} 6.43(\mathrm{OH}-7)$ to $\delta_{\mathrm{C}} 98.8(\mathrm{C}-8)$, confirmed that compound PRC4 was $5,6,7$-substitution of coumarin system and also defined location of the methoxy groups at C-5 and C-6 and the hydroxy group at C-7. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Figure 31) showed the signal at 3.94 and 3.99 due to the protons $\mathrm{OCH}_{3}-6$ and $\mathrm{OCH}_{3}-$ 5 , respectively. These were revised from previous report (Wagner and Bladt, 1975). From the above ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectral data (Figure 32), together with the information from the HMQC (Figure 33) and HMBC (Figure 34 and Table 8) experiments, compound PRC4 was identified as 5-methoxyscopoletin [51]. This compound was firstly isolated from the roots of Pelargonium reniforme (Wagner and

[51]

Table 8 NMR spectral data of compound PRC4 and 5-methoxyscopoletin $\left(\mathrm{CDCl}_{3}\right)$

position	Compound PRC4			5-Methoxyscopoletin
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$
2	-	161.4	$\mathrm{H}-3^{*}, \mathrm{H}-4$	-
3	$6.23(1 \mathrm{H}, d, 9.8)$	112.4	-	$6.23(1 \mathrm{H}, d, 9.5)$
4	$7.91(1 \mathrm{H}, d, 9.8)$	138.6		-
4 a	-	107.2	$\mathrm{H}-3, \mathrm{H}-8$	$7.94(1 \mathrm{H}, d, 9.5)$
5	-	148.4	$\mathrm{H}^{2}-\mathrm{OCH}_{3}-5$	-
6	-	136.3	$\mathrm{OCH}_{3}-6, \mathrm{OH}-7, \mathrm{H}-8$	-
7	-	153.3	$\mathrm{H}-8$	-
8	$6.70(1 \mathrm{H}, s)$	98.8	$\mathrm{OH}-7$	-
8 a	-	151.6	$\mathrm{H}-4, \mathrm{H}-8$	$6.72(1 \mathrm{H}, s)$
$\mathrm{OCH}_{3}-5$	$\mathbf{3 . 9 9}(3 \mathrm{H}, s)$	61.5		-
$\mathrm{OCH}_{3}-6$	$\mathbf{3 . 9 4}(3 \mathrm{H}, s)$	61.2		$\mathbf{3 . 9 5}(3 \mathrm{H}, s)$
$\mathrm{OH}^{2}-7$	$6.43(1 \mathrm{H}, b r s)$	-	-	$\mathbf{4 . 0 3}(3 \mathrm{H}, s)$

The bold values are revised assignments.

* Two bond coupling

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

2.5 Structure Determination of Compound PRC5

Compound PRC5 was isolated as white crystals, with m.p. $78-80{ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 35) showed $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 325$, corresponding to $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{7}$. The UV absorptions were observed at 228, 296 and 343 nm (Figure 36). The IR spectrum (Figure 37) exhibited absorption bands due to the presence of hydroxyl group ($3474 \mathrm{~cm}^{-1}$), conjugated carbonyl group ($1716 \mathrm{~cm}^{-1}$) and aromatic ring (1605 and $1459 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC5 (Figure 38) showed a typical pair of doublets at $\delta_{\mathrm{H}} 6.37$ and 7.62 (1 H each, $d, J=9.4 \mathrm{~Hz}$) for $\mathrm{H}-3$ and $\mathrm{H}-4$, respectively. The relatively high field position of $\mathrm{H}-4$ suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972) and the presence of only one singlet aromatic proton at $\delta_{\mathrm{H}} 6.70$ confirmed a trisubstituent aromatic moiety. The singlet signals at $\delta_{\mathrm{H}} 3.92$ and 4.07 (3H each) were assigned as two methoxy group on aromatic nucleus. More characteristically, two pairs of doublet of doublets at $\delta_{\mathrm{H}} 4.00$ (Ha-1', $d d, J=10.4,7.8 \mathrm{~Hz}), 4.54\left(\mathrm{Hb}-1^{\prime}, d d, J=10.4,2.6 \mathrm{~Hz}\right)$ and a doublet of doublet of doublet at $\delta_{\mathrm{H}} 3.67(\mathrm{H}-2, d d d, J=7.8,3.6,2.6 \mathrm{~Hz})$ corresponded to methylene and methine in $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}$ fragment. The singlet signals at $\delta_{\mathrm{H}} 1.23$ and 1.28 (3 H each) corresponded to a gem-dimethyl group and the hydroxy groups were assigned at $\delta_{\mathrm{H}} 2.71(\mathrm{OH}-3, s)$ and $3.87\left(\mathrm{OH}-2^{\prime}, d, J=3.6 \mathrm{~Hz}\right)$. The positions of a trisubstituent aromatic moiety were analyzed by the HMBC correlations from δ_{H} $6.70(\mathrm{H}-5)$ to $\delta_{\mathrm{C}} 142.4$ (C-8a), $143.3(\mathrm{C}-4), 144.6$ (C-7) and 149.7 (C-6), from $\delta_{\mathrm{H}} 3.92$ $\left(\mathrm{OCH}_{3}-6\right)$ to $\delta_{\mathrm{C}} 149.7(\mathrm{C}-6)$, from $\delta_{\mathrm{H}} 4.00(\mathrm{Ha}-1)$ to $\delta_{\mathrm{C}} 144.6(\mathrm{C}-7)$ and from $\delta_{\mathrm{H}} 4.07$ $\left(\mathrm{OCH}_{3}-8\right)$ to $\delta_{\mathrm{C}} 141.0(\mathrm{C}-8)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of compound PRC5 showed all signals corresponding to the literature (Magalhaes et al., 1981) and also confirmed by the optical rotation; $[\alpha]^{23}{ }_{\mathrm{D}}+25^{\circ}\left(c c \widetilde{0.9}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, which was related to that of $2^{\prime}, 3^{\prime}-$ dihydroxypuberulin [52]. It should be noted that the isolation of this compound from a natural source is the first time. This compound was known, however, the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (Figure 39), HMQC (Figure 40) and HMBC (Figure 41 and Table 9) were presented at the first time in this study.

[52]
Table 9 The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data of compound PRC5 in CDCl_{3}

position	Compound PRC5			2',3'-Dihydropuberulin
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}$ (ppm)	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$
2	-	160.1	H-3*, H-4	-
3	6.37 (1H, $d, 9.4)$	115.5		$6.45(1 \mathrm{H}, d)$
4	7.62 (1H, $d, 9.4)$	143.3	H-5	7.75 (1H, d)
4a		114.8	H-3	-
5	6.70 (1H,	103.8	H-4	$6.81(1 \mathrm{H}, s)$
6		-149.7	$\mathrm{H}-5^{*}, \mathrm{OCH}_{3}-6$	-
7	-	144.6	H-5, Ha-1	-
8	-	131.0	$\mathrm{OCH}_{3}-8$	-
8a	-	- 142.4	H-4, H-5	-
1^{\prime}	4.00 (1Ha, $d d, 10.4,7.8)^{* *}$	2) 76.3	OH-2'	4.70 (2H, m)
	$4.54(1 \mathrm{Hb}, d d, 10.4,2.6)^{* *}$			
2^{\prime}	3.67 (1H, ddd, $7.8,3.6,2.6)^{* *}$	75.7	$\mathrm{Hb}-1^{\prime} *, \mathrm{OH}-3, \mathrm{H}_{3}-4^{\prime}, \mathrm{H}_{3}-5^{\prime}$	3.80 (1H, m)
$3{ }^{\prime}$		71.3	OH-2', OH-3**, $\mathrm{H}_{3}-4^{\prime} *, \mathrm{H}_{3}-5^{\prime} *$	-
$\mathrm{OCH}_{3}-4^{\prime}$	$1.23(s)$	25.1	OH-3', $\mathrm{H}_{3}-5$	1.26 (s)
$\mathrm{OCH}_{3}-5^{\prime}$	1.28 (s) O	26.7	OH-3', $\mathrm{H}_{3}-4^{\prime}$	1.30 (s)
$\mathrm{OCH}_{3}-6$	$3.92(3 \mathrm{H}, \mathrm{~s})$	56.3		$3.98(3 \mathrm{H}, s)$
$\mathrm{OCH}_{3}-8$	$4.07(3 \mathrm{H}, s)$	62.0	$\square 0$ - 0	4.03 (3H, s)
OH-2'	$3.87(1 \mathrm{H}, d, 3.6)^{* *}$	σ		-
OH-3'	$2.71(1 \mathrm{H}, \mathrm{~s})$	100		-

* Two bond coupling
** Precise assignment of coupling constants, see; $\delta_{\mathrm{H}} 3.67\left(d d d, J_{\mathrm{H}-2^{\prime}, \mathrm{Ha}-1^{\prime}}=7.8 \mathrm{~Hz}, J_{\mathrm{H}-2^{\prime}, \mathrm{OH}-2^{\prime}}=3.6 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}-2^{\prime}, \mathrm{Hb}-1^{\prime}}=2.6 \mathrm{~Hz}\right), 3.87\left(d, J_{\mathrm{OH}-2^{\prime}, \mathrm{H}-2^{\prime}}=3.6 \mathrm{~Hz}\right), 4.00\left(d d, J_{\mathrm{Ha}-1^{\prime}, \mathrm{Hb}-2^{\prime}}=10.4 \mathrm{~Hz}, J_{\mathrm{Ha}-1^{\prime}, \mathrm{H}-2^{\prime}}=7.8 \mathrm{~Hz}\right), 4.54$ $\left(d d, J_{\mathrm{Hb}-1^{\prime}, \mathrm{Ha}-1^{\prime}}=10.4 \mathrm{~Hz}, J_{\mathrm{Hb}-1^{\prime}, \mathrm{H}-2^{\prime}}=2.6 \mathrm{~Hz}\right)$

2.6 Structure Determination of Compound PRC6

Compound PRC6 was characterized as yellow crystals, with m.p. 149-150 ${ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 42) demonstrated the molecular ion peak $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 223$, harmonizing with the molecular formular $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{5}$. The UV spectrum (Figure 43) revealed absorptions at $\lambda_{\max } 228,268$ and 345 nm . The IR spectrum (Figure 44) exhibited absorption bands at 3369 (hydroxy stretching), 1706 (conjugated carbonyl group) and 1600 and 1456 (aromatic ring) cm^{-1}. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC6 exhibited the diagnostic H-3 and H-4 olefinic doublets in the aromatic region ($\delta_{\mathrm{H}} 6.28$ and $7.60, d, J=9.5 \mathrm{~Hz}$). The relatively high field position of H-4 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972). The aromatic region in the spectrum additionally displayed a oneproton singlet at $\delta_{\mathrm{H}} 6.66$, consistent with a trisubstitution pattern on the aromatic ring in each instance. The ${ }^{1} \mathrm{H}$-NMR spectrum (Figure 45) showed all signals corresponding to those in the literature and the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Figure 46) has been reported already (Panichayupakaranant et al., 1995) but some positions should be revised as C-3 ($\delta_{\mathrm{C}} 113.6$), C-5 ($\delta_{\mathrm{C}} 103.2$), $\mathrm{C}-7\left(\delta_{\mathrm{C}} 142.4\right), \mathrm{C}-8\left(\delta_{\mathrm{C}} 134.5\right)$ and $\mathrm{C}-8 \mathrm{a}$ ($\delta_{\mathrm{C}} 143.1$). This assignment was determined by HMQC (Figure 47) and HMBC (Figure 48 and Table 10) experiments. The NOE difference spectra (Figure 49) confirmed the position of the methoxy group at C-6 and C-8 of the coumarin nucleus. Thus, irradiation of the $\mathrm{H}-5$ at $\delta_{\mathrm{H}} 6.66$ caused an enhancement of the methoxy signal at $\delta_{\mathrm{H}} 3.95\left(\mathrm{OCH}_{3}-6\right)$ and olefinic proton at $\delta_{\mathrm{H}} 7.60(\mathrm{H}-4)$. Futhermore, NOEs were observed between the methoxy signal at $\delta_{\mathrm{H}} 3.95\left(\mathrm{OCH}_{3}-6\right)$ and the methine signal at $\delta_{\mathrm{H}} 6.66(\mathrm{H}-5)$ and between the methoxy signal at $\delta_{\mathrm{H}} 4.10\left(\mathrm{OCH}_{3}-8\right)$ and the hydroxy signal at $\delta_{\mathrm{H}} 6.13(\mathrm{OH}-7)$.
a Based on the above spectral evidence, compound PRC6 was analyzed as isofraxedin [53], previously characterized from Carduus tenuiflorus (Cardona et al., 1992)

Table 10 NMR spectral data of compound PRC6 and isofraxidin $\left(\mathrm{CDCl}_{3}\right)$

position	Compound PRC6			Isofraxidin	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$
2	-	160.6	$\mathrm{H}-3^{*}, \mathrm{H}-4$	-	160.6
3	$6.28(1 \mathrm{H}, d, 9.5)$	$\mathbf{1 1 3 . 6}$	-	$6.28(1 \mathrm{H}, d, 10.0)$	$\mathbf{1 0 3 . 2}$
4	$7.60(1 \mathrm{H}, d, 9.5)$	143.8	-	$7.60(1 \mathrm{H}, d, 10.0,1.0)$	143.8
4 a	-	111.2	$\mathrm{H}-3, \mathrm{H}-4^{*}, \mathrm{H}-5^{*}$	-	111.2
5	$6.66(1 \mathrm{H}, \mathrm{s})$	$\mathbf{1 0 3 . 2}$	$\mathrm{H}-4$	$6.66(1 \mathrm{H}, \mathrm{s})$	$\mathbf{1 1 3 . 5}$
6	-	144.6	$\mathrm{OCH}_{3}-6$	-	144.6
7	-	$\mathbf{1 4 2 . 4}$		-	$\mathbf{1 3 4 . 5}$
8	-	$\mathbf{1 3 4 . 5}$	$\mathrm{OCH}_{3}-8$	-	$\mathbf{1 4 3 . 1}$
8 a	-	$\mathbf{1 4 3 . 1}$	$\mathrm{H}-4, \mathrm{H}-5$	-	$\mathbf{1 4 2 . 5}$
$\mathrm{OCH}_{3}-6$	$3.95(3 \mathrm{H}, s)$	56.5		$3.94(3 \mathrm{H}, s)$	56.5
$\mathrm{OCH}_{3}-8$	$4.10(3 \mathrm{H}, s)$	61.6		$4.09(3 \mathrm{H}, s)$	61.6
$\mathrm{OH}^{2}-7$	$6.13(1 \mathrm{H}, \mathrm{br} s)$	-	-	-	-

The bold values are revised assignments.

* Two bond coupling

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

2.7 Structure Determination of Compound PRC7

Compound PRC7, white crystals with m.p. $150-151^{\circ} \mathrm{C}$, showed its protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 309$ in FAB mass spectrum (Figure 50), indicating a molecular of $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7}$. The UV spectrum (Figure 51) showed maximum absorption at 220, 239 and 320 nm . The IR spectrum (Figure 52) displayed 3438 (hydroxyl group), 1715 (conjugated carbonyl group) and 1638 and 1473 (aromatic ring) cm^{-1}. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRC7 (Figure 53) showed the characteristic coumarin C-3/C-4 doublet pair appearing at $\delta_{\mathrm{H}} 6.27$ and 8.15 (each 1 H , $d, J=9.8 \mathrm{~Hz}$). The latter, corresponding to $\mathrm{H}-4$, suggested that there was an oxygen substitution at C-5 (Steck and Mazurek, 1972). Additionally, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ indicated the presence of an aromatic proton at $\delta_{\mathrm{H}} 6.80(\mathrm{H}-8, s)$, consistent with a trisubstitution pattern on the aromatic ring. The signal at $\delta_{\mathrm{H}} 6.11$ was assigned to a methylenedioxyphenyl group. The remaining signals at $\delta_{\mathrm{H}} 1.02\left(\mathrm{H}_{3}-4^{\prime}, s\right), 1.22\left(\mathrm{H}_{3}-5^{\prime}\right.$, $s), 3.53\left(\mathrm{H}-2^{\prime}, d d d, J=8.6,5.8,2.5 \mathrm{~Hz}\right), 4.11\left(\mathrm{Ha}-1^{\prime}, d d, J=10.1,8.6 \mathrm{~Hz}\right), 4.40(\mathrm{OH}-$ $\left.3^{\prime}, s\right), 4.60\left(\mathrm{Hb}-1^{\prime}, d d, J=10.1,2.5 \mathrm{~Hz}\right)$ and $5.13\left(\mathrm{OH}-2^{\prime}, d, J=5.8 \mathrm{~Hz}\right)$ were attributed to a $2^{\prime}, 3^{\prime}$-dihydroxy- 3^{\prime}-methylbutyloxy substituent, which could be placed at $\delta_{\mathrm{C}} 137.1$ (C-5). In HMBC experiments, these were confirmed by the three-bond correlations from $\left.\delta_{\mathrm{H}} 4.11(\mathrm{Ha}-1), 4.60(\mathrm{Hb}-1)^{\prime}\right)$ and $8.15(\mathrm{H}-4)$ to $\delta_{\mathrm{C}} 137.1(\mathrm{C}-5)$ and from $\delta_{\mathrm{H}} 6.80(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 106.6(\mathrm{C}-4 \mathrm{a})$ and $132.2(\mathrm{C}-6)$, from $\delta_{\mathrm{H}} 5.13(\mathrm{OH}-2)$ to δ_{C} $74.4\left(\mathrm{C}-1^{\prime}\right)$ and $70.6\left(\mathrm{C}-3^{\prime}\right)$, from $1.02\left(\mathrm{H}_{3}-4^{\prime}\right), 1.22\left(\mathrm{H}_{3}-5^{\prime}\right)$ and $4.40\left(\mathrm{OH}-3^{\prime}\right)$ to $\delta_{\mathrm{C}} 76.1$ (C-2'). The $[\alpha]^{24}{ }_{\mathrm{D}}+30.9^{\circ}(c 0.65$ in MeOH$)$ and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum data exhibited close similarity to those in the liferature (Debenedetti et al., 1997). The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Figure 54) showed the signals of the C-2' and C-3' at $\delta_{\mathrm{C}} 76.1$ and 70.6 ppm , respectively. These were revised from previous report (Debenedetti et al., 1997). This assignment was confirmed by the application of HMQC (Figure 55), HMBC (Figure 56 and Table 11) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Figure 57) experiments and compound PRC7 was identified as 5-($2^{\prime}, 3^{\prime}$-dihydroxy- 3^{\prime} methylbutyl-oxo-6,7methylenedioxycoumarin (sabandinol) [23]. This compound has been reported to be present wildly in plants such as Ruta pinnata (Gonzalez et al., 1973) and Pterocaulon virgatum (Debenedetti et al., 1997).

[23]

Table 11 NMR spectral data of compound PRC7 $\left(\right.$ DMSO- $\left.d_{6}\right)$ and sabandinol $\left(\mathrm{CDCl}_{3}\right)$

position	Compound PRC7			Sabandinol [23]	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$
2	-	160.3	H-3*, H-4	-	161.2
3	6.27 (1H, $d, 9.8)$	111.2		$6.23(1 \mathrm{H}, d, 9.7)$	112.1
4	8.15 (1H, $d, 9.8)$	139.6		7.96 (1H, $d, 9.7)$	138.6
4 a	-	106.6	H-3, H-8	-	107.0
5	-	137.1.	Ha-1', Hb-1', H-4	-	136.8
6	-	132.2	$-\mathrm{OCH}_{2} \mathrm{O}-$, $\mathrm{H}-8$	-	132.3
7	-	152.4	$-\mathrm{OCH}_{2} \mathrm{O}-, \mathrm{H}-8^{*}$	-	151.5
8	$6.80(1 \mathrm{H}, s)$	92.2		$6.57(1 \mathrm{H}, s)$	93.1
8 a	-	150.9	H-8*	-	152.4
1^{\prime}	4.11 (1Ha, $d d, 10.1,8.6)^{* *}$	74.4	$\mathrm{H}-2^{\prime}$ *, $\mathrm{OH}-2^{\prime}$	4.37 (1Ha, d d, 10.4, 8.1)	73.8
	$4.60(1 \mathrm{Hb}, d d, 10.1,2.5)^{* *}$			$4.51(1 \mathrm{Hb}, d d, 10.4,2.9)$	
2^{\prime}	3.53 (1H, ddd, 8.6, 5.8, 2.5)**	76.1	$\mathrm{H}_{3}-4^{\prime}, \mathrm{H}_{3}-5^{\prime}, \mathrm{OH}-2^{\prime}, \mathrm{OH}-3^{\prime}$	3.80 (1H, m)	71.6
$3 '$	-	70.6	H-2', $\mathrm{H}_{3}-4^{\prime}, \mathrm{H}_{3}-5^{\prime}, \mathrm{OH}-2^{\prime}$,	-	76.5
$\mathrm{CH}_{3}-4^{\prime}$	$1.02(3 \mathrm{H}, \mathrm{s}) 6$	24.3 d	$\mathrm{H}_{3}-5^{-} \square \mathrm{d}$	1.33 (3H, s)	24.8
$\mathrm{CH}_{3}-5^{\prime}$	$1.22(3 \mathrm{H}, s)$	27.6	$\mathrm{H}_{3}-4^{\prime}, \mathrm{OH}-3^{\prime} \sim$	01.33 (3H, s)	24.8
$\mathrm{OCH}_{2} \mathrm{O}$	$6.11(2 \mathrm{H}, s)$	102.3	9190	6.06 (2H,s)	102.1
$\mathrm{OH}-2^{\prime}$	$5.13(1 \mathrm{H}, d, 5.8)$			-	-
$\mathrm{OH}-3^{\prime}$	$4.40(1 \mathrm{H}, s)$	-	-	-	-

The bold values are revised assignments.

