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CHAPTER   I 
 

INTRODUCTION 
  

The importance of uncertainty and risk has been well recognized in the 

petroleum engineering literature, especially in the areas of exploration and reserves 

estimation. In recent years, petroleum engineers have also been focusing on methods 

for assessing the uncertainty in forecasts of original oil in-place and corresponding 

drainage area. 

In the area of reservoir engineering, the sources of uncertainty have three 

major causes: 1) the model, because it is an imperfect representation of reality, 2) 

geologic parameters, because of a limited samplings and 3) measurement errors in the 

experiments performed to determine inputs. Thus, a statistical approach that 

recognizes both the lack of knowledge and the uncertainty of the parameters involved 

in the forecast of the original oil in-place is desirable. 

The stochastic modeling approach Monte Carlo simulation methodology 

allows a full mapping of the uncertainties in inputs, expressed as probability 

distributions, into the corresponding uncertainty in model output which is also 

expressed in terms of a probability distribution. Uncertainties in the model outcome 

are quantified via multiple model calculations using parameter values drawn 

randomly from the probability distributions specified for the uncertain inputs. 

The Monte Carlo simulation approach offers several advantages for 

propagating uncertainty in reservoir engineering problems. First advantage is full 

ranges of each input parameter are sampled and used in producing probabilistic model 

outcome. The second advantage is the ease of implementation; any input-output 

model can be utilized in the Monte Carlo process without making any modifications 

to the original model. 

The major disadvantage with the Monte Carlo simulation technique is the need 

to perform multiple model calculations. In many cases, a limited number of 

realizations are used for computational expediency, even though there is no assurance 

that the final results will be statistically robust. A second disadvantage concerns the 

issue of data availability for defining the range and distributions of the uncertain 

inputs. In many real-life situations, paucity of data often forces the engineer to make 
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simplifying assumptions regarding the ranges and shape of the input distributions. 

Under such circumstances, the justification for using a full-blown Monte Carlo 

analysis, based on subjective assumptions about data distributions, becomes 

questionable at best. Though, Monte Carlo simulation methods may not be the most 

efficient way when the probability associated with only a limited number of model 

outcomes is desired. 

Experiment design and analysis methods have been recently introduced into 

the oil & gas industry and have been shown to have significant potential in 

recoverable reserves uncertainty studies, such as sensitivity studies in recoverable 

reserves, production forecasting and ultimate recovery estimates by representing the 

numerical reservoir simulation with a surrogate response surface model and 

development optimization. In such studies, experimental design is generally used in a 

special purpose manner. 

 

1.1 Outline of Methodology 
The purpose of this thesis is to study and develop the quantitative estimate 

uncertainty in original oil in-place prediction based on material balance equation and 

to make an effective use of the reservoir information, particularly the reservoir 

description and to demonstrate the efficiency of each approach when compare with 

traditional Monte Carlo Simulation. The following tasks are to be accomplished: 

1) Research and screen the appropriate uncertainty parameters which have an 

effect on the accuracy of original oil in-place, calculated by using material 

balance equation. 

2) Generate reservoir model based on material balance equation. Set up the 

general assumption for each reservoir description, producing condition, 

uncertainty variables and their distribution (possible range of error). 

3) Perform Monte Carlo Simulation based on material balance equation and 

collect the statistical result. 

4) Perform first-order analysis to verify the sensitivity coefficient of each 

variable, variance and the output from first-order term of Taylor series 

expansion. Response surface method will be applied to Monte Carlo 

simulation result to find a suit approximation function.  All results will be 

compared to traditional Monte Carlo Simulation. 
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5) Perform Box-Behnken experimental design and its response surface. 

Collect the statistical result and compare with the Monte Carlo 

simulation’s result and the others. 

6) Analyze overall result and report the recommendation and conclusion. 

 

1.2 Thesis Outline 
Chapter 2 outlines the list of related work and research in the area of 

uncertainty assessment using Monte Carlo Simulation and alternatives method. The 

effects of pressure uncertainty, reservoir drive mechanism on material balance 

equation and new approach in uncertainty estimation technique are also referred. 

Chapter 3 presents the basic comprehension of material balance method, 

natural water drive mechanism and reservoir parameter consideration. 

Chapter 4 describes the Monte Carlo simulation detail study in the uncertainty 

estimation of original oil in-place assessed by using EXCEL spreadsheet of material 

balance equation. The relationship between input-output parameters and statistical  

result will be investigated and analyzed. 

Chapter 5 describes the first-order approximation method and its application. 

The sensitivity coefficient of each variable will be derived. Consequently, the 

variance and result of original oil in-place can be obtained and compared with 

reference Monte Carlo simulation result. 

Chapter 6 describes the experimental design method and response surface 

method. The Box-Behnken design is chosen to employ in this study. The response 

surface will assist in providing the mathematic model for prediction purpose. The 

statistical result will be compared with traditional Monte Carlo Simulation and other 

uncertainty methods. 

  Chapter 7 presents the discussion, conclusion and provides recommendation 

for future works. 

 

 



CHAPTER   II 
 

LITERATURE REVIEW 
 

There are many studies which discuss about the reserve estimation methods to 

evaluate the uncertainty parameters in material balance equation. The below 

literatures are the summary of the relevant research regarding the material balance 

procedure, reservoir drive mechanism effect and uncertainty estimation technique.  

B. Wang and R. R. Hwan (1997) investigated the effect pf the pressure data 

quality and drive mechanisms on the material balance calculation. Result of this 

research indicate that for a depletion type reservoir, the impact of pressure data error 

on material balance calculation is minimal, but for a water drive or initial gas-cap 

reservoir, the impact can be significant, depending on the size of aquifer or gas-cap. 

Mike R. Carlson (1997) researched on the number of situation where 

drastically different interpretations are possible from oil material balances. The 

conclusion are presented as “tips” and “traps” in many cases, they represent matters of 

style e.g. to keep some pressure points based on the error analysis. Moreover, the 

accuracy of each parameter in material balance equation is discussed based on his 

experience and record. 

R.O. Baker, C. Regier, R. Sinclair (2003) emphasized the need to make 

correction to laboratory data or correction to field data. The result of this study 

indicate that the impact of PVT error on material balance calculation can be 

significant if the decrease in reservoir pressure over the production history of the 

reservoir is quite small, or if the oil is highly volatile. These results are also a good 

indication of one of the reasons why a reservoir should have a significant amount of 

production and pressure loss before it becomes a good candidate for analysis using the 

material balance equation. 

J. A. Murtha (1987) researched on the using of Monte Carlo simulation with 

material balance methods to estimate oil-in-place. The estimating parameters were 

pointed out only PVT properties for instance solution gas-oil ratio, formation volume 

factors. The water influx and gas-cap size were not mention in this research. From this 

study, The Monte Carlo technique can be applied to randomly select value of PVT 

properties to estimate hydrocarbon in-place. 
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Mark P. Walsh (1999) investigated the effect of pressure uncertainty and gas-

cap size on the reliability of the material-balance method. But their work is limited to 

an investigation of uncertainty by pressure errors the effect of uncertainty from other 

variables such as PVT properties and cumulative production measurements is 

expected to be similar. 

C. R. Mc Ewen (1961) presented technique for calculating the original amount 

of hydrocarbon in place, and for determining the constant characterizing the aquifer 

performance, based on pressure production data. When water encroachment is 

occurring, it is desirable to try to infer the behavior of the aquifer. This imposes 

additional demands on the method of calculation, and uncertainty in the data can 

result in large uncertainty in the answer. The least-square line lifting can then be 

applied so as to infer these quantities from observations of pressure and production 

data.  

Srikanta Mishra (1998) researched the alternatives to Monte Carlo simulation 

for the assessment of uncertainty in reservoir engineering calculations. In this 

research, he concluded that Monte Carlo simulation is not the most appropriate 

uncertainty propagation technique when information regarding input distribution is 

lacking and the probability associated with only a limited number of states is sought. 

The first order second moment method is efficient alternatives for computing the 

mean/variance of model output given the mean, variance and correlation matrix of 

model input. 

Chewaroungroaj J. et al. (2000) researched and demonstrated several 

approaches that qualitatively estimate uncertainty in specific hydrocarbon recovery 

predictions for instance Monte Carlo simulation, first-order Analysis, Second-order 

Analysis, response surface and experimental design in order to develop the procedures 

of hydrocarbon recovery prediction. The conclusion of this research, indicated that the 

use of experimental design and response surface analysis offer good potential to 

reduce the effort in uncertainty prediction and maintain the accuracy when compared 

to the full Monte Carlo simulation. 

In this study, several approaches of estimating uncertainty will be applied to 

compare the behavior of output for each approach and find the way to optimize the 

simulation case. The expected of outcome from this thesis is to investigate the result 

of output from each uncertainty analysis techniques. 

 



CHAPTER   III 
 

MATERIAL BALANCE APPLIED TO OIL 

RESERVOIR 
 

 In this chapter, the general material balance equation will be demonstrated and 

subsequently applied, using mainly the interpretive technique of Havlena and Odeh, 

to gain an understanding of reservoir drive mechanisms under primary recovery 

conditions. The use of basic component in the material balance equation and drive 

mechanism, are quantitatively discussed. Furthermore the uncertainty in reservoir 

parameters will be defined in order to assign the appropriate range of observed 

variables and to be in accordance with relevant research. 

 

3.1 General form of the material balance equation for a 

hydrocarbon reservoir 
 

The general form of material balance equation was first presented by 

Schilthuis in 1941. The equation is derived as a volume balance which equates the 

cumulative observed production, expressed as underground withdrawal, to the 

expansion of the fluids in the reservoir resulting from pressure drop. The situation is 

depicted in Figure 3.1 in which (a) represents the fluid volume at the initial pressure 

Pi in a reservoir which has a finite gas cap. The total fluid volume in this diagram is 

the hydrocarbon pore volume of the reservoir (HCPV). Figure 3.1 (b) illustrates the 

effect of reducing the pressure by an amount P and allowing the fluid volume to 

expand, in an artificial sense, in the reservoir. Volume A is the increase due to the 

expansion of the oil plus originally dissolved gas, while volume B is due to the 

expansion of initial gascap gas. The third volume increment C is the decrease in 

HCPV due to the combine effects of the expansion of the connate water and reduction 

in reservoir pore volume. 
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                                                    pΔ  

 

 

 

 

 

(a) b) 

Figure 3.1: Volume change in the reservoir associated with the finite pressure 

drop pΔ ; (a) volumes at initial pressure, (b) at the reduced pressure. 

 

If the total observed surface production of oil and gas is expressed in term of 

an underground withdrawal, evaluate at the lower pressure p, (which means 

effectively taking all the surface production back down to the reservoir at this lower 

pressure) then it should fit into the volume A+B+C which is the total volume change 

of the original HCPV. Conversely, volume A+B+C results from the expansions which 

are allowed to artificially occur in the reservoir. In reality, of course, these volume 

changes correspond to reservoir fluid which would be expelled from the reservoir as 

production. Thus the volume balance can be evaluated in reservoir barrels as  

 

Underground withdrawal (rb) = Expansion of oil (rb)  

                                                    + originally dissolved gas (rb) 

                                                    + Expansion of gascap gas (rb)  

                                                    + Reduction inHPVC due to connate water expansion 

                                                       and decrease in pore volume (rb)                      (3.1) 

 

Before evaluating the various components in the above equation it is first 

necessary to define the following parameters; 

 

N  is the initial oil in-place in stock tank barrels 
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 = ( ) oiwc BSV −1φ   stb                                                                                        (3.2) 

m  is the ratio between initial hydrocarbon volume of the gascap and initial 

hydrocarbon volume of the oil (and being define under initial condition, is a 

constant)  

pN  is the cumulative oil production in stock tank barrels 

pR  is the cumulative gas oil ratio 

 

Then the expansion terms in the material balance equation can be evaluated as 

follows 

 

a) Expansion of oil plus original dissolved gas 

There are two components in this term: 

Liquid expansion 

The N  stb will occupy a reservoir volume of oiNB  rb, at the initial pressure, 

while at the lower pressure p, the reservoir volume occupied by the N  stb will 

be oiNB , where oB  is the oil formation volume factor at the lower pressure. The 

difference gives the liquid expansion as 

( )oio BBN −  (rb)                                        (3.3) 

Liberated gas expansion 

Since the initial oil is in equilibrium with a gascap, the oil must be at 

saturation or bubble point pressure. Reducing the pressure below Pi will result 

in the liberation of solution gas. The total amount of solution gas in the oil is 

siNR  scf. The amount still dissolved in the N stb of oil at the reduced pressure 

is sNR  scf. Therefore, the gas volume liberated during the pressure drop pΔ , 

expressed in reservoir barrels at the lower pressure, is 

( ) gssi BRRN −  (rb)                                        (3.4) 

 

b) Expansion of the gascap gas 

The total volume of gascap gas is oimNB  rb, which in scf may be expressed as 

gi

oi

B
mNBG =  (scf)                                       (3.5) 

This amount of gas, at the reduced pressure p, will occupy a reservoir volume 
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gi

g
oi B

B
mNB  (rb)                                        (3.6) 

Therefore the expansion of gascap gas is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−1

gi

g
oi B

B
mNB  (rb)                                        (3.7) 

 

c) Change in the HCPV due to the connate water expansion and pore volume 

reduction. 

