

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2552
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

STRUCTURE OF SOME SEMIHYPERRINGS

OF LINEAR TRANSFORMATIONS

OF LINEAR TRANSFORMATIONS

By

Mr. Witsarut Pho-on
Field of Study
Mathematics
Thesis Advisor
Assistant Professor Sureeporn Chaopraknoi, Ph.D.

Accepted by the Farulty of Science, Chulalongkorn University in Partial Fulfillment of the Begayphients for the Master's Degree

THESIS COMMITTEE
Dean of the Faculty of Science
(Professor Supot Honn6मigbua, Drrer nat.)

(Associate Professor Amorn Wasanawichrt, Ph.D.)

(Assistant Professor Sureeporn Cbaopraknoi, $\mathrm{Ph} \mathrm{D}_{3}$)

(Assistant Professor Sajee Pianskool, Ph.D.)
......Knonat Savettasuanu...... External Examiner
(Assistant Professor Knograt Savettaseranee, Ph.D.)

วิศรุต โพธิ์อ้น : โครงสร้างของกึ่งไฮเพอร์ริงของการแปลงเชิงเส้นบางชนิด (STRUCTURE OF SOME SEMIHYPERRINGS OF LINEAR TRANSFORMATIONS) อ. ที่ปรึกษาวิทยานิพนธ์ หลัก : ผศ. ดร. สุรีย์พร ชาวแพรกน้อย, 50 หน้า

สำหรับกึ่งกรุป S นิยาม S^{0} เป็น S ถ้า S มีศูนย์และ S มีสมาชิกมากกว่าหนึ่งตัว มิช่นนั้น
 ศูนย์ ถ้ามีการดำเนินการไฮเพอร์ + บน S° ที่ทำใน15 เป็นกึ่งไฮเพอร์ริงที่มีศูนย์ โดยที่ เป็นการ
 เดียวกัน

 AC ที่มีคูนย์

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา \qquad .คณิตศาสตร์
 สาขาวิชา \qquad คณิตศาสตร์ \qquad
 ปีการศึกษา \qquad 2552 \qquad
\# \# 5072474023 : MAJOR MATHEMATICS

KEYWORDS : LINEAR TRANSFORMATION SEMIGROUPS/

SEMIHYPERRINGS WITH ZERO

WITSARUT PHO-ON : STRUCTURE OF SOME SEMIHYPERRINGS

OF LINEAR TRANSFORMATIONS, THESIS ADVISOR: ASST. PROF. SUREEPORN CHAOPRAKNOI, 29.50 pp .

For a semigroup S, the somgroup S^{0} is defined to be S if S has a zero and S contains more than one element/f otherwise, let S^{0} be S with a zero 0 adjoined. We say that a semigroup \mathcal{O} admits the structure of a semihyperring with zero if there exists a hyperoperatou $i+\left(\alpha n S^{0}\right.$ such that $\left(S^{0},+, \cdot\right)$ is a semihyperring with zero where - is the operationgis Semigroups admitting the structure of an additively commutative $[A G \mathcal{A} 0$ maning with zero are defined analogously.

Let V be a vector space over a division ring R, W a subspace of $V, L_{R}(V, W)$ the semigroup under the composition of all linear transformations $\alpha: V \rightarrow W$, and $P L_{R}(V, W)$ the partial linear transformation sematgroup from V into W, the semigroup under the composition of all linear transformations from a subspace
 they admit thelstructure of a semihyperring with zero. Otherwise, we characterize whenthefacminthestuecire of an Agg semining/with zero Moreover, necessary conditions for $P L_{R}(V, W)$ to admit the structure of an AC semiring with zero are given.

Department :Mathematics.... Student's Signature: Whitzorut..........on
Field of Study :Mathematics....
Advisor's Signature: Sureeporn Chaopraknoi
Academic Year : \qquad 2009 \qquad

ACKNOWLEDGEMENTS

I am sincerely grateful to Assistant Professor Dr. Sureeporn Chaopraknoi, my thesis advisor, for her consistent encouragement, valuable suggestion, and compassionate guidance. Her helpfulness and careful reading are of value to me in the preparation and completion of this thesis. Also, I would like to thank Professor Dr. Yupaporn Kemprasit for her helpfulness and suggestions. Moreover, I am very thankful to my thesis committee, Associate Professor Dr. Amorn Wasanawichit, Assistant Professor Professor Sajee Pianskool and Assistant Professor Dr. Knograt Savettaseranee for their suggestions on this thesis and to all of my teachers and lecturers who have taught me for my knowledge and skills.

In particular, I would like to thank the Development and Promotion of Science and Technology Talents Project (DPST) for the financial support.

Last but not least, I would like to express my sincere gratitude to my beloved family for all things throughout my study.

$$
\begin{gathered}
\text { ศูนย์วิทยทรัพยากร } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

CONTENTS

ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) v
ACKNOWLEDGEMENTS vi
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 3
2.1 Basic definitions and examples 3
2.2 Basic propositions and notations 6
III SEMIGROUPS ADMITTING THE STRUCTURE OF A SEMIHYPER-
RING WITH ZERO 17
3.1 The semigroups $K_{R}((x, W), k)$ and $K_{R}^{\prime}((V, W), k)$ 17
3.2 The semigroups $C I_{R}((W), W)$ and $C I_{R}^{\prime}((V, W), k)$ 23
3.3 The semigroups $I_{R}((V, W), k)$ and $I_{R}^{\prime}((V, W), k)$ 28
IV SEMIGROUPS ADMITTING THE STRUCTURE OF AN AC SEMIR-
ING WITH ZERO 6. .n 33
4.1 The semiguoups $A M_{R}\left(\frac{R}{2}, W\right)$ and $\left.A E_{R}(V, W)\right\}$. 34
 38 43
REFERENCES 49
VITA 50

CHAPTER I

INTRODUCTION

The multiplicative structure of a ring is given by definition a semigroup with zero. However, ring theory is a classical subject in mathematics and had been widely studied before semigroup theory was considered. Because the multiplicative structure of a ring is a semigroup with zero, it is reasonable to ask which semigroups joining zero are isomorphic to the multiplicative structure of some ring. If they do, they are said to admit a ring structure. In 1970, Peinado R.E. [10] gave a brief survey of semigroups admitting ring structure. Chu D.D. and Shyr H.I. [5] proved a nice result that the multipheative semigroup \mathbb{N} of natural numbers admits a ring structure. For various studies in this area, see [12] and [13].

On the other hand, the hyperstructure theory was first known in 1934 by Marty F. He gave the definition of a hypergroup as generalization of a group. Ten years after that, Krasner hyperrings were introduced as a nice generalization of rings by Kâsner me. By the definitionof Krasner hypergings, their multiplicative structures are also semigroups with zero, Semigroups admitting hyperring structure bave been defineq in the same way. Besides that, semigroups admitting other algebraic structures of a semigroup have been defined and studied. Many researchers from many places have developed this area. The linear transformation semigroup is one type of semigroups that have been developed and studied whether they admit some kinds of algebraic structures. We can see in [1], [2], [3], [4], [9], [11] and [14]. The work on linear transformation semigroups inspired us to investigate some specific linear transformation semigroups. The semigroups
we considered are adopted from Kemprasit Y. and Chaopraknoi S. in [1], [2], [3] and [4]. They studied linear transformation semigroups from a vector space into itself. Here, we generalize to linear transformation semigroups from a vector space into its subspace. We then seperate the generalized linear transformation semigroups into two groups. The first group is linear transformation semigroups containing a zero. We shall detemine whether or when they admit the structure of a semihyperring with zero. The other group is linear transformation semigroups without zero which always admit the structure of a semiring with zero. However, they need not admit the structure of an additively commutative(AC) semiring with zero. Our purpose for semigroups in this group is to characterize whether or when they admit the structure of an additively commutative semiring with zero.

The next chapter will give precise definitions, notations and basic knowledges which will be used throughout this thesis and also give short brief for Chapter III and Chapter IV.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER II

PRELIMINARIES

2.1 Basic definitions and examples

For any set X, let $P(X)$ denote the power set of $X, P^{*}(X)=P(X) \backslash\{\varnothing\}$ and the notation $|X|$ means the cardinality of X.

A hyperoperation on a nonempty set H is a mapping of $H \times H$ into $P^{*}(H)$. A hypergroupoid is a system ($H ; \circ$) consisting of a nonempty set H and a hyperoperation \circ on H. Let (H, \circ) be a hypergroupoid. For nonempty subsets A and B of H, let

$$
A \circ B=\bigcup_{0 \in A}(a \circ b)
$$

$A \circ x=A \circ\{x\}$ and $x \circ A=\{x\} \circ A$ for all $x \in H$. We gall (H, \circ) a commutative hypergroupoid if and only if $x \circ y=y \circ x$ for all $x, y \in H$. An element e of H is called an identity of (H, \circ) if $x \in(x \circ e) \mathbb{Q}(e \circ x)$ for all $x \in H$. An identity e of
 H has at most one scalar identity for all $x, y, z \in H$, that is,

$$
\bigcup_{t \in x \circ y} t \circ z=\bigcup_{t \in y \circ z} x \circ t \text { for all } x, y, z \in H
$$

A hypergroup is a semihypergroup (H, \circ) such that $H \circ x=x \circ H=H$ for all $x \in H$. For x, y in a hypergroup (H, \circ), x is called an inverse of y if there exists an identity e of H such that $e \in(x \circ y) \cap(y \circ x)$. A hypergroup (H, \circ) is called
regular if every element of H has an inverse in H. A regular hypergroup (H, \circ) is said to be reversible if for $x, y, z \in H, x \in y \circ z$ implies $z \in u \circ x$ and $y \in x \circ v$ for some inverse u of y and some inverse v of z.

A canonical hypergroup is a hypergroup (H, \circ) such that
(i) (H, \circ) is commutative,
(ii) (H, \circ) has the scalar identity,
(iii) every element of H has a unique inverse in H and
(iv) (H, \circ) is reversible.

A triple $(A,+, \cdot)$ is called a semihyperring [semiring] if
(i) $(A,+)$ is a semihypergroup [semigroup],
(ii) (A, \cdot) is a semigroup and
(iii) the operation • is distributivecover the hyperoperation [operation] + .

A semihyperring [semiring] $(A,+)$ is said to be additively commutative if $x+y=y+x$ for all $x, y \in A$. Forthis case, we call $(A,+, \cdot)$ an $A C$ semihyperring [AC semiring]. Anelement 0 of a semihyperring [semiring] $(A,+, \cdot)$ is called a zero of $(A,+, \cdot)$ if $x+0=0+x=\{x\}[x]$ and $x \cdot 0=0 \cdot x=0$ for all $x \in A$.

A (Krasner) hyperring is a system $(A,+, \cdot)$ where

(ii) (A, \cdot) is a semigroup with zero 0 where 0 is the scalar identity of $(A,+)$ and (iii) the operation is distributive over the hyperoperation 6.8

We can see by the definitions that every ring is a hyperring and every hyperring and every AC semiring with zero are AC semihyperrings with zero.

For a semigroup (S, \cdot), the semigroup S^{0} is defined to be S if S has a zero and S contains more than one element, otherwise, let S^{0} be the semigroup S with a zero 0 adjoined, that is, $S^{0}=(S \cup\{0\}, \circ)$ where $0 \notin S, 0 \circ x=x \circ 0=0$ for all $x \in S \cup\{0\}$ and $x \circ y=x \cdot y$ for all $x, y \in S$. Note that if $|S|=1$, then
S^{0} is a semigroup of two elements and $S^{0} \cong\left(\mathbb{Z}_{2}, \cdot\right)$. Also, if G is a group, then $G^{0}=(G \cup\{0\}, \circ)$ is defined as above.

Example 2.1.1. ([6] and [11]) Let G be a group. Define a hyperoperation + on G^{0} by

Then $\left(G^{0},+, \cdot\right)$ is a hyperring where - is the operation on G^{0}. Note that the zero of the hyperring $\left(G^{0},+, \cdot\right)$ is 0 and the inverse of $x \in G$ in $\left(G^{0},+\right)$ is x itself. Also, $\left(G^{0},+, \cdot\right)$ is not a ring if $|G| \geqslant 1.2$

Example 2.1.2. ([6]) Let A be a set with $|A|>2$ such that 0 is an element of A. Define a hyperoperation fand an operation . on A by

Then $(A,+, \cdot)$ is an AC semihyperring with zero 0 but it is neither a hyperring nor s凶ึกูกดุษกรณมหาวิทยาลัย

From Example 2.1.1 and Example 2.1.2, we see that hyperrings generalize rings and semihyperrings with zero generalize both semirings with zero and hyperrings.

A semigroup S is said to admit a ring [hyperring] structure if $\left(S^{0},+, \cdot\right)$ is a ring [hyperring] for some operation [hyperoperation] + on S^{0} where • is the operation on S^{0}. Semigroups admitting the structure of an AC semihyperring [AC semiring] with zero are defined analogously. Observe that if S is a trivial semigroup, then
$S^{0} \cong\left(\mathbb{Z}_{2}, \cdot\right)$ where • is the multiplication on \mathbb{Z}_{2}, so S admits a ring structure. Also, every semigroup without zero admits the structure of a semiring with zero as shown.

Example 2.1.3. Let S be a semigroup without zero. Define an operation + on S^{0} by

Then $\left(S^{0},+\right)$ is obviously a semigroup having 0 as its identity. Since $x y \neq 0$ for all $x, y \in S$, we deduce that the multiplication - of S^{0} distributes over the operation + . Hence $\left(S^{0},+\right.$,) is a semiring with zero, but it is not additively commutative if $|S|>1$

2.2 Basic propositions and notations

For a vector space V over a division ring R, let

$$
\begin{aligned}
& L_{R}(V)=\{\alpha: V \rightarrow V \mid \alpha \text { is a linear transformation }\}, \\
& G_{R}(V)=\left\{\alpha \in L_{R}(V) \mid \alpha \text { is an isomorphism }\right\} .
\end{aligned}
$$

Then $L_{R}(V)$ isja semigroup under the composition of all linear transformations and $G_{R}(V)$ is the unit groupof $L_{R}(V)$. Moreover,,$D_{R}(V)$ admitsal ring structure under the usual addition of linear transformation. The image of v under $\alpha \in$ $L_{R}(V)$ is written by $v \alpha$. For $\alpha \in L_{R}(V)$, let Ker α, Dom α and $\operatorname{Im} \alpha$ denote the kernel, the domain and the image of α, respectively. If α is a function or linear transformation, the notation $-\alpha$ denotes the inverse under the usual addition and α^{-1} denotes the inverse under a composition if they exist. For $A \subseteq V$, let $\langle A\rangle$ stand for the subspace of V spanned by A. The following three propositions are
simple facts of vector spaces and linear transformations which will be used. The proofs are routine and elementary and they will be omitted.

Proposition 2.2.1. Let B be a basis of V. If u and w are distinct elements of B, then $\{u+w\} \cup(B \backslash\{w\})$ is also a basis of V.