* Two bond coupling
** Precise assignment of coupling constant, see; $\delta_{\mathrm{H}} 3.53$ ($d d d, J_{\mathrm{H}-2^{\prime}, \mathrm{Ha}-1^{\prime}}=8.6 \mathrm{~Hz}, J_{\mathrm{H}-2^{\prime}, \mathrm{OH}-2^{\prime}}=5.8 \mathrm{~Hz}$, $\left.J_{\mathrm{H}-2^{\prime}, \mathrm{Hb}-1^{\prime}}=2.5 \mathrm{~Hz}\right), 4.11\left(d d, J_{\mathrm{Ha}-1^{\prime}, \mathrm{Hb}-2^{\prime}}=10.1 \mathrm{~Hz}, J_{\mathrm{Ha}-1^{\prime}, \mathrm{H}-2^{\prime}}=8.6 \mathrm{~Hz}\right), 4.60\left(d d, J_{\mathrm{Hb}-1^{\prime}, \mathrm{Ha}-1^{\prime}}=10.1 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Hb}-1^{\prime}, \mathrm{H}-2^{\prime}}=2.5 \mathrm{~Hz}\right), 5.13\left(d, J_{\mathrm{OH}-2^{\prime}, \mathrm{H}-2^{\prime}}=5.8 \mathrm{~Hz}\right)$

2.8 Structure Determination of Compound PRB8

Compound PRB8 was obtained yellow crystals with m.p. 351-352 ${ }^{\circ} \mathrm{C}$ and observed a molecular formula as $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{6}$. The FAB mass spectrum (Figure 58) exhibited a $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 287$. The UV spectrum (Figure 59) showed maxima absorption bands at 212, 270 and 317 nm . The IR absorption spectrum (Figure 60) displayed $v_{\text {max }}$ at 3347 (hydroxyl stretching), 1654 (carbonyl stretching) and 1609 and 1490 (aromatic ring) cm^{-1}.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRB8 (Figure 61) showed a H bonded phenolic proton at $\delta_{\mathrm{H}} 12.97(\mathrm{OH}-5)$, indicating a 5-hydroxyflavone structure. The protons in B-ring ($\mathrm{H}-2, \mathrm{H}-5$ and $\mathrm{H}-6$) formed a characteristic ABX pattern at δ_{H} $6.87\left(\mathrm{H}-5^{\prime}, d, J=8.5 \mathrm{~Hz}\right), 7.39\left(\mathrm{H}-2^{\prime}, d, J=2.0 \mathrm{~Hz}\right)$ and $7.41\left(\mathrm{H}-6^{\prime}, d d, J=2.0,8.5\right.$ Hz) while the signals of $\mathrm{H}-6$ and $\mathrm{H}-8$ in A-ring appeared as a pair of doublets at δ_{H} $6.18(\mathrm{H}-6, d, J=2.0 \mathrm{~Hz})$ and $6.43(\mathrm{H}-8, d, J=2.0 \mathrm{~Hz})$, respectively. An olefinic singlet proton at $\delta_{\mathrm{H}} 6.66$ was assigned to $\mathrm{H}-3$ by its HMBC correlations with $\mathrm{C}-10\left(\delta_{\mathrm{C}}\right.$ 157.3) and $\mathrm{C}-1{ }^{\prime}\left(\delta_{\mathrm{C}} 121.5\right)$.

The ${ }^{13} \mathrm{C}$-NMR spectrum of compound PRB8 (Figure 62) showed fifteen signals for carbon atoms. The types of carbons are classified by analysis of the DEPT135 experiment (Table 12)

Based on the above spectral evidences, and comparison of the spectral data of compound PRB8 with those previously reported (Agrawal, 1989), together with the information from the HMQC (Figure 63) and HMBC experiments (Figure 64 and Table 12), compound PRB8 was identified as luteolin [54]. This compound occurred in many plants of the family Leguminosae, Umbelliferae, Asteraceae and Cistaceae (Buckingham, 2001).

Table 12 NMR spectral data of compound PRB8 and luteolin (DMSO- d_{6})

position	Compound PRB8			Luteolin
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})^{\#}$	HMBC correlation	$\delta_{\text {C }}(\mathrm{ppm})$
2	-	163.9 (C)	H-3*, H-2', H-6'	164.5
3	6.66 (1H, s)	102.8 (CH)	-	103.3
4	-	181.6 (C)	H-3*	182.2
5	-	161.5 (C)	-	162.1
6	$6.18(1 \mathrm{H}, d, 2.0)$	98.8 (CH)	OH-5, H-8	99.2
7	-	164.1 (C)	H-6*, H-8*	164.7
8	$6.43(1 \mathrm{H}, d, 2.0)$	93.8 (CH)	H-6	94.2
9		103.7 (C)	-	104.2
10		157.3 (C)	H-3, H-6, H-8, OH-5	157.9
1^{\prime}		121.5 (C)	H-3, H-5'	122.1
2	7.39 (1H, $d, 2.0)$	113.3 (CH)	H-6'	113.8
3 '		145.7 (C)	H-2 *, H-5	146.2
4^{\prime}		149.7 (C)	H-2', H-5'*, H-6'	150.1
$5{ }^{\prime}$	$6.87(1 \mathrm{H}, d, 8.5)$	116.0 (CH)	-	116.4
6^{\prime}	7.41 (1H, dd, 2.0, 8.5)	$119.0(\mathrm{CH})$	H-2	119.3
OH-5	$12.97(1 \mathrm{H}, s)$		1-	-
	$10.68(1 \mathrm{H}, s)^{\mathrm{a}}$	(ax) 0 - $2+2$	-	-
	$9.69(1 \mathrm{H}, s)^{\text {a }}$	-	-	-

${ }^{\text {a }}$ Assignment may be interchanged.

* Two bond coupling
\# Carbon types were deduced from DEPT135 experiment. \qquad
สถาบนว้ทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

2.9 Structure Determination of Compound PRB9

Compound PRB9 was obtained as yellow crystals with m.p. 183-185 ${ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 65) exhibited a $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 347, indicating molecular formula as $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{8}$. The UV spectrum (Figure 66) showed maxima absorption bands at 213, 303 and 347 nm . The IR absorption spectrum (Figure 67) displayed $v_{\text {max }}$ at 3369 (hydroxyl stretching), 1655 (carbonyl stretching) and 1609 and 1491 (aromatic ring) cm^{-1}.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRB9 (Figure 68) showed a Hbonded phenolic proton at $\delta_{\mathrm{H}} 12.36(\mathrm{OH}-5)$, indicating a 5 -hydroxyflavone structure. The protons in B-ring ($\mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-6^{\prime}$) formed a characteristic ABX pattern at δ_{H} $6.90\left(\mathrm{H}-5^{\prime}, d, J=8.5 \mathrm{~Hz}\right), 7.47\left(\mathrm{H}-6^{\prime}, d d, J=2.0,8.5 \mathrm{~Hz}\right)$ and $7.58\left(\mathrm{H}-2^{\prime}, d, J=2.0\right.$ Hz) while the signal of $\mathrm{H}-8$ in A-ring appeared as a singlet at $\delta_{\mathrm{H}} 6.83$.

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound PRB9 (Figure 69) showed seventeen signals for carbon atoms. The types of carbons are classified by analysis of the DEPT135 experiment (Table 13), including two methoxy carbons at $\delta_{\mathrm{C}} 56.3$ $\left(\mathrm{OCH}_{3}-7\right)$ and $59.6\left(\mathrm{OCH}_{3}-3\right)$, four aromatic methine carbons at $\delta_{\mathrm{C}} 90.8(\mathrm{C}-8), 115.5$ ($\mathrm{C}-2^{\prime}$), 115.7 ($\mathrm{C}-5^{\prime}$) and 120.5 ($\mathrm{C}-6^{\prime}$) and eleven aromatic quaternary carbons at δ_{C} 105.5 (C-10), 121.0 (C-1'), 129.6 (C-6), 137.5 (C-3), 145.2 (C-3'), 148.6 (C-4'), 148.8 (C-9), 146.7 (C-5), 154.5 (C-7), 155.6 (C-2) and 178.1 (C-4). Based on the careful analysis of the above spectra, 2D technique such as HMQC (Figure 70) and HMBC (Figure 71 and Table 13) and comparison with those previously reported (Ulubelen, Kerr and Mabry, 1980), compound PRB9 was identified as tomentin [55]. This compound has been isolated from many plants such as Neurolaena oaxacana (Ulubelen, Kerr and Mabry, 1980) and Parthenium hysterophorus (Shen et al., 1976).

[55]

Table 13 NMR spectral data of compound PRB9 and tomentin (DMSO- d_{6})

position	Compound PRB9			Tomentin
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{c}}(\mathrm{ppm})^{\#}$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$
2	-	155.6 (C)	H-2', H-6'	-
3	-	137.5 (C)	$\mathrm{OCH}_{3}-3$	-
4	-	178.1 (C)	-	-
5	-	146.7 (C)	-	-
6	-	129.6 (C)	H-8, OH-5	-
7	-	154.5 (C)	$\mathrm{H}-8^{*}, \mathrm{OCH}_{3}-7$	-
8	$6.83(1 \mathrm{H}, s)$	90.8 (CH)	- -	$6.50(1 \mathrm{H}, s)$
9		148.8 (C)	H-8*	-
10		105.5 (C)	$\mathrm{H}-8, \mathrm{OH}-5$	-
1^{\prime}		121.0 (C)	H-5'	-
2^{\prime}	7.58 (1H, $d, 2.0)$	115.5 (CH)	H-6	7.60 (1H, d, 2.5)
$3{ }^{\prime}$		145.2 (CH)	H-2'*, H-5'	-
$4{ }^{\prime}$		148.6 (C)	H-2', H-6, H-5'*	-
$5 '$	6.90 (1H, $d, 8.5)$	115.7 (C)		6.38 (1H, d, 9.0)
6^{\prime}	7.47 (1H, dd, 2.0, 8.5)	120.5 (CH)	H-2'	7.55 (1H, $d d, 2.5,9.0)$
$\mathrm{OCH}_{3}-3$	3.78 (3H,s)	$59.6\left(\mathrm{CH}_{3}\right)$	-	-
$\mathrm{OCH}_{3}-7$	3.90 (3H, s)	$56.3\left(\mathrm{CH}_{3}\right)$	-	-
$\mathrm{OH}-5$	$12.36(1 \mathrm{H}, s)$	5,		-
OH-6	$9.77(1 \mathrm{H}, s)^{2}$	-		-
OH-3'	$9.35(1 \mathrm{H}, s)^{\mathrm{a}}$	-		-
OH-4'	$8.70(1 \mathrm{H}, \mathrm{s})^{\mathrm{a}}$			-

${ }^{\text {a }}$ Assignment may be interchanged.

* Two bond coupling
\# Carbon types were deduced from DEPT135 experiment.
و9/9

2.10 Structure Determination of Compound PRB10

Compound PRB10, a yellow solid with m.p. 218-220 ${ }^{\circ} \mathrm{C}$, was analyzed for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{8}$ from its $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 361$ in FABMS spectrum (Figure 72). The UV spectrum displayed absorption bands at 214, 281 and 349 nm (Figure 73). The IR spectrum exhibited absorption bands at 3392 (OH stretching), 1668 ($\mathrm{C}=\mathrm{O}$ stretching) and 1608 and 1491 ($\mathrm{C}=\mathrm{C}$ stretching) cm^{-1} (Figure 74). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound PRB10 (Figure 75) showed a H-bond phenolic proton at δ_{H} 12.35, indicating a 5-hydroxy flavone structure. The protons in B-ring ring showed a characteristic ABX pattern at $\delta_{\mathrm{H}} 6.95\left(\mathrm{H}-5^{\prime}, d, J=8.5 \mathrm{~Hz}\right), 7.61\left(\mathrm{H}-6^{\prime}, d d, J=2.5,8.5\right.$ $\mathrm{Hz})$ and $7.66\left(\mathrm{H}-2^{\prime}, d, J=2.5 \mathrm{~Hz}\right.$), while the signals of $\mathrm{H}-8$ in A-ring appeared as a singlet at $\delta_{\mathrm{H}} 6.89$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound PRB10 (Figure 76) displayed resonances for eighteen carbons. The two signals at $\delta_{\mathrm{C}} 55.8$ and 56.3 were within the range typical for the carbon of an aromatic methoxy group with at least one free ortho position ($55.0-57.0 \mathrm{ppm}$) and the signal at $\delta_{C} 59.7$ was characteristic of the carbon of a methoxy group attached to C-3 on a flavone (Agrawal, 1989). The remaining fifteen signals occurred within the $\delta_{C} 90.0-200.0$ range typical of the nucleus of a 2,3-unsaturated flavonoid; six signals consistent with non-oxygenated aromatic carbons ($\delta_{\mathrm{C}} 91.0,105.5,112.0,115.6,121.0$ and 122.2), eight signals consistent with oxyaryl carbons ($\delta_{\mathrm{C}} 129.6,137.6,145.6,147.5,148.8,149.7,154.5$ and 155.5) and one signal at $\delta_{\mathrm{C}} 178.1$, within the range typical for the carbon of the 4keto function of a flavone (Agrawal, 1989). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ assignments were performed using the HMQC (Figure 77) and HMBC (Figure 78 and Table 14) experiments. 6 Thus, compound PRB10 possessed the $3,7,3^{\prime}$ 'trimethoxy-5,6,4'trihydroxyflavone.

Compound PRB10 was identified as chrysosplenol C [35] based on the above spectral data and comparison of those previously reported (Semple et al., 1999). This compound has been isolated from Pterocaulon sphacelatum (Semple et al., 1999) and the other plant species including Tanacetum parathenium (William et al., 1995).

Table 14 NMR spectral data of compound PRB10 and chrysosplenol C (DMSO- d_{6})

position	Compound PRB10			Chrysosplenol C	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})^{\#}$	HMBC correlation	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$
2	-	155.5 (C)	H-2', H-6'	-	155.5
3	-	137.6 (C)	$\mathrm{OCH}_{3}-3$	-	137.6
4	-	178.1 (C)		-	178.1
5	-	145.6 (C)	OH-5*	-	145.7
6		129.6 (C)	OH-5, H-8	-	129.6
7	-	154.5 (C)	$\mathrm{OCH}_{3}-7, \mathrm{H}-8^{*}$	-	154.5
8	$6.89(1 \mathrm{H}, s)$	91.0 (CH)		6.87 (1H)	91.0
9	-	148.8 (C)	H-8*	-	148.8
10	-	105.5 (C)	$\mathrm{H}-8, \mathrm{OH}-5$	-	105.5
1^{\prime}	-	121.0 (C)	H-2 * , H-5	-	121.0
$2{ }^{\prime}$	7.66 (1H, $d, 2.5)$	112.0 (CH)	L	7.65 (1H)	112.0
$3{ }^{\prime}$		147.5 (C)	H-2 * , H-5', $\mathrm{OCH}_{3}-3^{\prime}$	-	147.5
4^{\prime}		149.7 (C)	H-2 , H-5'*, H-6	-	149.7
5	$6.95(1 \mathrm{H}, d, 8.5)$	115.6 (CH)		6.95 (1H)	115.6
$6{ }^{\prime}$	7.61 (1H, dd, 2.5, 8.5)	122.2 (CH)	H-2	7.60 (1H)	122.2
$\mathrm{OCH}_{3}-3$	$3.80(3 \mathrm{H}, \mathrm{s})$	$59.7\left(\mathrm{CH}_{3}\right)$		3.80 (3H, s)	59.7
$\mathrm{OCH}_{3}-7$	$3.87(3 \mathrm{H}, s) \square$	$56.3\left(\mathrm{CH}_{3}\right)$	¢ -1	3.87 (3H, s)	56.3
$\mathrm{OCH}_{3}-3^{\prime}$	3.90 (3H, s)	$55.8\left(\mathrm{CH}_{3}\right)$		3.90 (3H, s)	55.8
$\begin{aligned} & \mathrm{OH}-5 \\ & \mathrm{OH}-6 \end{aligned}$	$\begin{aligned} & 12.35(1 \mathrm{H}, \mathrm{~s}) \\ & 9.91(1 \mathrm{H}, s)^{\mathrm{a}} \end{aligned}$		$98 \curvearrowleft \curvearrowright 9 / ?$	$\begin{gathered} 12.34(1 \mathrm{H}) \\ 8.69(1 \mathrm{H}) \end{gathered}$	-
OH-4'	$8.71(1 \mathrm{H}, s)^{\text {a }}$	-	-	9.88 (1H)	-

[^0]
3. Structure Determination of Compounds Isolated from Cladogynos orientalis

3.1 Structure Determination of Compound COC1

Compound COC1, pale yellow oil, possessed a quasimolecular ion $[\mathrm{M}+\mathrm{K}]^{+}$at $m / z 259.1487$ (calcd. 259.1464) in the HRFABMS, corresponding to the molecular formula $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$. The UV spectrum (Figure 80) showed $\lambda_{\text {max }}$ at 206 and 263 nm . The IR spectrum (Figure 81) showed $v_{\max } 3448 \mathrm{~cm}^{-1}(\mathrm{OH}$ streching). The optical rotation of compound COC1 was negative, $[\alpha]^{23}{ }_{\mathrm{D}}-65.1^{\circ}(c 0.03, \mathrm{MeOH})$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Figure 82-83) of compound COC1 showed signals of one methyl singlet proton at $\delta_{\mathrm{H}} 1.80\left(\mathrm{H}_{3}-13, s\right)$, two methyl doublet protons at δ_{H} $0.98\left(\mathrm{H}_{3}-14, d, J=7.0 \mathrm{~Hz}\right)$ and $1.06\left(\mathrm{H}_{3}-15, d, J=7.5 \mathrm{~Hz}\right)$, two singlet signals of exocyclic methylene proton at $\delta_{\mathrm{H}} 4.78(\mathrm{Ha}-12, s)$ and $5.02(\mathrm{Hb}-12, s)$, four methylene multiplet protons at δ_{H} 1.26-1.32 (Ha-3, m), 1.67-1.77 (Ha-6, m and На-9, m), 1.93-$2.01(\mathrm{Hb}-3, m$ and $\mathrm{Hb}-9, m), 2.10-2.17(\mathrm{Ha}-2, m), 2.43-2.56(\mathrm{Hb}-2, m$ and $\mathrm{Hb}-6, m)$, three methine multiplet protons at δ_{H} 2.43-2.56 ($\mathrm{H}-4, m$ and $\mathrm{H}-7, m$) and 3.97-4.01 $(\mathrm{H}-8, m)$, one methine broad singlet proton at $\delta_{\mathrm{H}} 2.32(\mathrm{H}-10, b r s)$ and a hydroxyl proton at $\delta_{\mathrm{H}} 1.57(\mathrm{OH}-8, s)$.

The ${ }^{13} \mathrm{C}$ NMR (Figure 84) and DEPT135 (Figure 85 and Table 15) spectra of compound COC1 revealed the presence of three methyl carbons at $\delta_{\mathrm{C}} 23.0$ (C-13), 20.0 ($\mathrm{C}-14$) and $21.6(\mathrm{C}-15)$, five methylenes at $\delta_{\mathrm{C}} 33.8(\mathrm{C}-2), 30.8(\mathrm{C}-3)$, 26.0 (C-6), 42.0 (C-9) and 112.3 (C-12), four methine carbons at $\delta_{\mathrm{C}} 46.1$ (C-4), 49.7 (C-7), $68.3(\mathrm{C}-8)$ and $29.2(\mathrm{C}-10)$ and three quaternary carbons at $\delta_{\mathrm{C}} 139.6(\mathrm{C}-1)$, 140.9 (C-5) and 148.0 (C-11).