The total volume change due to these combined effects can be 

mathematically expressed as 

( ) fw dVdVHCPVd +−=                                       (3.8) 

or, as a reduction in the hydrocarbon pore volume, as 

( ) ( ) pVcVcHCPVd ffww Δ+−=                               (3.9) 

Where Vf is the total pore volume = ( )wcSHCPV −1  

And Vw is the connate water volume = 
wcf SV × = ( ) ( )wcwc SSHCPV −1  

Since the total HCPV, including the gascap, is 

( ) oiNBm+1  (rb)                                      (3.10) 

Then the HCPV reduction can be expressed as 

( ) ( ) p
S

cSc
NBmHCPVd

wc

fwcw
oi Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
+=−

1
1                          (3.11) 

This reduction in the volume which can be occupied by the hydrocarbon at the 

lower pressure p, must correspond to an equivalent amount of fluid production 

expelled from the reservoir, and hence should be added to the fluid expansion terms.  

 

d) Underground withdrawal 

The observed surface production during the pressure drop pΔ  is 
pN  stb of oil and 

ppRN  scf of gas. When these volumes are taken down to the reservoir at the reduced 

pressure p, the volume of oil plus dissolved gas will be 
opBN  rb. All that is known 

about the total gas production is that, at the lower pressure, 
sp RN scf will be dissolved 

in the 
pN  stb of oil. The remaining produced gas, ( )spp RRN −  scf is therefore, the total 

amount of liberated and gascap gas produced during the pressure drop pΔ  and will 
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occupy the volume ( ) gspp BRRN −  rb at the lower pressure. The total underground 

withdrawal term is therefore 

( )( )gspop BRRBN −+  (rb)                                      (3.12) 

Therefore, equating this withdrawal to the sum of the volume change in the 

reservoir, equations, give the general expression for the material balance as 

 

( )[ ] ( ) ( ) ( ) ( )
( ) ( ) wpe

w

fww

gi

g

oi

gssioio
oigspop BWWp

S
cSc

mB
Bm

B
BRRBB

NBBRRBN −+⎥
⎦

⎤
⎢
⎣

⎡
Δ

−
+

++⎟
⎠
⎞

⎜
⎝
⎛

−+
−+−

=−+
1
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                                                                                                                     (3.13) 

In which the final term ( ) wpe BWW −  is the net water influx into the reservoir. 

This has been intuitively added to the right hand side of the balance since any such 

influx must expel an equivalent amount of production from the reservoir thus 

increasing the left hand side of the equation by the same amount. In this influx term 

eW  = cumulative water influx from the aquifer into the reservoir, stb. 

pW  = cumulative amount of aquifer water produced, stb. 

wB  = water formation volume factor rb/stb. 

wB  is generally close to unity since the solubility of gas in water rather small 

and this condition will be assumed. The following features should be noted in 

connection with the expanded material balance equation. 

 

3.2 Natural water drive 
 

Natural water drive, as distinct from water injection, has already been 

qualitatively described, in connection with the material balance equation. The same 

principle applies when including the water influx in the general hydrocarbon reservoir 

material balance. A drop in the reservoir pressure, due to the production of fluids, 

causes the aquifer water expands and flow into the reservoir. 

Applying the compressibility definition to the aquifer, then 

Water influx = aquifer compressibility x Initial volume of water x Pressure drop 

                                                                                                                                (3.12) 

or 

( ) pWccW ifwe Δ+=                                            (3.13) 
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In which the total aquifer compressibility is the direct sum of the water and 

pore compressibility since the pore space is entirely saturated with water. The sum of 

wc  and 
fc  is usually very small, say 510−  psi, therefore, unless the volume of water iW  

is very large the influx into the reservoir will be relatively small and its influence as a 

drive mechanism will be negligible. If the aquifer is large, however, equation will be 

inadequate to describe the water influx. This is because the equation implied that the 

pressure drop pΔ , which is in fact the pressure drop at the reservoir boundary, is 

instantaneously transmitted throughout the aquifer. This will be reasonable 

assumption only if the dimensions of the aquifer are of the same order of magnitude 

as the reservoir itself. For a large aquifer there will be a time lag between the pressure 

change in the reservoir and the full response of the aquifer. In this respect natural 

water drive is time independent. If the reservoir fluids are produced too quickly, the 

aquifer will never have a chance to “catch up” and therefore the water influx, and 

hence the degree of pressure maintenance, will be smaller than if the reservoir were 

produced at a lower rate. To account for this time dependence in water influx 

calculations requires knowledge of fluid flow equations 

In attempting to use this equation to match the production and pressure history 

of a reservoir, the greatest uncertainty is always determination of the water influx eW . 

In fact, in order to calculate the influx the engineer is confronted with what is 

inherently the greatest uncertainty in the whole subject of reservoir engineering. The 

reason is that the calculation of eW  requires a mathematical model which itself relies 

on the knowledge of aquifer properties. These, however, are seldom measured since 

wells are not deliberately drilled into the aquifer to obtain such information. For 

instance, suppose the influx could be described using the simple model. Then, if the 

aquifer shape is radial, the water influx can be calculated as   

( ) ( ) pfhrrccW oefwe Δ−+= φπ 22                                         (3.14) 

In which er  and or  are the radial of the aquifer and reservoir, respectively, and 

f  is the fractional encroachment angle which is either πθ 2  or 360θ , depending on 

whether θ  is expressed in radians or degrees. It should be realized that the only term 

in above equation which is known with any degree of certainty is π . The remaining 

terms all carry high degree of uncertainty. For instance, what is the correct value of 

er ? Is the aquifer continuous for 20 kilometers or is it truncated by faulting? What is 
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the correct value of h , the average thickness of aquifer or φ , the porosity? These can 

only be estimated, based on the values determined in the oil reservoir. 

  

3.3 Reservoir parameter consideration 
 

According to the study of parameter’s uncertainty in material balance 

equation, the error in each input parameter will produce the variation of the output 

which is the original oil in-place. The author has found that it is very difficult to track 

the uncertainty in all parameters. For this research, mainly, the pressure uncertainty 

will be brought in consideration because almost all the variables are function of 

pressure. From Galas’s research, the average pressure uncertainty of at least 10 to 50 

psi is depended on the method of measurement and reservoir condition. In this study, 

the 10 psi error in pressure measurement will be assumed. The Standing’s correlation 

has been chosen to transform the pressure related term in material balance equation. It 

is also necessary to make simplifying assumption regarding PVT properties. Based on 

the data from numerous studies, black oil PVT data can usually be the reference thus 

black oil PVT data will be identically used in this research. 

 

Table 3.1: Reservoir parameter’s accuracy (M.R. Carlson and Galas) 

Observed variables Possible error 

Reservoir pressure, P (psi) 10± psi 

Reservoir initial pressure, Pi (psi) 10± psi 

Cumulative oil production, Np (stb) 2± % 

Cumulative water production, Wp (stb) 2± % 

Connate water saturation, Swc 5± % 

Water influx term, We (stb) 15± % 

Formation compressibility, Cf (1/psi) 5± % 
 

The cumulative oil production and cumulative water production is normally obtained 

from government records of production. Referring Canada measurement is 

government inspected and accuracy is typical plus or minus 2%. The connate water 

saturation is typically determined from well log analysis. Log analysis can have 

significant variation in accuracy. For instance The Energy Resources Conservation 
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Board (ERCB) normally rounds all saturations to the nearest 5%. All aquifer 

properties have been group together and considered the data error plus or minus 15% 

at discrete time in standalone basis. Table 3.1 illustrates the observed variables and 

their accuracy which will be applied in this research. 



CHAPTER   IV 
 

MONTE CARLO SIMULATION STUDY 

 
 This chapter presents the study of Monte Carlo simulation which experienced 

in investigation of uncertainty estimation in original oil in-place. As demonstrated in 

previous chapter, the general form of material balance equation has been chosen to 

study and develop the quantitative estimate uncertainty in original oil in-place 

prediction.  

Moreover, this chapter will contain a description of reservoir, the parameters 

used to assess original oil in-place uncertainty and describe the Monte Carlo 

simulation background and its results. In this study, Monte Carlo simulation will be 

employed as the reference to compare the uncertainty estimations of the method in 

subsequent chapters. 

  

4.1 Uncertainty parameters selection and reservoir model 

for original oil in-place estimation 
 

The simple original oil in-place of slightly compressible oil was chosen as the 

study process. This study is to research what are the most significant uncertainties in a 

material balance equation when estimated the original oil in-place. The uncertainty 

parameters in this study comprise of cumulative oil production, cumulative water 

production, initial reservoir pressure, compressibility factor, reservoir pressure, 

connate water saturation, porosity, formation thickness, reservoir radius, external 

boundary radius, encroachment angle and pressure drop across aquifer to reservoir 

boundary. For the remaining parameters, they will be considered as negligible effect. 

Thus they will be replaced with individual constants. 

Totally twelve parameters are considered as the source of uncertainty in 

material balance equation. To compare the uncertainty estimation with experimental 

design, the author found that the limited number of uncertainty variables allowed to 

run via the experimental design software (STATISTICA 6.0) is only seven 

parameters. As revisit the twelve parameters, the source of uncertainty parameter in 
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aquifer properties i.e. formation thickness, reservoir radius, external boundary radius, 

encroachment angle, porosity and pressure drop across aquifer which can be grouped 

together. Consequently, the uncertainty variables will be reduced to seven parameters 

i.e. cumulative oil production, cumulative water production , initial reservoir pressure, 

reservoir pressure, connate water saturation, formation compressibility and water 

influx term which can be performed via STATISTICA 6.0. 

In this study, the reservoir model is assumed to be hypothetical, single tank 

with natural water drive mechanism as shown in figure 4.1. It was assumed to have no 

initial gas cap and the pressure drop at the reservoir boundary is assumed to 

instantaneously transmit throughout the aquifer. 

The behavior of a reservoir fluid which is used in this research, have their 

properties and characteristic close to “Black oil” which is characterized as having 

initial producing gas-oil ratios of 2000 scf/stb or less. Producing gas oil ratio will 

increase during production when reservoir pressure falls below the bubble point 

pressure of the oil. The stock tank oil usually will have gravity below 60 API. Stock 

tank oil gravity will slightly decrease with time until late in the life of the reservoir 

when it will increase. Thus the fluid properties which used in this study, will be 

respected to Black oil fluid model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Natural Water Drive Mechanism 
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Laboratory analysis will indicate an initial oil formation volume factor of 2.0 

rb/stb or less. Oil formation volume factor is the quantity of reservoir liquid in barrels 

required to produce one stock tank barrel. 

The reservoir fluid properties at 25th month static time, which employ in this 

study, has the oil gravity 42.3 API. And the gas oil ratio and oil formation volume 

factor are 640 scf/stb and 1.489 rb/stb respectively. 

The initial reservoir pressure is assumed to be above its bubble point pressure 

and the producing condition is also assumed to focus at one moment of a static time 

below the bubble point pressure in order to investigate the PVT properties when a free 

gas phase exists in the reservoir. 