Proposition 2.2.2. Let B be a basis of,$A \subseteq B$ and $\varphi: B \backslash A \rightarrow V$ a one-toone map such that $(B \backslash A) \varphi$ is a linearly independent subset of V. If $\alpha \in L_{R}(V)$ is defined by

$$
0 \quad \text { if } v \in A \text {, }
$$

v仑 if $v \in B, A$,
then $\operatorname{Ker} \alpha=\langle A\rangle$ and $\operatorname{Im} \alpha=\langle B<A\rangle \varphi$.

Proposition 2.2.3. Let B be basis of V and $A \subseteq B$. Then
(i) $\{v+\langle A\rangle \mid v \in B \backslash A\}$ is a basis of the quotient space $V /\langle A\rangle$ and
(ii) $\operatorname{dim}_{R}(V /\langle A\rangle)=|B \backslash A|$.

In this thesis let V be a vector space over a division
and $L_{R}(V, W)$ the semigroup undercthe composition of all linearctiansformations $\alpha: V \rightarrow W$. We can see that $L_{R}(V, W) \subseteq L_{R}(V)$. Moreover, $L_{R}(V, W)$ admits a ring structure under the usual addition of linear transformations. For $\alpha \in$ $L_{R}(V, W)$, the notation $\alpha_{\left.\right|_{W}}$ is a linear transformation in $L_{R}(W)$ such that for every $w \in W, \alpha_{\left.\right|_{W}}$ maps w into $w \alpha$. Moreover, we have

Proposition 2.2.4. If $\alpha, \beta \in L_{R}(V, W)$, then $\alpha_{\left.\right|_{W}} \beta_{\left.\right|_{W}}=(\alpha \beta)_{\left.\right|_{W}}$

Since our works relate to cardinal numbers, some facts and notations about cardinal numbers will be used. Let k be a cardinal number. We denote k^{\prime} be the successor of k. If k is a finite cardinal number, then $k^{\prime}=k+1$. For a set X, if $T \subseteq X$, we then have $|X|=|T|+|X \backslash T|$.

Proposition 2.2.5. ([7] page 145) For any cardinal numbers κ and λ such that at least one of them is an infinite cardinal number, $\kappa+\lambda=\max \{\kappa, \lambda\}$.

Proposition 2.2.6. Assume that $\operatorname{dim}_{R} V$ is infinite and $\operatorname{dim}_{R} V>\operatorname{dim}_{R} W$. Then $\operatorname{dim}_{R}(V / W)=\operatorname{dim}_{R}$

Proof. Let B be a basis of W and B^{\prime} a basis of V extended from B. By Proposition 2.2.3,

$$
\left|B^{\prime} \backslash B\right|=\operatorname{dim}_{R}\left(\left\langle B^{\prime}\right\rangle / /\langle B\rangle\right)=\operatorname{dim}_{R}(V / W) .
$$

Since $\operatorname{dim}_{R} V$ is infinite and dim $V=\left|B^{\prime}\right|=|B|+\left|B^{\prime} \backslash B\right|$, at least one of $|B|$ and $\left|B^{\prime} \backslash B\right|$ is an infinite cardinal number. By Proposition 2.2.5, $\operatorname{dim}_{R} V=$ $\max \left\{|B|,\left|B^{\prime} \backslash B\right|\right\}$. Since $\operatorname{dim}_{R} V>\operatorname{dim}_{R} W$, we have $\operatorname{dim}_{R}(V / W)=\operatorname{dim}_{R} V$. Since every lineartansformation cancbe defined on its basis, for convenience,

$$
\begin{gathered}
\text { we may write } \alpha \in L_{R}(V) \text { by using a blanket notation as follows } \\
\qquad \alpha=\left(\begin{array}{llll}
B_{1} & u & w & v \\
0 & w & u & v
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup\{u, w\}\right)}
\end{gathered}
$$

means that α is a linear transformation on a vector space V having B as a basis,
$B_{1} \subseteq B, u$ and w are distinct elements of $B \backslash B_{1}$ and

$$
v \alpha= \begin{cases}0 & \text { if } v \in B_{1}, \\ w & \text { if } v=u, \\ u & \text { if } v=w, \\ v & \text { if } v \in B\rangle\left(B_{1} \cup\{u, w\}\right),\end{cases}
$$

if $B_{1}=\varnothing$, then

For any cardinal number k with $k \leq \operatorname{dim}_{R} V$, let

$$
\begin{aligned}
& \left.K_{R}((V, W), k)=\left\{\alpha \in L_{R}(V, W)\right\} \operatorname{dim}_{R} \operatorname{Ker} \alpha \geq k\right\}, \\
& \left.C I_{R}((V, W), k)=\left\{\alpha \in L_{R}(V)\right] \operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \geq k\right\}, \\
& \left.I_{R}((V, W), k)=\left\{\alpha \in L_{R}(V, W)\right] \operatorname{dim}_{R} \operatorname{Im} \alpha \leq k\right\} \text { where } k \leq \operatorname{dim}_{R} W .
\end{aligned}
$$

Then the zero map on V or we may write V_{0} belongs to all of the above three subsets of $L_{R}(V, W)$. Since for $\alpha, \beta \in L_{R}(V, W)$, $\operatorname{Ker} \alpha \beta \supseteq \operatorname{Ker} \alpha$ and $\operatorname{Im} \alpha \beta \subseteq$ $\operatorname{Im} \beta$, we conclude that all of $K_{R}((V, W), k), C I_{R}((V, W), k)$ and $I_{R}((V, W), k)$ are subsemigoups bf $L_{R}(V, W):$ Moreover, their zero lement is the zero map. If $V=W$, then we denote $K_{R}((V, W), k), C I_{R}((V, W), k)$ and $I_{R}((V, W), k)$ by
 then for $\alpha \in L_{R}(V)$,

$$
\operatorname{dim}_{R} \operatorname{Ker} \alpha=\operatorname{dim}_{R}(V / \operatorname{Im} \alpha)=\operatorname{dim}_{R} V-\operatorname{dim}_{R} \operatorname{Im} \alpha
$$

Since $L_{R}(V, W) \subseteq L_{R}(V)$, we have

Proposition 2.2.7. If $\operatorname{dim}_{R} V$ is finite and k is a cardinal number such that $k \leq \operatorname{dim}_{R} V$, then the following statements hold.
(i) $K_{R}((V, W), k)=C I_{R}((V, W), k)$.
(ii) $K_{R}((V, W), k)=C I_{R}((V, W), k)=I_{R}\left((V, W), \operatorname{dim}_{R} V-k\right)$ if $\operatorname{dim}_{R} V-k \leq$ $\operatorname{dim}_{R} W$.

However, these are not generally true if $\operatorname{dim}_{R} W$ is infinite. The following proposition also shows that the semigroups $K_{R}((V, W), k), C I_{R}((V, W), k)$ and $I_{R}((V, W), k)$ should be considered independently if $\operatorname{dim}_{R} W$ is infinite.

Proposition 2.2.8. If dim_{R} W is infinite and k is a cardinal number with $k \leq$ $\operatorname{dim}_{R} V$, then the following statements hold.
(i) $C I_{R}((V, W), l) \neq K_{R}\left((V, W)\right.$, h) for every cardinal number l with $\operatorname{dim}_{R}(V / W)$ $<l \leq \operatorname{dim}_{R} V$.
(ii) $I_{R}((V, W), l) \neq K_{R}((V, W)$, , $)$ and $\left.I_{R}(V, W), l\right) \neq C I_{R}((V, W), k)$ for every cardinal number l with $l \approx \operatorname{dim}_{R} W$.

Proof. Let B be a basis of W and B^{\prime} a basis of K extended from B. Since $\operatorname{dim}_{R} W$ is infinite, $\overline{\mathrm{we}}$ can let B_{1} and B_{2} be disjoint subsets of B such that $\left|B_{1}\right|=\left|B_{2}\right|=|B|$ and $B_{1} \cup B_{2}=B$. Then there exists a bijection $\varphi: B_{1} \rightarrow B$.

Then by Proposition 2.2.2, Ker $\alpha=\left\langle B^{\prime} \backslash B_{1}\right\rangle \supseteq\left\langle B_{2}\right\rangle$. First, we will show that $\left|B^{\prime} \backslash B_{1}\right|=\operatorname{dim}_{R} V$.

Case 1: $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$. Then $\operatorname{dim}_{R} W=\left|B_{2}\right| \leq\left|B^{\prime} \backslash B_{1}\right| \leq \operatorname{dim}_{R} V=$ $\operatorname{dim}_{R} W$.

Case 2: $\operatorname{dim}_{R} V>\operatorname{dim}_{R} W$. Since $\left|B^{\prime}\right|=\left|B^{\prime} \backslash B_{1}\right|+\left|B_{1}\right|$ and $\left|B_{1}\right|$ is infinite, by Proposition 2.2.5, $\left|B^{\prime}\right|=\max \left\{\left|B^{\prime} \backslash B_{1}\right|,\left|B_{1}\right|\right\}$. By assumption, $\left|B_{1}\right|=\operatorname{dim}_{R} W<$ $\operatorname{dim}_{R} V=\left|B^{\prime}\right|$, this implies that $\left|B^{\prime} \backslash B_{1}\right|=\left|B^{\prime}\right|=\operatorname{dim}_{R} V$.

Since $\operatorname{dim}_{R} \operatorname{Ker} \alpha=\left|B^{\prime} \backslash B_{1}\right|=\operatorname{dim}_{R} V, \alpha \in K_{R}((V, W), k)$. We also have $\operatorname{dim}_{R}(V / \operatorname{Im} \alpha)=\operatorname{dim}_{R}(V / W)$. This means $\alpha \notin C I_{R}((V, W), l)$ for every cardinal number l with $\operatorname{dim}_{R}(V / W)<l \leq \operatorname{dim}_{R} V /$ so (i) is proved.

By Proposition 2.2.2 and Proposition 2.2.3, $\operatorname{dim}_{R}(V / \operatorname{Im} \beta)=\left|B^{\prime} \backslash B_{1}\right|=$ $\operatorname{dim}_{R} V$, so $\beta \in C I_{R}((V, W), k)$. It is obvious from the definitions that $\operatorname{dim}_{R} \operatorname{Im} \alpha$ $=\operatorname{dim}_{R} W=\operatorname{dim}_{R} \operatorname{Im} \beta$. We therefore have $\alpha \in K_{R}((V, W), k) \backslash I_{R}((V, W), l)$ and $\left.\beta \in C I_{R}((V, W), k) \quad I_{R}(V, W), t\right)$ for every cardinal number $l<\operatorname{dim}_{R} W$. Hence (ii) is proved

For a cardinal number $k<\operatorname{din}_{R} V$, we define $K_{R}^{\prime}((V, W), k), C I_{R}^{\prime}((V, W), k)$ and $I_{R}^{\prime}((V, W), k)$ which are subsets of $K_{R}((V, W), k), C I_{R}((V, W), k)$ and $I_{R}((V, W), k)$ respectively, as folloy

$$
\begin{aligned}
K_{R}^{\prime}((V, W), k) & \left.-\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha>k\right\}, \\
C I_{R}^{\prime}((V, W), k) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \geqslant k\right\}, \\
I_{R}^{\prime}\left((V, W)_{3} k\right) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{dm} \theta<k\right\} \text { where } 0<k \leq \operatorname{dim}_{R} W .
\end{aligned}
$$

It is easy to prove that they are réspectively subsemigroups of $K_{R}((V, W), k)$, $C I_{R}((V, W), k)$ and $I_{R}((V, W), k)$ atl of them containthezero map which is the zero element. Observe that if $k<\operatorname{dim}_{R} V$, then $K_{R}^{\prime}((V, W), k)=K_{R}\left((V, W), k^{\prime}\right)$ and $C I_{R}^{\prime}((V, W), k)=C I_{R}\left((V, W), k^{\prime}\right)$ where k^{\prime} is the successor of k. Also, if $0<k \leq \operatorname{dim}_{R} W, k$ is a finite cardinal number and \tilde{k} is the predecessor of k, then $I_{R}^{\prime}((V, W), k)=I_{R}((V, W), \tilde{k})$. Similar to the previous semigroups, we let $K_{R}^{\prime}(V, k), C I_{R}^{\prime}(V, k)$ and $I_{R}^{\prime}(V, k)$ denote $K_{R}^{\prime}((V, W), k), C I_{R}^{\prime}((V, W), k)$ and $I_{R}^{\prime}((V, W), k)$ when $V=W$.

For $\alpha \in L_{R}(V)$, let $F(\alpha)=\{v \in V \mid v \alpha=v\}$. It is easy to see that $F(\alpha)$ is a subspace of V. If $\alpha \in L_{R}(V, W)$, then $F(\alpha) \subseteq W$ and $F(\alpha)$ is also a subspace of W. Define

$$
\begin{aligned}
A M_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha_{\mid W}<\infty\right\} \\
A E_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}\left(W /\left(\operatorname{Im} \alpha_{\mid W}\right)\right)<\infty\right\}, \\
A I_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \operatorname{dim}_{R}(W / F(\alpha))<\infty\right\} .
\end{aligned}
$$

If $V=W$, we let $A M_{R}(V)=A M_{R}(V, W), A E_{R}(V)=A E_{R}(V, W)$ and $A I_{R}(V)=$ $A I_{R}(V, W)$.