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data exhibited resonances of an oxygenated methine proton at δ_{H} 3.97-4.01 (H-8,m) and exocyclic methylene proton at $\delta_{\mathrm{H}} 4.78$ (Ha-12, s) and $5.02(\mathrm{Hb}-12, s)$. The HMBC spectrum (Figure 87) showed correlations from δ_{H} 4.78 (Ha-12) and $5.02(\mathrm{Hb}-12)$ to $\delta_{\mathrm{C}} 49.7(\mathrm{C}-7)$ and $23.0(\mathrm{C}-13)$, from $\delta_{\mathrm{H}} 2.43-2.56$ $(\mathrm{H}-7)$ to $\delta_{\mathrm{C}} 112.3(\mathrm{C}-12), 23.0(\mathrm{C}-13)$ and $140.9(\mathrm{C}-5)$, from $\delta_{\mathrm{H}} 3.97-4.01(\mathrm{H}-8)$ to δ_{C} $26.0(\mathrm{C}-6)$, from $\delta_{\mathrm{H}} 2.32(\mathrm{H}-10)$ to $\delta_{\mathrm{C}} 68.3(\mathrm{C}-8)$, from $\delta_{\mathrm{H}} 1.67-1.77(\mathrm{Ha}-6)$ to δ_{C} $139.6(\mathrm{C}-1)$, from $\delta_{\mathrm{H}} 1.80\left(\mathrm{H}_{3}-13\right)$ to $\delta_{\mathrm{C}} 112.3(\mathrm{C}-12)$ and from $\delta_{\mathrm{H}} 1.06\left(\mathrm{H}_{3}-15\right)$ to δ_{C} 139.6 (C-1) and $42.0(\mathrm{C}-9)$. The ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum (Figure 88) demonstrated
the cross peaks of methine protons from $\delta_{\mathrm{H}} 2.43-2.56(\mathrm{Hb}-7)$ to $3.97-4.01(\mathrm{H}-8)$, from δ_{H} 3.97-4.01 (H-8) to 1.67-1.77 (На-7) and 1.93-2.01 (Hb-9) and from $\delta_{\mathrm{H}} 1.67-1.77$ (Ha-9) to 2.32 (H-10). Based on these spectral data the first fragment of compound COC1 is proposed as shown below.

The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 88) of compound COC1 displayed the correlations between δ_{H} 1.26-1.32 (Ha-3) to 2.10-2.17 (Ha-2) and 2.43-2.56 (H-4), while the HMBC spectrum (Figure 87) of compound COC1 showed the correlations from $\delta_{\mathrm{H}} 0.98\left(\mathrm{H}_{3}-14\right)$ to $\delta_{\mathrm{C}} 140.9(\mathrm{C}-5)$ and $30.8(\mathrm{C}-3)$, from $\delta_{\mathrm{H}} 2.32(\mathrm{H}-10)$ to $\delta_{\mathrm{C}} 33.8$ (C-2) and from δ_{H} 1.26-1.32 (H-3) to $\delta_{\mathrm{C}} 139.6$ (C-1) and 140.9 (C-5), therefore the second fragment of compound COC1 is assembled as shown.

Combination of the first and the second fragments established a gross structure of compound COC1. The relative stereochemistry of compound COC1 was proven by NOE experiments (Figure 89). On irradiation at $\delta_{H} 3.97-4.01(\mathrm{H}-8)$, NOE spectrum was observed on the methine protons resonance at $\delta_{\mathrm{H}} 2.43-2.56(\mathrm{H}-7), 2.32$ $(\mathrm{H}-10)$ and the methyl proton at $\delta_{\mathrm{H}} 1.80\left(\mathrm{H}_{3}-13\right)$. Additionally, on irradiation at δ_{H} $0.98\left(\mathrm{H}_{3}-14\right)$, NOE was observed on the methylene protons resonated at $\delta_{\mathrm{H}} 2.10-2.17$ $(\mathrm{H}-2 \mathrm{a})$ and 1.26-1.32 ($\mathrm{H}-3 \mathrm{a}$) and at $\delta_{\mathrm{H}} 1.06\left(\mathrm{H}_{3}-15\right)$, NOE was also observed at δ_{H} 2.10-2.17 (H-2a). The basis of these spectral data, biosynthesis consideration and the literature indicated that the substitutions at those positions were situated in cis
orientation to each other. Thus, compound COC1 was assigned as a hydroxylated derivative of the known α-guaiene (Rakotonirainy et al.,1997) and identified as a new compound namely, $\left(4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}\right)$ - 8 -hydroxy- α-guaiene [56].

Table 15 NMR spectral data of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$

position	Compound COC1	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})^{\#}$
1	-	139.6 (C)
2	2.10-2.17 (1Ha, m)	$33.8\left(\mathrm{CH}_{2}\right)$
	$2.43-2.56(1 \mathrm{Hb}, m)$	
3	1.26-1.32 (1Ha, m)	$30.8\left(\mathrm{CH}_{2}\right)$
	$1.93-2.01(1 \mathrm{Hb}, m)$	
4	2.43-2.56 (1H, m)	46.1 (CH)
5		140.9 (C)
6	1.67-1.77 (1Ha, m	26.0 ($\left.\mathrm{CH}_{2}\right)$
	2.43-2.56 (1Hb, m	
7	2.43-2.56 (1H, m)	49.7 (CH)
8	3.97-4.01 ($1 \mathrm{H}, m)$	68.3 (CH)
9	1.67-1.77 (1 Ha, m	$42.0\left(\mathrm{CH}_{2}\right)$
	1.93-2.01 (1 Hb, m	
10	$2.32(1 \mathrm{H}, b r s)$	29.2 (CH)
11		148.0 (C)
12	4.78 (1Ha, s)	$112.3\left(\mathrm{CH}_{2}\right)$
	$5.02(1 \mathrm{Hb}, \mathrm{s})$	S*
13	$1.80(3 \mathrm{H}, s)$	$23.0\left(\mathrm{CH}_{3}\right)$
14	$0.98(3 \mathrm{H}, d, 7.0)$	$20.0\left(\mathrm{CH}_{3}\right)$
15	1.06 (3H, $d, 7.5$)	$21.6\left(\mathrm{CH}_{3}\right)$
OH-8	$1.57(1 \mathrm{H}, s)$	-

* Carbon types were deduced fromDEPT135 experiment. 6

> จุฬาลงกรณ์มหาวิทยาลัย

3.2 Structure Determination of Compound COC2

Compound COC2 was obtained as pale yellow oil. The FAB mass spectrum (Figure 90) displayed $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 221$, consistent with $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$. The IR spectrum (Figure 91) showed absorptions at $v_{\max } 3384 \mathrm{~cm}^{-1}$ (hydroxyl group), 3080 cm^{-1} (CH stretching) and 1458 and $1375 \mathrm{~cm}^{-1}$ (CH bending). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Figure 92) of compound COC2 exhibited three singlet protons at $\delta_{H} 1.02\left(\mathrm{H}_{3}-13\right)$, $1.03\left(\mathrm{H}_{3}-12\right)$ and $1.25\left(\mathrm{H}_{3}-15\right)$, one exocyclic methylene proton at $\delta_{\mathrm{H}} 4.64$ and 4.67 (1 H each, $\mathrm{Ha}-14$ and $\mathrm{Hb}-14, s$), four methylene protons at $\delta_{\mathrm{H}} 0.95-1.00(\mathrm{Ha}-8, m)$, 1.50-1.63 (Ha-2 and Нa-3, m), $1.75(\mathrm{Hb}-3, d d, J=7.0,12.5 \mathrm{~Hz}), 1.84-1.90(\mathrm{Hb}-2, m)$, 1.93-1.99 (Hb-8, m), $2.02(\mathrm{Ha}-9, d d, J=13.0,13.0 \mathrm{~Hz})$ and $2.40(\mathrm{Hb}-9, d d, J=6.3$, $13.0 \mathrm{~Hz})$ and four methine protons at $0.44(\mathrm{H}-6, d d, J=9.5,11.3 \mathrm{~Hz}), 0.69(\mathrm{H}-7, d d d$, $J=6.0,9.5,11.0 \mathrm{~Hz}), 1.25-1.31(\mathrm{H}-5, m)$ and $2.17(\mathrm{H}-1, d d d, J=6.2,10.6,10.6 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}$-NMR (Figure 93) and DEPT135 (Table 16) spectra of compound COC2 showed three methyl, five methylene, four methine and three quaternary carbons, one of which carried a hydroxyl group.

The HMBC spectrum of compound COC2 (Figure 95) showed the correlations from $\delta_{\mathrm{H}} 1.75(\mathrm{Hb}-3), 4.64(\mathrm{Ha}-14), 4.67(\mathrm{Hb}-14)$ to $\delta_{\mathrm{C}} 53.4(\mathrm{C}-1)$, from $\delta_{\mathrm{H}} 1.25-1.31(\mathrm{H}-5)$ to $\delta_{\mathrm{C}} 26.7(\mathrm{C}-2)$, from $\delta_{\mathrm{H}} 1.25\left(\mathrm{H}_{3}-15\right)$ to $\delta_{\mathrm{C}} 41.7(\mathrm{C}-3)$, from δ_{H} $0.44(\mathrm{H}-6)$ and $1.84-1.90(\mathrm{Hb}-2)$ to $\delta_{\mathrm{C}} 80.9(\mathrm{C}-4)$, from $\delta_{\mathrm{H}} 1.75(\mathrm{Hb}-3), 1.50-1.63$ (Ha-2) and $1.25\left(\mathrm{H}_{3}-15\right)$ to $\delta_{\mathrm{C}} 54.2(\mathrm{C}-5)$ and from $\delta_{\mathrm{H}} 1.84-1.90(\mathrm{Hb}-2)$ to $\delta_{\mathrm{C}} 153.3$ (C-10), while ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound COC2 (Figure 96) showed cross peaks from δ_{H} 1.84-1.90 $(\mathrm{Hb}-2)$ to $1.75(\mathrm{Hb}-3)$ and $2.17(\mathrm{H}-1)$ and from $\delta_{\mathrm{H}} 1.25-1.31$ (H-5) to $0.44(\mathrm{H}-6)$ and $2.17(\mathrm{H}-1)$. Assignment of the first substructure was constructed as shown.

The HMBC spectrum (Figure 95) were observed from $\delta_{\mathrm{H}} 2.40(\mathrm{Hb}-9)$ to $\delta_{\mathrm{C}} 53.4(\mathrm{C}-1)$, from $\delta_{\mathrm{H}} 2.17(\mathrm{H}-1)$ to $\delta_{\mathrm{C}} 54.2(\mathrm{C}-5)$ and $29.9(\mathrm{C}-6)$, from $\delta_{\mathrm{H}} 1.02\left(\mathrm{H}_{3}-\right.$
13) to $\delta_{\mathrm{C}} 28.6(\mathrm{C}-12)$, from $1.03\left(\mathrm{H}_{3}-12\right), 2.02(\mathrm{Ha}-9)$ and $2.40(\mathrm{Hb}-9)$ to $\delta_{\mathrm{C}} .27 .4(\mathrm{C}-$ 7), from $\delta_{\mathrm{H}} 2.17(\mathrm{H}-1)$ and $2.02(\mathrm{Ha}-9)$ to $\delta_{\mathrm{C}} 106.2(\mathrm{C}-14)$, from $\delta_{\mathrm{H}} 4.64(\mathrm{Ha}-14)$ and $4.67(\mathrm{Hb}-14)$ to $\delta_{\mathrm{C}} 38.8(\mathrm{C}-9)$, from $\delta_{\mathrm{H}} 0.95-1.00(\mathrm{Ha}-8), 1.25-1.31(\mathrm{H}-5)$ and 1.93-$1.99(\mathrm{Hb}-8)$ to $\delta_{\mathrm{C}} 153.3(\mathrm{C}-10)$, while ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 96) exhibited the correlation of $\delta_{\mathrm{H}} 0.69(\mathrm{H}-7)$ to $0.44(\mathrm{H}-6), \delta_{\mathrm{H}} 0.95-1.00(\mathrm{Ha}-8), 1.93-1.99(\mathrm{Hb}-8)$ and $\delta_{\mathrm{H}} 0.95-1.00(\mathrm{Ha}-8)$ to $2.02(\mathrm{Ha}-9)$ and $2.40(\mathrm{Hb}-9)$. Based upon these spectral data, the second partial structure of compound COC2 was established as shown.

The relative stereochemistry of compound COC2 was detected by NOE difference technique (Figure 97). On irradiation at the methine proton resonance H-6 ($\delta_{\mathrm{H}} 0.44$), NOE was observed on the $\mathrm{H}-1\left(\delta_{\mathrm{H}} 2.17\right), \mathrm{H}-7\left(\delta_{\mathrm{H}} 0.69\right), \mathrm{H}_{3}-12\left(\delta_{\mathrm{H}} 1.03\right)$ and $\mathrm{H}_{3}-15\left(\delta_{\mathrm{H}} 1.25\right)$. When the methyl proton resonance $\mathrm{H}_{3}-12\left(\delta_{\mathrm{H}} 1.03\right)$ was irradiated, NOE was observed on the methine proton resonance $\mathrm{H}-1\left(\delta_{\mathrm{H}} 2.17\right)$, H-6 ($\delta_{\mathrm{H}} 0.44$) and $\mathrm{H}-7\left(\delta_{\mathrm{H}} 0.69\right)$. Moreover, the methyl proton resonance $\mathrm{H}_{3}-13\left(\delta_{\mathrm{H}} 1.02\right)$ was irradiated, NOE was observed on the methine proton resonance $\mathrm{H}-5$ ($\delta_{\mathrm{H}} 1.25-$ 1.31). Thus, the configuration at the junction between the five and seven-membered rings was deduced to be trans configuration. By analysis of the above spectroscopic data and comparison with reported data (Inagaki and Abe, 1985), compound COC2 was determined as spathulenol [57], an aromadendrane sesquiterpene previously isolated from several plants eg. Panax ginseng (Iwabuchi, Yoshikura and Kamisako, 1989) and Citrus junos (Inagaki and Abe, 1985)

[57]
Table 16 NMR spectral data of compound $\mathbf{C O C} 2$ and spathulenol $\left(\mathrm{CDCl}_{3}\right)$

[^1]
3.3 Structure Determination of Compound COC3

Compound COC3 was obtained as pale yellow oil. The HRFABMS spectrum displayed the protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 317.2108$ (calcd. 317.2117), consistent with $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$. The UV absorption bands (Figure 99) appeared at $\lambda_{\max }$ 299 nm . The IR absorption spectrum (Figure 100) showed $v_{\text {max }}$ at $3600-2400$ and 1699 (carboxylic acid) cm^{-1}. The optical rotation provided negative, $[\alpha]^{23}{ }_{D}-23.2^{\circ}(c$ 0.0013 , MeOH).

The ${ }^{1} \mathrm{H}$-NMR spectra (Figure 101-102) of compound COC3 displayed signals of two methyl singlets at $\delta_{\mathrm{H}} 1.30(3 \mathrm{H}, s)$ and $0.86(3 \mathrm{H}, s)$, one methyl doublet at δ_{H} $0.87(3 \mathrm{H}, d, J=7.0 \mathrm{~Hz})$, seven methylene multiplets at $\delta_{\mathrm{H}} 1.34-1.44(\mathrm{Ha}-6, m), \delta_{\mathrm{H}}$ 1.50-1.56 ($\mathrm{H}_{2}-7, m$), 1.64-1.69 (На-3, m and $\left.\mathrm{H}_{2}-11, m\right)$, 1.74-1.81 ($\left.\mathrm{H}_{2}-2, m\right), 1.89-2.02$ (Ha-1, $m, \mathrm{Hb}-3, m$ and $\mathrm{Hb}-6, m$), 2.07-2.17 (Hb-1, m and $\mathrm{Ha}-12, s$) and 2.33-2.40 $(\mathrm{Hb}-12, s)$, one methine multiplet at $\delta_{\mathrm{H}} 1.78-1.81(1 \mathrm{H}, m)$ and three olefenic protons at $\delta_{\mathrm{H}} 6.36,7.20$ and 7.34 (each $1 \mathrm{H}, \mathrm{H}-14, \mathrm{H}-16$ and $\mathrm{H}-15$)

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (Figure 103) and DEPT135 (Figure 104 and Table 17) spectral data of compound COC3 revealed 20 signals as three methyl carbons, seven methylene carbons, four methine carbons and six quaternary carbons. A carbonyl group was found in COC3, as one singlet resonance at $\delta_{\mathrm{C}} 181.3$ (C-18). In addition, HMBC spectral data (Figure 106-107) demonstrated the correlations from $\delta_{\mathrm{H}} 1.30$ $\left(\mathrm{H}_{3}-19\right)$ to $\delta_{\mathrm{C}} 35.4(\mathrm{C}-3), 47.4(\mathrm{C}-4), \delta_{\mathrm{C}} 131.0(\mathrm{C}-5)$ and $183.1(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 0.86$ $\left(\mathrm{H}_{3}-20\right)$ to $\delta_{\mathrm{C}} 33.3(\mathrm{C}-8), 36.5(\mathrm{C}-11)$ and $136.0(\mathrm{C}-10)$, from $\delta_{\mathrm{H}} 0.87\left(\mathrm{H}_{3}-17\right)$ to δ_{C} $26.8(\mathrm{C}-7)$ and $40.9(\mathrm{C}-9)$ and from $\delta_{\mathrm{H}} 1.64-1.69\left(\mathrm{H}_{2}-11\right)$ to $\delta_{\mathrm{C}} 33.3(\mathrm{C}-8)$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 108) showed the cross peaks of $\mathrm{H}_{2}-Z\left(\delta_{\mathrm{H}} 1.50-1.56\right)$ to Ha-6 (δ_{H} 1.34-1.44) and H-8 ($\delta_{\mathrm{H}} 1.74-1.81$). Based on these data the first substructure of compound COC3 was assembled as shown.

The HMBC spectra (Figure 106-107) displayed the correlations from $\mathrm{H}_{2}{ }^{-}$ 11 ($\delta_{\mathrm{H}} 1.64-1.69$) to $\mathrm{C}-13\left(\delta_{\mathrm{C}} 125.8\right)$, from $\mathrm{Hb}-12\left(\delta_{\mathrm{H}} 2.33-2.40\right)$ to $\mathrm{C}-14\left(\delta_{\mathrm{C}} 111.0\right)$ and C-16 ($\delta_{\mathrm{C}} 138.4$), from $\mathrm{H}-14\left(\delta_{\mathrm{H}} 6.26\right)$ to $\mathrm{C}-16\left(\delta_{\mathrm{C}} 138.4\right)$, from $\mathrm{H}-15\left(\delta_{\mathrm{H}} 7.34\right)$ to $\mathrm{C}-13\left(\delta_{\mathrm{C}} 125.8\right)$ and from $\mathrm{H}-16\left(\delta_{\mathrm{H}} 7.20\right)$ to $\mathrm{C}-14\left(\delta_{\mathrm{C}} 111.0\right)$, while ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 108) of compound COC3 revealed the correlations between $\mathrm{Hb}-12$ $\left(\delta_{\mathrm{H}} 2.33-2.40\right)$ and $\mathrm{H}_{2}-11\left(\delta_{\mathrm{H}} 1.64-1.69\right)$ and between $\mathrm{H}-14\left(\delta_{\mathrm{H}} 6.26\right)$ and $\mathrm{H}-15\left(\delta_{\mathrm{H}}\right.$ 7.34). The construction of the second partial structure was analysed by the above spectral data.