To assess the original oil in-place, the EXCEL spreadsheet of material balance 

equation has been generated. The seven parameters have been set to have their 

statistical distribution for instant initial reservoir pressure, reservoir pressure, connate 

water saturation, formation compressibility, water influx term, cumulative oil 

production and cumulative water production. All variables are assumed to be 

independent. 

As the triangular distribution is typically used as a subjective description of a 

population for which there is only limited sample data, and especially in cases where 

the relationship between variables is known but data is scarce (possibly because of the 

high cost of collection). Thus the triangle distribution suits oil and gas business and 

will be chosen as the probability density function of input variables in this study. The 

input variables in table 4.1, demonstrate the statistical moment and the range of 

variation which referred to the possible error of each parameter in chapter 3. 

Table 4.1: Range and Statistical moments of input variables for Monte Carlo 

Simulation 

Variables Max Min Mean Var 

Connate water saturation 0.37 0.33 0.35 0.00005 

Formation compressibility (1/psi)*10-6 5.25 4.75 5.00 0.00000002 

Cumulative oil production (stb) 112,098 107,702 109,900 861,450 

Cumulative water production (stb) 6,583 5,956 6,270 16,700 

Reservoir initial pressure (psi) 4,020 3,980 4,000 62 

Reservoir pressure (psi) 2,520 2,480 2,500 66 

Water influx term (MMstb) 1,840 1,360 1,600 10,215 
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From table 4.1, the parameters are used as random variables without any 

modification. The minimum and maximum value of each parameter will be based on 

the possible range of error as described in chapter 3. The ranges of stochastic 

variables are chosen to focus the change at static time that may affect the original oil 

in-place. 

Other descriptive parameters necessarily associate to this study are shown in 

table 4.2. The reservoir is produced naturally with natural water drive mechanism. 

The production period is chosen to be long enough to experience water production 

and PVT properties below bubble point pressure. 

The base-case scenario in this study is chosen from the combination of the 

sample mean values of all stochastic variables (table 4.1). The original oil in-place of 

the base-case scenario is 911,633 stb. 

 

Table 4.2: List of base-case description parameters 

 

                                                                                                                                             

 

                                                                                                                                             

 

 

 

 

 

 

As several correlations of the formation volume factor and solution gas oil 

ratio exist in the oil industry, from the relevant research, the evaluation of empirically 

derived PVT properties shown that the Standing’s correlation have a potential 

accurate in estimating PVT properties for middle east crude oil and they can be used 

for estimating the same PVT parameters for all types of oil and gas with properties 

falling within the range of data used in his study. However, the Standing’s correlation 

is chosen to represent the relationship between formation volume factor and solution 

gas oil ratio to reservoir pressure since the fluid properties used in this study, are 

within the range. 

Parameters Value 

Water formation volume factor, Bw (rb/stb) 1 

Reservoir temperature, (F) 212 

Oil API gravity, (API) 42.3 

Gas gravity 0.746 

Water compressibility, Cw (1/psi) 0.000003 

Oil compressibility, Co (1/psi) 0.000016 
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Figure 4.2 show the relationship between pressure and compressibility factor. 

We have fitted up the trend line with field data by using second order polynomial. As 

the possible range of pressure error is 10± psi which has a small effect to 

compressibility. However, in this study, the compressibility will be converted to 

pressure dependent term. 

 

y = 2E-08x2 - 1E-04x + 0.9755
R2 = 0.9919
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Figure 4.2: Compressibility factor as function of pressure in base case 

scenario with second order polynomial trend line 
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4.2 Monte Carlo Simulation background 
Monte Carlo Simulation (MCS) is a computer-based method of analysis 

developed in the 1940’s that uses statistic sampling techniques in obtaining a 

probabilistic approximation to the solution of a mathematical equation or model. Its 

methodology allows a full mapping of the uncertainty in model input, expressed as 

probability distributions, into the corresponding uncertainty in model output which is 

also expressed in terms of probability distribution. 

 
Figure 4.3: Schematic showing the principal of stochastic uncertainty 

propagation 

 

 Figure 4.3 demonstrates the Monte Carlo simulation procedure involves the 

random sampling of each probability distribution within the model to produce 

hundreds or even thousands of scenarios (also called iterations, realizations or trials) a 

value is drawn at random from the distribution for each input. Together this set of 

random values, one of each input, defines a scenario, which is used as input to the 

model, computing the corresponding output valve. The entire process is repeated m 

times producing m independent scenarios with corresponding output values. These m 

output values constitute a random sample from the probability distribution over the 

output induced by the probability distribution over the inputs. One advantage of this 

approach is that the precision of the output distribution may be estimated from this 
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sample of output values using standard statistical techniques. The Monte Carlo 

Simulation approach offers several advantages for propagating uncertainty in 

georesources engineering problems. First of these is that full range of each uncertain 

input parameter is sampled and used in generating the probabilistic model outcome. A 

second advantage is the ease of implementation – any input – output model can be 

utilized in the Monte Carlo Simulation process without making any modifications to 

the original model. Finally, the Monte Carlo Simulation approach is conceptually 

simple, widely used and easy to explain. 

 The major disadvantage of with the Monte Carlo Simulation technique is the 

need to perform multiple model calculations. For large and/or complex models, the 

computational burden associated with a full Monte Carlo Simulation analysis can be 

prohibitive. A second disadvantage concerns the issue of data availability for defining 

the range and distribution of the uncertain inputs. Finally the Monte Carlo Simulation 

approach may not be the most efficient when the probability associated with only a 

limited number of model outcomes is desired. 

Steps in simulating an iteration of: x 

1. Generate a vector of statistically independent, uniformly distributed random 

numbers between 0 and 1, iU . 

2. Transform iU  to ix . 

Transformation of single random variables 

Inverse transform method: 

 

                                                             ( )xFU x=                                                     (4.1) 

 

U  has a uniform distribution between 0 and 1 

If we generate an iteration of a uniformly distributed random number, iU , then an 

iteration of x  can be obtain as follows 

 

                                                            ( )ixi uFx 1−=                                                  (4.2) 
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A common weakness in Monte Carlo studies is that no mention made about 

the precision of the results. Two items should be always included when reporting 

Monte Carlo results: 

1. The basis for determining the number of simulation used. 

2. The precision of the results in the form of confidence bounds. 

 

4.3 Monte Carlo Simulation results 
We generate 700 trials for all seven variables according to their probability 

distribution. Each iteration comprises of seven random values of the stochastic 

variables and other descriptive parameters at their base-case values. The actual 

statistical moments, means and variance of these inputs are shown in table 4.1. The 

combinations of the mean values of all variables are considered as the base-case 

scenario. The 700 trials Monte Carlo Simulation using material balance equation was 

undertaken to calculate the statistical moment of the original oil in-place at one 

moment of the time. The original oil in-place in this study is defined as the static 

measure of hydrocarbon volume at the specific time. This Monte Carlo Simulation 

results established a reference for comparing other technique employed in this study. 

From figure 4.4 shows that the mean value of original oil in-place becomes 

stabilized after 540 trials. The average value of original oil in-place of all 540 trials 

and more is around 910,920 – 911,479 stb. The variance of original oil in-place 

(referred as the uncertainty in the original oil in-place) also shows the same 

stabilization in figure 4.5. The variance of original oil in-place of all 540 trials and 

more is around 127,007,420 – 131,583,593 hence, the total number of 700 trials used 

as the reference statistic should be sufficient. This also confirms the requirement of 

large number of iteration using Monte Carlo Simulation technique to assess the 

uncertainty for this study. 
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Figure 4.4: Number of iterations needed to stabilize the sample mean of 

original oil in-place in the 700 trials Monte Carlo Simulation 
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Figure 4.5: Number of iterations needed to stabilize the sample variance 

of original oil in-place in the 700 trials Monte Carlo Simulation 

 

Figure 4.6, 4.7 illustrates the cumulative distribution function (CDF) and 

probability distribution function (PDF) of the original oil in-place from the 700 trials 

Monte Carlo Simulation. The calculated cumulative distribution function and 

probability distribution function follow the procedure described by Jansen et al 

(1997). The distribution is relatively smooth. Table 4.3 shows statistics summary of 

the original oil in-place. The Monte Carlo Simulation of the original oil in-place has a 

mean value of 912,823 stb and a variance of 126,954,400. 
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Figure 4.6: Original oil in-place CDF for the 700 trials Monte Carlo 

Simulation 
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Figure 4.7: Original oil in-place PDF for the 700 trials Monte Carlo 

Simulation 
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Table 4.3: Statistical summary of original oil in-place from the 700 trials Monte 

Carlo simulation 

 

Statistics Sample value 

Maximum 938,311 

Minimum 876,969 

Mean 912,823 

Variance 126,954,400 

Std Deviation 11,267 

P10 898,173 

P25 903,034 

P50 912,990 

P75 918,545 

P90 927,471 
 

From table 4.3, the statistic result from Monte Carlo simulation show the 

confident bound of P10 at 898,173 stb, P25 at 903,034 stb, P50 at 912,990 stb, P75 at 

918,545 stb and P90 at 927,471 stb. These Monte Carlo Simulation results will be a 

reference for comparing with the other statistical result of each technique employed in 

this study. 

Figure 4.8 thru 4.14 demonstrates the relationship between input variables and 

original oil in-place from the Monte Carlo simulation. From figure 4.8, We could not 

establish relationship between the original oil in-place and connate water saturation 

since it show non-linear relationship and the data are scatted. And also there are no 

show relationships between other variable for instant reservoir pressure, cumulative 

water production, formation compressibility, cumulative oil production, initial 

reservoir pressure and water influx term. The statistical measurement which subject to 

the data fitting in the simple linear model, is the R square or namely coefficient of 

determination.  
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Figure 4.8: Original oil in-place as function of connate water saturation 

from the 700 trials Monte Carlo simulation 
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Figure 4.9: Original oil in-place as function of cumulative oil production 

from the 700 trials Monte Carlo simulation 
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R2 = 0.0004
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Figure 4.10: Original oil in-place as function of cumulative water 

production from the 700 trials Monte Carlo simulation 
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Figure 4.11: Original oil in-place as function of water influx term from 

the 700 trials Monte Carlo simulation 
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R2 = 0.2036
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Figure 4.12: Original oil in-place as function of reservoir initial pressure 

from the 700 trials Monte Carlo simulation 
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Figure 4.13: Original oil in-place as function of reservoir pressure from 

the 700 trials Monte Carlo simulation 
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R2 = 0.0197
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Figure 4.14: Original oil in-place as function of compressibility factor 

from the 700 trials Monte Carlo simulation 

 

In order to investigate the goodness of fit of the model, in regression, the R2 

coefficient of determination is a statistical measure of how well the regression line 

approximates the real data points. From the plots, the R2 coefficients of determination 

are summarized in table 4.4. 

 

Table 4.4: Coefficient of determination 

Variables relationship R square 
Original oil in-place vs connate water saturation 0.0015 
Original oil in-place vs cumulative water production 0.0312 
Original oil in-place vs cumulative oil production 0.0004 
Original oil in-place vs water influx 0.001 
Original oil in-place vs reservoir initial pressure 0.2036 
Original oil in-place vs reservoir pressure 0.7763 
Original oil in-place vs formation compressibility 0.0197 

 

More simply, R2 is often interpreted as the proportion of response variation 

"explained" by the regressors in the model. Thus, R2 = 1 indicates that the fitted 

model explains all variability in y, while R2 = 0 indicates no 'linear' relationship 

between the response variable and regressors. As concluded in table 4.4, there is only 
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one parameter which tended to has relationship between original oil in-place and 

reservoir pressure. For the rest of parameters, the R2 value are almost zero which 

indicate no linear relationship between the response variables and regressor. 

From table 4.4, the coefficient of determination can indicate the degree of 

strength of linear relationship. The weakest relationship between input and output 

parameter, is cumulative oil production versus original oil in-place. In the other hand, 

the strongest relationship is reservoir pressure versus original oil in-place. 