To show that $A M_{R}(V, W)$ and $A E_{R}(V, W)$ are subsemigroups of $L_{R}(V, W)$, the following facts given in [14] will be used. For all $\alpha, \beta \in L_{R}(W)$,

$$
\begin{gathered}
\operatorname{dim}_{R} \operatorname{Ker} \alpha \beta \leq \operatorname{dim}_{R} \operatorname{Ker} \alpha+\operatorname{dim}_{R} \operatorname{Ker} \beta, \\
\operatorname{dim}_{R}(W / \operatorname{Im} \alpha \beta) \leq \operatorname{dim}_{R}(W / \operatorname{Im} \alpha)+\operatorname{dim}_{R}(W / \operatorname{Im} \beta) .
\end{gathered}
$$

By Proposition 2.2.4, for all $\alpha, \beta \in L_{R}(V, W), \alpha_{\left.\right|_{W}} \beta_{\mid,} \neq(\alpha \beta)_{\left.\right|_{W}}$ and $\alpha_{\left.\right|_{W}}, \beta_{\left.\right|_{W}} \in$ $L_{R}(W)$, so we obtain that
$\operatorname{dim}_{R} \operatorname{Ker}(\alpha \beta)_{\mid W} \leq \operatorname{dim}_{R} \operatorname{Ker}^{\prime} \alpha_{\mid}+\operatorname{dim}_{R} \operatorname{Ker} \beta_{\mid W}$,
$\operatorname{dim}_{R}\left(W / \operatorname{Im}\left(\alpha_{\alpha}\right)_{\mid W}\right) \leq \operatorname{dim}_{R}\left(W / \operatorname{Im} \alpha_{\mid W}\right)+\operatorname{dim}_{R}\left(W / \operatorname{Im} \beta_{\mid W}\right)$.
Henceわoth $A M_{R}$ 大, W) and $A E_{B}(V, W)$ are sybsemigroupsof $E_{B}(V, W)$.
Next, we will show that $A I_{R}(V, W)$ is also a subsemigroup of $L_{R}(V, W)$. Let $\alpha, \beta \in A I_{R}(V, W)$. Then $\operatorname{dim}_{R}(W / F(\alpha))$ and $\operatorname{dim}_{R}(W / F(\beta))$ are finite. Since $F(\alpha) \cap F(\beta) \subseteq F(\alpha \beta)$, it suffices to show that $\operatorname{dim}_{R}(W /(F(\alpha) \cap F(\beta)))$ is finite. Let B_{1} be a basis of $F(\alpha) \cap F(\beta)$ and let $B_{2} \subseteq F(\alpha) \backslash B_{1}$ and $B_{3} \subseteq F(\beta) \backslash B_{1}$ be such that $B_{1} \cup B_{2}$ and $B_{1} \cup B_{3}$ are bases of $F(\alpha)$ and $F(\beta)$, respectively. To show that $B_{1} \cup B_{2} \cup B_{3}$ is linearly independent over R, let $u_{1}, u_{2}, \ldots, u_{k} \in B_{1} \cup B_{2}$
and $v_{1}, v_{2}, \ldots, v_{l} \in B_{3}$ be distinct such that

$$
\sum_{i=1}^{k} a_{i} u_{i}+\sum_{i=1}^{l} b_{i} v_{i}=0
$$

for some $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{l} \in R$. Then $\sum_{i=1}^{k} a_{i} u_{i}=-\sum_{i=1}^{l} b_{i} v_{i} \in F(\alpha) \cap$ $F(\beta)=\left\langle B_{1}\right\rangle$. Since $B_{1} \cup B_{3}$ is linearly independent $b_{i}=0$ for all $i=1,2, \ldots, l$, $\sum_{i=1}^{k} a_{i} u_{i}=0$. This implies that $a_{i}=0$ for all $i=1,2, \ldots, k$. Hence $B_{1} \cup B_{2} \cup B_{3}$ is linearly independent over R. Let $B_{4} \subseteq W \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right)$ be such that $B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ is a basis of W. It is easy to see that $\{v+F(\alpha) \mid v \in$ $\left.B_{3} \cup B_{4}\right\}$ and $\left\{v+F(\beta) \mid v \in B_{2} \cup B_{4}\right\}$ are bases of $W / F(\alpha)$ and $W / F(\beta)$, respectively. Since $\operatorname{dim}_{R}(W / F(\alpha))$ and $\operatorname{dim}_{R}(W / F(\beta))$ are finite, so do $\left|B_{3} \cup B_{4}\right|$ and $\left|B_{2} \cup B_{4}\right|$. Therefore $\left|B_{2} \cup B_{3} \cup B_{4}\right|$ is finite. Also, we can show that $\left\{v+(F(\alpha) \cap F(\beta)) \mid v \in B_{2} \cup B_{3} \in B_{4}\right\}$ is a basis of $W /(F(\alpha) \cap F(\beta))$ which implies that $\operatorname{dim}_{R}(W /(F(\alpha) \Omega(\beta)))$ is finite.

Note that, if $\operatorname{dim}_{R} W$ is finite, then $A M_{R}(V, W)=A E_{R}(V, W)=A I_{R}(V, W)=$ $L_{R}(V, W)$ which has the zero element. It follows that $A M_{R}(V, W), A E_{R}(V, W)$ and $A I_{R}(V, W)$ admit a ring structure when $\operatorname{dim}_{R} W$ is finite.

Proposition 2.2.9. $A^{6} \hat{M}_{R}\left(V_{0}, W\right), A E_{R}(F, W)$ and $A A_{R}\left(\frac{K}{\partial} W\right)$ have no zero element if and only if $\operatorname{dim}_{R} W$ is infinite.
Proof. It remainsto show the converse, Let $S(V, W)$ be one of the semigroups $A M_{R}(V, W), A E_{R}(V, W)$ and $A I_{R}(V, W)$. Assume that $\operatorname{dim}_{R} W$ is infinite, B is a basis of W and B^{\prime} is a basis of V extended from B. For each $u \in B$, we define $\alpha_{u} \in L_{R}(V, W)$ by

$$
\alpha_{u}=\left(\begin{array}{cc}
\left(B^{\prime} \backslash B\right) \cup\{u\} & v \\
0 & v
\end{array}\right)_{v \in B \backslash\{u\}} .
$$

Then $\alpha_{u} \in S(V, W)$ for every $u \in B$. If $\gamma \in L_{R}(V, W)$ is such that $\beta \gamma=\gamma$ for every $\beta \in S(V, W)$, then for every $u \in B, u \gamma=u\left(\alpha_{u} \gamma\right)=0$, so $\gamma_{\mid W}=0$. Thus $\gamma \notin S(V, W)$. This implies that $S(V, W)$ has no zero if and only if $\operatorname{dim}_{R} W$ is infinite.

Moreover, when $\operatorname{dim}_{R} W$ is infinite we have that $A M_{R}(V, W), A E_{R}(V, W)$ and $A I_{R}(V, W)$ are distinct semigroups.

Proposition 2.2.10. If $\operatorname{dim}_{R} H$ is infinite, then $A M_{R}(V, W) \neq A E_{R}(V, W)$, $A M_{R}(V, W) \neq A I_{R}(V, W)$ and $A E_{R}(V, W) \neq A I_{R}(V, W)$.

Proof. Let B be a basis of W and B^{\prime} a basis of V extended from B. Since $\operatorname{dim}_{R} W$ is infinite, we can let B_{1} and B_{2} be disjoint subsets of B such that $\left|B_{1}\right|=\left|B_{2}\right|=|B|$ and $B_{1} \cup B_{2}=B$. Then there exists a bijection $\varphi: B_{1} \rightarrow B$. Define $\alpha, \beta \in L_{R}(V, W)$

$$
\alpha=\left(\begin{array}{ccc}
B^{\prime}>B_{1} & v \\
0 & v \varphi
\end{array}\right)_{v \in B_{1}} \text { and } \beta=\left(\begin{array}{cc}
B^{\prime}, ~ B & v \\
a & v \varphi^{-1}
\end{array}\right)_{v \in B} .
$$

By Proposition 2.2.2 and Proposition 2.2.3, $\operatorname{dim}_{R}\left(W / \operatorname{Im} \alpha_{\mid W}\right)=\operatorname{dim}_{R}(W /\langle B\rangle)=$ 0 , so $\alpha \in A \hat{E}_{R}(W W)$. By/such propositions Ker $\alpha_{W} \mathcal{F}=\left\langle B_{2}\right\rangle$. Hence $\alpha \in$ $A E_{R}(V, W) \backslash A M_{R}(V, W)$. Then we will show that $\alpha \notin A I_{R}(V, W)$. For each $v \in B_{2}, v \notin F(\alpha)$ thisimplies that $E(\alpha) \notin\left\{u+F(\alpha) \mid\left[v \in B_{2}\right\} \subseteq W / F(\alpha)\right.$. Since B_{2} is linearly independent, so does $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ and we also have $\left|B_{2}\right|=$ $\left|\left\{v+F(\alpha) \mid v \in B_{2}\right\}\right| \leq \operatorname{dim}_{R}(W / F(\alpha))$. Thus $\alpha \in A E_{R}(V, W) \backslash A I_{R}(V, W)$.

Next, we can see that $\operatorname{Ker} \beta_{\mid W}=\{0\}$, so $\beta \in A M_{R}(V, W)$. By Proposition 2.2.2, $\operatorname{Im} \beta_{\mid W}=\left\langle B_{1}\right\rangle$. We can conclude that for each $v \in B_{2}, v \notin F(\beta)$. By the previous proof, we can show that $\beta \notin A I_{R}(V, W)$. Therefore $\beta \in A M_{R}(V, W) \backslash$ $A I_{R}(V, W)$.

Then the proof is complete.

By a partial linear transformation of V into W, we mean a linear transformation from a subspace of V into W. Let $P L_{R}(V, W)$ be the set of all partial transformations of V into W, that is

$$
P L_{R}(V, W)=\{\alpha: U \rightarrow W \mid U \text { is a subspace of } V \text { and }
$$

Then $P L_{R}(V, W)$ is a semigroup under the composition of linear transformations, since for $\alpha, \beta \in P L_{R}(V, W)$,

Dom $\alpha \beta=\{v \in \operatorname{Dom} \alpha \mid v a \in \operatorname{Dom} \beta\}$,
$v(\alpha \beta)=(v \alpha) \beta$ for all $v \in \operatorname{Dom} \alpha \beta$.
In addition, the notation $P L_{R}(V)$ means $P L_{R}(V, W)$ if $V=W$.
In this thesis, elements of $P L_{R}(V, W)$ are usually written from linearly independent vectors. Then we denote, for linearly independent vectors $v_{1}, v_{2}, \ldots, v_{n}$ in V and vectors $w_{1}, w_{2}, \ldots, w_{n}$ in W, the notation

meansthe finear fransformation α_{0} from the subspace $\left.\& v_{1}, v_{2}, \mathcal{O} \cdot v_{n}\right\rangle$ into W and $v_{i} \alpha=w_{i}$ for all $i \in\{1,2, \ldots, n\}$. If U is a subspace of V, let 1_{U} and U_{0} denote the identity map on U and the zero map which its domain is U, respectively. Observe that

$$
\{0\}_{0} \alpha=\{0\}_{0} \text { and } V_{0} \alpha=V_{0} \text { for all } \alpha \in P L_{R}(V, W)
$$

It follows that if $\operatorname{dim}_{R} V>0$, then $P L_{R}(V, W)$ does not have a zero.

We obviously see that if $V=W, L_{R}(V, W)=L_{R}(V)$ or we can say that $L_{R}(V, W)$ is defined from $L_{R}(V)$ in order to generalize $L_{R}(V)$. Similarly, all the semigroups that we have previously mentioned are defined from semigroups studied in [4], [1], [3] and [2]. Moreover, we can generalize their results.

In Chapter III, we deal with linear transformtion semigroups with zero. The purpose is to characterize when the semigroups $K_{R}(V, W), C I_{R}(V, W)$ and $I_{R}(V, W)$ admit the structure of a semihyperring with zero. Moreover, the semigroups $K_{R}^{\prime}(V, W), C I_{R}^{\prime}(V, W)$ and $I_{R}^{\prime}(V, W)$ are also studied in the same matter.

In Chapter IV, we intend to deal with semigroups without zero. We provide the sufficient and necessary conditions for $A M_{R}(V, W), A E_{R}(V, W)$ and $A I_{R}(V, W)$ to admit the structure of an AC , semiring with zero. In addition, necessary conditions for $P L_{R}(V, W)$ to admit such the structure are provided.

We can also see from Chapter HL and Chapter IV that main results shown by Kemprasit Y. and Chaopraknoi S. in [4], [1], [3] and [2] become our corollaries.

CHAPTER III

SEMIGROUPS ADMITTING THE STRUCTURE OF A SEMIHYPERRING WITH ZERO

First, we recall that V is a vector space over a division ring R, W is a subspace of $V, L_{R}(V, W)$ is the semigroup of all linear transformations from V into W under a composition and k is a cardinal number such that $k \leq \operatorname{dim}_{R} V$. In this chapter, we deal with some linear transformation semigroups given in Chapter II as follow:

$$
\begin{aligned}
& K_{R}((V, W), k)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha \geq k\right\}, \\
& K_{R}^{\prime}((V, W), k)=\left\{\alpha \in L_{R}(\mathcal{T}, \mid \operatorname{dim} R \operatorname{Rer} \alpha>k\} \text { where } k<\operatorname{dim}_{R} V,\right. \\
& C I_{R}((V, W), k)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \geq k\right\}, \\
& C I_{R}^{\prime}((V, W), k)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \geq k\right\} \text { where } k<\operatorname{dim}_{R} V, \\
& I_{R}((V, W), k)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Im} \alpha \leq k\right\} \text { where } k \leq \operatorname{dim}_{R} W, \\
& I_{R}^{\prime}((V, W), k)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Im} \alpha<k\right\} \text { where } 0<k \leq \operatorname{dim}_{R} W .
\end{aligned}
$$

These semigroups contain the zero map. Moreover, the zero map is also the zero eement of each semigroup. $19199 ?$ ล9 $9 ?$?

3.1 The semigroups $K_{R}((V, W), k)$ and $K_{R}^{\prime}((V, W), k)$

We shall provide some necessary conditions for $K_{R}((V, W), k)$ to admit the structure of a semihyperring with zero. Since $K_{R}\left((V, W), k^{\prime}\right)=K_{R}^{\prime}((V, W), k)$ if k^{\prime} is the successor of k, we also obtain some necessary conditions for $K_{R}^{\prime}((V, W), k)$ to admit such a structure.

Theorem 3.1.1. Let k be a cardinal number with $k \leq \operatorname{dim}_{R} V$. If $K_{R}((V, W), k)$ admits the structure of a semihyperring with zero, then one of the following statements holds.
(i) $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite.
(ii) $\operatorname{dim}_{R}(V / W) \geq k$.

Proof. Assume that $\left(K_{R}^{0}((V, W), k), \oplus, \cdot\right)$ is a semihyperring with zero. We will prove by contradiction. Then suppose that (i) and (ii) are false, so we have $\left(\operatorname{dim}_{R} V>k\right.$ or $\operatorname{dim}_{R} V$ is infinite) and $\left(\operatorname{dim}_{R}(V / W)<k\right)$. These equivalent to $\left(\operatorname{dim}_{R} V>k\right.$ and $\left.\operatorname{dim}_{R}(V / W)<k\right)$ or $\left(\operatorname{dim}_{R} V\right.$ is infinite and $\left.\operatorname{dim}_{R}(V / W)<k\right)$. Then either $\left(\operatorname{dim}_{R}(V / W)<k<\operatorname{dim}_{R} V\right.$ where $\operatorname{dim}_{R} V$ is finite) or $\left(\operatorname{dim}_{R}(V / W)<\right.$ k where $\operatorname{dim}_{R} V$ is infinite).