Combination of the first and the second fragments established a gross structure of COC3. The relative stereochemistry of compound COC3 could not be completely established by application of NOE experiments. However, it would be reasonable deduced that three methyl groups at $\mathrm{C}-17\left(\delta_{\mathrm{C}} 16.0\right), \mathrm{C}-19\left(\delta_{\mathrm{C}} 22.9\right)$ and $\mathrm{C}-20\left(\delta_{\mathrm{C}} 20.8\right)$ in cis orientation because of the biogenesis considerations and the agreement of the crystal structure of compound COC10, chettaphanin I [48]. Therefore, compound COC3 was identified as a new compound, 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-1-carboxylic acid [58] and has been given the trivial name as chettaphanin III. The structurally related crotohalimaneic acid, a 4epimer of compound COC10, had been isolated as a natural product from Croton oblongifolius (Roengsumran et al., 2004)

[58]
Table 17 NMR spectral data of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$

[^2]
3.4 Structure Determination of Compound COC4

Compound COC4 was obtained pale yellow oil. The molecular formula was determined as $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ by HRFABMS spectrum of its $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 357.1685$ (calcd 357.1702). The IR spectrum (Figure 111) showed absorption bands due to a keto carbonyl group ($1676 \mathrm{~cm}^{-1}$), an ester carbonyl (1736 and $1277 \mathrm{~cm}^{-1}$) and a furan ring ($3150,1458,920 \mathrm{~cm}^{-1}$) and the UV absorption at 239 nm (Figure 110). The optical rotation was positive, $[\alpha]^{23}{ }_{\mathrm{D}}+56.1^{\circ}(c 0.015, \mathrm{MeOH})$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Figure 112-113) showed signals for four methyl protons at $\delta_{\mathrm{H}} 0.88\left(\mathrm{H}_{3}-17, d, J=7 \mathrm{~Hz}\right), 1.17\left(\mathrm{H}_{3}-20, s\right), 1.42\left(\mathrm{H}_{3}-19, s\right)$ and $3.54\left(\mathrm{H}_{3^{-}}\right.$ $21, s$), three methylene protons at $\delta_{\mathrm{H}} 1.37-1.41(\mathrm{Ha}-7, m), 1.89(\mathrm{Ha}-6, d d, J=4.8$, $13.3 \mathrm{~Hz}), 2.12-2.20(\mathrm{Hb}-7, m), 2.34(\mathrm{Hb}-6, d d, J=4.8,13.3 \mathrm{~Hz}), 2.38(\mathrm{Ha}-3, d, J=$ $16.3 \mathrm{~Hz})$ and $2.39(\mathrm{Hb}-3, d, J=16.3 \mathrm{~Hz})$, six methine protons, three protons of which at $\delta_{\mathrm{H}} 6.40,7.33$ and 7.47 (1 H each, $\mathrm{H}-14, \mathrm{H}-15$ and $\mathrm{H}-16$) were characteristic of furan proton and the other protons at δ_{H} 1.92-1.97 (H-8, m), $4.80(\mathrm{H}-11, s)$ and $5.90(\mathrm{H}-1$, s). The ${ }^{13} \mathrm{C}$-NMR (Figure 114) and DEPT135 (Figure 115 and Table 18) spectra showed four methyl carbons, three methylene carbons, six methine carbons and eight quaternary carbons. The HMBC spectra (Figure 117-118) showed the correlations from δ_{H} 2.12-2.20 (Hb-7) to $\delta_{\mathrm{C}} 79.5(\mathrm{C}-5)$, from $\delta_{\mathrm{H}} 5.90(\mathrm{H}-1)$ to $\delta_{\mathrm{C}} 45.5(\mathrm{C}-3), 79.5$ (C-5), from $\delta_{\mathrm{H}} 2.38$ (Ha-3) and $2.39(\mathrm{Hb}-3)$ to $\delta_{\mathrm{C}} 20.1$ (C-19), 79.5 (C-5) and 173.9 $(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 1.42\left(\mathrm{H}_{3}-19\right)$ to $\delta_{\mathrm{C}} 45.5(\mathrm{C}-3), 79.5(\mathrm{C}-5)$ and $173.9(\mathrm{C}-18)$, from δ_{H} $1.17\left(\mathrm{H}_{3}-20\right), 1.95(\mathrm{H}-8)$ and $2.34(\mathrm{H}-6)$ to $\delta_{\mathrm{C}} 157.7(\mathrm{C}-10)$ and from $\delta_{\mathrm{H}} 0.88\left(\mathrm{H}_{3}-17\right)$ to $\delta_{\mathrm{C}} 26.5(\mathrm{C}-7)$ and $41.4(\mathrm{C}-9)$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 119) displayed the correlations from δ_{H} 2.12-2.20 (Hb-7) to 1.92-1.97(H-8) and $1.89(\mathrm{Ha}-6)$. Based on these spectral data the first substructure of compound COC4 is proposed as shown below.

The HMBC spectra (Figure 117-118) showed the correlations from δ_{H} $4.80(\mathrm{H}-11)$ to $\delta_{\mathrm{C}} 157.7(\mathrm{C}-10)$ and $22.3(\mathrm{C}-20)$ and from $\delta_{\mathrm{H}} 1.17\left(\mathrm{H}_{3}-20\right)$ and 1.95 $(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 103.2$ (C-11), therefore the second fragment of compound $\mathbf{C O C 4}$ is assembled as shown.

The ${ }^{1} \mathrm{H}^{-}{ }^{1} \mathrm{H}$ COSY spectrum of compound COC4 (Figure 119) displayed a correlation between $\delta_{\mathrm{H}} 6.40(\mathrm{H}-14)$ and $7.33(\mathrm{H}-15)$, while the HMBC spectra (Figure 117-118) showed the correlations from $\delta_{\mathrm{H}} 6.40(\mathrm{H}-14)$ to $\delta_{\mathrm{C}} 139.5(\mathrm{C}-16)$, from $\delta_{\mathrm{H}} 7.33(\mathrm{H}-15)$ and $4.80(\mathrm{H}-11)$ to $\delta_{\mathrm{C}} 121.3(\mathrm{C}-13)$ and from $\delta_{\mathrm{H}} 7.47(\mathrm{H}-16)$ to $\delta_{\mathrm{C}} 107.2$ (C-14). Therefore the third partial structure is created as shown.

The combination of the three fragments established a gross structure of compound COC4. The NOE experiments (Figure 120) indicated interactions of $\mathrm{H}_{3}-$ 17 with $\mathrm{H}_{3}-20$ and $\mathrm{H}-1, \mathrm{H}_{3}-21$ with $\mathrm{H}-16$. The agreement of the spectroscopic data and NOE interactions and biogenesis consideration led us to assign the structure of compound COC4 including the relative configuration. This is a new compound, methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo[5.3.3.0 ${ }^{1,6}$]trideca-5,8-di-ene-2-carboxylate [59] and has been named chettaphanin IV.

[59]

To our knowledge, it is reasonable to suppose that the ether bridge between C-5 ($\delta_{\mathrm{C}} 79.5$) and C-12 ($\delta_{\mathrm{C}} 146.2$) in compound COC4 could be built up by intramolecular hemiacetal formation of the 12-keto group with a cis-oriented OH-5 group, as in compound A, the C-5 epimer of compound COC10 (chettaphanin I), followed by dehydration as shown in Figure 121. However, compound A has not been isolated until now.

compound A

compound COC4

Figure 121 Possible formation of compound COC4 from compound A, the C-5 epimer of chettaphanin I.

Table 18 NMR spectral data of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$

3.5 Structure Determination of Compound COC5

Compound COC5, white solid with m.p. 297-299 ${ }^{\circ}$ C, showed a protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 499$ in FAB mass spectrum (Figure 122), corresponding to molecular formula $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$. The IR spectrum showed absorption bands of carboxylic group ($1687,3423 \mathrm{~cm}^{-1}$), ester carbonyl group (1736, $1244 \mathrm{~cm}^{-1}$) and hydrocarbon group (2937, 2856, 1458, $1365 \mathrm{~cm}^{-1}$) (Figure 123). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spetrum (Figure 124) showed signals for a vinyl proton at $\delta_{\mathrm{H}} 5.43(\mathrm{H}-15)$ and a methine proton at $4.46(\mathrm{H}-3)$. Signals for seven methyl protons at $\delta_{\mathrm{H}} 0.85-0.96$, one carbomethyl proton at $\delta_{\mathrm{H}} 2.04$, ten methylene and three methine protons at $\delta_{\mathrm{H}} 1.03-$ 1.99 were observed. The ${ }^{13}$ C-NMR (Figure 125) and DEPT135 (Figure 126 and Table 19) spectra displayed 32 carbon signals, including eight methyl carbons at δ_{C} $15.6,16.6,21.3,22.4,26.2,27.9,28.6$ and 31.8 , ten methylene carbons at $\delta_{C} 17.3$, $18.7,23.5,30.7,31.3,33.3,33.7,35.3,37.4$ and 40.7 , five methine carbons at $\delta_{C} 41.4$, $49.1,55.6,80.9$ and 116.9 , nine quaternary carbons at $\delta_{\mathrm{C}} 29.3,37.3,37.7,37.9,39.0$, $51.5,160.5,171.0$ and 184.3. The ${ }^{13} \mathrm{C}-$ NMR chemical shifts of C-22 and C-29 of this compound were assigned as $\delta_{\mathrm{C}}-33.3$ and 31.8 , respectively, since these appeared as methylene and methyl carbon in DEPT135 experiment. In previous report (Carpenter et al., 1980), the ${ }^{13}$ C-NMR chemical shifts of C-22 and C-29 of acetoxyaleuritolate were assigned as $\delta_{\mathrm{c}} 31.8$ and 33.3 , respectively, these assignments were transposed. From all of the above spectroscopic data in comparison with reported data, compound COC5 was assigned as acetoxyaleuritolate [60]. This compound had been isolated from other Euphorbiaceae family such as Panadenia thwaitesii (Carpenter et al., 1980) and Sapium baccatum (Ray, Misra and Khastgir, 1975).

Table 19 NMR spectral data of compound COC5 and acetoxyaleuritolate $\left(\mathrm{CDCl}_{3}\right)$

position	Compound COC5		Acetoxyaleuritolate
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{ppm})^{\#}$	$\delta_{\text {C }}(\mathrm{ppm})$
1	1.55-1.85 (2H, m)	$37.4\left(\mathrm{CH}_{2}\right)$	37.4
2	1.55-1.85 (2H, m)	$23.5\left(\mathrm{CH}_{2}\right)$	23.4
3	$4.46(1 \mathrm{H}, d d, J=5.5,10.0)$	80.9 (CH)	80.8
4	-	37.7 (C)	37.6
5	0.85-0.95 (1H,m)	55.6 (CH)	55.6
6	1.55-1.85 (2H, m)	$18.7\left(\mathrm{CH}_{2}\right)$	18.7
7	1.00-1.35 (2H, m)	$35.3\left(\mathrm{CH}_{2}\right)$	35.3
8		39.0 (C)	39.0
9	$1.40-1.55(1 \mathrm{H}, m)$	49.1 (CH)	49.0
10		37.3 (C)	37.3
11	$1.40-1.55(2 \mathrm{H}, m)$	$17.3\left(\mathrm{CH}_{2}\right)$	17.3
12	1.90-2.00 (1На, m)	$31.3\left(\mathrm{CH}_{2}\right)$	31.2
13		37.9 (C)	37.9
14	k.	160.5 (C)	160.5
15	$5.54(1 \mathrm{H}, d d, J=3.3,7.8)$	116.9 (CH)	116.8
16	$1.40-1.85(2 \mathrm{H}, m)$	$30.7\left(\mathrm{CH}_{2}\right)$	30.6
17	(5)	51.5 (C)	51.5
18	2.27 (1H, dd, 3.3, 14.3)	41.4 (CH)	41.3
19	1.90-2.00 (2H,m)	$40.7\left(\mathrm{CH}_{2}\right)$	40.7
20		29.3 (C)	29.3
21	$1.00-1.35(2 \mathrm{H}, m)$	$33.7\left(\mathrm{CH}_{2}\right)$	(1) 33.6
22	$1.55-1.85(2 \mathrm{H}, m)$	$33.3\left(\mathrm{CH}_{2}\right)$	31.8
23	$0.85(3 \mathrm{H}, s)$	$27.9\left(\mathrm{CH}_{3}\right)$	27.9
24	$0100.89(3 \mathrm{H}, s) \mathrm{O}$	$16.6\left(\mathrm{CH}_{3}\right)$	- 16.6
25	$0.96(3 \mathrm{H}, s) \quad \sigma$	$15.6\left(\mathrm{CH}_{3}\right)$	15.7 O
26 279	$6 \begin{aligned} & 0.91(3 \mathrm{H}, s) \\ & 0.96(3 \mathrm{H}, s) \end{aligned}$	$\begin{aligned} & 28.6\left(\mathrm{CH}_{3}\right) \\ & 26.2\left(\mathrm{CH}_{3}\right) \end{aligned}$	$\text { Me } 28.6 \bigcirc 26$
28	-	184.3 (C)	184.4
29	$0.94(3 \mathrm{H}, s)$	$31.8\left(\mathrm{CH}_{3}\right)$	33.3
30	$0.92(3 \mathrm{H}, s)$	$22.4\left(\mathrm{CH}_{3}\right)$	22.4
31	- -	171.0 (C)	-
32	$2.04(3 \mathrm{H}, s)$	$21.3\left(\mathrm{CH}_{3}\right)$	-

The bold values are revised assignments.
\# Carbon types were deduced from DEPT135 experiment.

3.6 Structure Determination of Compound COC6

Compound COC6, white solid with m.p. $281-282^{\circ} \mathrm{C}$, showed a protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 427$ in FAB mass spectrum (Figure 127), corresponding to the molecular formula $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$. The IR spectrum (Figure 128) showed absorption at $v_{\max } 3483$ (hydroxy group) and 2933, 2852, 1473 and 1385 (hydrocarbon system) cm^{-1}. The ${ }^{1} \mathrm{H}$-NMR spectrum (Figure 129) displayed signals for a vinyl proton at δ_{H} $5.55(\mathrm{H}-15)$ and a carbinol proton at $\delta_{\mathrm{H}} 3.20(\mathrm{H}-3)$. Signals for eight methyl protons between $\delta 0.79-1.11$, ten methylene and three methine protons at $\delta_{\mathrm{H}} 0.93-2.06$. The ${ }^{13} \mathrm{C}-$ NMR (Figure 130) and DEPT135 (Figure 131 and Table 20) spectra showed 30 carbon signals, corresponding to eight methyl carbons at $\delta_{\mathrm{C}} 15.4,15.5,21.4,25.9$, 28.1, 29.9, 30.0 and 33.4 , ten methylene carbons at $\delta_{\mathrm{C}} 17.6,18.9,27.3,33.3,33.9$, $35.4,36.8,37.8,37.9$ and 41.5 , five methine carbons at $\delta_{C} 49.1,49.5,55.7,79.1$ and 117.0 and seven quaternary carbons at $\delta_{\mathrm{C}} 28.9,35.8,37.7,38.1,38.9,39.1$ and 158.3. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of taraxerol and isotaraxerol showed the expected differences in the carbinol proton region. The H-3 in isotaraxerol appeared as a well defined triplet center at $\delta_{\mathrm{H}} 3.38(J=3.0 \mathrm{~Hz})$, typical of an equatorial proton associated with $3 \alpha-$ hydroxy group in ring A of triterpene, whereas the H-3 in taraxerol appeared as illdefined quartet ($\delta_{\mathrm{H}} 3.22$), typical of the axial proton associated with a 3β-hydroxy group. The melting point of taraxerol was 282-283 ${ }^{\circ} \mathrm{C}$ whereas that of isotaraxerol was 267-269 ${ }^{\circ} \mathrm{C}$ (Corbett and Cumming, 1972). The ${ }^{13} \mathrm{C}$-NMR chemical shifts of C 10 and C-12 of compound COC6 were assigned as $\delta_{\mathrm{C}} 35.8$ and 37.8 , respectively, since these appeared as quaternary and methylene carbons in DEPT135 experiment. In previous report(Sakurai, Yaguchi and Inoue, 1987), the ${ }^{13} \mathrm{C}$-NMR chemical shifts of C-10 and C-12 of taraxerol were assigned as $\delta_{\mathrm{C}} 37.9$ and 35.9 , respectively. Thus, these assignments were transposed. Compound COC6 was identified as taraxerol [61] by analysis of the above spectra data and confirmed by comparison with an authentic sample. This compound was obtained previously from Myrica rubra (Sakurai, Yaguchi and Inoue, 1987).

Table 20 NMR spectral data of compound COC6 and taraxerol $\left(\mathrm{CDCl}_{3}\right)$

3.7 Structure Determination of Compound COC7

Compound COC7 was characterized as yellow solid, with m.p. 127-128 ${ }^{\circ} \mathrm{C}$. The FAB mass spectrum (Figure 132) demonstrated $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 341$, harmonizing with the molecular formula $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$. The UV spectrum (Figure 133) showed absorption maxima at 242 and 294 nm . The IR absorption spectrum (Figure 134) displayed $v_{\max }$ at 1722 and 1280 (ester group), 1682 (carbonyl group) and 3167, 1576 and 816 (furan ring) cm^{-1}. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Figure 135) showed signals for β-substituted of furan ring proton at $\delta_{\mathrm{H}} 7.00,7.42$ and $8.57(\mathrm{H}-14, \mathrm{H}-15$ and H 16). The ester methyl proton gave rise to a singlet at $\delta_{\mathrm{H}} 3.57$ (H-21, s). Singlets at δ_{H} $0.99\left(\mathrm{H}_{3}-20, s\right)$ and $1.38\left(\mathrm{H}_{3}-19, s\right)$ and doublet at $\delta_{\mathrm{H}} 0.97\left(\mathrm{H}_{3}-17, d, J=6.0 \mathrm{~Hz}\right)$ demonstrated the presence of three methyl groups. The ${ }^{13} \mathrm{C}$-NMR (Figure 136) and DEPT135 (Table 21) spectra exhibited 21 carbon signals, corresponding to four methyl carbons, four methylene carbons, four methine carbons and nine quaternary carbons that included a keto carbonyl (δ_{C} 195.1, C-2) and an ester carbonyl carbons ($\delta_{\mathrm{C}} 174.6, \mathrm{C}-18$). The HMBC spectrum (Figure 138) showed the correlations from $\delta_{\mathrm{H}} 2.45(\mathrm{Ha}-3)$ and $2.82(\mathrm{Hb}-3)$ to $\delta_{\mathrm{C}} 22.3(\mathrm{C}-19), 128.0(\mathrm{C}-1)$ and $174.6(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 3.57\left(\mathrm{H}_{3}-21\right)$ to $\delta_{\mathrm{C}} 174.6(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 1.38\left(\mathrm{H}_{3}-19\right)$ to $\delta_{\mathrm{C}} 125.1(\mathrm{C}-5)$ and δ_{C} $174.6(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 2.20-2.38\left(\mathrm{H}_{2}-6\right)$ to $\delta_{\mathrm{C}} 37.1(\mathrm{C}-8)$ and $150.4(\mathrm{C}-10)$, from δ_{H} $1.50-1.73\left(\mathrm{H}_{2}-7\right)$ to $\delta_{\mathrm{C}} 125.1(\mathrm{C}-5)$ and $42.4(\mathrm{C}-9)$, from $\delta_{\mathrm{H}} 0.97\left(\mathrm{H}_{3}-17\right)$ to $\delta_{\mathrm{C}} 27.1$ (C-7) and $42.4(\mathrm{C}-9)$ and from $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3}-20\right)$ to $\delta_{\mathrm{C}} 37.1(\mathrm{C}-8)$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 138) exhibited the correlation between $\mathrm{H}_{2}-6\left(\delta_{\mathrm{H}} 2.20-2.38\right)$ and $\mathrm{H}_{2}-$ 7 ($\delta_{\mathrm{H}} 1.50-1.73$). These spectral data assisted the construction of the first partial structure of compound COC 7 as shown. $\mathrm{C} \square \partial \prod \square$

The HMBC spectrum of compound COC7 (Figure 138) revealed the correlations from $\delta_{\mathrm{H}} 2.65(\mathrm{Ha}-11)$ and $2.72(\mathrm{Hb}-11)$ to $\delta_{\mathrm{C}} 20.3(\mathrm{C}-20), 37.1(\mathrm{C}-8)$, $121.9(\mathrm{C}-13), 128.0(\mathrm{C}-1)$ and $150.4(\mathrm{C}-10)$, from $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3}-20\right)$ to $\delta_{\mathrm{C}} 50.3(\mathrm{C}-11)$, from $\delta_{\mathrm{H}} 7.00(\mathrm{H}-14)$ to $\delta_{\mathrm{C}} 139.7(\mathrm{C}-12)$ and $146.3(\mathrm{C}-16)$, from $\delta_{\mathrm{H}} 7.42(\mathrm{H}-15)$ to δ_{C} $121.9(\mathrm{C}-13)$ and from $\delta_{\mathrm{H}} 8.57(\mathrm{H}-16)$ to $\delta_{\mathrm{C}} 111.0(\mathrm{C}-14)$, while the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Figure 139) showed a correlation between $\delta_{\mathrm{H}} 7.00(\mathrm{H}-14)$ and $7.42(\mathrm{H}-15)$. Combination of these fragments established a gross structure of compound COC7 as shown below.