For the next chapter, all statistical results from Monte Carlo simulation study 

will be compared with other uncertainty analysis methods i.e. first-order 

approximation method, response surface method. Moreover, the result from the base 

case scenario will be compared with predictive results of the first-order approximation 

method and the new simplify quadratic equations which obtained from response 

surface method. 



CHAPTER   V 

UNCERTAINTY ANALYSIS 
  

 This chapter contains a description of the approximate analytical technique 

based on Taylor’s series expansion of the material balance equation. The collection of 

mathematical and statistical technique, response surface methodology, that are useful 

for modeling and analysis of problems are also applied. The result of each uncertainty 

analysis method will be analyzed and compared with traditional Monte Carlo method. 

Moreover, the predictive result of first-order approximation and each response surface 

model will be compared with the base case result. 

 

5.1 First-order analysis 
The analysis of uncertainty involves measuring the degree to which each input 

contributes to uncertainty in the output. An input that has a small sensitivity but a 

large uncertainty may be just as important as an input with a large sensitivity but 

small uncertainty. One of the simplest approaches to uncertainty analysis, one that 

explicitly considers the effect of both sensitivity and uncertainty on a variance, is the 

first-order or Gaussian approximation. This simple method is based on Taylor’s series 

expansion. It provides a way to express the deviation of an output from its base-case 

value in terms of deviations if its input from their base-case values. 

 

5.1.1 First-order approximation 
Suppose we have a model of the form 

( )XnXXfY ,...,2,1=  

In this study, the model, symbolically above as f, will be the Excel spreadsheet 

of material balance equation, Y is the variable to be predicted (original oil in-place) 

and iX  is the inputs. A first-order Taylor’s series expansion around a base-case value, 

0X , gives 

                                      ( )0

1
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0
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⎦

⎤
⎢
⎣

⎡
∂
∂

≅− ∑
=

                              (5.1) 

And the general first order approximation for the variance of the output is 
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If the inputs are independent, the second terms containing the covariance are 

zero. The variance of the output is approximately the sum of the product of the 

squares of the sensitivity of each input and their variance: 
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The variability in an output is thus comprised of two components: the 

sensitivity of the output Y  to the input iX  and the variability of the iX  themselves. 

To acquire this result, we must calculate the sensitivity coefficient (partial 

derivatives) for evaluating the variability of an output. The derivative is the ratio of 

the change in the output to the change in the input. The form of the first-order model 

is sometime called a main effect model because it includes only the main effects of 

the variables. 

 

5.1.2 Sensitivity coefficient 
The sensitivity coefficient or partial derivative of a function of several 

variables is its derivative with respect to one of those variables with the others held 

constant. In this research, the material balance equation will be represented as the 

main function. The sensitivity coefficient or partial derivative of each parameter will 

be the derivative of the material balance equation with respect to the observing input 

variable. 

In order to obtain the variance of the output, the partial derivative of each 

parameter in material balance equation has to be determined. The partial derivative of 

material balance equation with respect to each input variable are summarized.  

In this research, there are seven variables to determine sensitivity coefficient 

i.e. connate water saturation, formation compressibility, cumulative oil production, 

cumulative water production, initial reservoir pressure, reservoir pressure and water 

influx term. The details of derived equations are illustrated in appendix A. Totally, the 

first order approximation result and the output variance are shown in table 5.1. 
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Table 5.1: Uncertainty assessment (variance of the original oil in-place) using 

first-order analysis method. 

Parameter description Sensitivity 
coefficient 

Individual 
variance 

 

Connate water saturation -177,162 0.000050 1,569,319 
Formation compressibility 7,917,725,060 2.2*10-14 1,379,278 
Cumulative oil production 8 857,364 54,871,296 
Cumulative water 
production 3 16,057 144,513 

Initial reservoir pressure 2,770 64 491,065,600 
Reservoir pressure -216 69 3,219,264 
Water influx term -3 9,213 82,917 
Variance from First-order 
approximation method - - 552,332,187 

 

5.1.3 Uncertainty assessment using first-order method 
We assess uncertainty in the original oil in-place by calculating the variance of 

the original oil in-place using equation 5.3. As the results of calculated variance 

which demonstrated in table 5.1, the value of calculated output variance (var: 

552,332,187) is not close to the reference variance of Monte Carlo simulation (var: 

126,954,400) as shown in table 5.3. From this comparison, we can conclude that the 

uncertainty analysis using the first-order approximation method is overestimate.  

We have to note that the first-order approximation method can provide the 

predictive result equal to base case value when all the input variables are at the base 

case condition. Hence the expansion term of Taylor’s series will be zero and 

consequently the result will be equal to base case scenario. Thus, in order to get the 

prediction result, we should have more than one random run to get the average value 

of the result around the base case. 

Another attempt, we tried on random the input variables into equation 5.1, 32 

iterations to see the predictive results of the first-order approximation method. As the 

result of original oil in-place of first-order approximation method, the minimum and 

maximum output values are 885,603 stb and 956,179 stb respectively. We also tried 

on average the output from 36 iterations and compare to the base case. We can get the 

result close to base case as shown in table 5.2.  
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Table 5.2: Predictive results of first-order approximation method compared with 

base case scenario 

Predictive output Base-case First-order 
approximation method 

Iteration no.1 911,633 929,338 
Iteration no.2 911,633 941,172 
Iteration no.3 911,633 956,179 
Iteration no.4 911,633 924,576 
Iteration no.5 911,633 915,036 
Iteration no.6 911,633 896,072 
Iteration no.7 911,633 915,337 
Iteration no.8 911,633 885,603 
Iteration no.9 911,633 915,265 
Iteration no.10 911,633 913,196 
Iteration no.11 911,633 915,036 
Iteration no.12 911,633 896,072 
Iteration no.13 911,633 915,337 
Iteration no.14 911,633 885,603 
Iteration no.15 911,633 915,265 
Iteration no.16 911,633 913,196 
Iteration no.17 911,633 924,576 
Iteration no.18 911,633 915,036 
Iteration no.19 911,633 896,072 
Iteration no.20 911,633 915,337 
Iteration no.21 911,633 885,603 
Iteration no.22 911,633 915,265 
Iteration no.23 911,633 913,196 
Iteration no.24 911,633 924,576 
Iteration no.25 911,633 915,036 
Iteration no.26 911,633 896,072 
Iteration no.27 911,633 915,337 
Iteration no.28 911,633 885,603 
Iteration no.29 911,633 915,265 
Iteration no.30 911,633 913,196 
Iteration no.31 911,633 913,196 
Iteration no.32 911,633 913,196 
Iteration no.33 911,633 956,179 
Iteration no.34 911,633 924,576 
Iteration no.35 911,633 885,603 
Iteration no.36 911,633 915,337 
Average value 911,633 913,071 
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Figure 5.1: 32 iterations of predictive outputs from first-order 

approximation method 

 

Table 5.3: Statistical result of first-order approximation method compared with 

Monte Carlo simulation 

Statistical result Monte Carlo simulation First-order 
approximation method 

Max 938,311 956,179 
Min 876,969 885,603 

Mean 912,823 913,071 
Variance 126,954,400 552,332,187 

SD 11,267 23,501 
P10 898,173 885,603 
P25 903,034 904,634 
P50 912,990 915,036 
P75 918,545 915,337 
P90 927,471 924,576 

 

In the next section, the predictive value and statistical result of response 

surface model will be compared with the base case and Monte Carlo simulation in 

order to determine the benefit of using each method. 
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5.2 Response surface method 

5.2.1 Background 
Response surface methodology is a collection of statistical and mathematical 

techniques useful for developing, improving, and optimizing processes (Myer and 

Montgomery, 1995). The most extensive applications of response surface are found 

where several inputs influence the output of a model. The procedures used in 

determining a response surface are combination of experimental design, mathematical 

method, and statistic inference (Box and Wilson, 1951).The response surface is an 

empirical relationship that satisfies the observed effects of the different factors. Its 

procedure is not used for understanding the mechanism of the system or process but 

rather optimizing a process or allow and accurate forecast in a defined region of the 

total space of the factors or variables (Varela, 1999). 

Polynomials are the most common form used for response surface model. The 

simplest equation describing the relation between a response and variables is the 

linear model or the first-order model. Each variable independently affects the 

response. If there exists interactions between variables, quadratic response model, or a 

second-order model is more suitable. 
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Where Y is the observed response, and estimates of the coefficients a’s, are to 

be determined by the method of least squares, which minimizes the sum of the 

squares of the errors, ε . As the number of the variables increase, more coefficients 

must be estimated, and the number of experimental points must necessarily increase. 

There is a close connection between response surface method and linear 

regression analysis. The coefficients a’s are a set of unknown parameters. To estimate 

the values of these parameters, we must collect data on the system we are studying. 

Regression analysis is a branch of statistical model building that uses these data to 

estimate the coefficient a’s. It is important to plan the data collection phase of a 

response surface study carefully. Several designs have been developed to minimize 
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the number of points required to determine these surface-response equations (Myer 

and Montgomery, 1995). 

 

5.2.2 Uncertainty assessment using response surface method 
In general, whenever the first order model does not appear to adequately 

represent the relationships between variables, then the higher order model approach is 

appropriate. In this study, we have chosen the second-order model to find a suitable 

approximation function that allows prediction of original oil in-place and associated 

uncertainty with fewer simulation runs than the Monte Carlo simulation without 

losing much accuracy. Because we already have the input and output data from 700 

trials Monte Carlo simulation, we use the model fitting to determine the model’s 

coefficients. For the seven variables in this study, the number of samples needed to be 

estimated in the second-order model is 36. Therefore, we would need at least 36 

observation points for the surface response model.  

First, we randomly choose 36 different simulations from the 700 trials Monte 

Carlo simulation and calculate the model’s coefficients. Then, we use this derived 

empirical function to calculate original oil in-place of all 700 trials and estimate their 

statistics. The procedure is repeated again using another set of 36 simulation runs. For 

this time, we select the simulation runs by having the input spread out over their 

ranges (scatter) and at the edge of the range (most of the values are at the upper and 

lower boundary of their range). 
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Figure 5.2: Original oil in-place CDFs comparison of the 700 trials Monte 

Carlo simulation and the derived response surfaces 

 

Figure 5.2 illustrates cumulative distribution function of the original oil in-

place using derived response surfaces and the reference Monte Carlo simulation. Both 

derived response surfaces and Monte Carlo simulation produce similar CDFs and the 

trends are smooth. The derived response surface with selected observation points 

seems to give a better approximation to the reference Monte Carlo than the random 

observation one. The derived response surface with random observation point results 

shifts away from Monte Carlo simulation starting from probability at 0.1 thru 0.9. We 

found that the maximum difference of the result value between the derivative 

response surface with random observation points and Monte Carlo simulation 

occurred at probability (0.9), is approximately 3,924 stb. 