Case 1: $\operatorname{dim}_{R}(V / W)<k<\operatorname{dim}_{R} V$ where $\operatorname{dim}_{R} V$ is finite. Since $\operatorname{dim}_{R} V$ is finite, $0 \leq \operatorname{dim}_{R} V-\operatorname{dim}_{R} W \Rightarrow \operatorname{dim}_{R}(V / W) \leq k$ which implies that $\operatorname{dim}_{R} W>$ $\operatorname{dim}_{R} V-k>0$. Then we can conclude that $k>0$ and $\operatorname{dim}_{R} W>0$. Let B be a basis of W and B^{c} a basis of V extended from $B=$ Since $\operatorname{dim}_{R} V$ is finite and $B \subseteq B^{\prime}$,

We denote $k-\left(\operatorname{dim}_{B} V-\operatorname{dim}_{R} W\right)$ by n. Hence $n \in \mathbb{N}$ and $\operatorname{dim}_{R} W-n=$ $\operatorname{dim}_{R} V-k>0$, that is $1 B \psi=\operatorname{dim}_{R} W \rightarrow n$. Therefore we canf choose distinct elements $w_{1}, w_{2}, \ldots, w_{n}$ from B such that $B \backslash\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \neq \varnothing$. Let $B_{1}=$ $\left(B^{\prime} \backslash B\right) \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Then

$$
\left|B_{1}\right|=\left|B^{\prime} \backslash B\right|+\left|\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right|=k-n+n=k,
$$

since $\operatorname{dim}_{R} V$ is finite and $\left(B^{\prime} \backslash B\right) \cap\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}=\varnothing$. Define

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v
\end{array}\right)_{v \in B^{\prime} \backslash B_{1}} \quad \text { and } \beta=\left(\begin{array}{cc}
w_{1} & B^{\prime} \backslash\left\{w_{1}\right\} \\
w_{1} & 0
\end{array}\right) .
$$

We can see that $\operatorname{dim}_{R} \operatorname{Ker} \alpha=\operatorname{dim}_{R}\left\langle B_{1}\right\rangle=k$ and $\operatorname{Im} \alpha=\left\langle B^{\prime} \backslash B_{1}\right\rangle \subseteq\langle B\rangle=W$, so $\alpha \in K_{R}((V, W), k)$. Since $\operatorname{dim}_{R} \operatorname{Ker} \beta=\operatorname{dim}_{R}\left\langle B^{\prime} \backslash\left\{w_{1}\right\}\right\rangle=\operatorname{dim}_{R} V-1 \geq k$ and $\operatorname{Im} \beta=\left\langle w_{1}\right\rangle \subseteq W$, we have $\beta \in K_{R}((V, W), k)$. By definitions of α and β,

$$
\alpha^{2}=\alpha, \beta^{2}=\beta, \alpha \beta=0 \text { and } \beta \alpha=0,
$$

which imply that $\alpha(\alpha \oplus \beta)=\{\alpha\}$ and $\beta(\alpha \oplus \beta)=\{\beta\}$. Next, let $\gamma \in \alpha \oplus \beta \subseteq$ $K_{R}((V, W), k)$. Then $\alpha \gamma=\alpha$ and $\beta \vec{x}=\beta$. It is obvious that

$$
\operatorname{Im} \alpha=\operatorname{Im} \alpha \gamma \subseteq \operatorname{Im} \gamma \text { and } \operatorname{Im} \beta=\operatorname{Im} \beta \gamma \subseteq \operatorname{Im} \gamma
$$

Consequently, $B^{\prime} \backslash\left(B_{1} \backslash\left\{w_{1}\right\}\right),\left(B^{\prime}>B_{1}\right) \cup\left\{w_{1}\right\} \subseteq \operatorname{Im} \alpha \cup \operatorname{Im} \beta \subseteq \operatorname{Im} \gamma$. Thus $\operatorname{dim}_{R} \operatorname{Im} \gamma \geq\left|B^{\prime} \backslash\left(B_{1} \backslash\left\{w_{1}\right\}\right)\right|=\left|B^{\prime}\right|-\left|B_{1} \backslash\left\{w_{1}\right\}\right|=\operatorname{dim}_{R} V-(k-1)$. Since $\operatorname{dim}_{R} V$ is finite, $\operatorname{dim}_{R} \operatorname{Ker} \gamma \neq \operatorname{dim}_{R} V-\operatorname{dim}_{R} \operatorname{Im} \gamma \leq k-1$. Therefore $\gamma \notin K_{R}((V, W), k)$, acontradiction.

Case 2: $\operatorname{dim}_{R}(V / W)<k$ where $\operatorname{dim}_{R} V$ is infinite. We clearly have $0 \leq$ $\operatorname{dim}_{R}(V / W)<0^{k_{0}}$ If ${ }^{6}$ essume that $\operatorname{dim}_{R} W_{0}<\operatorname{dim}_{R} V$, then by Proposition 2.2.6, $\operatorname{dim}_{R} V \operatorname{dim}_{R}(V / W)<k$ which is a contradiction. Hence $\operatorname{dim}_{R} W=$ $\operatorname{dim}_{R} V$ Lett B be a basis of W and B^{\prime} arbasis of V extendedofrom B. Since $\operatorname{dim}_{R} W$ is infinite, we can let B_{1} and B_{2} be disjoint subsets of B such that $\left|B_{1}\right|=\left|B_{2}\right|=|B|$ and $B_{1} \cup B_{2}=B$. Note that $B_{2} \subseteq B^{\prime} \backslash B_{1}$ and $B_{1} \subseteq B^{\prime} \backslash B_{2}$. Define

$$
\alpha=\left(\begin{array}{cc}
B^{\prime} \backslash B_{1} & v \\
0 & v
\end{array}\right)_{v \in B_{1}} \quad \text { and } \beta=\left(\begin{array}{cc}
v & B^{\prime} \backslash B_{2} \\
v & 0
\end{array}\right)_{v \in B_{2}} .
$$

Then Ker $\alpha=\left\langle B^{\prime} \backslash B_{1}\right\rangle \supseteq\left\langle B_{2}\right\rangle$ and $\operatorname{Im} \alpha=\left\langle B_{1}\right\rangle \subseteq W$, imply that dim_{R} Ker $\alpha=$ $\left|B^{\prime} \backslash B_{1}\right| \geq\left|B_{2}\right|=\operatorname{dim}_{R} W=\operatorname{dim}_{R} V \geq k$. Hence $\alpha \in K_{R}((V, W), k)$. Similarly, we have $\left\langle B_{1}\right\rangle \subseteq\left\langle B^{\prime} \backslash B_{2}\right\rangle=\operatorname{Ker} \beta$ and $\operatorname{Im} \beta=\left\langle B_{2}\right\rangle \subseteq W$. It follows that $\operatorname{dim}_{R} \operatorname{Ker} \beta=\left|B^{\prime} \backslash B_{2}\right| \geq\left|B_{1}\right|=\operatorname{dim}_{R} W=\operatorname{dim}_{R} V \geq k$. Hence $\beta \in K_{R}((V, W), k)$. It is easy to see that

$$
\alpha^{2}=\alpha, \beta^{2}=\beta, \alpha \beta=0 \text { and } \beta \alpha=0
$$

Then $\alpha(\alpha \oplus \beta)=\{\alpha\}$ and $\beta(\alpha \oplus \beta)=\{\beta\}$. Next, let $\gamma \in \alpha \oplus \beta \subseteq K_{R}((V, W), k)$. Then $\alpha \gamma=\alpha$ and $\beta \gamma=\beta$. Consequently,

$$
\begin{aligned}
& v \gamma=(v \alpha) \gamma=v(\alpha \gamma)=v \alpha=v \text { for every } v \in B_{1} \\
& v \gamma=(v \beta) \gamma=v(\beta \gamma)=v \beta=v \text { for every } v \in B_{2} .
\end{aligned}
$$

So $\operatorname{Im} \gamma=W$ and $\gamma_{\mid W}=1 W$. Let $\mathcal{T} \geq\left\{x-x \gamma \mid x \in B^{\prime} \backslash B\right\}$. Claim that Ker γ $\subseteq\langle T\rangle$. Let $y \in \operatorname{Ker} \gamma$. Then $y=a_{1} s_{1}+a_{2} s_{2}+\ldots+a_{m} s_{m}+b_{1} t_{1}+b_{2} t_{2}+\ldots+b_{n} t_{n}$ for some $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n} \in R, s_{1}, s_{2}, \ldots, s_{m} \in B$ and $t_{1}, t_{2}, \ldots, t_{n} \in$ $B^{\prime} \backslash B$. Thus

$$
a_{1} s_{1}+a_{2} s_{2}+\ldots+a_{m} s_{m}=-\left(b_{1} t_{1}+b_{2} t_{2}+\ldots+b_{n} t_{n}\right) \gamma
$$

Consequently,

$$
\begin{aligned}
y & =-\left(b_{1} t_{1}+b_{2} t_{2}+\ldots+b_{n} t_{n}\right) \gamma+b_{1} t_{1}+b_{2} t_{2}+\ldots+b_{n} t_{n} \\
& =b_{1}\left(t_{1}-t_{1} \gamma\right)+b_{2}\left(t_{2}-t_{2} \gamma\right)+\ldots+b_{n}\left(t_{n}-t_{n} \gamma\right),
\end{aligned}
$$

this implies that $y \in\langle T\rangle$. To show that T is linearly independent. Let $a_{1}, a_{2}, \ldots, a_{n}$ $\in R$ and $x_{1}, x_{2}, \ldots, x_{n}$ be all distinct elements in $B^{\prime} \backslash B$ such that

$$
a_{1}\left(x_{1}-x_{1} \gamma\right)+a_{2}\left(x_{2}-x_{2} \gamma\right)+\ldots+a_{n}\left(x_{n}-x_{n} \gamma\right)=0 .
$$

Then $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=a_{1}\left(x_{1} \gamma\right)+a_{2}\left(x_{2} \gamma\right)+\ldots+a_{n}\left(x_{n} \gamma\right) \in\left\langle B^{\prime} \backslash B\right\rangle \cap\langle B\rangle=$ $\{0\}$, hence $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0$. We therefore have $a_{1}=a_{2}=\ldots=a_{n}=0$. This shows that T is linearly independent and $x-x \gamma \neq y-y \gamma$ for distinct elements $x, y \in B^{\prime} \backslash B$. Since Ker $\gamma \subseteq$ TT, $\operatorname{dim}_{R} \operatorname{Ker} \gamma \leq|T|=\left|B^{\prime} \backslash B\right|=\operatorname{dim}_{R}(V / W)<$ k. This yields a contradiction.

Therefore the proof is complete.
The following corollary providing some necessary conditions for $K_{R}^{\prime}((V, W), k)$ to admit the structure of a semihyperring with zero are obtained directly from the previous theorem.

Corollary 3.1.2. Let k be a cardinal number with $k<\operatorname{dim}_{R} V$. If $K_{R}^{\prime}((V, W), k)$ admits the structure of a semihyperring with zero, then one of the following statements holds.
(i) $\operatorname{dim}_{R} V \cap 1=k$ and $\operatorname{dim}_{R} V$ is finite. N ? $? ? \sim$
(ii) $\operatorname{dim}_{R}(V / W) \geq k^{\prime}$ where k^{\prime} is the successor of k ? $\frac{0}{6}$?

Proof. Ássume that $K_{R}^{\prime}((V, W), k)$ admits the structure of a semihyperring with zero. Since $k<\operatorname{dim}_{R} V, k^{\prime} \leq \operatorname{dim}_{R} V$ and $K_{R}^{\prime}((V, W), k)=K_{R}\left((V, W), k^{\prime}\right)$. We have by Theorem 3.1.1 that either $\operatorname{dim}_{R} V$ is finite and $\operatorname{dim}_{R} V-1=k$ or $\operatorname{dim}_{R}(V / W) \geq k^{\prime}$ hold.

Moreover, the necessary conditions of some results mentioned in [4] become our special cases as follow.

Corollary 3.1.3. ([4]) Let k be a cardinal number with $k \leq \operatorname{dim}_{R} V$. Then $K_{R}(V, k)$ admits the structure of a semihyperring with zero if and only if either
(i) $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite or
(ii) $k=0$.

Corollary 3.1.4. ([4]) Let k be a cardinal number with $k<\operatorname{dim}_{R} V$. Then $K_{R}^{\prime}(V, k)$ admits the structure of a semihyperring with zero if and only if $k+1=$ $\operatorname{dim}_{R} V$ and $\operatorname{dim}_{R} V$ is finite.

Remark 3.1.5. (i) Assume that $\operatorname{dim}_{R} V$ is finite. If k is a cardinal number such that $k \leq \operatorname{dim}_{R}(V / W)$, then $K_{R}((V, W), k)=L_{R}(V, W)$. Next, let k_{1} be a cardinal number such that $\left.\operatorname{dim}_{R}(V) W\right) \leq k_{1} \leq \operatorname{dim}_{R} V$. Since $\operatorname{dim}_{R} V$ is finite, we have $\operatorname{dim}_{R} V-k_{1} \leq \operatorname{dim}_{R} W$ Then let B be a basis of W, B^{\prime} a basis of V extended from B and $B_{1} \subseteq B$ such that $\left|B_{1}\right|=\operatorname{dim}_{R} V-k_{1}$. Define

so $\operatorname{dim}_{R} \operatorname{Ker} \alpha=\left|B^{-}\right\rangle B_{1} \mid=\operatorname{dim}_{R} V-\left(\operatorname{dim}_{R} V-\overline{k_{1}}\right)=k_{1}$. If k_{2} is a cardinal number such that $\operatorname{dim}_{\mathbb{R}^{2}}(\underline{V} / W) \leq k_{1}<k_{2} \leq \operatorname{dim}_{R} V$, then $\alpha \in K_{R}\left((V, W), k_{1}\right) \backslash$ $K_{R}\left((V, W), k_{2}\right)$, implied that $\left.9 K_{R}\left((V, W) k_{1}\right)\right\rangle R_{R}\left((V, W) k_{2}\right)$.

For each cardinal number l, k súch that $k \leq \operatorname{dim}_{R}(V / W)$ and $l<\operatorname{dim}_{R}(V / W)$,

$$
\begin{aligned}
L_{R}(V, W) & =K_{R}((V, W), k)=K_{R}^{\prime}((V, W), l) \\
& \supset K_{R}\left((V, W), \operatorname{dim}_{R}(V / W)+1\right)=K_{R}^{\prime}\left((V, W), \operatorname{dim}_{R}(V / W)\right) \\
& \supset K_{R}\left((V, W), \operatorname{dim}_{R}(V / W)+2\right)=K_{R}^{\prime}\left((V, W), \operatorname{dim}_{R}(V / W)+1\right) \\
& \vdots \\
& \supset K_{R}\left((V, W), \operatorname{dim}_{R}(V)\right) .
\end{aligned}
$$

(ii) Assume that $\operatorname{dim}_{R} V$ is infinite and $\operatorname{dim}_{R} V>\operatorname{dim}_{R} W$. Then we have $K_{R}((V, W), k)=L_{R}(V, W)=K_{R}^{\prime}((V, W), l)$ for all cardinal numbers k, l such that $k \leq \operatorname{dim}_{R} V$ and $l<\operatorname{dim}_{R} V$.
(iii) Assume that $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$ is infinite and k_{1}, k_{2} are cardinal numbers such that $k_{1}<k_{2} \leq \operatorname{dim}_{R} V$. We will show that $K_{R}\left((V, W), k_{1}\right) \supset K_{R}\left((V, W), k_{2}\right)$. Let B be a basis of W and B^{\prime} a basis of V extended from B. Since $k_{1}<$ $\operatorname{dim}_{R} V=\left|B^{\prime}\right|=|B|$, there exists $B_{1} \subseteq B$ such that $\left|B_{1}\right|=k_{1}$ and by assumption, we can assume that B_{1} have the property $\left|B^{\prime} \backslash B_{1}\right|=\left|B^{\prime}\right|$. Let φ be a bijection from $B^{\prime} \backslash B_{1}$ to B and define $\alpha \in L_{R}(V, W)$ by
so $\operatorname{dim}_{R} \operatorname{Ker} \alpha=\left|B_{1}\right|=k_{1}$. Thus, $\alpha \in K_{R}\left((V, W), k_{1}\right) \backslash K_{R}\left((V, W), k_{2}\right)$. This implies that $K_{R}\left((V, W), k_{1}\right) K_{R}\left((V, W), k_{2}\right)$. Then we can conclude that

By Proposition 2.2.7, $K_{R}((V, W), k)=C I_{R}((V, W), k)$ for every cardinal number k with $k \leq \operatorname{dim}_{R} V$ if V is a finite dimensional vector space. However, it is also shown in Proposition 2.2 .8 that if $\operatorname{dim}_{R} V$ is infinite, then $K_{R}((V, W), k) \neq$ $C I_{R}((V, W), l)$ where k, l are cardinal numbers such that $\operatorname{dim}_{R}(V / W)<l \leq$ $\operatorname{dim}_{R} V$ and $k \leq \operatorname{dim}_{R} V$. Then necessary conditions for $C I_{R}((V, W), k)$ to admit the structure of a symihyperring with zero can not be obtained from Theorem
3.1.1, so we also characterize when $C I_{R}((V, W), k)$ admits the structure of a semihyperring with zero.