The stereochemistry of compound COC7 had been presumed by biosynthesis considerations, the X-ray crystallography of its derivative (Sato et al., 1971). The absolute configuration had been established by its chemical correlation to ent-halimic acid, a bicyclic diterpene with a known absolute configuration (Marcos et al., 2002). Based on the spectroscopic data, stereochemical information and comparison with the previous report (Marcos et al., 2002), compound COC7 was identified as chettaphanin II [49], which is a known compound previously isolated from the root of Adenocleana siamensis (Cladogynos orientalis) (Sato et al., 1971).
(9/9)
[49]

Table 21 NMR spectral data of compound COC7 and chettaphanin II [49] ($\left.\mathrm{CDCl}_{3}\right)$

position	Compound COC7		Chettaphanin II [49]	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})^{\#}$	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})$
1	-	128.0 (C)	-	127.9
2	-	195.1 (C)	-	195.1
3	2.82 (1Ha, $d, 15.8)$	$52.1\left(\mathrm{CH}_{2}\right)$	2.81 (1Ha, $d, 15.7)$	52.1
	2.45 (1Hb, $d, 15.8)$		2.45 (1Hb, $d, 15.7)$	
4	-	48.5 (C)	-	48.4
5	-	125.1 (C)	-	125.1
6	2.20-2.38 (2H, m)	$23.7\left(\mathrm{CH}_{2}\right)$	2.37 (1Ha, ddd, 6.2, 10, 18)	23.7
			2.25 (1Hb, ddd, 9.2, 1.0, 18)	
7	1.50-1.73 (2H, m)	$27.1\left(\mathrm{CH}_{2}\right)$	1.58-1.66 (2H, m)	27.0
8	1.50-1.73 (1H, m)	37.1 (CH)	$1.56-1.59(1 \mathrm{H}, \mathrm{m})$	37.1
9		42.4 (C)		42.4
10		150.4 (C)	-	150.3
11	2.65 (1Ha, $d, 16.8)$	$50.3\left(\mathrm{CH}_{2}\right)$	2.66 (1На, $d, 16.9)$	50.3
	2.72 (1Hb, $d, 16.8)$	N2, 12	2.71 (1Hb, $d, 16.9)$	
12		139.7 (C)	-	139.7
13		121.9 (C)	-	121.8
14	$7.00(1 \mathrm{H}, d, 1.5)$	111.0 (CH)	$7.00(1 \mathrm{H}, s)$	111.0
15	$7.42(1 \mathrm{H}, d d, 0.75,1.5)$	142.7 (CH)	7.43 (1H, s)	142.7
16	$8.57(1 \mathrm{H}, s)$	146.3 (CH)	$8.57(1 \mathrm{H}, s)$	146.3
17	$0.97(3 \mathrm{H}, d, 6.0)$	$16.4\left(\mathrm{CH}_{3}\right)$	0.97 (3H, $d, 6.2)$	16.4
18		174.6 (C)		174.6
19	$1.38(3 \mathrm{H}, s)$	$22.3\left(\mathrm{CH}_{3}\right)$	$1.38(3 \mathrm{H}, s)$	22.3
20	$0.99(3 \mathrm{H}, s)$	$20.3\left(\mathrm{CH}_{3}\right)$	$0.99(3 \mathrm{H}, s)$	20.3
21	${ }^{3} .57(3 \mathrm{H}, \mathrm{s})$	$52.3\left(\mathrm{CH}_{3}\right)$	$\rightleftharpoons 3.57(3 \mathrm{H}, s)$	52.3
	0) 0 - \square	ठ -	0 - 0	

[^3]
3.8 Structure Determination of Compound COC8

Compound COC8 was isolated as pale yellow oil. The HRFABMS spectrum exhibited $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 315.1990$ (calcd. 315.1690), indicating a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$. The optical rotation was negative, $[\alpha]^{23}{ }_{\mathrm{D}}-88.6^{\circ}$ (c 0.0017, MeOH). The IR absorption spectrum (Figure 142) revealed at $v_{\text {max }} 3124,1459$ and 873 (furan ring), 1773 and 1290 (ester carbonyl group) cm^{-1} and the UV absorption at 204 nm (Figure 141). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Figure 143-144) were showed one secondary methyl protons at $\delta_{\mathrm{H}} 0.88\left(\mathrm{H}_{3}-17, d, J=7.0 \mathrm{~Hz}\right)$ and two tertiary methyl protons at $\delta_{\mathrm{H}} 0.90\left(\mathrm{H}_{3}-20, s\right)$ and $1.31\left(\mathrm{H}_{3}-19, s\right)$, six methylene protons at $\delta_{\mathrm{H}} 1.38-$ 1.46 (На-7, m), 1.58-1.59 (Ha-11, m), 1.61-1.65 (Hb-7, m), 1.67-1.76 (Hb-11, m), δ_{H} 1.96 (Ha-3, $d, 11.0 \mathrm{~Hz}$), 1.99-2.21 ($\mathrm{H}_{2}-6, m$ and Ha-12, m), $2.13(\mathrm{Hb}-3, d d, 5.5,11.0$ $\mathrm{Hz})$, 2.27-2.35 $(\mathrm{Hb}-12, m)$ and 2.39-2.45 $\left(\mathrm{H}_{2}-1, m\right)$ and two methine protons at δ_{H} $4.81(\mathrm{H}-2, d d d, 2.5,2.8,5.5 \mathrm{~Hz})$ and $1.67-1.76(\mathrm{H}-8, m)$. The signals at $\delta_{\mathrm{H}} 6.40(\mathrm{H}-$ $14, s), 7.33(\mathrm{H}-15, d d, J=1.5,1.5 \mathrm{~Hz})$ and $7.19(\mathrm{H}-16, d, J=1.0 \mathrm{~Hz})$ were characteristic of a β-substitued furan ring.

The ${ }^{13} \mathrm{C}$-NMR (Figure 145) and DEPT135 (Figure 146 and Table 22) spetra showed three methyl carbons, six methylene carbons, five methine carbons and six quaternary carbons. The HMBC spectra (Figure 148-149) demonstrated the correlations from $\delta_{\mathrm{H}} 1.31\left(\mathrm{H}_{3}-19\right)$ and $1.96(\mathrm{Ha}-3)$ to $\delta_{\mathrm{C}} 178.8(\mathrm{C}-18)$ and from δ_{H} $2.13(\mathrm{Hb}-3)$ to $\delta_{\mathrm{C}} 31.2(\mathrm{C}-1)$, $74.4(\mathrm{C}-2)$ and $43.5(\mathrm{C}-4)$, while the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 150) showed cross peaks from $\delta_{\mathrm{H}} 4.81(\mathrm{H}-2)$ to $\delta_{\mathrm{H}} 2.13(\mathrm{Hb}-3)$ and 2.39-2.45 ($\mathrm{H}_{2}-1$), establishing the first substructure of compound COC8 as shown below.

The HMBC spectra (Figure 148 and 149) revealed the correlations from δ_{H} $1.31\left(\mathrm{H}_{3}-19\right)$ and $1.96(\mathrm{Ha}-3)$ to $\delta_{\mathrm{C}} 133.5(\mathrm{C}-5)$, from $\delta_{\mathrm{H}} 0.90\left(\mathrm{H}_{3}-20\right), 1.58-1.59(\mathrm{Ha}-$ $11), 1.67-1.76(\mathrm{H}-8)$ and $4.81(\mathrm{H}-2)$ to $\delta_{\mathrm{C}} 133.9(\mathrm{C}-10)$ and from $\delta_{\mathrm{H}} 0.88\left(\mathrm{H}_{3}-17\right)$ to δ_{C} 26.2 (C-7), while the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 150) showed cross peaks from
$\delta_{\mathrm{H}} 1.38-1.46(\mathrm{Ha}-7)$ to $1.67-1.76(\mathrm{H}-8)$ and $1.99-2.21\left(\mathrm{H}_{2}-6\right)$, establishing the second substructure of compound COC8 as shown.

The HMBC spectra (Figure 148 and 149) of compound COC8 showed the correlations from $\delta_{\mathrm{H}} 2.27-2.35(\mathrm{Hb}-12)$ to $\delta_{\mathrm{C}} 37.9(\mathrm{C}-11)$ and $110.9(\mathrm{C}-14)$, from δ_{H} $6.24(\mathrm{H}-14)$ to $\delta_{\mathrm{C}} 138.5(\mathrm{C}-16)$, from $\delta_{\mathrm{H}} 7.33(\mathrm{H}-15)$ to $125.3(\mathrm{C}-13)$ and from $\delta_{\mathrm{H}} 7.19$ $(\mathrm{H}-16)$ to $110.9(\mathrm{C}-14)$, while the ${ }^{1} \mathrm{H}_{-}^{-1} \mathrm{H}$ COSY spectrum (Figure 150) showed cross peak from $\delta_{\mathrm{H}} 6.24(\mathrm{H}-14)$ to $7.33(\mathrm{H}-15)$. The construction of the third partial structure was by analyses of the above spectral data.

$\longrightarrow \quad{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC
$\leftrightarrow \quad{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY

Combination of these fragments allowed us to deduced compound COC8 as shown below. The relative stereochemistry of compound COC8 could not be completely established by application of NOE experiments. We supposed the stereochemistry at $\delta_{\mathrm{C}} 0.88(\mathrm{C}-17), 0.90(\mathrm{C}-20)$ and $1.31(\mathrm{C}-19)$ were cis orientation as sameas the other diterpene isolates in this plant. Thus, the structure of compound COC8 was newly assigned as 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo [7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62] and has been given the trivial name as chettaphanin V .

[62]
Table 22 NMR spectral data of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$

\# Carbon types were deduced from DEPT135 experiment.
** Precise assignment of coupling constant, see; $\delta_{\mathrm{H}} 1.96\left(d, J_{\mathrm{Ha}-3, \mathrm{Hb}-3}=11.0 \mathrm{~Hz}\right), 2.13\left(d d, J_{\mathrm{Hb}-3, \mathrm{Ha}-3}=\right.$ $\left.11.0 \mathrm{~Hz}, J_{\mathrm{Hb}-3, \mathrm{H}-2}=5.5 \mathrm{~Hz}\right), 4.81\left(d d d, J_{\mathrm{H}-2, \mathrm{Hb}-3}=5.5 \mathrm{~Hz}, J_{\mathrm{H}-2, \mathrm{Ha}-1}\right.$ and $\mathrm{Hb}-1=2.5$ and 2.8 Hz$)$

3.9 Structure Determination of Compound COC9

Compound COC9 was obtained as yellow solid with m.p. $103-105^{\circ} \mathrm{C}$. It showed $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / z 329.1727$ (calcd. 329.1753) in HRFABMS, corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$. The IR spectrum (Figure 153) showed absorption bands due to a keto carbonyl ($1671 \mathrm{~cm}^{-1}$), a lactone ring ($1757,1276 \mathrm{~cm}^{-1}$) and a furan ring ($3122,1509,872 \mathrm{~cm}^{-1}$) and the UV absorption at 230 nm (Figure 152). The optical rotation was negative, $[\alpha]^{23}{ }_{\mathrm{D}}-151.5^{\circ}\left(c 0.017, \mathrm{CHCl}_{3}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectra (Figure 154-155) showed one secondary methyl proton at $\delta_{\mathrm{H}} 0.86\left(\mathrm{H}_{3}-17, d, J=7.0 \mathrm{~Hz}\right)$, two tertiary methyl protons at $\delta_{\mathrm{H}} 1.07\left(\mathrm{H}_{3^{-}}\right.$ $20, s)$ and $1.32\left(\mathrm{H}_{3}-19, s\right)$, five methylene proton at δ_{H} 1.42-1.49 (Ha-7, m), 1.74-1.81 (Hb-7, m), $1.93(\mathrm{Ha}-3, d, J=11.0 \mathrm{~Hz}), 2.10-2.19\left(\mathrm{H}_{2}-6, m\right), 2.13(\mathrm{Hb}-3, d d, J=6.0$, $11.0 \mathrm{~Hz}), 2.33$ (Ha-1, $d d, J=2.7,17.9 \mathrm{~Hz}), 2.40(\mathrm{Hb}-1, d d d d, J=2.5,2.8,2.8,17.9$ $\mathrm{Hz}), 2.74(\mathrm{Ha}-11, d, J=15.5 \mathrm{~Hz})$ and $2.85(\mathrm{Hb}-11, d, J=15.5 \mathrm{~Hz})$ and five methine protons, three of which at $\delta_{\mathrm{H}} 6.73,7.41$ and 7.95 were assigned to be a furan ring signals for $\mathrm{H}-14, \mathrm{H}-15$ and $\mathrm{H}-16$, respectively and the other at $\delta_{\mathrm{H}} 2.01-2.08(\mathrm{H}-8, m)$ and $4.76(\mathrm{H}-2, d d d, 2.7,2.8,6.0 \mathrm{~Hz})$.

The ${ }^{13} \mathrm{C}$-NMR spectrum (Figure 156) and DEPT135 experiments (Figure 157 and Table 23) showed three methyl carbons, five methylene carbons, five methine carbons, and seven quaternary carbons. The HMBC spectra (Figure 159-160) demonstrated the correlations from $\mathrm{H}_{3}-19\left(\delta_{\mathrm{H}} 1.32\right)$ and $\mathrm{Ha}-3\left(\delta_{\mathrm{H}} 1.93\right)$ to $\mathrm{C}-18\left(\delta_{\mathrm{C}}\right.$ 178.3) and from $\mathrm{Hb}-3\left(\delta_{\mathrm{H}} 2.13\right)$ to $\mathrm{C}-2\left(\delta_{\mathrm{C}} 74.0\right)$ and $\mathrm{C}-4\left(\delta_{\mathrm{C}} 43.6\right)$, while the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 161) displayed a cross peak from $\mathrm{H}-2\left(\delta_{\mathrm{H}} 4.76\right)$ to $\mathrm{Hb}-3\left(\delta_{\mathrm{H}}\right.$ 1.93), establishing the first substructure of compound $\mathbf{C O C 9}$ as shown below.

The HMBC spectra (Figure 159-160) revealed correlations from $\mathrm{H}_{3}-20$ ($\delta_{\mathrm{H}} 1.07$) to $\mathrm{C}-10\left(\delta_{\mathrm{C}} 132.4\right)$ and $\mathrm{C}-8\left(\delta_{\mathrm{C}} 33.2\right)$, from $\mathrm{H}_{3}-17\left(\delta_{\mathrm{H}} 0.86\right)$ to $\mathrm{C}-7\left(\delta_{\mathrm{C}} 25.5\right)$ and C-9 ($\delta_{\mathrm{C}} 40.3$), from Ha-7 ($\delta_{\mathrm{H}} 1.42-1.49$) to C-9 ($\delta_{\mathrm{C}} 40.3$), C-6 ($\delta_{\mathrm{C}} 22.2$) and C-5 ($\delta_{\mathrm{C}} 132.1$), from $\mathrm{H}_{2}-6\left(\delta_{\mathrm{H}} 2.10-2.19\right)$ to $\mathrm{C}-4\left(\delta_{\mathrm{C}} 43.6\right)$, from $\mathrm{H}_{3}-19\left(\delta_{\mathrm{H}} 1.32\right)$, Ha-3 (δ_{H}
$1.93)$ and $\mathrm{Hb}-3\left(\delta_{\mathrm{H}} 2.13\right)$ to $\mathrm{C}-5\left(\delta_{\mathrm{C}} 132.1\right)$, from $\mathrm{H}-2\left(\delta_{\mathrm{H}} 4.76\right)$ to $\mathrm{C}-10\left(\delta_{\mathrm{C}} 132.4\right)$ and from Ha-1 ($\delta_{\mathrm{H}} 2.33$) to $\mathrm{C}-2\left(\delta_{\mathrm{C}} 74.0\right)$, while ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 161) revealed the correlation from Ha-1 ($\delta_{\mathrm{H}} 2.33$) to $\mathrm{H}-2\left(\delta_{\mathrm{H}} 4.76\right)$ and from $\mathrm{H}_{2}-6\left(\delta_{\mathrm{H}} 2.10-\right.$ 2.19) to Ha-7 ($\delta_{\mathrm{H}} 1.42-1.49$). Therefore, the second substructure of compound COC9 was assembled as shown.

The HMBC spectra (Figure 159-160) displayed the correlations from $\mathrm{H}_{3}-20$ ($\delta_{\mathrm{H}} 1.07$) to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 47.7\right)$, from Ha-11 ($\delta_{\mathrm{H}} 2.74$) and $\mathrm{Hb}-11\left(\delta_{\mathrm{H}} 2.85\right)$ to $\mathrm{C}-8\left(\delta_{\mathrm{C}}\right.$ 33.2), C-9 ($\delta_{\mathrm{C}} 40.3$), C-10 ($\delta_{\mathrm{C}} 132.4$), C-12 ($\delta_{\mathrm{C}} 193.6$) and C-20 ($\delta_{\mathrm{C}} 21.9$). A typical of furan ring was found in compound COC 9 , exhibiting three olefinic protons at δ_{H} 6.73, 7.41 and $7.95(\mathrm{H}-14, \mathrm{H}-15$ and $\mathrm{H}-16)$, the HMBC spectra revealed the correlations from $\mathrm{H}-14\left(\delta_{\mathrm{H}} 6.73\right)$ to $\mathrm{C}-16\left(\delta_{\mathrm{C}} 147.6\right)$, from $\mathrm{H}-15\left(\delta_{\mathrm{H}} 7.41\right)$ to $\mathrm{C}-13\left(\delta_{\mathrm{C}}\right.$ 129.3) and from $\mathrm{H}-16\left(\delta_{\mathrm{H}} 7.95\right)$ to $\mathrm{C}-14\left(\delta_{\mathrm{C}} 108.7\right)$, while ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 161) showed cross peak between $\mathrm{H}-14\left(\delta_{\mathrm{H}} 6.73\right)$ and $\mathrm{H}-15\left(\delta_{\mathrm{H}} 7.41\right)$. Based on these spectral data, the third substructure was created as shown.

The NOE experiments (Figure 162) indicated interactions of $\mathrm{H}_{3}-17\left(\delta_{\mathrm{H}} 0.86\right)$ with $\mathrm{H}_{3}-20\left(\delta_{\mathrm{H}} 1.07\right)$, На-7 ($\delta_{\mathrm{H}} 1.42-1.49$) and $\mathrm{Hb}-11\left(\delta_{\mathrm{H}} 2.85\right)$; from these interactions, the absence of the other significant interactions, biosynthetic considerations and the agreement of the crystal structure of compound COC10, which
was also isolated in this study, we assigned the relative configuration of three methyl groups as cis orientation.

A gross structure of compound COC9 was assembled by the combination of these substructures, leading to newly identify as 6 -[2-(furan-3-yl)-2-oxoethyl-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [63] and has been given name as chettaphanin VI.