Table 5.4, 5.5 and 5.6 show the 36 random simulation results and 36 selected 

simulation results from 700 trials Monte Carlo simulation which used for fitting the 

response surface. In the yellow cells, the simulation results were filtered to have only 

the input at the edge (upper and lower bound) and only the input spread out over both 

upper and lower range. The response surface equation fitting will be explained the 

detail in appendix B. 
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Table 5.4: Selected input observation points at the edge of boundary from 700 

trials Monte Carlo simulation 

 

Name N Cf Swc Np Wp Pi P We 
Type Output Input Input Input Input Input Input Input 

Iteration 240 911,008 5.24E-06 0.3597 109,821 6,238 3,997 2,500 1,452 
Iteration 311 903,462 5.23E-06 0.3439 110,492 6,303 4,000 2,493 1,615 
Iteration 68 905,905 5.23E-06 0.3356 109,549 6,285 4,010 2,502 1,756 
Iteration 99 904,025 4.51E-06 0.3384 109,952 6,330 4,008 2,493 1,465 
Iteration 452 905,258 4.52E-06 0.3496 110,400 6,266 4,018 2,500 1,789 
Iteration 275 904,402 5.04E-06 0.3669 109,544 6,173 4,005 2,499 1,545 
Iteration 70 915,157 5.11E-06 0.3668 109,413 6,145 3,997 2,505 1,543 
Iteration 579 911,692 5.14E-06 0.3666 109,529 6,117 4,002 2,505 1,734 
Iteration 229 894,693 4.85E-06 0.3327 108,772 6,398 4,002 2,487 1,679 
Iteration 580 914,798 4.81E-06 0.3341 108,857 6,222 4,014 2,509 1,463 
Iteration 611 908,143 5.18E-06 0.3519 111,943 6,498 3,997 2,493 1,660 
Iteration 614 921,373 4.81E-06 0.3428 111,933 6,340 3,995 2,500 1,643 
Iteration 518 925,207 4.75E-06 0.3613 111,924 6,271 3,991 2,502 1,628 
Iteration 450 906,401 4.88E-06 0.3545 107,792 6,164 3,987 2,493 1,480 
Iteration 395 910,104 4.59E-06 0.3614 107,826 6,518 3,998 2,499 1,535 
Iteration 93 943,180 4.64E-06 0.3539 111,764 6,583 3,999 2,518 1,517 
Iteration 536 889,146 5.20E-06 0.3590 109,878 6,573 4,012 2,488 1,618 
Iteration 352 895,847 4.91E-06 0.3616 111,100 6,571 4,011 2,489 1,601 
Iteration 573 914,515 4.91E-06 0.3416 109,696 5,980 4,010 2,507 1,579 
Iteration 263 903,452 4.74E-06 0.3504 111,154 5,985 4,004 2,492 1,615 
Iteration 324 899,418 5.09E-06 0.3495 109,729 6,168 4,019 2,500 1,578 
Iteration 389 886,534 5.08E-06 0.3372 110,052 6,502 4,019 2,487 1,541 
Iteration 632 904,670 5.06E-06 0.3383 111,234 6,222 4,018 2,500 1,503 
Iteration 402 924,004 5.04E-06 0.3510 111,334 6,270 3,981 2,499 1,640 
Iteration 586 920,974 5.10E-06 0.3605 110,112 6,200 3,982 2,499 1,479 
Iteration 213 929,485 4.91E-06 0.3368 111,212 6,273 4,016 2,519 1,641 
Iteration 319 933,227 4.85E-06 0.3617 109,852 6,079 4,000 2,518 1,581 
Iteration 380 940,223 4.78E-06 0.3625 111,267 6,438 3,996 2,517 1,588 
Iteration 211 898,369 4.89E-06 0.3452 110,461 6,412 3,988 2,481 1,553 
Iteration 567 902,860 4.82E-06 0.3433 111,731 6,323 3,987 2,481 1,507 
Iteration 162 919,525 4.89E-06 0.3588 108,444 6,269 3,983 2,502 1,832 
Iteration 648 917,875 5.14E-06 0.3460 111,184 6,329 3,989 2,498 1,827 
Iteration 651 904,988 4.74E-06 0.3433 110,081 6,331 3,999 2,492 1,825 
Iteration 388 901,010 4.75E-06 0.3531 108,977 6,131 3,994 2,489 1,375 
Iteration 597 896,789 4.59E-06 0.3417 109,947 6,426 4,004 2,485 1,376 
Iteration 689 898,836 4.92E-06 0.3516 110,153 6,293 4,010 2,493 1,380 
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Table 5.5: Selected input observation points spread out (scatter) over 700 trials 

Monte Carlo simulation 

 

Name N Cf Swc Np Wp Pi P We 
Type Output Input Input Input Input Input Input Input 

Iteration 99 904,025 4.51E-06 0.3384 109,952 6,330 4,008 2,493 1,465 
Iteration 509 909,094 4.75E-06 0.3597 110,485 6,043 4,005 2,500 1,786 
Iteration 568 925,389 4.92E-06 0.3534 110,230 6,181 3,994 2,508 1,754 
Iteration 423 925,171 5.04E-06 0.3481 109,184 6,338 4,009 2,517 1,614 
Iteration 240 911,008 5.24E-06 0.3597 109,821 6,238 3,997 2,500 1,452 
Iteration 229 894,693 4.85E-06 0.3327 108,772 6,398 4,002 2,487 1,679 
Iteration 424 912,091 5.05E-06 0.3441 109,507 6,142 3,994 2,499 1,605 
Iteration 601 928,483 5.06E-06 0.3495 109,862 6,403 3,990 2,509 1,539 
Iteration 21 903,466 4.97E-06 0.3560 109,934 6,031 4,008 2,498 1,601 
Iteration 275 904,402 5.04E-06 0.3669 109,544 6,173 4,005 2,499 1,545 
Iteration 450 906,401 4.88E-06 0.3545 107,792 6,164 3,987 2,493 1,480 
Iteration 54 915,751 4.85E-06 0.3353 109,158 6,444 4,001 2,503 1,638 
Iteration 333 895,156 5.15E-06 0.3457 109,769 6,359 4,004 2,489 1,526 
Iteration 452 905,258 4.52E-06 0.3496 110,400 6,266 4,018 2,500 1,789 
Iteration 611 908,143 5.18E-06 0.3519 111,943 6,498 3,997 2,493 1,660 
Iteration 573 914,515 4.91E-06 0.3416 109,696 5,980 4,010 2,507 1,579 
Iteration 330 905,393 4.94E-06 0.3430 109,470 6,169 4,012 2,501 1,707 
Iteration 595 896,776 4.86E-06 0.3508 109,984 6,269 4,000 2,487 1,649 
Iteration 119 907,435 4.88E-06 0.3481 108,532 6,384 4,006 2,501 1,512 
Iteration 93 943,180 4.64E-06 0.3539 111,764 6,583 3,999 2,518 1,517 
Iteration 402 924,004 5.04E-06 0.3510 111,334 6,270 3,981 2,499 1,640 
Iteration 526 925,492 5.00E-06 0.3538 109,606 6,104 3,994 2,509 1,489 
Iteration 141 924,302 4.94E-06 0.3387 110,273 6,411 4,000 2,508 1,475 
Iteration 66 895,863 4.99E-06 0.3544 109,438 6,256 4,006 2,491 1,712 
Iteration 324 899,418 5.09E-06 0.3495 109,729 6,168 4,019 2,500 1,578 
Iteration 211 898,369 4.89E-06 0.3452 110,461 6,412 3,988 2,481 1,553 
Iteration 62 903,280 5.11E-06 0.3365 109,128 6,313 3,997 2,493 1,526 
Iteration 411 916,034 4.76E-06 0.3412 108,767 6,162 3,991 2,500 1,698 
Iteration 23 920,048 4.89E-06 0.3632 110,986 6,204 4,002 2,506 1,632 
Iteration 213 929,485 4.91E-06 0.3368 111,212 6,273 4,016 2,519 1,641 
Iteration 388 901,010 4.75E-06 0.3531 108,977 6,131 3,994 2,489 1,375 
Iteration 542 925,862 4.92E-06 0.3605 111,844 6,378 4,003 2,509 1,519 
Iteration 260 897,171 4.86E-06 0.3425 110,459 6,487 4,000 2,485 1,591 
Iteration 502 922,572 4.97E-06 0.3564 109,619 6,265 3,989 2,504 1,642 
Iteration 284 899,151 4.90E-06 0.3394 108,280 6,035 3,991 2,488 1,711 
Iteration 162 919,525 4.89E-06 0.3588 108,444 6,269 3,983 2,502 1,832 
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Table 5.6: Random input observation points from 700 trials Monte Carlo 

simulation 

 

Name N Cf Swc Np Wp Pi P We 
Type Output Input Input Input Input Input Input Input 

Iteration 1 919,825 4.80E-06 0.344 110,328 6,172 4,003 2,505 1,479 
Iteration 2 908,963 5.06E-06 0.364 109,090 6,350 4,000 2,501 1,606 
Iteration 3 909,737 4.92E-06 0.358 109,021 6,226 3,993 2,497 1,507 
Iteration 4 905,510 4.82E-06 0.352 108,950 6,402 4,018 2,504 1,604 
Iteration 5 921,287 4.72E-06 0.350 110,294 6,145 3,982 2,497 1,637 
Iteration 6 916,244 4.74E-06 0.347 109,439 6,121 4,003 2,505 1,595 
Iteration 7 907,551 4.71E-06 0.349 110,103 6,254 3,996 2,492 1,692 
Iteration 8 929,136 4.85E-06 0.356 111,535 6,297 4,003 2,511 1,440 
Iteration 9 906,920 4.98E-06 0.338 109,746 6,387 4,005 2,497 1,510 
Iteration 10 914,932 4.98E-06 0.341 109,728 6,234 4,002 2,503 1,496 

Iteration 201 937,155 4.60E-06 0.350 110,824 6,185 3,991 2,511 1,383 
Iteration 202 908,985 4.96E-06 0.350 110,621 6,440 3,997 2,495 1,726 
Iteration 203 911,933 5.04E-06 0.341 109,918 6,310 4,005 2,502 1,592 
Iteration 204 914,222 4.84E-06 0.353 110,977 6,358 3,997 2,498 1,576 
Iteration 205 931,259 4.90E-06 0.360 109,355 6,439 3,983 2,508 1,571 
Iteration 206 922,711 4.87E-06 0.343 110,374 6,144 4,001 2,507 1,491 
Iteration 207 905,130 4.94E-06 0.357 110,584 6,170 3,993 2,491 1,686 
Iteration 208 911,992 5.00E-06 0.350 110,348 6,150 4,008 2,504 1,619 
Iteration 209 911,240 5.06E-06 0.351 108,828 6,378 3,992 2,498 1,701 
Iteration 210 886,929 5.13E-06 0.350 109,540 6,333 4,016 2,489 1,584 
Iteration 401 912,869 4.95E-06 0.356 111,067 6,179 4,016 2,507 1,696 
Iteration 402 912,851 5.16E-06 0.360 108,856 6,211 3,996 2,503 1,490 
Iteration 403 919,477 5.11E-06 0.342 110,151 6,399 3,999 2,505 1,531 
Iteration 404 902,542 4.96E-06 0.349 109,622 6,039 4,007 2,497 1,675 
Iteration 405 901,162 4.98E-06 0.361 108,964 6,336 4,009 2,498 1,603 
Iteration 406 890,865 4.77E-06 0.334 109,720 6,161 4,008 2,485 1,592 
Iteration 407 896,909 4.97E-06 0.355 110,430 6,165 4,004 2,489 1,697 
Iteration 408 930,150 4.69E-06 0.333 109,769 6,219 3,997 2,510 1,467 
Iteration 409 897,073 4.73E-06 0.353 109,537 6,008 4,017 2,496 1,604 
Iteration 410 895,763 4.94E-06 0.359 110,865 6,388 3,998 2,484 1,495 
Iteration 601 916,152 5.02E-06 0.366 110,409 6,357 4,003 2,505 1,632 
Iteration 602 894,953 5.02E-06 0.355 111,392 6,203 4,004 2,486 1,826 
Iteration 603 908,979 4.94E-06 0.344 110,027 6,259 4,004 2,499 1,593 
Iteration 604 892,246 4.99E-06 0.348 109,678 6,203 4,000 2,484 1,544 
Iteration 605 907,038 4.67E-06 0.340 109,485 6,068 4,010 2,500 1,573 
Iteration 606 896,670 4.95E-06 0.355 109,545 6,111 4,017 2,497 1,627 
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From equation 5.6, 5.7 and 5.8, demonstrate the second-order or quadratic 

models which fitted from 36 random observation points, 36 selected observation 

points at the edge of the range and 36 selected observation points spread over the 

range respectively. 