Theorem 3.2.1. Let k be a cardinal number with $k \leq \operatorname{dim}_{R} V$. Then $C I_{R}((V, W), k)$ admits the structure of a semihyperring with zero if and only if one of the following statements holds.
(i) $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite
(ii) $\operatorname{dim}_{R}(V / W) \geq k$.

Proof. To prove sufficiency, first assume that $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite. Let $\alpha \in C I_{R}((V, W), k)$. Since $\operatorname{dim}_{R} V$ is finite, $\operatorname{dim}_{R} V-\operatorname{dim}_{R} \operatorname{Im} \alpha=$ $\operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \geq k=\operatorname{dim}_{R} V$. This implies that $\operatorname{dim}_{R} \operatorname{Im} \alpha=0$. We then have $C I_{R}((V, W), k)=\{0\}$ whiọk admits a ring structure. Next, assume that $\operatorname{dim}_{R}(V / W) \geq k$. We shall show that $L_{R}(V, W)=C I_{R}((V, W), k)$. Let $\alpha \in$ $L_{R}(V, W)$. Then $\operatorname{dim}_{R}(V / \operatorname{Im} a) \Longrightarrow \operatorname{dim}_{R}(V / W) \geq k$. So $\alpha \in C I_{R}((V, W), k)$. Hence $C I_{R}((V, W), z)=L_{R}(V, W)$ which admits a ring structure.

Conversely, assume that $C I_{R}((V, W), k)$ admits the structure of a semihyperring with zero. Suppose that (i) and (ii) are false. Then we have 2 cases which 6 a are the same as the prof of Theorempi.1. 19 N
Case 1: $\operatorname{dim}_{R}(V / W)<k<\operatorname{dim}_{R} V$ where $\operatorname{dim}_{R} V$ is finite. Then we have
 ture of a semihyperring with zero, a contradiction.

Case 2: $\operatorname{dim}_{R}(V / W)<k$ where $\operatorname{dim}_{R} V$ is infinite. We can see form case 2 in the proof of Theorem 3.1.1 that $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$ and there exist sets $B_{1}, B_{2} \subseteq B \subseteq B^{\prime} \subseteq V$ such that $\left|B_{1}\right|=\left|B_{2}\right|=|B|, B$ is a basis of W and B^{\prime} is a basis of V. Moreover, the following linear transformations from V to W are recalled,

$$
\alpha=\left(\begin{array}{cc}
B^{\prime} \backslash B_{1} & v \\
0 & v
\end{array}\right)_{v \in B_{1}} \text { and } \beta=\left(\begin{array}{cc}
v & B^{\prime} \backslash B_{2} \\
v & 0
\end{array}\right)_{v \in B_{2}} .
$$

Since $\alpha \in L_{R}(V, W)$ and $\operatorname{dim}_{R}(V / \operatorname{Im} \alpha)=\operatorname{dim}_{R}\left(V /\left\langle B_{1}\right\rangle\right) \geq \operatorname{dim}_{R}\left(V /\left\langle B^{\prime}\right\rangle\right.$ $\left.\left.B_{2}\right\rangle\right)=\left|B^{\prime} \backslash\left(B^{\prime} \backslash B_{2}\right)\right|=\left|B_{2}\right| \geq k$. Hence $\alpha \in C I_{R}((V, W), k)$. Similarly, $\operatorname{dim}_{R}(V / \operatorname{Im} \beta)=\operatorname{dim}_{R}\left(V /\left\langle B_{2}\right\rangle\right) \geq \operatorname{dim}_{R}\left(V /\left\langle B^{\prime} \backslash B_{1}\right\rangle\right)=\left|B^{\prime} \backslash\left(B^{\prime} \backslash B_{1}\right)\right|=$ $\left|B_{1}\right| \geq k$ and $\operatorname{Im} \beta \subseteq W$. Hence $\left.\beta \in C I_{R}(V, W), k\right)$. By the same case of the proof of Theorem 3.1.1, we have $\gamma \in C I_{R}((W, W), k)$ such that $\operatorname{Im} \gamma=W$. Then $\operatorname{dim}_{R}(V / \operatorname{Im} \gamma)=\operatorname{dim}_{R}(V / W)<k$, so this contradicts to $\gamma \in C I_{R}((V, W), k)$.

Therefore the proof is complete.
The following corollary is obtained from Theorem 3.2.1.
Corollary 3.2.2. Let k be a cardinat number with $k<\operatorname{dim}_{R} V$. Then $C I_{R}^{\prime}((V, W), k)$ admits the structure of a semihyperring with zero if and only if one of the following statements hotds.
(i) $\operatorname{dim}_{R} V-1=k$ and $\operatorname{dim}_{R} V$ is finite.
(ii) $\operatorname{dim}_{R}(V / W) \geq \kappa^{\prime}$ where k^{\prime} is the successor of \bar{k}.

Proof. Note that if $\operatorname{dim}_{R} W$ is finite, then $k^{\prime}=k+1$. Assume that $C I_{R}^{\prime}((V, W), k)$ admits the structure of adsemihypering with zero. Since $k \geq 0, k^{\prime}>0$ and $C I_{R}^{\prime}((V, W), k)=C I_{R}\left((V, W), k^{\prime}\right)$ We have by Theorem 3.2.1 that either $\operatorname{dim}_{R} V$ is finite and $\operatorname{dim}_{R} V-1=k 0^{2} \operatorname{dim}_{R}(V / W) \geq k^{\prime}$ holds. ©6

Conversely, assume that $\operatorname{dim}_{R} V-1=k$ and $\operatorname{dim}_{R} V$ is finite. Then $k^{\prime}=$ $\operatorname{dim}_{R} V$, and thus by Theorem 3.2.1, $C I_{R}\left((V, W), k^{\prime}\right)$ admits the structure of a semihyperring with zero. Since $C I_{R}^{\prime}((V, W), k)=C I_{R}\left((V, W), k^{\prime}\right)$, we have that $C I_{R}^{\prime}((V, W), k)$ admits the structure of a semihyperring with zero. Next, assume that $\operatorname{dim}_{R}(V / W) \geq k^{\prime}$. Then by Theorem 3.2.1, $C I_{R}\left((V, W), k^{\prime}\right)$ admits the structure of a semihyperring with zero, so does $C I_{R}^{\prime}((V, W), k)$.

From the proof of Theorem 3.2.1 and Corollary 3.2.2, we can conclude that necessary conditions of those theorems are $C I_{R}((V, W), k)=L_{R}(V, W)$ or $\{0\}$ and $C I_{R}^{\prime}((V, W), k)=L_{R}(V, W)$ or $\{0\}$, respectively. Hence the following corollaries are obtained directly.

Corollary 3.2.3. Let k be a cardinal number with with $k \leq \operatorname{dim}_{R} V$. Then $C I_{R}((V, W), k)$ admits a hyperring [ring] structure if and only if one of the following statements hold.
(i) $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite.
(ii) $\operatorname{dim}_{R}(V / W) \geq$

Corollary 3.2.4. Let k be a cardinal number with with $k<\operatorname{dim}_{R} V$. Then $C I_{R}^{\prime}((V, W), k)$ admits a hyperring [ring] structure if and only if one of the following statements hold.
(i) $\operatorname{dim}_{R} V-1=F$ and $\operatorname{dim}_{R} V$ is finite.
(ii) $\operatorname{dim}_{R}(V / W) \geq k^{\prime}$ where k^{\prime} is the successor of k. ρ^{2} な

In addition, if we set $V=W$ in Theorem 3.2.1 and Corollary 3.2.2, then some resultsomentionedin [i] become our special cases as forlow. की हl
Corollary 3.2.5. ([4]) Let k be a cardinal number with $k \leq \operatorname{dim}_{R} V$. Then $C I_{R}(V, k)$ admits the structure of a semihyperring with zero if and only if either
(i) $\operatorname{dim}_{R} V=k$ and $\operatorname{dim}_{R} V$ is finite or
(ii) $k=0$.

Corollary 3.2.6. ([4]) Let k be a cardinal number with $k<\operatorname{dim}_{R} V$. Then $C I_{R}^{\prime}(V, k)$ admits the structure of a semihyperring with zero if and only if $k+1=$ $\operatorname{dim}_{R} V$ and $\operatorname{dim}_{R} V$ is finite.

Remark 3.2.7. (i) Assume that $\operatorname{dim}_{R} V$ is finite. By Proposition 2.2.7, if k is a cardinal number such that $k \leq \operatorname{dim}_{R} V$, then $C I_{R}((V, W), k)=K_{R}((V, W), k)$. Then we have by Remark 3.1.5 that for each cardinal number l, k such that $k \leq \operatorname{dim}_{R}(V / W)$ and $l \leqslant \operatorname{dim}_{R}(V / W)$,

$$
L_{R}(V, W)=C I_{R}((V, W), k)=C I_{R}^{\prime}((V, W), l)
$$

$$
\supset C I_{R}\left((V, W), \operatorname{dim}_{R}(V / W)+1\right)=C I_{R}^{\prime}\left((V, W), \operatorname{dim}_{R}(V / W)\right)
$$

$$
\supset C I_{R}\left((V, W), \operatorname{dim}_{R}(\overline{V / W})+2\right)=C I_{R}^{\prime}\left((V, W), \operatorname{dim}_{R}(V / W)+1\right)
$$

$$
\vdots
$$

$\supset C I_{R}((V, W), \operatorname{dim} R(V))$.
(ii) Assume that $\operatorname{dim}_{R} V$ is infinite and $\operatorname{dim}_{R} V>\operatorname{dim} R W$. Then $\operatorname{dim}_{R}(V / \operatorname{Im} \alpha)$ $\geq \operatorname{dim}_{R}(V / W)=\operatorname{dim}_{R} V$ for all $\alpha \in L_{R}(V, W)$. Thisimplies that $C I_{R}((V, W), k)$ $=L_{R}(V, W)=C I_{R}^{\prime}((\mathcal{V}, W), l)$ for all cardinal numbers k, l such that $k \leq \operatorname{dim}_{R} V$

(iii) Assume that $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$ is infinite. If $\operatorname{dim}_{R}(V / W) \geq k$, then
 $\leq k_{1} \leq \operatorname{dim}_{R} V$. Let B be a basis of W and B^{\prime} a basis of V extended from B. Since $\operatorname{dim}_{R} W=\operatorname{dim}_{R} V$ is infinite and $\operatorname{dim}_{R}(V / W) \leq k_{1}$, there exists $B_{1} \subseteq B$ such that $\left|B^{\prime} \backslash\left(B \backslash B_{1}\right)\right|=k_{1}$ and $\left|B \backslash B_{1}\right|=|B|$. Define $\alpha \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
B^{\prime} \backslash\left(B \backslash B_{1}\right) & v \\
0 & v
\end{array}\right)_{v \in B \backslash B_{1}}
$$

so $\operatorname{dim}_{R}(V / \operatorname{Im} \alpha)=\left|B^{\prime} \backslash\left(B \backslash B_{1}\right)\right|=k_{1}$. Hence if k_{2} is a cardinal number such that $k_{1}<k_{2} \leq \operatorname{dim}_{R} V$, then $\alpha \in C I_{R}\left((V, W), k_{1}\right) \backslash C I_{R}\left((V, W), k_{2}\right)$ and $C I_{R}\left((V, W), k_{1}\right) \supset C I_{R}\left((V, W), k_{2}\right)$, respectively. Therefore for cardinal numbers k, l such that $\operatorname{dim}_{R}(V / W) \geq k$ and $\operatorname{dim}_{R}(V / W)>l$,

3.3 The semigroups $\left.I_{R}(\uparrow, W), k\right)$ and $I_{R}^{\prime}((V, W), k)$

We have already shown in Proposition 2.2.8 if $\operatorname{dim}_{R} W$ is infinite, we then have

$$
K_{R}\left((V, W), l \neq \Psi_{R}((W, W), k) \neq C I_{R}((V, W), l)\right.
$$

for any cardinal number k, l with $k<\operatorname{dim}_{R} W$ and $l \leq \operatorname{dim}_{R} V$. Contrasting between this section and previous sections in this chapter will assure that what

6 a

 we have mentioned above is frue. ITm this section, we shall characterize when $I_{R}((V, W), k)$ and $I_{R}^{\prime}((V, W), k)$ admit the structure of a semihyperring with zero. Theorem/3.3.1. Let k be a cardinal number with $k \leq \operatorname{dim}_{R} W$ C Then $I_{R}((V, W), k)$ admits the structure of a semihyperring with zero if and only if one of the following statements holds.(i) $k=0$.
(ii) $k=\operatorname{dim}_{R} W$.
(iii) k is infinite.