Table 23 NMR spectral data of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$

position	Compound COC9	
	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\text {C }}(\mathrm{ppm})^{\#}$
1	2.33 (1Ha, dd, 2.7, 17.9) **	$31.6\left(\mathrm{CH}_{2}\right)$
	2.40 (1Hb, dddd, $2.5,2.8,2.8,17.9){ }^{* *}$	
2	4.76 (1H, ddd, 2.7, 2.8, 6.0) **	74.0 (CH)
3	1.93 (1Ha, $d, 11.0)$ **	$41.1\left(\mathrm{CH}_{2}\right)$
	dd, 6.0,	
4		43.6 (C)
5		132.1 (C)
6	2.10-2.19 (2H, m)	$22.2\left(\mathrm{CH}_{2}\right)$
7	1.42-1.49 ($1 \mathrm{Ha}, m)$	$25.5\left(\mathrm{CH}_{2}\right)$
8	$2.01-2.08(1 \mathrm{H}, m)$	33.2 (CH)
9		40.3 (C)
10		132.4 (C)
11	2.74 (1Ha, $d, \overline{15.5})$	$47.7\left(\mathrm{CH}_{2}\right)$
	$2.85(1 \mathrm{Hb}, d, 15.5)$	
12		193.6 (C)
13		129.3 (C)
14	D) $6.73(1 \mathrm{H}, d d, 1.0,2.0)$	108.7 (CH)
15	$7.41(1 \mathrm{H}, d d, 1.5,2.0)$	144.2 (CH)
16	$=7.95(1 \mathrm{H}, d d, 0.5,1.5)$	147.6 (CH)
17	- $0.86(3 \mathrm{H}, d, 7.0)$	$15.2\left(\mathrm{CH}_{3}\right)$
18		178.3 (C)
19	$1.32(3 \mathrm{H}, \mathrm{~s})$	$16.5\left(\mathrm{CH}_{3}\right) \sim$
20	$6.1 .07(3 \mathrm{H}, \mathrm{s}) \mathrm{C}$	$21.9\left(\mathrm{CH}_{3}\right)$ d

\# Carbon types were deduced from DEPT135 experiment.
** Precise assignment of coupling constant, see; $\delta_{\mathrm{H}} 1.93\left(d, J_{\mathrm{Ha}-3, \mathrm{Hb}-3}=11.0 \mathrm{~Hz}\right), 2.13\left(d d, J_{\mathrm{Hb}-3, \mathrm{Ha}-3}=\right.$ $\left.11.0 \mathrm{~Hz}, J_{\mathrm{Hb}-3, \mathrm{H}-2}=6.0 \mathrm{~Hz}\right), 2.33\left(d d, J_{\mathrm{Ha}-1, \mathrm{Hb}-1}=17.9 \mathrm{~Hz}, J_{\mathrm{Ha}-1, \mathrm{H}-2}=2.7 \mathrm{~Hz}\right), 2.40\left(d d d d, J_{\mathrm{Hb}-1, \mathrm{Ha}-1}=\right.$ $\left.17.9 \mathrm{~Hz}, J_{\mathrm{Hb}-1, \mathrm{H}-2}=2.8 \mathrm{~Hz}, J_{\mathrm{Hb}-1, \mathrm{Hb}-3}=2.8 \mathrm{~Hz}, J_{\mathrm{Hb}-1, \mathrm{H}-6}=2.5 \mathrm{~Hz}\right), 4.76\left(d d d, J_{\mathrm{H}-2, \mathrm{Hb}-3}=6.0 \mathrm{~Hz}, J_{\mathrm{H}-2, \mathrm{Ha}-1}\right.$ $\left.=2.7 \mathrm{~Hz}, J_{\mathrm{H}-2, \mathrm{Hb}-1}=2.8 \mathrm{~Hz}\right)$

3.10 Structure Determination of Compound COC10

Compound COC10, white crystals with m.p. 157-159 ${ }^{\circ} \mathrm{C}$, showed a protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 375$ in FAB mass spectrum (Figure 163), corresponding to the molecular formular $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$. The UV spectrum (Figure 164) showed absorption at $\lambda_{\max } 248 \mathrm{~nm}$. The IR bands (Figure 165) of a hydroxyl group ($3423 \mathrm{~cm}^{-1}$), a keto carbonyl groups ($1653 \mathrm{~cm}^{-1}$), an ester carbonyl group (1731 and $1281 \mathrm{~cm}^{-1}$) and a furan ring (3140,1462 and $997 \mathrm{~cm}^{-1}$) were observed. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Figure 166-167) revealed four methyl protons at $\delta_{\mathrm{H}} 0.84\left(\mathrm{H}_{3}-17, d, J=6.5\right.$ $\mathrm{Hz}), 1.14\left(\mathrm{H}_{3}-20, s\right), 1.32\left(\mathrm{H}_{3}-19, s\right)$ and $3.66\left(\mathrm{H}_{3}-21, s\right)$, four methylene protons at δ_{H} 1.45 (Ha-7, dddd $, J=3.0,3.5,4.0,14.0 \mathrm{~Hz}$), 1.72 (Hb-7, $d d d d, J=3.0,14.0,14.0$, $14.0 \mathrm{~Hz}), 1.96(\mathrm{Ha}-6, d d d, J=3.0,3.0,14.0 \mathrm{~Hz}), 2.31(\mathrm{Hb}-6, d d d, J=4.0,14.0,14.0$ $\mathrm{Hz}), 2.47$ (Ha-3, $d, J=17.0 \mathrm{~Hz}$), 2.67 ($\mathrm{Hb}-3, d, J=17.0 \mathrm{~Hz}$), $3.09(\mathrm{Ha}-11, d, J=19.0$ $\mathrm{Hz})$ and $3.23(\mathrm{Hb}-11, d, J=19.0 \mathrm{~Hz})$, five methine protons; three protons of which showed a characteristic furan protons at $\delta_{\mathrm{H}} 6.61,7.37$ and 7.97 (1 H each, $\mathrm{H}-14, \mathrm{H}-15$ and $\mathrm{H}-16)$, the other signals at $\delta_{\mathrm{H}} 2.15(\mathrm{H}-8, m)$ and $5.76(\mathrm{H}-1, s)$ and one hydroxyl proton at $\delta_{\mathrm{H}} 2.44$. The ${ }^{13} \mathrm{C}$-NMR (Figure 168) and DEPT135 (Table 24) spectra showed four methyl carbons, four methylene carbons, five methine carbons and eight quaternary carbons. The HMBC spectrum of compound COC10 (Figure 170) demonstrated the correlations from $\delta_{\mathrm{H}} 5.76(\mathrm{H}-1)$ to $\delta_{\mathrm{C}} 41.1$ (C-9), 43.2 (C-3), 72.4 (C-5) and $198.1(\mathrm{C}-2)$, from $\delta_{\mathrm{H}} 2.47(\mathrm{Ha}-3)$ and $2.67(\mathrm{Hb}-3)$ to $\delta_{\mathrm{C}} 19.4(\mathrm{C}-19), 72.4$ (C-5), $174.6(\mathrm{C}-18)$ and $198.1(\mathrm{C}-2)$, from $\delta_{\mathrm{H}} 1.32\left(\mathrm{H}_{3}-19\right)$ to $\delta_{\mathrm{C}} 43.2(\mathrm{C}-3), 72.4(\mathrm{C}-$ 5) and $174.6(\mathrm{C}-18)$, from $\delta_{\mathrm{H}} 1.96(\mathrm{Ha}-6), 2: 31(\mathrm{Hb}-6)$ and $1.14\left(\mathrm{H}_{3}-20\right)$ to $\delta_{\mathrm{C}} 35.1(\mathrm{C}-$ 8), from $\delta_{\mathrm{H}} 1.45(\mathrm{Ha}-7)$ to $\delta_{\mathrm{C}} 16.7(\mathrm{C}-17)$, from $\delta_{\mathrm{H}} 0.84\left(\mathrm{H}_{3}-17\right)$ to $\delta_{\mathrm{C}} 25.0(\mathrm{C}-7)$ and $35.1(\mathrm{C}-9)$ and from $\delta_{\mathrm{H}} 2.15(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 31.6(\mathrm{C}-6)$ and $25.8(\mathrm{C}-20)$, while the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 171) showed cross peaks from $\delta_{\mathrm{H}} 1.45(\mathrm{Ha}-7)$ and $1.72(\mathrm{Hb}-$ 7) to $\delta_{\mathrm{H}} 1.96(\mathrm{Ha}-6), 2.31(\mathrm{Hb}-6)$ and $2.15(\mathrm{H}-8)$. These spectral data assisted in the construction of the first partial structure of compound COC10 as shown.

The HMBC spectrum of compound COC10 (Figure 170) appeared the correlations from $\delta_{\mathrm{H}} 3.09(\mathrm{Ha}-11)$ and $3.23(\mathrm{Hb}-11)$ to $\delta_{\mathrm{C}} 25.8(\mathrm{C}-20), 35.1(\mathrm{C}-8)$ and $190.9(\mathrm{C}-12)$, from $\delta_{\mathrm{H}} 3.09(\mathrm{Ha}-11)$ to $\delta_{\mathrm{C}} 167.8(\mathrm{C}-10)$, from $\delta_{\mathrm{H}} 6.61(\mathrm{H}-14)$ to δ_{C} $146.3(\mathrm{C}-16)$, from $\delta_{\mathrm{H}} 7.37(\mathrm{H}-15)$ to $\delta_{\mathrm{C}} 127.9(\mathrm{C}-13)$ and from $\delta_{\mathrm{H}} 7.97(\mathrm{H}-16)$ to δ_{C} 108.3 (C-14), along with the ${ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY correlation (Figure 171) between $\delta_{\mathrm{H}} 6.61$ $(\mathrm{H}-14)$ and $7.37(\mathrm{H}-15)$. The construction of the second partial structure was by analyses of the above spectral data.

A gross structure of compound COC10 was assembled by combination of the two partial structures and comparison with the previous report (Marcos et al., 2003). Thus, compound COC10 was identified as chettaphanin I [48], which was previously isolated from Adenochleana siamensis (Sato et al., 1970) and Croton crassifolius (Boonyarathanakornkit et al., 1988). d9/G
${ }^{9}$ Although the structure of this compound was determined spectroscopically and chemically, the stereochemistry was unknown even by X-ray crystallography (Marcos et al., 2003). In this study, NOE experiments (Figure 172) indicated interactions from $\mathrm{H}_{3}-20\left(\delta_{\mathrm{H}} 1.14\right)$ with $\mathrm{H}-1\left(\delta_{\mathrm{H}} 5.76\right)$, $\mathrm{OH}-5\left(\delta_{\mathrm{H}} 2.44\right)$ and $\mathrm{H}_{3}-17\left(\delta_{\mathrm{H}}\right.$ $0.84)$ and from $\mathrm{H}_{3}-19\left(\delta_{\mathrm{H}} 1.32\right)$ with $\mathrm{OH}-5\left(\delta_{\mathrm{H}} 2.44\right)$. Additionally, we succeeded in preparing a single crystal of compound $\mathbf{C O C 1 0}$ carrying CHCl_{3} in its molecule by recrystallization from hexane- CHCl_{3}. The X-ray crystallographic analysis (Figure

173 and Table 25-30) of the CHCl_{3}-contained crystal indicated that the reported stereochemistry of compound COC10 including absolute configurations at C-4, C-5, C-8 and C-9 is in the S, S, R, S configuration.

Figure 173 ORTEP drawing of compound COC10. The chloroform molecule is omitted for clarity.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 24 NMR spectral data of compound $\mathbf{C O C 1 0}$ and chettaphanin I $\left(\mathrm{CDCl}_{3}\right)$

[^4]
3.11 Structure Determination of Compound COC11

Compound COC11 was isolated as white solid with m.p. 161-163 ${ }^{\circ} \mathrm{C}$. The FABMS spectrum (Figure 174) showed $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 235, harmonizing with the molecular formula $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$. The UV absorptions at 241 nm suggested the presence of such a conjugated chromophore in compound COC11 (Figure 175). The IR absorption peaks (Figure 176) at $3200-2400 \mathrm{~cm}^{-1}$ and $1672 \mathrm{~cm}^{-1}$ revealed a carboxylic acid group. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Figure 177) showed signals for methyl, methylene and methine of alicyclic at $\delta_{\mathrm{H}} 0.82-2.84$. The ${ }^{13} \mathrm{C}$-NMR (Figure 178) and DEPT135 (Table 31) spectra displayed 15 signals; three methyl carbons ($\delta_{\mathrm{C}} 18.0$, 19.3 and 26.2), five methylene carbons ($\delta_{\mathrm{C}} 25.7,26.9,27.9,31.3$ and 36.3), two methine carbons ($\delta_{\mathrm{C}} 36.0$ and 48.1) and two quaternary carbons ($\delta_{\mathrm{C}} 41.7$ and 68.2), in addition to two olefinic carbons ($\delta_{\mathrm{C}} 123.1$ and 173.1) and a carboxylic acid moiety (δ_{C} 170.9). The HMBC spectrum of compound COC11 (Figure 180) demonstrated the correlations from $\delta_{\mathrm{H}} 0.89\left(\mathrm{H}_{3}-15\right)$ and 2.67-2.84 $\left(\mathrm{H}_{2}-3\right)$ to $\delta_{\mathrm{C}} 68.2(\mathrm{C}-1)$, from δ_{H} 1.49-1.56 (Ha-2) and $2.24(\mathrm{Ha}-6)$ to $\delta_{\mathrm{C}} 123.1(\mathrm{C}-4)$, from $\delta_{\mathrm{H}} 1.76(\mathrm{Hb}-2), 2.67-2.84$ $\left(\mathrm{H}_{2}-3\right)$ and $2.06(\mathrm{H}-10)$ to $\delta_{\mathrm{C}} 173.1(\mathrm{C}-5)$ and from $\delta_{\mathrm{H}} 2.67-2.84\left(\mathrm{H}_{2}-3\right)$ to $\delta_{\mathrm{C}} 170.9$ (C-14), in addition to the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound COC11 (Figure 181), displaying a correlation between $\delta_{\mathrm{H}} 1.76(\mathrm{Hb}-2)$ to $\delta_{\mathrm{H}} 2.67-2.84\left(\mathrm{H}_{2}-3\right)$. Therefore the first fragment of compound COC11 is assembled as shown.

The $^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of compound COC11 (Figure 181) demonstrated for the cross peak of methylene proton from $\delta_{\mathrm{H}} 2.67-2.84(\mathrm{Hb}-6)$ to 1.96 (H-7). The HMBC spectrum of compound COC11 (Figure 180) showed the correlations from $\delta_{\mathrm{H}} 0.82\left(\mathrm{H}_{3}-13\right)$ and $0.99\left(\mathrm{H}_{3}-12\right)$ to $\delta_{\mathrm{C}} 68.2(\mathrm{C}-1)$, from $\delta_{\mathrm{H}} 1.76$ $(\mathrm{Hb}-2)$ and $2.24(\mathrm{Ha}-6)$ to $\delta_{\mathrm{C}} 41.7(\mathrm{C}-11)$, from $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3}-12\right)$ and $0.82\left(\mathrm{H}_{3}-13\right)$ to $\delta_{\mathrm{C}} 48.1(\mathrm{C}-7)$, from $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3}-12\right)$ and $1.96(\mathrm{H}-7)$ to $\delta_{\mathrm{C}} 26.2(\mathrm{C}-13)$, from $\delta_{\mathrm{H}} 0.82$ $\left(\mathrm{H}_{3}-13\right)$ and $1.96(\mathrm{H}-7)$ to $\delta_{\mathrm{C}} 19.3(\mathrm{C}-12)$ and from $\delta_{\mathrm{H}} 1.96(\mathrm{H}-7)$ to $\delta_{\mathrm{C}} 173.1(\mathrm{C}-5)$.

Based on these spectral data the second substructure of compound COC11 is proposed as shown below.

The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound COC11 (Figure 181) displayed a cross peak from $\delta_{\mathrm{H}} 1.36$ (Ha-8) to 1.12 (Ha-9), while the HMBC correlations from $\delta_{\mathrm{H}} 1.12(\mathrm{Ha}-9)$ to $\delta_{\mathrm{C}} 68.2(\mathrm{C}-1)$, from $\delta_{\mathrm{H}} 2.06(\mathrm{H}-10)$ to $\delta_{\mathrm{C}} 41.7(\mathrm{C}-11)$, from $\delta_{\mathrm{H}} 1.89$ $(\mathrm{Hb}-8)$ to $\delta_{\mathrm{C}} 31.3(\mathrm{C}-6), 41.7(\mathrm{C}-11)$ and $36.0(\mathrm{C}-10)$ and from $\delta_{\mathrm{H}} 2.24(\mathrm{Ha}-6)$ to δ_{C} 26.9 (C-8). Therefore the third partial structure is created as shown below.

Combination of the first, the second, and the third fragments established a gross structure of compound COC11. The relative configuration of compound COC11 was assumed to be the same as that previously reported (Jacobs et al., 1987) due to the same negative rotations $\left\{[\alpha]^{23} \mathrm{D}-7.8^{\circ}\left(c 0.08, \mathrm{CHCl}_{3}\right)\right\}$ observed. In addition, this assumption was confirmed by NOE experiments (Figure 182) on irradiation at $\delta_{\mathrm{H}} 2.06(\mathrm{H}-10)$, in which/ancenhancement was observed at $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3^{-}}\right.$ 12). When methyl proton at $\delta_{\mathrm{H}} 0.99\left(\mathrm{H}_{3}-12\right)$ was irradiated, the enhancement was observed at $\delta_{\mathrm{H}} 0.82\left(\mathrm{H}_{3}-13\right)$ and $2.06(\mathrm{H}-10)$. By analysis of the above spectroscopic data and comparison of its ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data with the previous report. Compound COC11 was identified as patchoulane type sesquiterpene, namely cyperenoic acid [64] which is a known substance previously isolated from Sandwithia guyanensis (Jacobs, Lachmansing and Ramdayal, 1987) and Croton crassifolius (Boonyaratavej and Roengsumran, 1988)

[64]

Table 31 NMR spectral data of compound $\mathbf{C O C 1 1}$ and cyperenoic acid $\left(\mathrm{CDCl}_{3}\right)$

[^5]
4. Biological Activities of Isolated Compounds

The results of biological activities including cytotoxic and antimycobacterial activities are shown in Tables 32 and 33.

4.1 Biological Activities of the Compounds from Pterocaulon redolens

Compounds PRC1, 2, 3, 4, 6 and 7 and PRB 8 and 9 have displayed mild antimycobacterial activity toward Mycobacterium tuberculosis H37Ra and compound PRB10 exhibited moderate cytotoxicity to BC and NCI-H187 cell line. These results are shown in Table 32.

4.2. Biological Activities of the Compounds from Cladogynos orientalis

Compounds COC6, 7 and $\mathbf{8}$ possessed weak to moderate cytotoxicity, while all isolates showed mild antimycobacterial activity toward Mycobacterium tuberculosis H37Ra except compound COC5. These results are demonstrated in Table 33.

สถาบันวิทยบริการ

Table 32 Biological activities of isolated compounds of Pterocaulon redolens.

compounds	Cytotoxicity $^{\|c\|} \mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})^{*}$				Antimycobacterial activity ${ }^{d}$ MIC $(\mu \mathrm{g} / \mathrm{mL})$
	Vero cell $^{\text {a }}{ }^{\text {K }}$	BC^{b}	NCI-H 187^{c}		
PRC1	>50	>20	>20	>20	200
PRC2	>50	>20	>20	>20	200
PRC3	>50	>20	>20	>20	100
PRC4	>50	>20	>20	>20	100
PRC5	>50	>20	>20	>20	inactive
PRC6	>50	>20	>20	>20	200
PRC7	>50	>20	>20	>20	200
PRC8	>50	>20	>20	>20	100
PRC9	>50	>20	>20	>20	100
PRC10	>50	>20	5.5	9.3	inactive

${ }^{a} \mathrm{~KB}$; Human epidermoid carcinoma cell lines of nasopharynx
${ }^{b} \mathrm{BC}$; Human breast cancer cell lines
${ }^{c}$ NCI-H 187; Human small cell lung cancer cell lines
${ }^{d}$ Antimycobacterial activity against Mycobacterium tuberculosis H37Ra
IC_{50}; Inhibition Concentration at 50%
${ }^{*} \mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL}) \quad>20$; inactive
10-20; weakly active
5-10; moderately active

MIC; Minimun Inhibition Concentration

จุฬาลงกรณ์มหาวิทยาลัย

Table 33 Biological activities of isolated compounds of Cladogynos orientalis.

compounds	Cytotoxicity $\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})^{*}$				Antimycobacterial activity ${ }^{d}$ MIC $(\mu \mathrm{g} / \mathrm{mL})$
	Vero cell	KB^{a}	BC^{b}	$\mathrm{NCI}^{2}{\mathrm{H} 187^{c}}^{c}$	
COC1	>50	>20	>20	>20	200
COC2	>50	>20	>20	>20	50
COC3	>50	>20	>20	>20	50
COC4	>50	>20	>20	>20	200
COC5	>50	>20	>20	>20	inactive
COC6	>50	>20	>20	12.2	100
COC7	>50	>20	>20	17.4	100
COC8	>50	17.1	15.8	8.3	100
COC9	>50	>20	>20	>20	200
COC10	>50	>20	>20	>20	200
COC11	>50	>20	>20	>20	100

${ }^{a} \mathrm{~KB}$; Human epidermoid carcinoma cell lines of nasopharynx
${ }^{b} \mathrm{BC}$; Human breast cancer cell lines
${ }^{c}$ NCI-H 187; Human small cell lung cancer cell lines
${ }^{d}$ Antimycobacterial activity against Mycobacterium tuberculosis H 37 Ra
IC $_{50}$; Inhibition Concentration at 50%
${ }^{*} \mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL}) \quad>20$; inactive
10-20; weakly active

CHAPTER V

CONCLUSION

In this investigation, from the aerial parts of Pterocaulon redolens (Forst. f) F. Vill, a new natural product, namely $2^{\prime}, 3^{\prime}$-dihydroxypuberulin [52], was isolated along with 9 known compounds. These known compounds are 5-methoxy-6,7methylenedioxycoumarin [9], ayapin [10], puberulin [50], 5-methoxyscopoletin [51], isofraxidin [53], sabandinol [23], luteolin [54], tomentin [55] and chrysosplenol C [35]. Chrysosplenol C [35] possessed moderate cytotoxicity against human breast cancer (BC) and human small cell lung cancer (NCI-H187) cell lines with $\mathrm{IC}_{50} 5.5$ and $9.3 \mu \mathrm{~g} / \mathrm{mL}$, respectively.