 

7654321 12173932133721,482328,051,830,30001,530,2 XXXXXXXY −−−+−++=  

      6151413121 976,297,18648,200,4697,120540,42216,993,697,12 XXXXXXXXXX −++−−  

      
5343726252423271 001.03196317.04.0928,140 XXXXXXXXXXXXXXXX −−+−+−−−  

      75657464547363 003.000001.0003.0004.000002.0004.0 XXXXXXXXXXXXXX +−−+−++  
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76 54.000001.0000001.0063,144)104(004.0 XXXXXXXXX +++++−×−−  

                                                                                                                                  (5.6) 

7654321 4010722291046348,792,3224,052,728,27644,681,1 XXXXXXXY +−−+−+−=  

      6151413121 264,021,19128,879,12190,302,2786,436288,228,321,69 XXXXXXXXXX +−−+−  

      
5343726252423271 004.00004.04307,1183327252,353 XXXXXXXXXXXXXXXX −++−−−+−  

      75657464547363 006.0002.004.0006.0002.0 XXXXXXXXXXXXXX +−−−−−−  
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76 002.04.000006.00000025.0636,139)1015(01.0 XXXXXXXXX −++++−×−+  

                                                                                                                                  (5.7) 

7654321 18365,2076,38818012,245743,096,4682,810,3 XXXXXXXY −+−+−−−=  

      32716151413121 25597,5500,24222087,159,1 XXXXXXXXXXXXXX −+−+−−−  
      63534372625242 01.0006.000001.02061431150 XXXXXXXXXXXXXX +−−+−+−  

      76756574645473 008.0008.02001.00001.0001.00001.0 XXXXXXXXXXXXXX −+−−+−−  
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2
1 001.028.0001.000002.0684,24426,396,5 XXXXXXX −++−−+−  

                                                                                                                    (5.8) 

From the above response surfaces equation 5.6, 5.7 and 5.8, we used the 

Monte Carlo simulation method to generate the input distribution, the statistical 

results of original oil in-place for all response surfaces are shown in table 5.7. 

Furthermore, the predictive results of original oil in-place for all response surfaces 

can be acquired by plug in the variables at base case condition. All the predictive 

results are also shown in table 5.8. 
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Table 5.7: Comparison of statistical result between Monte Carlo, response 

surfaces and first-order approximation 

Statistics Monte Carlo RS random RS selected 
(edge) 

RS selected 
(scatter) 

First-order 
approximation

Max 938,311 944,471 945,147 940,834 956,179 
Min 876,969 883,521 880,589 878,930 885,603 

Mean 912,823 910,693 911,925 912,704 913,071 
Variance 126,954,400 126,954,400 135,887,300 138,227,040 552,332,187 

SD 11,267 11,267 11,657 11,757 23,501 
P10 898,173 896,155 895,406 896,489 885,603 
P25 903,034 902,094 899,571 904,048 904,634 
P50 912,990 910,534 901,800 912,556 915,036 
P75 918,545 918,394 918,903 920,860 915,337 
P90 927,471 924,757 926,801 928,190 924,576 

 

From table 5.7, we can conclude that the response surface method can provide 

the statistical result close to Monte Carlo simulation. Uses of random sampling points 

or selected sampling points can reflect the change of response surface model. The 

response surface model with selected observation points spread over the range can 

provide a better result than the random observation points and others. Although the 

selected observation points at the edge of range, have larger variance than the random 

observation points, but we can ensure that the 36 selected observation points can 

closely represent the 700 trials of Monte Carlo simulation. Consequently, the 

cumulative distribution function, P10, P25, P50, P75 and P90 are also close to Monte 

Carlo simulation. 

 

Table 5.8: Comparison of predictive result between base case, response surfaces 

and first-order approximation 

 Base case RS random RS selected 
(edge) 

RS selected 
(scatter) 

First-order 
approximation

Predictive 
output (stb) 911,633 909,778 910,171 911,556 913,071 

 

From table 5.8, the predictive result obtained from response surface method, 

show the good potential of prediction. Especially, if we selected iterations spread over 

the range, it can provide the simple quadratic equation (surface) with an accurate 

result. The predictive result of all response surfaces can provide a better result than 
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 Regression Sensitivity for Original oil
inplace, N/Q10

 
Std b Coefficients

 
 
 
 
 
 
 

                  
 Water influx term, We/Q9-.033

 Cumulative water productio.../Q6  .04

 Connate water saturation, .../Q4-.056

 Formation compressibility,.../Q3-.095

 Cumulative oil production,.../Q5  .192

 Reservoir initial pressure.../Q7-.43

 Reservoir pressure, P (Psi.../Q8  .847

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.7

the first-order approximation method. The best prediction can be obtained from 

response surface with the scatter inputs. 

As determine the main effect variables of both random observation model and 

selected observation model, Figure 5.3 and 5.5 illustrated the tornado chart of effect 

which is the useful plot for identifying the important factors. From the tornado chart 

of random observation model, the reservoir pressure is the most important factor and 

secondary the reservoir initial pressure. Identically, figure 5.5, the tornado chart of 

selected observation model show the same result that the reservoir pressure is the 

most important factor in the response surface model. The shape of probability 

distribution function (PDF) for random observation model and selected observation 

model are also shown in figure 5.4 and 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Tornado chart of effect random observation points from 700 

trials Monte Carlo simulation 
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 Regression Sensitivity for Original oil
inplace, N/Q10

 
Std b Coefficients

 
 
 
 
 
 
 

                  
 Water influx term, We/Q9-.032

 Cumulative water productio.../Q6  .04

 Connate water saturation, .../Q4-.058

 Formation compressibility,.../Q3-.1

 Cumulative oil production,.../Q5  .184

 Reservoir initial pressure.../Q7-.426

 Reservoir pressure, P (Psi.../Q8  .858

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.7

Normal(910693, 11267)

 

Va
lu

es
 x

 1
0^

-5

Values in Thousands

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

< >10.0% 10.0%80.0%
896.2536 925.1324

 
Figure 5.4: Probability distribution of selected observation points from 

700 trials Monte Carlo simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Tornado chart of effect selected observation points from 700 

trials Monte Carlo simulation 
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Normal(911925, 11657)
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Figure 5.6: Probability distribution of selected observation points at the 

edge of range from 700 trials Monte Carlo simulation 
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Figure 5.7: Probability distribution of selected observation points spread 

over the range from 700 trials Monte Carlo simulation 
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The mean value of random observation model and selected observation model 

are 910,693 stb, 911,925 stb and 912,987 stb respectively. The standard deviation of 

random observation model and selected observation model is 11,267 and 11,657 and 

11,032 respectively. From those results, we can analyze that the statistical output of 

selected observation models are closer to Monte Carlo simulation method than the 

random observation model. To select the observation points, we pick the lower and 

upper value of each parameter or pick the data point spread over the range. Thus it 

may be possible to have the variance of selected observation points more than the 

variance of random observation points. 

 

5.3 Uncertainty analysis result 

From the uncertainty analysis study, the first-order approximation method 

require only one run at the base case values of all variables and one partial derivative 

for each variable (sensitivity coefficient). In this research, to evaluate the uncertainty 

of seven input variables, we must have seven partial derivatives respect to each input 

variable. But we have to note that the first-order approximation method can provide 

the predictive result at the mean value when all the input variables are at the base case 

condition. Hence the expansion term of Taylor’s series will be zero and consequently 

the result will be equal to base case scenario. For the response surface method with 

second-order model (quadratic equation), the number of simulation runs are 

(n+2)!/(2n!), where n is the number of variables. Therefore, we must perform 36 

different runs for the seven variables study.  

The statistical result of the first-order approximation and response surfaces 

compare to Monte Carlo simulation method, the variance from the first-order 

approximation method is overestimate. The response surfaces method can give the 

statistical result close to Monte Carlo simulation method. Especially, if we selected 

iterations spread over the range, it can provide the simple quadratic equation (surface) 

which can provide the statistical result close to the Monte Carlo simulation method. 

For the predictive purposes, we tried on generate the random input in order to 

obtain the average output results from the first-order approximation. Then we 

compare the average output results from first-order approximation with the output 

result from response surface method. The predictive result which obtained from 

response surface method, show a good potential of prediction. From this study, we 
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can conclude that the response surface with selected observation point spread over the 

range, can give the predictive result close to the base case. From both statistical result 

and predictive result, we can possibly get better uncertainty estimation by using 

response surface method with selected observation points spread over the range. 

From the uncertainty analysis study, we recognized that the response surface 

methodology plays an important role in uncertainty estimation and prediction. Thus, 

the response surface will be utilized again in the next chapter for modeling and 

analysis of experimental design problem. 

 



CHAPTER   VI 

EXPERIMENTAL DESIGN 
 

 This chapter describes about planning and conducting experiments design. The 

selection of appropriate design, the number of experimental runs and the development 

of surrogate equation model to be accurately fitted with the experimental response, 

will be discussed. The strategy of experimentation is also subsequently explained. 

 There are several strategies that an experimenter could use. In this study, we 

choose the Box and Behnken design to employ the experiment. The response surface 

methodology is also applied for modeling and analysis of the problem. 

 

6.1 Experimental design background 
 Experimental design is a well-known technique to maximize the information 

obtained from a set of experiments (Box et al, 1978). Montgomery (1997) described 

the design of experiments as a method to select experiments to maximize the 

information gain from each experiment and to statistically evaluate the significance of 

the different inputs. In this study, the experiments means the material balance 

equation and the information obtained from a set of simulations would be the original 

oil in-place, its statistical values, and relationships between the original oil in-place 

and stochastic variables. 

 Experimental design works by measuring the effects that different inputs have 

on a process. This is done by identifying a prospective set of input variables, varying 

them over a series of experiments, collecting the data, and analyzing the results. Thus, 

experimental design is a scientific approach that allows a better understanding of a 

process and how the inputs affect the output. 

 Schmidt and Launsby (1989) noted that the engineering usages of 

experimental designs consist of 

1) Efficient methods for gaining an understanding of the relationship between 

the input variables and the response (output). 

2) A means of determining the setting of the input variables which optimize 

the response. 

3) Method for building a mathematical model relating the response to the 

input variables. 
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An input variable may be varied over a range of values, for example, two 

extremes (two-level design) or two extremes and a base-case (three-level design). If 

we are interested in determining effects of several variables on a certain output, the 

principle procedure is to design a simple comparative experiment to determine the 

effect of the first variable while keeping the other variables at their base-case values. 

Then, the effect of the second variable is determined by a second comparative 

experiment, and so on. This procedure is commonly known as one-factor-at-a-time 

experimentation or a one-way sensitivity analysis. 

Another experimental arrangement is a factorial arrangement. A factorial 

design is one in which all levels of a given variable or factors are combined with all 

levels of every other variable or factor in the experiment (Hicks and Turner Jr., 1999). 

The value of factorial design is that it looks at several variables simultaneously, which 

allows us to estimate the various effects and interactions between variables. 

An interaction occurs when two or more variables acting together have a 

different effect on the observed response than the effect of each variable acting 

individually. The strength of interactions is illustrated in figure 6.1. When the output 

response increases (or decreases) at the same rate as the value of input X changes for 

different levels of Y, i.e. parallel line, this means no interaction between variable X 

and Y. when output increases (or decreases) at slightly different rate as X varies at 

different levels of Y, there is weak interaction. And when the output changes 

dramatically different rates for different levels of input Y, i.e. the line intersect, this is 

called a strong interaction between X and Y inputs and it needs to be considered in the 

design of experiments. 

We can do also explain the interaction by considering the first-order Taylor’s 

series expansion of two variables with the cross term included. 

                               dXYcYbXaYXf +++=),(                                        (6.1) 

The coefficient d in the cross term indicates the strength of interaction 

between variables X and Y. if there is no interaction between two variables, the 

coefficient d become zero. A strong interaction means the negative value of the 

coefficient d while the positive value of d represents a weak interaction. 
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No interaction 

 
Weak interaction 

 
Strong interaction 

Figure 6.1: strength of interactions between input variables.  

To account for all possible main effects, i.e. effects from an individual input, 

and interaction effects of all variables, we must use the full factorial design. For 

example, if all seven variables are considered at three levels, a 37 factorial experiment 

would require 2,187 different experiments. A disadvantage of the factorial design is 

the number of experiment combinations increase rapidly as the number of variables 

and/or levels increase. If we are to fit experiment data to a polynomial model, many 

of these experiments are unnecessary. 
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One way out of this disadvantage is to consider only a subset of all possible 

combinations, the so-called fractional factorial or incomplete factorial design. There 

are many approaches taken to designing fractional factorial experiments that can be 

determined through the process of assuming certain terms in the experiment are 

negligible and design the experiments to just estimate the terms of interest. In this 

study, Box-Behnken design approach will be discussed. 