Proof. To prove sufficiency, assume (i), (ii) or (iii) holds. Since $I_{R}((V, W), 0)=$ $\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Im} \alpha \leq 0\right\}=\{0\}$ and $I_{R}\left((V, W), \operatorname{dim}_{R} W\right)=\left\{\alpha \in L_{R}(V, W)\right.$ $\left.\mid \operatorname{dim}_{R} \operatorname{Im} \alpha \leq \operatorname{dim}_{R} W\right\}=L_{R}(V, W)$. Therefore if we have (i) or (ii), then $I_{R}((V, W), k)$ admits a ring structure. Next, we will show that if k is an infinite cardinal number, then $\left(I_{R}((V, W), k),+, \circ\right)$ is also a ring where + is the usual addition of linear transformations and o is a composition. Let $\alpha, \beta \in I_{R}((V, W), k)$. We know that $\operatorname{Im}(\alpha+\beta) \subseteq \operatorname{Im} \alpha+\operatorname{Im} \beta$ and $\operatorname{Im} \beta=\operatorname{Im}(-\beta)$. Thus

$$
\operatorname{dim}_{R} \operatorname{Im}(\alpha-\beta) \leq \operatorname{din}_{R} \operatorname{Im} \alpha+\operatorname{dim}_{R} \operatorname{Im} \beta \leq k+k=k .
$$

Hence $I_{R}((V, W), k)$ is a subring of $\overrightarrow{L_{R}}(V, W)$.
Conversely, assume that $\left(I_{R}^{0}((V, W), k), \varphi, \cdot\right)$ is a semihyperring with zero. To show that one of (i), (ii) and (iii) holds, suppose on the contrary that all of them are false. Then $0<k<\operatorname{dim}_{R} W$ and k is finite. Let B be a basis of W, B^{\prime} a basis of V extended from B ande $B_{1} \subseteq B$ such that $\left|B_{1}\right|=k$. Note that B_{1} is not empty. Since $k<\operatorname{dim}_{R} W^{F}$, there exists an element $u \in B \backslash B_{1}$. Define

$$
\alpha=\left(\begin{array}{cc}
v & B^{\prime} \backslash B_{1} \\
v & 0
\end{array}\right)_{v \in B_{1}} \text { and } \beta=\left(\begin{array}{cc}
u \geq B^{\prime} \backslash\{u\} \\
u & 0
\end{array}\right) .
$$

 Similarly, $\operatorname{Im} \beta=\langle u\rangle \subseteq W$ and $\operatorname{dim}_{R} \operatorname{Im} \beta=1 \leq k$, since $k>0$. Hence

$$
\alpha^{2}=\alpha, \beta^{2}=\beta, \alpha \beta=0 \text { and } \beta \alpha=0 .
$$

Thus $\alpha(\alpha \oplus \beta)=\{\alpha\}$ and $\beta(\alpha \oplus \beta)=\{\beta\}$. Next, let $\gamma \in \alpha \oplus \beta \subseteq I_{R}((V, W), k)$. Then $\alpha \gamma=\alpha$ and $\beta \gamma=\beta$. Consequently, for every $v \in B_{1}$,

$$
\begin{aligned}
& v \gamma=(v \alpha) \gamma=v(\alpha \gamma)=v \alpha=v, \text { and } \\
& u \gamma=(u \beta) \gamma=u(\beta \gamma)=u \beta=u .
\end{aligned}
$$

Therefore $\operatorname{Im} \gamma \supseteq\left\langle B_{1} \cup\{u\}\right\rangle$ which implies that $\operatorname{dim}_{R} \operatorname{Im} \gamma \geq\left|B_{1} \cup\{u\}\right|=k+1$ $>k$, since k is finite. This contradicts the fact that $\gamma \in \alpha \oplus \beta \subseteq I_{R}((V, W), k)$. Hence the theorem is proved.

Corollary 3.3.2. Let k be a cardinal number with $0<k \leq \operatorname{dim}_{R} W$. Then $I_{R}^{\prime}((V, W), k)$ admits the structure of al semihyperring with zero if and only if one of the following statements holds.
(i) $k=1$.
(ii) k is infinite.

Proof. We know that $\left.I_{R}^{\prime}(V, W), 1\right)=I_{R}((V, W), 0)=\{0\}$ which admits a ring structure. Next, assume that k is an infinite cardinal number. Then $k+k=k$. We shall show that $\left(I_{R}^{\prime}((V, W), k), \ldots, 0\right)$ is a ring where + is the usual addition of linear transformations. If $\beta \in \mathcal{T}_{R}^{\prime}((V W), k)$, then $\operatorname{dim}_{R} \operatorname{Im} \alpha<k$ and $\operatorname{dim}_{R} \operatorname{Im} \beta<k$, and hence

To prove necessity, suppose on the contrary that $1 \leqslant k$ and k is finite. Then $I_{R}^{\prime}((V, W), k)=I_{R}((V, W), k-1)$ where $0<k-1<\operatorname{dim}_{R} W$ and $k-1$ is finite. It thereforefollows from Theorem 3.3 .4 that $\left.T_{R}(G V, W), k\right)$ does not admit the structure of a semihyperring with zero.

The following corollaries are direct consequences of Theorem 3.3.1 and Corollary 3.3.2.

Corollary 3.3.3. Let k be a cardinal number with $k \leq \operatorname{dim}_{R} W$. Then $I_{R}((V, W), k)$ admit a hyperring [ring] structure if and only if one of the following statements holds.
(i) $k=0$.
(ii) $k=\operatorname{dim}_{R} W$.
(iii) k is infinite.

Corollary 3.3.4. Let k be a cardinal number with $0<k \leq \operatorname{dim}_{R} W$. Then $I_{R}^{\prime}((V, W), k)$ admits a hyperring $[$ ring $]$ structure if and only if one of the following statements holds.
(i) $k=1$.
(ii) k is infinite.

Apart from two corollaries above we also obtain some results mentioned in [4] directly from Theorem 3.2.1 and Corollary 3.2.2.

Corollary 3.3.5. ([4]) Let we cardinal number with $k \leq \operatorname{dim}_{R} V$. Then $I_{R}(V, k)$ admits the structure of a semihyperring with zero if and only if one of the following statements hods.
(i) $k=0$.

Corollary 3.3.6. ([4]) Let k be a cardinal number with $0<k \leq \operatorname{dim}_{R} V$. Then $I_{R}^{\prime}(V, k)$ admits the structure of a semihyperring with zero if and only if either
(i) $k=1$ or
(ii) k is infinite.

Remark 3.3.7. Assume that k_{1}, k_{2} are cardinal numbers such that $k_{2}<k_{1} \leq$ $\operatorname{dim}_{R} W$. Claim that $I_{R}\left((V, W), k_{1}\right) \supset I_{R}\left((V, W), k_{2}\right)$. Let B be a basis of W and B^{\prime} a basis of V extended of B. Since $0<k_{1} \leq \operatorname{dim}_{R} W$, there exists $B_{1} \subseteq B$ such that $\left|B_{1}\right|=k_{1}$. Define $\alpha \in L_{R}(V, W)$ by

so $\operatorname{dim}_{R} \operatorname{Im} \alpha=\left|B_{1}\right|=k_{1}$. Hence $\left.\alpha \in I_{R}(V, W), k_{1}\right) \backslash I_{R}\left((V, W), k_{2}\right)$. If $\operatorname{dim}_{R} W$ is infinite, then

$$
I_{R}((V, W), 0)=I_{R}^{\prime}((V, W), 1) \subset I_{R}((V, W), 1)=I_{R}^{\prime}((V, W), 2)
$$

CHAPTER IV

SEMIGROUPS ADMITTING THE STRUCTURE OF AN AC SEMIRING WITH ZERO

In this chapter, we recall that V is a vector space over a division ring R, W is a subspace of $V, L_{R}(V, W)$ denote the set of all linear transformations $\alpha: V \rightarrow W$ and $F(\alpha)=\{v \in V \mid v \alpha=v\}$. The following linear transformation semigroups are considered.

$$
\begin{aligned}
& A M_{R}(V, W)=\left\{\alpha \in L_{R}(W, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha_{\mid W}<\infty\right\}, \\
& A E_{R}(V, W)=\left\{\alpha \in I_{R}(W) \mid \operatorname{dim}_{R}\left(W /\left(\operatorname{Im} \alpha_{\mid W}\right)\right)<\infty\right\}, \\
& A I_{R}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / F(\alpha))<\infty\right\}, \\
& P L_{R}(V, W)=\{\alpha: U \rightarrow W \mid U \text { is a subspace of } V \text { and } \\
& \\
& \alpha \text { is a linear transformation }\} .
\end{aligned}
$$

6 e
For the first and second sectionsewe let B de abasis of W and B^{\prime} a basis of V containing B. The following notations will be used and fixed.
where $G_{R}(W)$ is the set of all isomorphisms on W,

$$
\overline{1}_{W}=\left(\begin{array}{cc}
v & B^{\prime} \backslash B \\
v & 0
\end{array}\right)_{v \in B}
$$

If $u, w \in B$ are distinct, we define

$$
\begin{aligned}
& \overline{(u, w)}_{B}=\left(\begin{array}{lllc}
u & w & v & B^{\prime} \backslash B \\
w & u & v & 0
\end{array}\right)_{v \in B \backslash\{u, w\}} \text { and } \\
& \overline{(u \rightarrow w)}_{B}=\left(\begin{array}{lll}
u & v & B^{\prime} \backslash B \\
w & v & 0
\end{array}\right)_{v \in B \backslash\{u\}} .
\end{aligned}
$$

We note here that $\overline{1}_{W},{\overline{(u, w)_{B}}},(u-w)_{B} \in A M_{R}(V, W) \cap A E_{R}(V, W) \cap$ $A I_{R}(V, W)$ and $\overline{1}_{W}, \overline{(u, w)_{B}} \in \overline{G_{R}(V, W)} \subseteq A M_{R}(V, W) \cap A E_{R}(V, W) \cap A I_{R}(V, W)$. For the proof of main theorem, the properties

are useful.

4.1 The semigroups $A M_{R}(V, W)$ and $A E_{R}(V, W)$

We have shown in Proposition 2.2.9 and Proposition 2.2.10 that $A M_{R}(V, W)$ and $A E_{R}(V, W)$ are distinct semigroups without zero if $\operatorname{din}_{R} W$ is infinite. Otherwise, they admit a ring structure. The purpose is to characterize when $A M_{R}(V, W)$ and $A E_{R}(V, W)$ admit the structure of an AC semiring with zero, the following lemmas are required. For the first 9 emma, recall that $F_{R}(V)$ is the set of all isomorphisms on $V, L_{R}(V)$ be the semigroup of all linear transformations on V under a/composition? In this section, if $\propto \in \mathcal{L}_{R}(V)$ and $a \in R$, we define $a \alpha \in L_{R}(V)$ by

$$
v(a \alpha)=a(v \alpha)
$$

for all $v \in V$.
Lemma 4.1.1. ([8]) Let $\alpha \in L_{R}(V)$ and assume that that $\alpha \beta=\beta \alpha$ for all $\beta \in G_{R}(V)$. Then there exists $a \in C(R)$ such that $\alpha=a 1_{V}$ where $C(R)$ is the center of R.

Lemma 4.1.2. Let $\alpha \in L_{R}(V, W)$ and assume that $\alpha \beta=\beta \alpha$ for all $\beta \in$ $\overline{G_{R}(V, W)}$. Then there exists $a \in C(R)$ such that $\alpha=a \overline{1}_{W}$.

Proof. First we will show that $\left\{\beta_{\mid W} \mid \beta \in \overline{G_{R}(V, W)}\right\}=G_{R}(W)$. Obviously, $\left\{\beta_{\mid W} \mid \beta \in \overline{G_{R}(V, W)}\right\} \subseteq G_{R}(W)$. Let $\gamma \in G_{R}(W)$. Define $\bar{\gamma} \in L_{R}(V, W)$ by

We can see that $\bar{\gamma}_{\left.\right|_{W}}=\gamma$ and $\bar{\gamma} \in \bar{G}_{R}(V, W)$. By assumption and Proposition 2.2.4,

$$
\alpha_{W} \beta_{W}=\beta_{W} \alpha_{W} \text { for all } \beta \in \overline{G_{R}(V, W)}
$$

Since $\left\{\beta_{\mid W} \mid \beta \in \overline{G_{R}(V, W)}\right\}=G_{R}(W), \alpha_{\left.\right|_{W}} \beta=\beta \alpha_{W}$ for all $\beta \in G_{R}(W)$. By Lemma 4.1.1, $\alpha_{\left.\right|_{W}}=a 1_{W}$ for some $a \in C(R)$. Let $y \in B^{\prime} \backslash B$ and $\beta \in \overline{G_{R}(V, W)}$. It follows from assumption that $y \hat{\alpha} \beta=y \beta \alpha=0 \alpha=0$. Thus $y \alpha \in \operatorname{Ker} \beta$. Since $y \alpha \in W$ and Ker $\beta_{W}=\{0\}, y a=0$. This shows that $\alpha=a \overline{1}_{W}$.

Theorem 4.1.3. Let $S(V, W)$ be $A M_{R}(V, W)$ or $A F_{R}(V, W)$. Then $S(V, W)$ admits the structure of an AC semiring with zero if and only if $\operatorname{dim}_{R} W$ is finite. Proof. As was mentioned, if $\operatorname{dim}_{R} W$ is finite, then $S(V, W)=L_{R}(V, W)$ admits a ring structure. Assume hat $S(V, W)$ admits the structure of an AC semiring with zero. Then there is an operation \oplus° on $S^{0}\left(V_{0} W\right)$ such that $\left(S^{0}(V, W), \oplus, \cdot\right)$ is an AC semiring with zero 0 where . is the operation on $S^{\circ}(V, W)$. Suppose on the contrary that $\operatorname{dim}_{R} W$ is infinite. Since $0 \notin S(V, W)$, so for $\alpha, \beta \in$ $S^{0}(V, W), \alpha \beta=0$ implies $\alpha=0$ or $\beta=0$. Let u, w be distinct elements of B. Define $\alpha \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
\{u, w\} \cup\left(B^{\prime} \backslash B\right) & v \tag{1}\\
0 & v
\end{array}\right)_{v \in B \backslash\{u, w\}}
$$

Then $\operatorname{dim}_{R} \operatorname{Ker} \alpha_{\mid W}=\operatorname{dim}_{R}\langle u, w\rangle=2$ and $\operatorname{dim}_{R}\left(W / \operatorname{Im} \alpha_{\left.\right|_{W}}\right)=\operatorname{dim}_{R}(W /\langle B \backslash$ $\{u, w\}\rangle)=|\{u, w\}|=2$. We deduce that $\alpha \in S(V, W)$. It is clear that $\overline{(u, w)}_{B} \alpha=$ $\alpha=\alpha \overline{(u, w)}_{B}$. Since $\beta\left(\overline{1}_{W} \oplus \overline{1}_{W}\right)=\beta \oplus \beta=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \beta$ for every $\beta \in \overline{G_{R}(V, W)}$, we have by Lemma 4.1.2 that $\overline{1}_{W} \oplus \overline{1}_{W}=a \overline{1}_{W}$ for some $a \in C(R)$. If $a=0$, then $\overline{1}_{W} \oplus \overline{1}_{W}$ is the zero map which does not contain in $S(V, W)$. Then $\overline{1}_{W} \oplus \overline{1}_{W}=0$ and

$$
0=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \alpha=\alpha \oplus \quad \alpha=\alpha \oplus \overline{\overline{(u, w)_{B}}}=\alpha\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right)
$$

which imply that $\overline{1}_{W} \oplus(u, \omega)_{B}=0$ and then
$\overline{1}_{W}=\overline{1}_{W} \oplus 0=\overline{1}_{W} \oplus\left(\overline{1}_{W} \oplus(u, w)_{B}\right)=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \oplus \overline{(u, w)}_{B}=0 \oplus \overline{(u, w)}_{B}=\overline{(u, w)}_{B}$,
a contradiction. Then $a \neq 0$. From $<(1)$, we have

$$
\begin{equation*}
\left(\overline{1}_{W} \oplus{\left.\overline{(u, w})_{B}\right) \alpha=\alpha \phi \alpha}^{2}\left(\overline{1}_{\underline{W}} \oplus \overline{1}_{W}\right) \alpha=\left(a \overline{1}_{W}\right) \alpha=a \alpha .\right. \tag{2}
\end{equation*}
$$

We have by (1) and (2) that

$$
\begin{align*}
& u\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right) \alpha=u(a \alpha)=a(u \alpha)=0, \tag{3}\\
& \bar{w}\left(\overline{1}_{W} \oplus(\overline{(u, w})_{B}\right) \alpha=w(a \alpha)=a(\bar{w} \alpha)=0 .
\end{align*}
$$