Chemical examination of the roots of Cladogynos orientalis Zipp. ex Span. led to isolation of 5 new compounds, namely ($4 S^{*}, 7 R^{*}, 8 R^{*}, 10 S^{*}$)-8-hydroxy- α-guaiene [56], 5-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-1,2,3,4,5,6,7,8-otahydronaphthalene-1carboxylic acid [58], methyl 9-(furan-3-yl)-2,7,13-trimethyl-4-oxo-10-oxatricyclo [5.3.3.0 ${ }^{1,6}$]trideca-5,8-diene-2-carboxylate [59], 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0.7.] dodec-2(7)-en-11-one [62] and 6-[2-(furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 $0^{2,7}$]dodec-2(7)-en-11-one [63] along with 6 known compounds. These known compounds are chettaphanin I [48], chettaphanin II [49], spathulenol [57], acetoxyaleuritolate [60], taraxerol [61] and cyperenoic acid [64]. Chettaphanin II [49], taraxerol [61] and 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62] showed mild to moderate cytotoxicity to NCI-H187 cellpline with $\mathrm{IC}_{50} 17.4,12.2$ and $8.3 \mu \mathrm{~g} / \mathrm{mL}$, respectively. Additionally, 6-[2-(furan-3-yl)ethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.0 ${ }^{2,7}$]dodec-2(7)-en-11-one [62] possessed mild cytotoxicity to KB and BC cell lines with $\mathrm{IC}_{50} 17.1$ and $15.8 \mu \mathrm{~g} / \mathrm{mL}$, respectively. All of 21 isolated compounds showed mild antimycobacterial activity toward Microbacterium tuberculosis H 37 Ra (MIC 50-200 $\mu \mathrm{g} / \mathrm{mL}$) except chrysosplenol C [35], 2',3'-dihydroxypuberulin [52] and acetoxyaleuritolate [60]. The structures of some isolated compounds were revised and completed by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR assignments.

REFERENCES

Adam, R. P. 1995. Identification of essential oil components by Gas
Chromatography/Mass Spectrometry. Illinois, USA: Allured Publishing Corporation.

Agrawal, P. K. 1989. Carbon-13 NMR of flavonoids. Amsterdam, Oxford, New York, Tokyo: Elsevier.

Bohlmann, F., Abraham, W. R., King, R. M., and Robison, H. 1981. Thiophene acetylenes and flavonoids from Pterocaulon virgatum. Phytochemistry 20: 825-827.

Boonyaratavej, S., and Roengsumran, S. 1988. X-ray structure of cyperenoic acid from Croton crassifolius. J. Nat. Prod. 51: 769-770.

Boonyaratthanakornkit, L., Che, C. T., Fong, H. H. S., and Farnsworth, N. 1988. Constituents of Croton crassifolius roots. Planta Med. 74: 61-63.

Buckingham, J. 2001. Dictionary of Natural Products [Computer software]. Chapman\&Hall/CRC netbase.

Cardona, L., Garcia, B., Pedro, J. R., and Perez, J. 1992. 6-Prenyloxy-7-methyoxycoumarin, a coumarin-hemiterpene ether from Carduus tenuiflorus. Phytochemistry 31: 3989-3991.
Carpenter, R. C., Sotheeswaran, S., Sultanbawa, M. U. S., and Balasubramaniam, S. 1980. Triterpenes of five Euphorbiaceae species of Sri Lanka. Phytochemistry 19: 1171-1174.
Carpenter, R. C., Sotheeswaran, S., Sultanbawa, M. U. S., and Ternai, B. 1980. ${ }^{13} \mathrm{C}$ NMR studies of some lupane and taraxerane triterpenes. Org. Magn. Reson.

Collin, L. A., and Franzblau, S. G. 1997. Microplate Alamar Blue Assay versus BACTEC460 system for high-throughput screening of compound against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 41: 1004-1009.

Corbett, R. E., Cumming, S. D. 1972. Lichens and fungi. J. Chem. Soc. Perkin Trans. I 2827-2829.

Debenedetti, S. L., Kimpe, N. D., Boeykens, M., Coussio, J. D., and Kesteleyn, B. 1997. Structure revision of four coumarins from Pterocaulon species. Phytochemistry 45: 1515-1517.

Debenedetti, S. L., Nadinic, E. L., Coussio, J. D., Kimpe, N. D., and Boeykens, M. 1998. Two 6,7-dioxygenated coumarins from Pterocaulon virgatum. Phytochemistry 48: 707-710.
Debenedetti, S. L., Nadinic, E. L., Coussio, J. D., Kimpe, N. D., Dupont, J. F., and Declercq, J. P. 1991. Purpurenol, a highly oxygenated coumarin from Pterocaulon purpurascens. Phytochemistry 30: 2757-2758.

Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., and Coussio, J. D. 1987. Polyphenols isolated from Pterocaulon purpurascens, 6-hydroxyflavonoids. J. Nat. Prod. 50: 512-513.

Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., Coussio, J. D., Kimpe, N. D., and Boeykens, M. 1992. Purpurasol, a highly oxygenated coumarin from Pterocaulon purpurascens. Phytochemistry 31:3284-3285.
Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., Coussio, J. D., Kimpe, N. D., and Boeykens, M. 1996. Purpurasolol, a highly oxygenated coumarin from Pterocaulon purpurascens. Phytochemistry 42: 563-564.

Debenedetti, S. L., Palacios, P. S., Nadinic, E. L., and Coussio, J. D. 1994. 5-(3-methyl-2-butenyloxy)-6,7-Methylenedioxycoumarin, a 5,6,7-trioxygenated coumarin from Pterocaulon virgatum. J. Nat. Prod. 57: 1539-1542.

Debenedetti, S. L., Tehrani, K. A., Puyvelde, L. V., and Kimpe, N. D. 1999.
Isopurpurasol, a coumarin from Pterocaulon virgatum. Phytochemistry 51: 701-703.

Finkelstein, N., and Rivett, D. E. A. 1976. Puberulin, a new prenyloxy coumarin from Agathosma puberula. Phytochemistry 15: 1080-1081.

Gonzalez, A. G., Esteuez, R., Arencibia, J. B., and Perez, T. R. 1973. Nuevas fuentes de cumarinas naturals. An. Quim. 69: 1141-1147.

Inagaki, F., and Abe, A. 1985. Analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance spectra of spathulenol by two-dimensional methods. J. Chem. Soc. Perkin Trans. II 1773-1785.

Iwabuchi, H., Yoshikura, M., and Kamisako, W. 1989. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. III. Chem. Pharm. Bull. 37: 509-510.

Jackson, G. E., Campbell, W. E., and Davidowitz, B. 1990. Two dimension NMR study of some natural coumarins. Spectroscopy Lett. 23: 359-367.

Jacobs, H., Lachmansing, S. S., Ramdayal, F. 1987. Applications of 2D-NMR spectroscopy to phytochemical studies: cyperenol and cyperenoic acid. J. Nat. Prod. 50: 835-842.

Johns, S. R., Lamberton, J. A., Price, J. R., and Sioumis, A. A. 1968. Identification of coumarins isolated from Lepiniopsis ternatensis (Apocynaceae), Pterocaulon sphacelatum (Compositae) and Melicope melanophloia (Rutaceae). Aust. J. Chem. 21: 3079-3080.

Koyama, H. 1984. Taxonomic studies in the Compositae of Thailand. Acta Phytotax. Geobot. 15: 124.

Macleod, J. K., and Rasmussen, H. B. 1999. A hydroxy- β-caryophyllene from Pterocaulon serrulatum. Phytochemistry 50: 105-108.

Magalhaes, A. F., Magalhaes, E. G., Filho, H. F. L., Frighetto, R. T. S., and Barros, S. M. G. 1981. Coumarins from Pterocaulon balensae and P. lanatum. Phytochemistry 20: 1369-1371.
Magalhaes, A. F., Magalhaes, E. G., Junior, V. N., Filho, H. F. L. 1989. Polyacetylenes from Pterocaulon species. Phytochemistry 28: 2497-2499.
Maldonado, E., Hernandez, E., and Ortega, A. 1992. Amides, coumarins and other constituents from Simsia cronquistii. Phytochemistry 31: 1413-1414.

Marcos, I. S., et al. 2002. Synthesis and absolute configuration of (-)-chettaphanin II. Tetrahedron Lett. 43: 1243-1245.
Marcos, I. S., et al. 2003. Synthesis and absolute configuration of (-)-chettaphanin I and (-)-chettaphanin II. Tetrahedron 59: 685-694.
Mongelli, E., Pampuro, S., Coussio, J., Salomon, H., and Ciccia, G. 2000. Cytotoxic and DNA interaction activities of extracts from medicinal plants used in Argentina. J. Ethnopharmacol. 71: 145-151.

Palacios, P. S., Rojo, A. A., Coussio, J. D., Kimpe, N. D., and Debenedetti, S. L. 1999. 6,7-Dioxygenated and 5,6,7-trioxygenated coumarins from Pterocaulon polystachium. Planta Med. 65: 294-295.

Panichayupakaranant, P., Noguchi, H., De-eknamkul, W., and Sankawa, U. 1995. Naphthoquinones and coumarins from Impatiens balsamina root cultures. Phytochemistry 40: 1141-1143.
Pongboonrod, S. 1976. Mai Tet Maung Thai. Bangkok: Kasembunnakich Press.
Radanachaless, T., and Maxwell, J. F. 1994. Weeds of soybean fields in Thailand. Chiangmai: Multiple Cropping Center.

Rakotonirainy, O., Gaydou, E. M., Faure, R., and Bombarda, I. 1997. Sesquiterpenes from Patchouli (Pogostemon cablin) essential oil. Assignment of proton and carbon-13 NMR spectra. J. Essent. Oil Res. 9: 321-327.
Ray, T. K., Misra, D. R., and Khastgir, H. N. 1975. Phytosterols in Euphorbiaceae and Rutaceae. Phytochemistry 14: 1876-1877.

Roengsumran, S., et al. 2004. New Halimane Diterpenoids from Croton oblongifolius. Planta Med. 70: 87-89.

Sakurai, N., Yaguchi, Y., and Inoue, T. 1987. Triterpenoids from Myrica rubra. Phytochemistry 26: 217-219.
Sato, A., Kurabayashi, M., Nogahori, H., Ogiso, A., and Mishima, H. 1970. Chettphanin-I a novel furanoditerpenoids. Tetrahedron Lett. 11: 1095-1098.
Sato, A., Kurabayashi, M., Nogahori, H., Ogiso, A., and Mishima, H. 1971. Chettphanin-II a novel furanoditerpenoids. Tetrahedron Lett. 12: 839-842.

Semple, S. J., Nobbs, S. F., Pyke, S. M., Reynolds, G. D., and Flower, R. L. P. 1999. Antiviral flavonoid from Pterocaulon sphacelatum, an Australian aboriginal medicine. J. Ethnopharmacol. 68: 283-288.
Semple, S. J., Reynolds, G. D., Oleary, M. C., andFlower, R.L. P. 1998. Screening on Australian medicinal plants for antiviral activity. J. Ethnopharmacol. 60:
Shaw, H. K. 1972. The Euphorbiaceae of Siam. Kew Bull. 26: 191-233.
Shen, M. C., Rodriguez, E., Kerr, K., and Mabry, T. J. 1976. Flavonoids of four species of Parthenium (Compositae). Phytochemistry. 15: 1045-1047.

Skehan, P., et al. 1990. New colorimetric cytotoxic assay for anticancer drug screening. J. Natl. Cancer Inst. 82: 1107-1112.
Smitinand, T. 2001. Thai plant names (bonical names vernacular names) revised Edition. Bankgkok: The Forest Herbarium, Royal Forest Department.

Steck, W., and Mazurek, M. 1972. Identification of natural coumarins by NMR spectroscopy. J. Nat. Prod. 35: 418-438.

Tan, G. T., Pezzuto, J. M., and Kinghorn, A. D. 1991. Evaluation of natural products as inhibitors of human immunodeficiency virus type I (HIV I) reverse transcriptase. J. Nat. Prod. 54: 143-154.

Ulubelen, A., Kerr, K. M., and Mabry, T. J. 1980. New 6-hydroxyflavonoids and their methyl ethers and glycosides from Neurolaena oaxacana. Phytochemistry 19: 1761-1766.

Vilegas, W., Boralle, N., Cabrera, A., Bernardi, A. C., Pozetti, G. L., and Arantes, S. F. 1995. Coumarins and a flavonoids from Pterocaulon alopeculoides. Phytochemistry 38: 1017-1019.
Wagner, H., and Bladt, S. 1975. Cumarine aus sudafrikanischen Pelargonium-arten. Phytochemistry 14: 2061-2064.
Whitemore, T. C. 1973. Euphorbiaceae. Tree flora of Malaya. 2: 78.
William, C. A., Hoult, J. R. S., Horborne, J. B., Greenham, J., and Eagles, J. 1995. A biologically active lipophilic flavonol from Tanacetum parthenium. Phytochemistry 38: 267-270.

สถาบันวิทยบริการ

Figure 5 GC Chromatogram of the oit of Pterocaulon redolens aerial parts.

Figure 6 FAB Mass spectrum of compound PRC1.

Figure 7 UV spectrum of compound PRC1 (MeOH).

Figure 8 IR spectrum of compound PRC1 (KBr disc).

Figure $9{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$.

Figure $10{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 11 HMQC spectrum of compound PRC1 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 12 HMBC spectrum of compound $\mathbf{P R C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 13 FAB Mass spectrum of compound PRC2.
1)SAUE 2)EXP. 3)PEAK 4)DERIU. 5)PRINT 6)PLOT No. =

Figure 14 UV spectrum of compound PRC2.

Figure 15 IR spectrum of compound $\mathrm{PRC} 2(\mathrm{KBr}$ disc).

Figure $16{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC2 $\left(\mathrm{CDCl}_{3}\right)$.

Figure $17{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{P R C 2}\left(\mathrm{CDCl}_{3}\right)$.

Figure 18 HMQC spectrum of compound PRC2 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 19 HMBC spectrum of compound PRC2 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 20 FAB Mass spectrum of compound PRC3.

Figure 21 UV spectrum of compound PRC3 (MeOH).

Figure 22 IR spectrum of compound PRC3 (KBr disc).

Figure $23{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$.

Figure $24{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{P R C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 25 HMQC spectrum of compound $\mathbf{P R C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 26 HMBC spectrum of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 27 NOE spectra of compound PRC3 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 28 FAB Mass spectrum of compound PRC4.

Figure 29 UV spectrum of compound PRC4 (MeOH).

Figure 30 IR spectrum of compound PRC4 (KBr disc).

Figure $31{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{P R C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure $32{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRC4 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 33 HMQC spectrum of compound PRC4 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 34 HMBC spectrum of compound $\operatorname{PRC4}\left(\mathrm{CDCl}_{3}\right)$.

Figure 35 FAB Mass spectrum of compound PRC5.

Figure 36 UV spectrum of compound PRC5 (MeOH).

Figure 37 IR spectrum of compound PRC5 (KBr disc).

Figure $38{ }^{1} \mathrm{H}$-NMR (500 MHz) spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$.

Figure $39{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 40 HMQC spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 41 HMBC spectrum of compound PRC5 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 42 FAB Mass spectrum of compound PRC6.

11:12 1/27 103

$400.0 \mathrm{MM} \quad 0.022 \mathrm{~A}$

Figure 43 UV spectrum of compound PRC6 (MeOH).

Figure 44 IR spectrum of compound PRC6 (KBr disc).

Figure $45{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$.

Figure $46{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 47 HMQC spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 48 HMBC spectrum of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 49 NOE spectra of compound PRC6 $\left(\mathrm{CDCl}_{3}\right)$.

Figure 50 FAB Mass spectrum of compound PRC7.

Figure 51 UV spectrum of compound PRC7 (MeOH).

Figure 52 IR spectrum of compound PRC7 (KBr disc).

Figure $53{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\operatorname{PRC} 7\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure $54{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRC7 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure 55 HMQC spectrum of compound PRC7 (DMSO- d_{6}).

Figure 56 HMBC spectrum of compound PRC7 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure $57{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathrm{PRC} 7\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure 58 FAB Mass spectrum of compound PRB8.

Figure 59 UV spectrum of compound PRB8 (MeOH).

Figure 60 IR spectrum of compound PRB8 (KBr disc).

Figure $61{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRB8 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure $62{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound PRB8 (DMSO- d_{6}).

Figure 63 HMQC spectrum of compound PRB8 (DMSO- d_{6}).

Figure 64 HMBC spectrum of compound PRB8 (DMSO- d_{6}).

Figure 65 FAB Mass spectrum of compound PRB9.

Figure 66 UV spectrum of compound PRB9 (MeOH).

Figure 67 IR spectrum of compound PRB9 (KBr disc).

Figure $68{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound PRB9 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure $69{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound PRB9 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure 70 HMQC spectrum of compound PRB9 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure 71 HMBC spectrum of compound PRB9 (DMSO- d_{6}).

Figure 72 FAB Mass spectrum of Compound PRB10.

$10: 57 \quad 1 / 31.03 \quad 400.0 \mathrm{HM} \quad 0.123 \mathrm{~A}$

Figure 73 UV spectrum of Compound PRB10 (MeOH).

Figure 74 IR spectrum of Compound PRB10 (KBr disc).
(

Figure $75{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of Compound PRB10 $\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure $76{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of Compound PRB10 $\left(\right.$ DMSO $\left.^{2} d_{6}\right)$.

Figure 77 HMQC spectrum of Compound PRB10 (DMSO- d_{6}).

Figure 78 HMBC spectrum of Compound PRB10 (DMSO- d_{6}).

Figure 79 GC Mass spectrum of compound COC1.

Figure 80 UV spectrum of compound $\mathbf{C O C 1}(\mathrm{MeOH})$.

Figure 81 IR spectrum of compound $\mathbf{C O C 1}$ (Neat).

Figure $82{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 83 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure $84{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 85 DEPT135 spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 86 HMQC spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 87 HMBC spectra of compound $\mathrm{COC1}\left(\mathrm{CDCl}_{3}\right)$.

Figure $88{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 89 NOE spectrum of compound $\mathbf{C O C 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 90 FAB Mass spectrum of compound COC2.

Figure 91 IR spectrum of compound COC2 (Neat).

Figure $92{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$

Figure $93{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$

Figure 94 HMQC spectrum of compound $\mathbf{C O C 2}\left(\mathrm{CDCl}_{3}\right)$.

Figure 95 HMBC spectrum of compound $\mathrm{COC} 2\left(\mathrm{CDCl}_{3}\right)$.

Figure $96{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C} 2\left(\mathrm{CDCl}_{3}\right)$.

Figure 97 NOE spectra of compound $\mathbf{C O C 2}\left(\mathrm{CDCl}_{3}\right)$.

Figure 98 FAB Mass spectrum of compound COC3.

Figure 99 UV spectrum of compound $\mathbf{C O C} 3(\mathrm{MeOH})$.

Figure 100 IR spectrum of compound COC3 (Neat).

Figure $101{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 102 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure $103{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C}\left(\mathrm{CDCl}_{3}\right)$.

G: \szNOKCOR-Cs3372DEPT135 1.als

Figure 104 DEPT135 spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 105 HMQC spectrum of compound $\mathbf{C O C}\left(\mathrm{CDCl}_{3}\right)$.

Figure 106 HMBC spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 107 Expanded HMBC spectra of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure $108{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C} 3\left(\mathrm{CDCl}_{3}\right)$.

Figure 109 FAB Mass spectrum of compound COC4.

Figure 110 UV spectrum of compound $\mathbf{C O C} 4(\mathrm{MeOH})$.

Figure 111 IR spectrum of compound COC4 (Neat).

Figure $112{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure 113 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure $114{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure 115 DEPT135 spectrum of compound $\mathrm{COC} 4\left(\mathrm{CDCl}_{3}\right)$.

Figure 116 HMQC spectrum of compound $\mathbf{C O C} 4\left(\mathrm{CDCl}_{3}\right)$.

Figure 117 HMBC spectrum of compound $\mathrm{COC4}\left(\mathrm{CDCl}_{3}\right)$.

Figure 118 Expanded HMBC spectra of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure $119{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathrm{COC} 4\left(\mathrm{CDCl}_{3}\right)$.

Figure 120 NOE spectra of compound $\mathbf{C O C 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure 122 FAB Mass spectrum of compound COC5.

Figure 123 IR spectrum of compound $\mathbf{C O C 5}$ (KBr disc).