 

6.2 Box-Behnken designs 
Box and Behnken (1960) created a series of incomplete three level factorial 

designs that are useful for estimating the coefficients in a second-order polynomial 

model. The Box-Behnken designs are constructed by combining two-level factorial 

designs with incomplete block designs in a particular manner, i.e. combining two-

level factorial designs on some of the variables with the center points on the 

remaining variables. At lease one center points for all variables are added to the 

designs. The designs are much more efficient and frequently used than three-level full 

factorial designs (Schmidt and Launsby, 1989). Another advantage of the Box-

Behnken design is that as additional variables are added to the model, we are able to 

use most experience setting from the previous design (design with fewer variables) in 

the new design. 

We can view the Box-Behnken design as a fractional three-level factorial 

design with only the center point and the edge point of a hypercube being used (figure 

6.2). For example, The Box-Behnken design with three variables has only 15 design 

point compared to 27 design points of the full factorial design with the same number 

of variables and levels. For three, four, or five-variable designs, two variables are 

chosen to be at the extreme values, and the remaining variables are fixed at their 

center values. Each selection of two variables produces four design points, say 1±  for 

the two variables and 0 for the remaining variables. Box and Behnken (1960) 

provided tabulated designs for up to 16 variables. Table 6.1 show the number of 

design points required for each number of variables. A number in parenthesis means 

the number of repeated designs at the center point value of variables. The repeated 

center points are necessary for the detailed analysis of variance. 
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Table 6.1: Number of designs in Box-Behnken experimental design 

Number of 
variables 

Number of 
experiments 

3 12+(3) = 15 
4 24+(3) = 27 
5 40+(6) = 46 
6 48+(6) = 54 
7 56+(6) = 62 
9 120+(10) = 130 
10 160+(10) = 170 
11 176+(12) = 188 
12 192+(12) = 204 
16 384+(12) = 396 

 

 
 

Figure 6.2: Geometric representations of a 33 full factorial design and a 

three variable Box-Behnken design. 

 

6.3 Application of Box-Behnken Experimental design 
We use seven variables Box-Behnken design to create a set of iterations in 

simulation study with combine variables. The design table, with coded variables, is 

shown in table 6.2. The +1 represents the variable at its maximum value, the -1 is for 

its minimum value and the 0 means the variable is at its base-case value. The 1±  in 

the design table means that all combinations of minimum and maximum values are to 

be run. This design comprises of 62 experiments with 56 different simulation runs 

because there are 6 repetitions at the base-case values of variables. A set of these 62 

experiments are used in the material balance EXCEL spreadsheet to calculate the 

statistical moments of the original oil in-place. 
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Table 6.2: Box-Behnken experimental design matrix with seven variables 

P Pi Np Wp Swc Cf We 
0 0 0 ±1 ±1 ±1 0 

±1 0 0 0 0 ±1 ±1 
0 ±1 0 0 ±1 0 ±1 

±1 ±1 0 ±1 0 0 0 
0 0 ±1 ±1 0 0 ±1 

±1 0 ±1 0 ±1 0 0 
0 ±1 ±1 0 0 ±1 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

 

Where the expansion of the first row is 

0 0 0 -1 -1 -1 0 
0 0 0 1 -1 -1 0 
0 0 0 -1 1 -1 0 
0 0 0 1 1 -1 0 
0 0 0 -1 -1 1 0 
0 0 0 1 -1 1 0 
0 0 0 -1 1 1 0 
0 0 0 1 1 1 0 

 

Table 6.3: Summary of maximum, minimum and mean 

Code P Pi Np Wp Swc Cf We 
+1 2,520 4,020 112,098 6,584 0.37 5.25E-06 1,840 
-1 2,480 3,980 107,702 5,957 0.33 4.50E-06 1,360 
0 2,500 4,000 109,900 6,270 0.35 5.00E-06 1,600 

 

Table 6.3 shows the actual value of each parameter which were transformed 

into the design matrix. Table 6.4 shows the statistical summary of the original oil in-

place from the Box-Behnken design. The sample mean value of the original oil in-

place is 902,110 stb compared to 912,823 stb from the 700 trials Monte Carlo 

simulation and the sample variance is 1,029,960,649 compared to 126,954,400 from 

the reference Monte Carlo simulation. Figure 6.3, shows the CDFs of original oil in-

place from Box-Behnken experimental design and Monte Carlo simulation method. 

From the CDF, we can see that the Box-Behnken design cannot provide the trend 

close to the Monte Carlo simulation method. The reason is that the Box-Behnken 
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design matrix practically used two levels and center points to create a set of iterations. 

Thus there is possibility to have the extreme low-high output results. 
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Figure 6.3: Original oil in-place CDFs comparison of the 700 trials Monte 

Carlo simulation and the Box-Behnken experimental designs 
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Figure 6.4: Probability distribution of Box-Behnken experiment design 

from 700 trials Monte Carlo simulation 
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Table 6.4 Statistical summary of original oil in-place from Box-Behnken 

experimental design and 700 trials Monte Carlo simulation method 

Statistical result Monte Carlo simulation Box-Behnken 
experimental design 

Max 938,311 943,207 
Min 876,969 881,973 

Mean 912,823 912,514 
Variance 126,954,400 128,997,352 

SD 11,267 11,395 
P10 898,173 897,271 
P25 903,034 904,871 
P50 912,990 912,857 
P75 918,545 920,295 
P90 927,471 927,155 

 

Table 6.5: Comparison of predictive result between base case and Box-Behnken 

experimental design 

 Base-case Box-Behnken      
Predictive output 911,633 911,633 

 

7654321 56.05473757.06.1795,541,3000,800,396,20528,012,2 XXXXXXXY +−−−−++=  

      6151413121 860,772,16562,795,4266,29657,19000,340,212,10 XXXXXXXXXX −+−−−     

5343
15

726252423271 001.01023.0206603.02.0139,31 XXXXXXXXXXXXXXXX −×−+−+−−+ −  

756574
16

645473
15

63 002.017.1105005.0002.0101004.0 XXXXXXXXXXXXXX +−×++−×++ −−  

2
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2
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2
4

72
3

82
2

2
1

13
76 1031.14.0106105474,134)106(005.0 XXXXXXXXX −−− ×−++×+×−−×+−  

                                                                                                                                  (6.2) 

From the design matrix in table 6.2, we used 62 design experiments to fit the 

second-order equation. Thus we get the regression coefficient as shown in equation 

6.2. Then we used the Monte Carlo simulation to generate the input sampling into 

equation 6.2 to get the statistical output result. For the predictive output, we used the 

input variables at base case condition to fill in equation 6.2.  

 

6.4 Response surface with experimental design 
As mention in previous chapter, the concept of response surface method and 

its application were used to determine the uncertainty in original oil in-place. 



 56

Response surfaces are used to derive empirical functional dependencies between the 

response (output) and the input variables (factors) in the system. One application of 

the experimental design is to build a mathematical model relating the response to the 

inputs. Therefore, we would be able to derive a response surface using the 

experimental designs. The design should require as few experimental as possible and 

provide a good fit to the observed data as much as possible. In addition, as more 

variables are added into the design, the experimental points in the previously used 

design should be reusable in the new design (Narayanan, 1999). 

The most common form of the response surface model is polynomials. For a 

linear model, each variable must have at least two levels and the minimum number of 

design points must be one more than the number of variables. To fit second-order 

model, there must be at least three levels of each design variable and at least 

(n+2)!/(2n!) distinct design points, where n is the number of design variables. For 

example, a three level of seven variables requires at least 36 different design settings 

to compute a second-order model. Myer and Montgomery (1995) provided excellent 

details of different experimental designs for fitting response surfaces. 

In this study, we use the Box-Behnken design matrix, as discussed in section 

6.2, to fit the second-order model. The design has three level of each variable and 

their observation points are more than the minimum requirement of 36 distinct design 

points for the seven variables. We randomly choose 36 different simulations from the 

62 experiments from Box-Behnken design matrix and calculate the model 

coefficients. Unfortunately, the 36 experiments from Box-Behnken cannot be fitted to 

the second-order (quadratic) equation by any reason. The author surmise that the 

characteristic of the data and their sensitivity can cause the error when fit the 

equation. 

 

029,16853.3118152053.333.2750,79707,597,388,7 7654321 −−+−++−−= XXXXXXXY          (6.3) 

 

We used all 62 experiments from Box-Behnken design matrix again. But this 

time we employed the method of least squares to determine the coefficients in 

equation 6.3. Then, we calculated the original oil in-place by using these derived 

empirical functions. The Monte Carlo simulation is also used to generate the random 
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sampling for each input and estimate the statistical result. The statistical results are 

also shown in table 6.6. 

 

Table 6.6 Statistical summary of original oil in-place from Box-Behnken using 

multiple regression (MLR) and 700 trials Monte Carlo simulation method (MCS) 

 

Statistical result MCS Box-Behnken     
(MLR) 

Max 938,311 941,519 
Min 876,969 880,669 

Mean 912,823 912,908 
Variance 126,954,400 116,141,356 

SD 11,267 10,776 
P10 898,173 898,358 
P25 903,034 906,470 
P50 912,990 913,414 
P75 918,545 920,305 
P90 927,471 926,366 

 

From table 6.6, the multiple linear regression of Box-Behnken design 

experiment can provide the statistical result accurately when compare to Monte Carlo 

simulation method. 

Figure 6.5 illustrates cumulative distribution function of the original oil in-

place using multiple linear regression of Box-Behnken design experiment and the 

reference Monte Carlo simulation. The multiple linear regression and Monte Carlo 

simulation produce similar CDFs and the trends are smooth. Using Latin Hypercube 

Sampling (LHS), it tends to have a bit overestimates of original oil in-place in 

probability value between 0.1 and 0.9. 

From table 6.7, the predictive result obtained from multiple linear regression 

of Box-Behnken design experiment, show the good potential of prediction. The 

benefit of multiple linear regressions is the type of equation. According to the 

accuracy of predictive result, we can reduce the material balance equation to the 

simple linear equation with an accurate output result. 
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Figure 6.5: Original oil in-place CDFs comparison of the 700 trials Monte 

Carlo simulation, multiple linear regression and LHS technique 

 

Table 6.7: Comparison of predictive result between base case and Box-Behnken 

experimental design using multiple linear regression 

 Base-case Box-Behnken     
(MLR) 

Predictive output 911,633 912,161 
 

In order to reproduce the new 62 sets of inputs, the author chose the Latin 

Hypercube Sampling method (LHS) to regenerate the new set of 62 experiments. The 

basic idea for Latin Hypercube Sampling is to provide a representative set of random 

variable without wasting iterations. Latin Hypercube Sampling partition a random 

variable into mutually exclusive bins before sampling. Iteration is then obtained from 

each bin to provide representatives samples of the random variable. Then we used the 

new set of 62 observation points to fit the response surface model. 

As we experienced in choosing the observation points in chapter 5, the best 

arrangement is to spread out over the range of observation points. We also repeat that 

solution again by choosing the new set of 36 experiments to fit the second-order 

(quadratic) equation. 