Since ${\overline{(u, w)_{B}}}_{B} \overline{1}_{W}={\overline{(u, \vec{w}})_{B}}$ and ${\overline{(u, w})_{B}^{2}}^{2} \overline{\mathrm{I}}_{W}$, we can deduce that

By (3), it is obtained that

$$
u\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right)=w\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right) \in \operatorname{Ker} \alpha_{\left.\right|_{W}}=\langle u, w\rangle
$$

thus there exist $b, c \in R$ such that

$$
\begin{equation*}
u\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right)=w\left(\overline{1}_{W} \oplus \overline{(u, w)}_{B}\right)=b u+c w \tag{4}
\end{equation*}
$$

Next, we define $\gamma \in L_{R}(V, W)$ by

$$
\gamma=\left(\begin{array}{ccc}
\{u, w\} & v & B^{\prime} \backslash B \tag{5}\\
u+w & v & 0
\end{array}\right)_{v \in B \backslash\{u, w\}}
$$

Then $\operatorname{Ker} \gamma_{\left.\right|_{W}} \subseteq\langle u, w\rangle=\operatorname{Ker} \alpha_{\left.\right|_{W}}$ and $\operatorname{Im} \alpha_{\left.\right|_{W}}=\langle B \backslash\{u, w\}\rangle \subseteq \operatorname{Im} \gamma_{\left.\right|_{W}}$, so $\gamma \in S(V, W)$. Since $u \gamma{\overline{(u, w)_{B}}}_{\bar{B}}=w \gamma(u, w)_{B}=(u+w) \overline{(u, w)}_{B}=u+w$, then $\gamma \overline{(u, w)}_{B}=\gamma$, and hence

$$
\begin{equation*}
\gamma\left(\overline{1}_{W} \oplus{\left.\overline{(u, w)_{B}}\right)=\gamma \oplus \gamma=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \gamma=a \gamma ~}_{\text {. }}\right. \tag{6}
\end{equation*}
$$

Therefore

Since u and w are linearly independent, $2 b=2 c=a \neq 0$. Consequently, char $R \neq$
 for all $\beta \in \overline{G_{R}(V, W)}$, by Lemma 4.1.2, $\overline{1}_{W} \oplus\left(-\overline{1}_{W}\right)=a^{\prime} \overline{1}_{W}$ for,some $a^{\prime} \in C(R)$. If $a^{\prime}=0$, then 9 Q $0\left(-T_{W}\right)$ is the zero map containedin $S^{\circ}(D, W)$. It is obvious that $S(V, W)$ does not contain the zero map. Then $\overline{1}_{W} \oplus\left(-\overline{1}_{W}\right)=0$ and so

$$
0=\left(\overline{1}_{W} \oplus\left(-\overline{1}_{W}\right)\right) \alpha=\alpha \oplus(-\alpha)=\alpha \oplus\left(-\alpha \overline{(u, w)}_{B}\right)=\alpha\left(\overline{1}_{W} \oplus\left(-\overline{(u, w)}_{B}\right)\right)
$$

We can conclude that $\overline{1}_{W} \oplus\left(-\overline{(u, w)}_{B}\right)=0$, so $\overline{1}_{W} \oplus \overline{1}_{W} \oplus\left(-\overline{(u, w)}_{B}\right)=\overline{1}_{W} \oplus 0$.

Hence $-\overline{1}_{W}=-\overline{(u, w)}_{B}$, which is a contradiction. This shows that $a^{\prime} \neq 0$. But

$$
\begin{aligned}
a^{\prime} \overline{1}_{W} & =\overline{1}_{W} \oplus\left(-\overline{1}_{W}\right) \\
& =-\overline{1}_{W}\left(\overline{1}_{W} \oplus\left(-\overline{1}_{W}\right)\right), \text { since } \oplus \text { is commutative } \\
& =-a^{\prime} \overline{1}_{W} \\
& =-a^{\prime} \overline{1}_{W}+V_{0},
\end{aligned}
$$

$2 a^{\prime} \overline{1}_{W}=V_{0}$, and thus $2 \bar{a}^{\prime}=0$ since $W \neq\{0\}$. We have a contradiction directly from the facts that $a^{\prime} \neq 0$ and char $R \neq 2$.

Corollary 4.1.4. Let $S(V, W)$ be $A M_{R}(V, W)$ or $A E_{R}(V, W)$. Then $S(V, W)$ admits a ring structure if and only if $\operatorname{dim}_{R} W$ is finite.

Moreover, the results given in f11 become our special cases as follow.
Corollary 4.1.5. ([1]) Let $S(f)$ be $A M_{R}(V)$ or $A E_{R}(V)$. Then $S(V)$ admits the structure of an $A C$ semiring with zero if and only if $\operatorname{dim}_{R} V$ is finite.

Corollary 4.1.6. (11) Let $S(V)$ be $A M_{R}(V)$ or $A E_{\vec{R}}(V)$. Then $S(V)$ admits a ring structure if and only if $\operatorname{dim}_{R} V$ is finite.

By Preposition 2. $8,10, A I_{R}(\mathcal{V}, W)$ is different from $A M_{R}(V, W)$ and $A E_{R}(V, W)$ when $\operatorname{dim}_{R} W$ is infinite. Moreover, by Proposition 2.2.9, $A I_{R}(V, W)$ does not contain the zero. We shall show that $A I_{R}(V, W)$ admits the structure of an AC semiring with zero if and only if $\operatorname{dim}_{R} W$ is finite, the following lemma will be used.

Lemma 4.2.1. Let $\left(A I_{R}^{0}(V, W), \oplus, \cdot\right)$ be an $A C$ semiring with zero. If $\operatorname{dim}_{R} W$ is infinite, then $\overline{1}_{W} \oplus \overline{1}_{W}=\overline{1}_{W}$.

Proof. Assume that $\left(A I_{R}^{0}(V, W), \oplus, \cdot\right)$ is an AC semiring with zero and $\operatorname{dim}_{R} W$ is infinite. Recall that $\overline{1}_{W} \in A I_{R}(V, W)$. We then have $\overline{1}_{W} \oplus \overline{1}_{W} \in A I_{R}^{0}(V, W)$. Since $\beta\left(\overline{1}_{W} \oplus \overline{1}_{W}\right)=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \beta$ for all $\beta \in \overline{G_{R}(V, W)}$, by Lemma 4.1.2, there exists $a \in R$ such that $\overline{1}_{W} \oplus \overline{1}_{W}=a \overline{1}_{W}$. Suppose on the contrary that $a \neq 1$. It is obtained that $F\left(\overline{1}_{W} \oplus \overline{1}_{W}\right)=F\left(a \overline{1}_{W}\right)=\{0\}$. Hence we have $\operatorname{dim}_{R}\left(W / F\left(\overline{1}_{W} \oplus \overline{1}_{W}\right)\right)=\operatorname{dim}_{R}(W /\{0\})=\operatorname{dim}_{R} W$. Since $\operatorname{dim}_{R} W$ is infinite, $\overline{1}_{W} \oplus \overline{1}_{W} \notin A I_{R}(V, W)$, implies that $1_{W} \oplus I_{W}=0$. Let $u, w \in W$ be distinct elements. Next, recall a from the proof of Theorem 4.1.3 and we can see that $\operatorname{dim}_{R}(W / F(\alpha))=\operatorname{dim}_{R}\langle u, w\rangle=2$ so $\alpha \in A I_{R}(V, W)$. Note that $\overline{(u, w)}_{B} \alpha=\alpha=\alpha{\overline{(u, w)_{B}} \text {. We have }}$.

$$
0=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \alpha=\alpha \oplus \alpha=\alpha \oplus \alpha \overline{(u, w)}_{B}=\alpha\left(\overline{1}_{W} \oplus \overline{(u, w}_{B}\right)
$$

which imply that $\overline{1}_{W} \oplus(u, w)_{B}=\mathbf{w}$ and then
 a contradiction.

Theorem 4.2.2. $A I_{R}(V, W)$ admits the structure of an $A C$ semiring with zero if

Proof. If $\operatorname{dim}_{R} W$ is finite, then $A I_{R}(V, W) \triangleq L_{R}(V, W)$ which admits a ring structure. Conversely, assume that $A I_{R}(V, W)$ admits the strueture of an $A C$ semiring with zero. Then there is an operation \oplus on $A I_{R}^{0}(V, W)$ such that $\left(A I_{R}^{0}(V, W), \oplus, \cdot\right)$ is an AC semiring with zero 0 where • is the operation on $A I_{R}^{0}(V, W)$. To show $\operatorname{dim}_{R} W$ is finite, suppose on the contrary that $\operatorname{dim}_{R} W$ is infinite. By Lemma 4.2.1, $\overline{1}_{W} \oplus \overline{1}_{W}=\overline{1}_{W}$. For every $\alpha \in A I_{R}^{0}(V, W)$, if $\alpha_{\left.\right|_{B^{\prime} \backslash B}}=0$, we get

$$
\begin{equation*}
\alpha \oplus \alpha=\left(\overline{1}_{W} \oplus \overline{1}_{W}\right) \alpha=\overline{1}_{W} \alpha=\alpha . \tag{1}
\end{equation*}
$$

Recall the fact that $\overline{(u, w)}_{B}, \overline{(u \rightarrow w)}_{B} \in A I_{R}(V, W)$ for all distinct $u, w \in B$. Next, let u and w be fixed distinct elements of B. We have

$$
\begin{align*}
& \overline{(u \rightarrow w)}_{B}^{2}=\overline{(u \rightarrow w)}_{B}=\overline{(w \rightarrow u)}_{B} \overline{(u \rightarrow w)}_{B} \\
& =\overline{(w \rightarrow u)}_{B} \overline{(u, w)}_{B}=\overline{(u, w)}_{B} \overline{(u \rightarrow w)}_{B}, \tag{2}\\
& {\overline{(w \rightarrow u)_{B}}}^{2}={\overline{(w \rightarrow u)_{B}}}_{B}={\overline{(u \rightarrow w)_{B}}}_{B \rightarrow u)_{B}} \\
& ={\overline{(u \rightarrow w)_{B}}}^{\left(u,(u)_{B}\right.}={\overline{(u, w)_{B}}}^{(w \rightarrow u)_{B}} .
\end{align*}
$$

 and ${\overline{(u \rightarrow w)_{B}}}_{B}\left[\overline{1}_{W} \oplus(w \rightarrow u)_{B}\right]-(u \rightarrow w)_{B} \oplus(w \rightarrow u)_{B}$. Since \oplus is commutative,

$$
\begin{equation*}
\overline{(w \rightarrow u)}_{B}\left[1_{W} \oplus \overline{(u \rightarrow w)}_{B}\right]=\overline{(u \rightarrow w)}_{B}\left[1_{W} \oplus \overline{(w \rightarrow u)}_{B}\right], \tag{3}
\end{equation*}
$$

and for each $v \in B \backslash\{u\}$,

Let $u\left[\overline{1}_{W} \oplus \overline{(u \rightarrow w)_{B}}\right]=a u+b w+\sum_{i=1}^{n} c_{i} v_{i}$ for some $a, b, c_{1}, c_{2}, \ldots, c_{n} \in R$ and distinct $v_{1}, v_{2} \rho_{0} \cdot v_{n} E^{B} \lambda\{\mu, \omega\}$. We themêfore have? δ

$$
\begin{aligned}
u & =u \overline{(w \rightarrow u)_{B}} \\
& =u\left[\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right] \overline{(w \rightarrow u)}_{B} \text { from (2) } \\
& =\left(a u+b w+\sum_{i=1}^{n} c_{i} v_{i}\right) \overline{(w \rightarrow u)_{B}} \\
& =a u+b u+\sum_{i=1}^{n} c_{i} v_{i} \\
& =(a+b) u+\sum_{i=1}^{n} c_{i} v_{i}
\end{aligned}
$$

which implies that $a+b=1$ and $c_{i}=0$ for all $i=1,2, \ldots, n$. Consequently,

$$
\begin{array}{ll}
v\left[\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right]=v & \text { if } v \in B \backslash\{u\} \\
u\left[\overline{1}_{W} \oplus \overline{(u \rightarrow w}_{B}\right]=a u+b w & \text { where } a+b=1 . \tag{4}
\end{array}
$$

By interchanging between u and w, from (4), there are $a^{\prime}, b^{\prime} \in R$ such that

$$
\begin{align*}
& v\left[\overline{1}_{W} \oplus \overline{(w \rightarrow u}_{B}\right]=\text { if } v \in B \backslash\{w\}, \tag{5}\\
& w\left[\overline{1}_{W} \oplus{\overline{(w \rightarrow u})_{B}}\right]=a^{\prime} u \pm b^{\prime} w \text { and } a^{\prime}+b^{\prime}=1 .
\end{align*}
$$

Case 1: $a \neq 0$. Let $v_{1}, v_{2}, \ldots, v_{m} \notin B \backslash\{u\}$ be distinct and let $d_{0}, d_{1}, \ldots, d_{m} \in R$ be such that $\left(d_{0} u+\sum_{i=1}^{m} d_{i} v_{i}\right)\left(1, W \oplus(u \rightarrow w)_{B}\right]=0$. Then from (4),

$$
d_{0} a u+\overline{d_{0} b w}+\sum_{i=1}^{m} d_{i} v_{i}=0
$$

so $d_{0} a=0$. Since $a \neq 0$, we have $d_{\theta} \neq 0$ which implies that $d_{i}=0$ for all $i \in\{1,2, \ldots, m\}$, hence $\operatorname{Ker}\left(\overline{1}_{W} \odot(\bar{u} \rightarrow w)\right)_{\left.\right|_{W}}=\{0\}$. This shows that

$$
\begin{equation*}
\left(\overline{1}_{W} \oplus(w \rightrightarrows \vec{w})_{B}\right)_{W} \text { is a one-to-one map. } \tag{6}
\end{equation*}
$$

Since

$$
\begin{aligned}
& {\left[\overline{1}_{W} \oplus{\left.\overline{(u \rightarrow w})_{B}\right]^{2}=\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B} \oplus \overline{(u \rightarrow w)}_{B} \oplus \overline{(u \rightarrow w)}_{B}^{2}}^{2}\right.}
\end{aligned}
$$

by Proposition 2.2 .4 ,

$$
\begin{aligned}
& =\left(\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right)_{\left.\right|_{W}} .
\end{aligned}
$$

It follows from (6) that $\left(\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right)_{\left.\right|_{W}}=1_{W}$ and for every $x \in B^{\prime} \backslash B$,

$$
\begin{aligned}
x\left(\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right) & =x\left(\overline{(u, w)}_{B} \overline{(u, w)}_{B} \oplus{\overline{(u, w)_{B}}}_{\overline{(u \rightarrow w}}^{B}\right. \text {) from (2) } \\
& =x \overline{(u, w)}_{B}\left(\overline{(u, w)}_{B} \oplus \overline{(u \rightarrow w)}_{B}\right) \\
& =0\left(\overline{(u, w)}_{B} \oplus \overline{(u \rightarrow w)}_{B}\right)=0 .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}=\overline{1}_{W} . \tag{7}
\end{equation*}
$$

We therefore have

$$
\begin{aligned}
& \overline{1}_{W}=\overline{(u, w)}_{B}^{2} \\
& =\left[\overline{1}_{W} \overline{(u, w)}_{B}\right]^{2} \\
& =\left[\left(\overline{1}_{W} \oplus \overline{\left.(\overline{u \rightarrow w})_{B}\right)}\right)(u, w)_{B}\right]^{2} \quad \text { from (7) } \\
& \left.=\left[\overline{(u, w)}_{B} \oplus(w-u)\right)_{B}\right]^{2} \quad \text { from (2) }
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{1}_{W} \oplus{\overline{(w \rightarrow u)_{B}}}^{\sim} \quad \text { from (7). }
\end{aligned}
$$

Replace (7) and $\overline{1}_{W}=\overline{1}_{W} \oplus(w \vec{\sim})_{B}$ in (3), we get $\overline{(u \rightarrow w)}_{B}={\overline{(w \rightarrow u)_{B}}}_{B}$,
a contradiction.
Case 2: $b^{\prime} \neq 0$. From (5) and interchanging between u and w, we obtain as case 1 that $\overline{1}_{W} \oplus_{(u)}^{(w)} \overline{1}_{W}=\overline{1}_{W} O \phi \overline{(u \rightarrow w)}_{B}$. This implies by (3) that

From (4) and (5), we have respectively that

$$
\begin{equation*}
\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}=\overline{(u \rightarrow w)}_{B} \text { and } \overline{1}_{W} \oplus \overline{(w \rightarrow u)}_{B}=\overline{(w \rightarrow u)}_{B} \tag{8}
\end{equation*}
$$

Hence

$$
\begin{array}{rlrl}
\overline{(u \rightarrow w)}_{B} & ={\overline{(w \rightarrow u)_{B}} \overline{(u \rightarrow w)}_{B}} & \text { from (2) } \\
& =\overline{(w \rightarrow u)}_{B}\left[\overline{1}_{W} \oplus \overline{(u \rightarrow w)}_{B}\right] & & \text { from (8) } \\
& =\overline{(u \rightarrow w)}_{B}\left[\overline{1}_{W} \oplus{\overline{(w \rightarrow u)_{B}}}\right] & & \text { from (3) } \\
& =\overline{(u \rightarrow w)}_{B} \overline{(w \rightarrow u)}_{B} & & \text { from (8) } \\
& =(w \rightarrow u)_{B} & & \text { from (2) }
\end{array}
$$

which is a contradiction.