Figure $124{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 5}\left(\mathrm{CDCl}_{3}\right)$.

Figure $125{ }^{13} \mathrm{C}$-NMR (125 MHz) spectrum of compound $\mathbf{C O C 5}\left(\mathrm{CDCl}_{3}\right)$.

Figure 126 DEPT135 spectrum of compound $\operatorname{COC5}\left(\mathrm{CDCl}_{3}\right)$.

Figure 127 FAB Mass spectrum of compound COC6.

Figure 128 IR spectrum of compound COC6 (KBr disc).

Figure $129{ }^{1} \mathrm{H}$-NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 6}\left(\mathrm{CDCl}_{3}\right)$.

Figure $130{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 6}\left(\mathrm{CDCl}_{3}\right)$.

Figure 131 DEPT135 spectrum of compound $\operatorname{COC6}\left(\mathrm{CDCl}_{3}\right)$.

Figure 132 FAB Mass spectrum of compound COC7.

Figure 133 UV spectrum of compound $\mathbf{C O C 7}(\mathrm{EtOH})$.

Figure 134 IR spectrum of compound $\mathrm{COC} 7(\mathrm{KBr}$ disc).

Figure $135{ }^{1} \mathrm{H}$-NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$.

Figure $136{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$.

Figure 137 HMQC spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$.

Figure 138 HMBC spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$.

Figure $139{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C} 7\left(\mathrm{CDCl}_{3}\right)$.

Figure 140 FAB Mass spectrum of compound COC8.

Figure 141 UV spectrum of compound $\mathbf{C O C 8}(\mathrm{MeOH})$.

Figure 142 IR spectrum of compound $\mathbf{C O C 8}$ (Neat).

Figure $143{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 144 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure $145{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 146 DEPT135 spectrum of compound $\operatorname{COC8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 147 HMQC spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 148 HMBC spectrum of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 149 Expanded HMBC spectra of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure $150{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure 151 FAB Mass spectrum of compound COC9.

Figure 152 UV spectrum of compound $\mathbf{C O C 9}(\mathrm{MeOH})$.

Figure 153 IR spectrum of compound $\mathbf{C O C} 9(\mathrm{KBr}$ disc).

Figure $154{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C}\left(\mathrm{CDCl}_{3}\right)$.

Figure 155 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$.

Figure $156{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$.

Figure 157 DEPT135 spectrum of compound $\operatorname{COC9}\left(\mathrm{CDCl}_{3}\right)$.

Figure 158 HMQC spectrum of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$.

Figure 159 HMBC spectrum of compound $\mathbf{C O C 9}\left(\mathrm{CDCl}_{3}\right)$.

Figure 160 Expanded HMBC spectra of compound $\mathrm{COC9}\left(\mathrm{CDCl}_{3}\right)$.

Figure $161{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of compound $\mathbf{C O C} 9\left(\mathrm{CDCl}_{3}\right)$.

Figure 162 NOE spectrum of compound $\mathrm{COC} 9\left(\mathrm{CDCl}_{3}\right)$.

Figure 163 FAB Mass spectrum of compound COC10.

Figure 164 UV spectrum of compound $\mathbf{C O C 1 0}(\mathrm{EtOH})$.

Figure 165 IR spectrum of compound $\mathbf{C O C 1 0}$ (KBr disc).

Figure $166{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure 167 Expanded ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure $168{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure 169 HMQC spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure 170 HMBC spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure $171{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure 172 NOE spectra of compound $\mathbf{C O C 1 0}\left(\mathrm{CDCl}_{3}\right)$.

Figure 174 FAB Mass spectrum of compound COC11.

Figure 175 UV spectrum of compound $\mathbf{C O C 1 1}(\mathrm{MeOH})$.

Figure 176 IR spectrum of compound $\mathbf{C O C 1 1}(\mathrm{KBr}$ disc) $)$.

Figure $177{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure $178{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 179 HMQC spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure 180 HMBC spectrum of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$.

Figure $181{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{C O C} 11\left(\mathrm{CDCl}_{3}\right)$.

Figure 182 NOE spectra of compound $\mathbf{C O C 1 1}\left(\mathrm{CDCl}_{3}\right)$.

Table 25 Crystal data and structure refinement for compound COC10.

Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{O}_{6}$
Formula weight	495.80
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
Crystal colour and shape	colourless block
Crystal size	$0.20 \times 0.20 \times 0.10$
$a(\AA)$	$7.338(3)$
$b(\AA)$	$11.777(5)$
$c(\AA)$	$26.354(12)$
$V\left(\AA^{3}\right)$	$2277.5(18)$
Z	4
$T(\mathrm{~K})$	$173(2)$
$D_{\mathrm{c}}\left(\mathrm{g}^{3} \cdot \mathrm{~cm}^{-3}\right)$	1.446
$\left.\mu(\mathrm{~mm})^{-1}\right)$	0.439
Scan range $\left({ }^{\circ}\right)$	$1.55<\theta<28.67$
Unique reflections	5438
Reflections used $[\mathrm{I}>2 \sigma(\mathrm{I})]$	2094
Absolute structure parameters	$0.15(19)$
$R_{\text {int }}$	0.1894
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.1195, w R_{2} 0.2671$
R indices (all data)	$0.2263, w R_{2} 0.3330$
Goodness-of-fit	0.905
Max, Min $\Delta \rho / \mathrm{e}\left(\AA^{-3}\right)$	$1.048,-0.669$

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 26 Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 4101 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	\mathbf{x}	y	z	U (eq)
C(1)	683(11)	- 481(7)	- 1085(3)	45(2)
C(2)	2206(11)	139(8)	-1339(3)	52(2)
C(3)	3640(11)	-581(7)	-1565(4)	54(2)
C(4)	3092(11)	-1696(7)	-1753(3)	49(2)
C(5)	1376(11)	-2093(7)	-1742(3)	46(2)
C(6)	862(10)	-3173(7)	-2025(3)	46(2)
C(7)	-757(10)	-3826(8)	-1780(3)	51(2)
C(8)	-2220(11)	-3062(7)	-1579(3)	50(2)
C(9)	-1447(11)	-2220(8)	-1193(3)	50(2)
C(10)	-120(10)	-1399(7)	-1472(3)	46(2)
C(11)	-813(12)	347(8)	-922(3)	57(2)
C(12)	1472(13)	-1061(8)	-639(3)	55(2)
C(13)	963(15)	-1767(10)	193(3)	78(3)
C(14)	2458(11)	-4023(7)	-2081(3)	50(2)
C(15)	3148(11)	-4577(7)	-1622(3)	48(2)
C(16)	3982(11)	-5696(8)	-1669(4)	58(2)
C(17)	4874(12)	-6359(8)	-1298(4)	63(2)
C(18)	5311(13)	-7332(10)	-1520(4)	73(3)
C(19)	4026(12)	-6314(8)	-2092(4)	65(3)
C(20)	373(11)	-2789(8)	-2569(3)	51(2)
$\mathrm{C}(21)$	$-1591(13)$	$-4725(9)$	$-2133(4)$	70(3)
$\mathrm{C}(22) \quad 6$	6194(13)	1054(9) \square	470(4)	64(3)
$\mathrm{O}(1)$	3063(8)	$\sigma^{1403(6) ~}{ }^{\text {a }}$	-607(2) ○	64(2)
$\mathrm{O}(2) 9$	$287(8)$	$-1209(6)$	$9-246(2)$	67(2)
$\mathrm{O}(3)$	$5249(7)$	-244(5)	-1612(2)	63(2)
$\mathrm{O}(4)$	-1073(7)	-814(5)	-1866(2)	52(2)
O(5)	3017(8)	-4175(6)	-1186(2)	61(2)
$\mathrm{O}(6)$	4825(9)	-7359(6)	-2019(3)	71(2)
$\mathrm{Cl}(1)$	7211(4)	2204(3)	169(1)	81(1)
$\mathrm{Cl}(2)$	5054(4)	194(3)	35(1)	86(1)
$\mathrm{Cl}(3)$	4754(4)	1493(3)	952(1)	86(1)

Table 27 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for compound COC10.

$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.465(12)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{O}(5)$	$1.244(10)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.458(12)$
$\mathrm{C}(16)-\mathrm{C}(19)$	$1.333(13)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.413(13)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.327(14)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{O}(6)$	$1.363(12)$
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{O}(6)$	0.9500
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	1.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	$1.732(10)$
$\mathrm{C}(22)-\mathrm{Cl}(3)$	$1.744(10)$
$\mathrm{C}(22)-\mathrm{Cl}(1)$	$\mathrm{C}(22)-\mathrm{Cl}(2)$
$\mathrm{C}(22)-\mathrm{H}(22)$	$\mathrm{O}(4)-\mathrm{H}(4)$

$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)$	$106.8(7)$
$\mathrm{C}(12)-\mathrm{C}(1) \mathrm{C}(11)$	$110.7(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	$110.5(7)$
$\mathrm{C}(12)-\mathrm{C}(1) \mathrm{C}(10)$	$109.8(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$108.7(6)$
$\mathrm{C}(11)-\mathrm{C}(1) \mathrm{C}(10)$	$110.2(6)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.7(7)$
$\mathrm{C}(3)-\mathrm{C}(2) \mathrm{H}(2 \mathrm{~A})$	108.4
$\mathrm{C}(1)-\mathrm{C}(2) \mathrm{H}(2 \mathrm{~A})$	108.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.4
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.4
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.4

$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	120.8(8)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	122.0(8)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	117.2(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	124.3(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	106.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	106.3
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	106.4
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.8(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	119.6(7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	119.5(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	91.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	91.3
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{H}(5)$	91.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$	105.5(7) $=$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)$	113.6(6)
$\mathrm{C}(20)-\mathrm{C}(6)-\mathrm{C}(14)$	106.1(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	113.6(7)
$\mathrm{C}(20)-\mathrm{C}(6)-\mathrm{C}(7)$	110.6(7)
$\mathrm{C}(14)-\mathrm{C}(6)-\mathrm{C}(7)$	$107.3(6)$ -
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(21)$	110.1(7)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	113.4(7)
$\mathrm{C}(21)-\mathrm{C}(7)-\mathrm{C}(6)$	113.2(7)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7) \quad-$	106.5
$\mathrm{C}(21)-\mathrm{C}(7)-\mathrm{H}(7)$	106.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	106.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$11.1(7) 9 / \rho \mid 9 .$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4 - \square
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	$109.4 \quad \sigma$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B}) \mathrm{C}$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.0
C(8)-C(9)-C(10)	108.7(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	110.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	110.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110.0
H(9A)-C(9)-H(9B)	108.3

$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	105.5(6)
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	109.7(6)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	109.5(7)
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(1)$	108.5(6)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	112.9(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	110.4(6)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	120.7(8)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(1)$	124.9(8)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(1)$	114.4(8)
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5 Lixakid
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5 (kar
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(6)$	118.1(7)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	107.8
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	107.8
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.8
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.8
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.1
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	$117.1(8) 9 / \rho$
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(14)$,	$124.4(8)$ -
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$118.5(8)$
$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{C}(17)$	$105.5(8)$
$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{C}(15)$	125.2(9)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	129.4(9)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	106.5(9)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	126.8
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	126.8
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(6)$	112.5(9)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	123.8
$\mathrm{O}(6)-\mathrm{C}(18)-\mathrm{H}(18)$	123.8

$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{O}(6)$	$112.4(9)$
$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{H}(19)$	123.8
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{H}(19)$	123.8
$\mathrm{C}(6)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(6)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{Cl}(3)-\mathrm{C}(22)-\mathrm{Cl}(1)$	$111.3(6)$
$\mathrm{Cl}(3)-\mathrm{C}(22)-\mathrm{Cl}(2)$	$111.3(5)$
$\mathrm{Cl}(1)-\mathrm{C}(22)-\mathrm{Cl}(2)$	$111.0(5)$
$\mathrm{Cl}(3)-\mathrm{C}(22)-\mathrm{H}(22)$	107.7
$\mathrm{Cl}(1)-\mathrm{C}(22)-\mathrm{H}(22)$	107.7
$\mathrm{Cl}(2)-\mathrm{C}(22)-\mathrm{H}(22)$	107.7
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(13)$	$117.0(7)$
$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{H}(4)$	109.5
$\mathrm{C}(18)-\mathrm{O}(6)-\mathrm{C}(19)$	$103.1(8)$

สถาบันวิทยบริการ

จฬาลงกรณ์มหาวิทยาลัย

Table 28 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound COC10.
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C(1)	30(4)	54(5)	50(5)	-1(4)	1(3)	4(3)
C(2)	24(4)	60(5)	74(6)	-4(4)	2(4)	4(4)
C(3)	25(4)	50(5)	87(6)	8(4)	0(4)	4(3)
C(4)	30(4)	53(5)	63(5)	-6(4)	-1(4)	5(3)
C(5)	34(4)	49(5)	55(5)	-2(4)	5(3)	-1(4)
C(6)	17(4)	58(5)	62(5)	-3(4)	3(3)	3(3)
C(7)	27(4)	61(5)	64(5)	11(4)	9(3)	-5(4)
C(8)	30(4)	59(5)	61(5)	12(4)	5(4)	-4(4)
C(9)	32(4)	55(5)	63(5)	-8(4)	3(4)	-3(4)
C(10)	24(4)	61(5)	54(4)	-3(4)	2(3)	2(4)
C(11)	36(4)	67(5)	68(5)	12(5)	4(4)	7(4)
C(12)	49(5)	62(5)	54(5)	4(4)	0 (4)	-8(4)
C(13)	78(7)	103(8)	52(5)	16(6)	0(5)	25(6)
C(14)	30(4)	57(5)	64(5)	3(4)	6(4)	6(4)
C(15)	25(4)	58(5)	$91(7)$	0(5)	-1(4)	2(4)
C(17)	35(5)	76(6)	78(6)	13(5)	4(4)	12(5)
C(18)	37(5)	87(7)	94(8)	18(6)	14(5)	10(5)
C(19)	39(5)	65(6)	93(7)	-1(6)	-2(5)	2(5)
C(20)	37(5)	59(5)	56(5)	4(4)	0(3)	-4(4)
C(21)	37(5)	$74(6)$	98(7)	23(6)	8(5)	11(5)
C(22)	40(5)	$74(6)$	79(6)	$9(5)$	2(4)	1(5)
$\mathrm{O}(1)$	35(3)	84(5)	$74(4)$	6(3)	-4(3)	9(3)
$\mathrm{O}(2)$	51(4)	99(5)	-52(3)	11(3)	1 (3)	-9(4)
$\mathrm{O}(3)$	$22(3)$	$63(4)$	103(5)	-2(3)	5(3)	-4(3)
O(4)	26(3)	60(3)	68(4)	5(3)	-5(2)	5(3)
O(5)	42(4)	70(4)	72(4)	-7(3)	-2(3)	-2(3)
O(6)	47(4)	64(4)	103(5)	-1(4)	0 (4)	9(3)
$\mathrm{Cl}(1)$	55(2)	84(2)	104(2)	12(2)	9(1)	-9(1)
$\mathrm{Cl}(2)$	53(2)	95(2)	109(2)	-5(2)	-10(1)	-11(2)
$\mathrm{Cl}(3)$	72(2)	85(2)	102(2)	16(2)	21(2)	14(2)

Table 29 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound COC10.

	x	y	z	U(eq)
H(2A)	1685	622	-1610	63
H(2B)	2782	649	-1087	63
H(4A)	3483	-1729	-2113	59
H(4B)	3845	-2258	-1569	59
H(5)	1632	-2532	-1425	56
H(7)	-249	-4244	-1482	61
H(8A)	-3180	-3526	-1415	60
H(8B)	-2783	-2640	-1863	60
H(9A)	-789	-2634	-922	60
H(9B)	-2450	- -1783	-1034	60
H(11A)	-1874	-80	-802	85
H(11B)	-1167	818	-1213	85
H(11C)	-356	- 834	-649	85
H(13A)	1443	-2514	98	116
H(13B)	-26	-1861	439	116
H(13C)	1939	-1311	344	116
H(14A)	2068 早	-4626	-2319	60
H(14B)	3487	-3617	-2242	60
H(17)	5114	-6149	-956	76
H(18)	5898	-7942	-1350	87
H(19)	3558	-6062	-2409	79
H(20A)	-690		-2557	76
H(20B) 6	690	-3456	-2777	76
H(20C)	1409	-2382	-2717	76
$\mathrm{H}(21 \mathrm{~A}) 9 \mathrm{~A}$	-2379	-523290	-1935	? 105
$\mathrm{H}(21 \mathrm{~B})$	- -614 - 0	-5168	-2291 -	- 105
$\mathrm{H}(21 \mathrm{C})$	-2313	-4349	-2397	105
H(22)	7185	589	627	77
H(4)	-1915	-423	-1739	77

Table 30 Torsion angles [deg] for compound COC10.

$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	66.1(10)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-173.3(7)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-52.3(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	-152.1(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	30.4(12)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-176.3(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	1.3(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	169.6(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-5.9(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$	-87.1(9)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$	88.4(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)$	28.6(11)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)$	-155.9(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) \quad$ -	151.6(8)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-32.9(10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	38.6(10)
$\mathrm{C}(20)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-79.7(9)
$\mathrm{C}(14)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	165.0(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(21)$	165.0(8)
$\mathrm{C}(20)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(21)$	46.6(10)
$\mathrm{C}(14)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(21)$	-68.6(10)
$\mathrm{C}(21)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ -	175.4(7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-56.6(10)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	66.1(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(4)$	$99.8(9)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(4) \quad \square$	-75.8(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$-142.2(8)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9) \sim$ o	42.2(9) - o
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	-18.7(11)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	165.8(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(4)$	59.0(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	-56.5(8)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	178.5(6)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(4)$	172.8(6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(4)$	-70.6(7)

$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(4)$	50.6(8)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	-70.5(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	46.0(9)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	167.2(7)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	52.5(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	169.1(7)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	-69.7(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(1)$	-29.5(12)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(1)$	-149.9(9)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(1)$	88.3(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	150.8(7)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	30.4(10)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	-91.5(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	67.7(10)
$\mathrm{C}(20)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	-176.9(7)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	-58.6(10)
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(5)$	-25.2(12)
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	152.2(7)
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)$	171.0(9)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)$	$-6.5(13)$
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-8.3(13)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	174.2(8)
$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-2.5(10)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	176.9(9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(6)$	1.8(11)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{O}(6)$	2.4(10)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{O}(6)$	-177.1(8)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(13)$	$0.0(13)$
$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(13) \quad \square$	179.7(8) \square
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(6)-\mathrm{C}(19)$	${ }^{-0.4(10)}$
$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{O}(6)-\mathrm{C}(18)$	$-1.3(10)$

VITA

Miss Mayuree Kanlayavattanakul was born on April 1, 1976 in Chiang Mai, Thailand. She received her Bechelor's degree of Science in Pharmacy ($1^{\text {st }}$ class honor) from the Faculty of Pharmacy, Chiang Mai University in 1998. She was granted a 1998 Royal Golden Jubilee Ph.D. Scholarship from Thailand Research Fund (TRF).

Publications

1. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. 2003. Chemical constituents of Pterocaulon redolens. Heterocycles. 61: 183-187.
2. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., Kawahata, M., Therrien, B., Yamaguchi, K., and Ishikawa, T. 2005. ent-Halimane Diterpenes and a Guaiane Sesquiterpene from Cladogynos orientalis. J. Nat. Prod. 68: 710.

Poster Presentations

1. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. Chemical constituents of Pterocaulon redolens. The $19^{\text {th }}$ Annual Research Meeting in Pharmaceutical Sciences, December, 2002, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok.
2. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., and Ishikawa, T. Chemical constituents of Pterocaulon redolens. $124^{\text {th }}$ the Annual Meeting of the Pharmaceutical Society of Japan (Osaka) 2004.
3. Kanlayavattanakul, M., Ruangrungsi, N., Watanabe, T., Kawahata, M., Therrien, B., Yamaguchi, K., and Ishikawa, T. 2005. Chemical Constituents of Cladogynos orientalis. RGJ-Ph.D. Congress VI, April 28-30, 2005, Pattaya, Chonburi.

สถาบันวิทยบริการ

[^0]: ${ }^{\text {a }}$ Assignment may be interchanged.

 * Two bond coupling
 \# Carbon types were deduced from DEPT135 experiment.

[^1]: \# Carbon types were deduced from DEPT135 experiment.

[^2]: \# Carbon types were deduced from DEPT135 experiment.

[^3]: \# Carbon types were deduced from DEPT135 experiment.

[^4]: \# Carbon types were deduced from DEPT135 experiment.

[^5]: \# Carbon types were deduced from DEPT135 experiment.