Therefore the theorem is proved.

Corollary 4.2.3. $A I_{R}(V, W)$ admits a ring structure if and only if $\operatorname{dim}_{R} W$ is finite.

Moreover, the results given in 3] become our special cases as follow.

Corollary 4.2.4. ([3]) $A I_{R}(V)$ admits the structure of an $A C$ semiring with zero if and only if $\operatorname{dim}_{R} V$ is finite, shysy)

Corollary 4.2.5. (3]) $A I_{R}(V)$ admits a ring structure if and only if $\operatorname{dim}_{R} V$ is finite.

4.3 The semigroup $P L_{R}\left(V, W^{*}\right) N E \backslash ? \partial$

The pupose of this section is to chagacterize when $P E_{R}(V, W)$ admits the structure of an AC semiring with zero and the following lemmas will be used.

Lemma 4.3.1. If $\operatorname{dim}_{R} W>0$ and $\left(P L_{R}^{0}(V, W), \oplus, \cdot\right)$ is an $A C$ semiring with zero, then the following statements are satisfied.
(i) There exists $a \in C(R) \backslash\{0\}$ such that $1_{W} \oplus\left(-1_{W}\right)=a 1_{W}$.
(ii) If U is a subspace of W, then $U_{0} \oplus U_{0}=U_{0}$.

Proof. (i) Since $\operatorname{dim}_{R} W>0$, so is $\operatorname{dim}_{R} V$. It follows from Chapter II that $P L_{R}(V, W)$ is a semigroup without zero. Thus $W_{0} \neq 0$ and $\alpha \beta=0$ implies $\alpha=0$ or $\beta=0$ for all $\alpha, \beta \in P L_{R}^{0}(V, W)$. By assumption, $1_{W} \oplus\left(-1_{W}\right) \in P L_{R}^{0}(V, W)$. Claim that $1_{W} \oplus\left(-1_{W}\right) \neq 0$. Suppose on the contrary that $1_{W} \oplus\left(-1_{W}\right)=0$. Consequently,

$$
\begin{aligned}
W_{0}\left(W_{0} \oplus\{0\}_{0}\right) & =W_{0} \oplus W_{0} \\
& =\left(1 W \oplus\left(-1_{W}\right)\right) W_{0} \\
& =0 .
\end{aligned}
$$

Since $W_{0} \neq 0, W_{0} \oplus\{0\}_{0}=0=W_{0} \oplus W_{0}$. Then we have

$$
W_{0}=W_{0} \oplus 0=W_{0} \oplus\left(W_{0} \oplus\{0\}_{0}\right) \equiv\left(W_{0} \oplus W_{0}\right) \oplus\{0\}_{0}=0 \oplus\{0\}_{0}=\{0\}_{0},
$$

which contradicts to $\operatorname{dim}_{R} W>0$. We conclude that $1_{W} \oplus\left(-1_{W}\right) \in P L_{R}(V, W)$. Since $W_{0}\left(W_{0} \oplus\{0\}_{0}\right)=\left(1_{W} \oplus\left(1 \mathcal{W}_{W}\right)\right) W_{0}$, we have $\operatorname{Dom}\left(1_{W} \oplus\left(-1_{W}\right)\right)=W$. It is obtained that $\alpha\left(1_{W} \oplus\left(-4_{W}\right)\right)=\alpha \oplus(-\alpha)=\left(1_{W} \oplus\left(-1_{W}\right)\right) \alpha$ for all $\alpha \in$ $G_{R}(W)$. By Lemma 4.1.1, $1_{W} \oplus\left(-1_{W}\right)=a 1_{W}$ for some $a \in C(R)$. If $a=0$, then $1_{W} \oplus\left(-1_{W}\right)$

ศูนย์วิทยทรัมยยตศตร

(ii) Let U be a subspace of W. By (i),

$$
U_{0} \oplus U_{0}=U_{0}\left(1_{W} \oplus\left(-1_{W}\right)\right)=U_{0}\left(a 1_{W}\right)=U_{0}
$$

Therefore the proof is complete.

Lemma 4.3.2. If $\operatorname{dim}_{R} W>0$ and $\left(P L_{R}^{0}(V, W), \oplus, \cdot\right)$ is an $A C$ semiring with zero, then char $R=2$.

Proof. By Lemma 4.3.1, $1_{W} \oplus\left(-1_{W}\right)=a 1_{W}$ for some $a \in C(R) \backslash\{0\}$. Then

$$
\begin{aligned}
a^{2} 1_{W} & =\left(a 1_{W}\right)\left(a 1_{W}\right) \\
& =\left(a 1_{W}\right)\left(1_{W} \oplus\left(-1_{W}\right)\right) \\
& =\left(-a 1_{W}\right)\left(\left(-1_{W}\right) \oplus 1_{W}\right) \\
& =\left(-a 1_{W}\right)\left(1_{W} \oplus\left(-1_{W}\right)\right), \text { since } \oplus \text { is commutative } \\
& =\left(-a 1_{W}\right)\left(a 1_{W}\right)=a^{2} 1_{W}
\end{aligned}
$$

so $2 a^{2}\left(1_{W}\right)=W_{0}$. Since $a^{2} \neq 0$ and $\operatorname{dim}_{R} W>0,2 a^{2}=0$. This implies that $\operatorname{char} R=2$.

Now, the proof of required lemmas are complete. The following theorem is our main result.

Theorem 4.3.3. If the semigroup $P E_{R}(V, W)$ admits the structure of an $A C$ semiring with zero, then either
(i) $\operatorname{dim}_{R} W=0$ or
(ii) $\operatorname{dim}_{R} W=1$ and charR $=2$

6 © 0

Proof. Assume that $P L_{R}(V, W)$ eadmits the structure of an AC semiring with zero. Then there is an operation \oplus on $P L_{R}^{0}(V, W)$ such that $\left(P L_{R}^{0}(V, W), \oplus, \cdot\right)$ is an Ac9semining with zero. Sbupposesponthe contraty that dim $_{R} W>1$ or $\left(\operatorname{dim}_{R} W>0\right.$ and char $\left.R \neq 2\right)$. By Lemma 4.3.2, $\operatorname{dim}_{R} W>0$ and char $R=2$ are impossible. Therefore $\operatorname{dim}_{R} W>1$. It is obtained that $P L_{R}(V, W)$ does not have a zero and we have linearly independent elements $u, w \in W$. It is clear that $\binom{u}{u} \oplus\binom{u}{w} \in P L_{R}^{0}(V, W)$. Now, we consider 3 cases as follow.

Case 1: $\binom{u}{u} \oplus\binom{u}{w}=0$. By Lemma 4.3.1 (ii),

$$
0=\left(\binom{u}{u} \oplus\binom{u}{w}\right) W_{0}=\binom{u}{0} \oplus\binom{u}{0}=\binom{u}{0} \in P L_{R}(V, W),
$$

a contradiction.
Case 2: $\binom{u}{u} \oplus\binom{u}{w}=\{0\}_{0}$. By Lemma 4.3.1 (ii),

$$
\left.\{0\}_{0}=\{0\}_{0} W_{0}=\binom{u}{u} \oplus\binom{u}{w}\right) W_{0}=\binom{u}{0} \oplus\binom{u}{0}=\binom{u}{0},
$$

a contradiction.
Case 3: $\binom{u}{u} \oplus\binom{u}{w}=\alpha$ for some a $\in P L_{R}(V, W)$ with $\operatorname{Dom} \alpha \neq\{0\}$.
Since

$$
\begin{aligned}
& \text { Since }\binom{u}{u}\left(\binom{u}{u}\left(\begin{array}{l}
u \\
u \\
u
\end{array}\right)\right)=\binom{u}{u} \oplus\binom{u}{w} \\
& \text { we have }\binom{u}{u} \alpha=\alpha \text {. Then } \operatorname{Dom} \alpha=\operatorname{Dom}\left(\binom{u}{u} \subseteq \operatorname{Dom}\binom{u}{u}=\langle u\rangle,\right. \text { and }
\end{aligned}
$$ thus dim_{R} Dom $\alpha \leq \operatorname{dim}_{R}(u)=1$ But Dom $\alpha \neq\{0\}$ so Dom $\alpha=\langle u\rangle$. Also, since

$$
\begin{aligned}
& =\binom{u}{w} \oplus\binom{u}{u} \\
& =\binom{u}{u} \oplus\binom{u}{w}, \text { since } \oplus \text { is commutative } \\
& =\alpha,
\end{aligned}
$$

we have $\operatorname{Im} \alpha \subseteq\langle u, w\rangle$. Then there are $a, b \in R$ such that $u \alpha=a u+b w$. This implies that $\alpha=\binom{u}{a u+b w}$. Therefore

$$
\binom{u}{a u+b w}=\alpha=\alpha\left(\begin{array}{cc}
u & w \\
w & u
\end{array}\right)=\binom{u}{a u+b w}\left(\begin{array}{cc}
u & w \\
w & u
\end{array}\right)=\binom{u}{a w+b u} .
$$

Since u and w are linearly independent, $a=b$. Thus $\alpha=\binom{u}{a(u+w)}$. Now, we have

Consequently,

Since u and w are linearly independent, $u+w \neq 0$, and so $\operatorname{Ker}\binom{u}{u+w}=\{0\}$.

Hence

$$
\{0\}_{0} \oplus\{0\}_{0}=\binom{u}{u+w}\{0\}_{0} \oplus\binom{u}{u+w}\{0\}_{0}
$$

$$
=\left(\binom{u}{u+w} \oplus\binom{u}{u+w}\right)\{0\}_{0}
$$

which contradicts to Lemma 4.3.1.
Therefore the main theorem is complete.

Corollary 4.3.4. If $P L_{R}(V, W)$ admits a ring structure, then $\operatorname{dim}_{R} W=0$.

Proof. Assume that $\left(P L_{R}^{0}(V, W) ; \otimes\right)$ is a ring. Suppose on the contrary that $\operatorname{dim}_{R} W>0$. By Theorem 4.3.3, $\operatorname{dim}_{R} W=1$ and char $R=2$. By Lemma 4.3.1 (ii),

$$
\sigma \quad W_{0} \oplus W_{0}=W_{0} .
$$

Since $\left(P L_{R}^{0}(V, W), \infty\right)$ is agroup, W_{0} is azero of $P L_{R}(V, W)$, a contradiction.
 corollary is obtained directly from Theorem 4.3.3.

Corollary 4.3.5. ([2]) If $P L_{R}(V)$ admits the structure of an $A C$ semiring with zero, then either
(i) $\operatorname{dim}_{R} V=0$ or
(ii) $\operatorname{dim}_{R} V=1$ and char $R=2$.

REFERENCES

[1] Chaopraknoi, S. and Kemprasit, Y.: Some linear transformation semigroups which do not admit the structure of a semihyperring with zero, Proc. ICAA 2002, 149-158 (2002).
[2] Chaopraknoi, S. and Kemprasit, Y.: Partial linear transformation semigroups admitting the structure of an additively commutative semiring with zero, East-West J. Math. Spec. Vol. for NCAM 2003 and NCAM 2004, 127-133 (2003-2004).
[3] Chaopraknoi, S. and Kemprasit, Y.: Some semiring structures of semigroups of almost identical linear transformations, Thai J. Math. Spec. Issue for Annual Mettings in Math., 9-14 (2004).
[4] Chaopraknoi, S. and Kemprasit, Y:: Linear transformation semigroups admitting the structure of a semihyperring with zero, Italian J. Pure and Appl. Math 17, 213-222 (2005).
[5] Chu, D. D. and Shyr, H. I.:Monoids of languages admitting ring structure, Semigroup Forum 19, 127-132 (1980).
[6] Corsini, P.: Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[7] Donald Monk, J.: Introduction to Set Theory, McGraw-Hill, New York, 1969.
[8] Kemprasit, Y:Hyperring structures of some semigroups of linear transformations. Italian J. Pure and Appl. Math. 13, 145-152 (2003).
[9] Kemprasit, Y. and Punkla, Y.: Transformation semigroups admitting hyperring structure, Italian J. Pure and Appl. Math. 10, 213-218
[10] Peinado, ${ }^{(2002)}$ E. En semigroups admitting ring structure, Semigroup Forum 1, 189-208 (1970).
[11] Punkla, Y. Hyperfingsand transformation semigroups (admitting hyperring structure, Master's Thesis, Dept. of Math., Graduate School, Chulalongkorn Univ., 1991.
[12] Satayanarayana, M.: On semigroups admitting ring structure, Semigroup Forum 3, 43-50 (1971).
[13] Satayanarayana, M.: On semigroups admitting ring structure II, Semigroup Forum 6, 187-189 (1973).
[14] Siripitukdet, M. and Kemprasit, Y.: Linear transformation semigroups admitting ring structure, Proc ICAA 2002, 235-243 (2002).

VITA

- The $13^{\text {th }}$ Annual Meeting in Mathematics, 6-7 May 2008
- The $14^{\text {th }}$ Annual Meeting in Mathematics, 5-6 March 2009