 

 

7654321 250,1520,47700,8476120278,251,49000,000,250,515,1944,356,35 XXXXXXXY −+−++−−=  
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                                                                                                                                  (6.4) 

From the above second-order (quadratic) equation 6.4, we used the Monte 

Carlo simulation method to generate the input distribution, the statistical results of 

original oil in-place for this response surfaces is shown in table 6.8. The predictive 

results of original oil in-place for the above response surfaces can be acquired by fill 

in the variables at base case condition. All the predictive results are also shown in 

table 6.9. 
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Figure 6.6: Probability distribution of Box-Behnken using multiple linear 

regression from 700 trials Monte Carlo simulation 

 



 60

Normal(913309, 11090)

 

V
al

ue
s 

x 
10

^-
5

Values in Thousands

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

< >10.0% 10.0%80.0%
899.0971 927.5217

 
Figure 6.7: Probability distribution of Box-Behnken using response 

surface with LHS technique from 700 trials Monte Carlo simulation 

 

Table 6.8 Statistical summary of original oil in-place from Box-Behnken using 

multiple regression, 700 trials Monte Carlo simulation method and response 

surface using LSH technique 

Statistical 
result MCS Box-Behnken   Box-Behnken     

(MLR) 
RS (using LHS 

technique) 
Max 938,311 943,207 941,519 974,964 
Min 876,969 881,973 880,669 889,247 

Mean 912,823 912,565 912,716 913,309 
Variance 126,954,400 128,997,352 114,468,601 122,993,584 

SD 11,267 11,357 10,699 11,090 
P10 898,173 897,271 899,004 898,813 
P25 903,034 904,871 906,464 905,229 
P50 912,990 912,857 913,414 913,372 
P75 918,545 920,295 920,343 920,203 
P90 927,471 927,155 926,427 928,105 

 

Table 6.9: Comparison of predictive result between base case, response surfaces 

and first-order approximation 

 Base-case Box-Behnken  Box-Behnken  
(MLR) 

RS (using LHS 
technique) 

Predictive output 911,633 911,633 912,161 912,341 
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Table 6.8 provides statistical summary of the original oil in-place using the 

multiple linear regression of Box-Behnken design experiment and response surface 

with LHS technique. The sample mean values of the original oil in-place, using the 

multiple linear regression of Box-Behnken design experiment and response surface 

with LHS technique, are 912,716 stb and 913,309 stb, respectively, compare to 

912,823 stb from 700 trials Monte Carlo simulation. The sample variances, with the 

multiple linear regression of Box-Behnken design experiment and response surface 

with LHS technique, are 114,468,601 and 122,993,584, respectively, compare to 

126,954,400 from 700 trials Monte Carlo simulation. From figure 6.5, the original oil 

in-place using the response surface with LHS technique produce the trend line close 

to the Monte Carlo simulation. Thus we can conclude that the entire range of random 

samplings generated by LHS technique, will provide the output result close to the 

Monte Carlo simulation with sufficient number of iterations. 

 

6.5 Experimental design result 
From the experimental design study, the Box-Behnken design method requires 

only 62 experiments at the various levels of each variable. In this research, to evaluate 

the uncertainty of seven input variables, we tried on using response surface, multiple 

linear regression, LHS technique and Monte Carlo simulation to assist and acquire the 

best solution. Firstly, we used 62 experiments from the design matrix to fit the 

second-order equation. We also tried to reduce the number of runs to 36 experiments 

to fit the second-order equation. Unfortunately, the 36 experiments from Box-

Behnken cannot be fitted to the second-order equation. The author surmise that the 

characteristic of the data and their sensitivity can cause the error when fit the 

equation. However, we also tried on using the multiple linear regression. For this 

time, we intended to use all experiments (62 experiments) in order to have a best fit 

on the multiple linear regression. Another attempt, we tried on using the LHS to 

regenerate the inputs. Thus the new sets of inputs are forced to spread out over their 

range. And then we brought only 36 experiments for fitting the second-order equation. 

The statistical result show that the Box-Behnken experimental design using 

multiple linear regression and quadratic equation provided the overall statistical result 

close to Monte Carlo simulation. But the variance from multiple linear regression is 

underestimate. 
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For the predictive purposes, we summarized the output results from all 

techniques. The predictive result obtained from those techniques i.e. response surface 

with second-order equation, multiple linear regression and response surface with LHS 

technique, show a good potential of accurate prediction. From this study, we can 

conclude that the Box-Behnken experimental design using second-order equation can 

give the predictive result closest to the base case. 

 



CHAPTER VII 

DISCUSSION AND CONCLUSIONS 

 
Several procedures that quantitatively estimate the uncertainty in original oil 

in-place prediction have been presented. A tradition Monte Carlo simulation is 

demonstrated in the study of original oil in-place where the principle uncertainties are 

the reservoir pressure. The Monte Carlo Simulation (MCS) is a typical choice in 

relating input-output uncertainty in reservoir engineering problems for several 

reasons. Firstly, the Monte Carlo approach is conceptually simple, easy to explain and 

widely used. Secondly, it allows a full range of each uncertainty input to be used in 

generating a probability distribution of the output and the precision of the estimates is 

independent of the number of inputs. However, the Monte Carlo results are often 

accepted to be used as the means to verify or validate approximate analytical methods 

or any other methods as presented in this study. 

For the Monte Carlo simulation, the number of simulation runs depends on the 

relative accuracy required of the output distribution for a given degree of uncertainty. 

In this study, the number of runs has been investigated as demonstrated in chapter 4, 

the mean value and variance of outputs become stabilized after 540 trials. In this 

matter, it can be ensured that the number of realization using in Monte Carlo 

Simulation technique to assess the uncertainty are adequate in accuracy requirement 

for this study. 

For the first-order analysis, the minimum runs are only one run at the base 

case values of all variables and one partial derivative for each variable (sensitivity 

coefficient). In this research, to evaluate the uncertainty of seven input variables, we 

must have seven partial derivatives with respect to each input variable. But we have to 

note that the first-order approximation method can provide the predictive result at the 

mean value when all the input variables are at the base case condition. Hence the 

expansion term of Taylor’s series will be zero and consequently the result will be 

equal to the base case scenario. For the response surface method (RS) with second-

order model (quadratic equation), the number of simulation runs are (n+2)!/(2n!), 

where n is the number of variables. Therefore, we must perform 36 different runs for 

the seven variables study. 
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From the experimental design study, the Box-Behnken design method requires  

62 experiments at the various levels of all variables. In this research, to evaluate the 

uncertainty of seven input variables, we tried on using response surface, multiple 

linear regression, Latin Hypercube Sampling and Monte Carlo simulation to assist and 

acquire the best solution. Firstly, we used 62 experiments from the design matrix to fit 

the second-order equation. We also tried to reduce the number of runs to 36 

experiments to fit the second-order equation. Unfortunately, the 36 experiments from 

Box-Behnken cannot fit to the second-order (quadratic) equation by any reason. The 

author surmise that the characteristic of the data and their sensitivity can cause the 

error when fit the equation. However, we also tried on using the multiple linear 

regression. We intend to use all iterations (62 experiments) in order to have a best fit 

on the multiple linear regression. Another attempt, we tried on using the Latin 

Hypercube Sampling to regenerate the inputs. Thus the new inputs are forced to 

spread out over their ranges. Then we brought only 36 experiments for fitting the 

second-order equation. 

The result of Monte Carlo simulation shows that the mean value of original oil 

in-place becomes stabilized after 540 trials. The average value of original oil in-place 

of all 540 trials and more is around 910,920 – 911,479 stb. The variance of original 

oil in-place (referred as the uncertainty in the original oil in-place) also shows the 

same stabilization. The variance of original oil in-place of all 540 trials and more is 

around 127,007,420 – 131,583,593 hence, the total number of 700 trials used as the 

reference statistic should be sufficient. This also confirms the requirement of large 

number of iteration using Monte Carlo Simulation technique to assess the uncertainty 

for this study. 

The statistical results of the first-order approximation and response surfaces 

compare to Monte Carlo simulation method, the variance from the first-order 

approximation method is overestimate. The response surfaces method can give the 

statistical result close to Monte Carlo simulation method. Especially, if we selected 

trials spread over the range, it can provide the simple quadratic equation (surface). 

From the statistical result of the multiple linear and response surface using 

Latin Hypercube Sampling technique, the variance from response surface using Latin 

Hypercube Sampling technique is also overestimate. The multiple linear regression of 

Box-Behnken design experiment can give the statistical result close to Monte Carlo 

simulation method. 
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From the author’s perception, the criteria used to consider the efficiency of 

each method are the number of run, the accuracy of mean value, the scale or degree of 

being spread (variance). 

From table 7.1, the response surface with scattered observation points can also 

provide the accurate mean value with the overestimate in variance. The Box-Behnken 

experimental design fitted by multiple linear regression can provide the accurate mean 

value and underestimate the variance. Thus we can conclude that the most reasonable 

accurate approach is Box-Behnken experimental design fitted by second-order 

(quadratic) equation. Table 7.2 demonstrates the percent deviation of each method 

compare to the reference Monte Carlo Simulation. 

Table 7.1 Comparison of the statistical results of original oil in-place 

Statistics MCS RS random  RS (edge) RS 
(scattered) First-order 

Box-
Behnken      

(quadratic) 

Box-
Behnken      
(MLR) 

RS (LHS 
technique) 

Max 938,311 938,311 945,147 940,834 956,179 943,207 941,519 974,964 

Min 876,969 876,968 880,589 878,930 885,603 881,973 880,669 889,247 

Mean 912,823 910,693 911,925 912,704 919,177 912,514 912,716 913,309 

Variance 126,954,400 126,954,400 135,887,300 138,227,040 552,332,187 128,997,352 114,468,601 122,993,584 

SD 11,267 11,267 11,657 11,757 23,501 11,395 10,699 11,090 

P10 898,173 895,926 897,168 896,489 886,650 897,271 899,004 898,813 

P25 903,034 898,205 899,571 904,048 908,132 904,871 906,464 905,229 

P50 912,990 910,534 901,800 912,556 914,116 912,857 913,414 913,372 

P75 918,545 900,660 901,478 920,860 915,283 920,295 920,343 920,203 

P90 927,471 903,033 903,316 928,190 915,337 927,155 926,427 928,105 

Runs - 36 36 36 36 62 62 36 

 

Table 7.2 percent deviation of each method compare to the reference Monte 

Carlo Simulation 

Statistics RS 
random  RS (edge) RS 

(scattered) First-order 
Box-

Behnken     
(quadratic) 

Box-
Behnken      
(MLR) 

RS (LHS 
technique) 

Mean 0.2 0.1 0.0 0.7 0.0 0.0 0.1 

Variance 0.0 7.0 8.9 335.1 1.6 9.8 3.1 

SD 0.0 3.5 4.3 108.6 1.1 5.0 1.6 

P10 0.3 0.1 0.2 1.3 0.1 0.1 0.1 

P25 0.5 0.4 0.1 0.6 0.2 0.4 0.2 

P50 0.3 1.2 0.0 0.1 0.0 0.0 0.0 

P75 1.9 1.9 0.3 0.4 0.2 0.2 0.2 

P90 2.6 2.6 0.1 1.3 0.0 0.1 0.1 

 

For the predictive purposes, table 7.3 illustrates that the predictive result 

obtained from response surface method shows a good potential of accurate prediction. 
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From this study, the response surface with selected observation point spread over the 

range can give the predictive result close to the base case. From both statistical result 

and predictive result, we can possibly get accurate uncertainty estimation using Box-

Behnken experimental design with response surface. 

Regarding the output results from multiple linear regression and response 

surface from the design experiment, the predictive result obtained from both 

techniques show a good potential of accurate prediction. From this study, we can 

conclude that the Box-Behnken experimental design with response surface technique 

can provide the closest predictive result to the base case. From both statistical result 

and predictive result, we recommended that the Box-Behnken experimental design 

with response surface can possibly provide accurate uncertainty estimation. 

 

Table 7.3 Comparison of the predictive results of original oil in-place 

 Base case RS 
random  

RS 
(edge) 

RS 
(scattered) 

First-
order 

Box-
Behnken     

(quadratic) 

Box-
Behnken    
(MLR) 

RS (using 
LHS 

technique) 
Predictive 

output 911,633 909,778 910,171 911,556 919,177 911,633 912,161 912,341 

 

Another attempt has been performed to test the effect on the output when there 

are large variations in the inputs. The new set of PVT data has been used to verify the 

original oil in-place together with the same uncertainty analysis procedure. For this 

time, we use the possible range of pressure uncertainty larger than the previous test. 

The possible range of pressure uncertainty has changed from 10± psi to 30± psi. The 

other parameters such as connate water saturation, water influx term and formation 

compressibility factor have also been changed to have a wider range of uncertainty. 

On the other hand, we reduce the range of uncertainty in some parameters, i.e. 

cumulative oil production and cumulative water production in order to be consistent 

with the field operation. 

The same procedure has been used to estimate the uncertainty. But this time, 

we choose only some methods which show a good potential of accurate prediction, 

i.e. response surface with scattered observation points, first-order approximation, 

Box-Behnken experimental design with quadratic surface equation and response 

surface with Latin Hypercube Sampling technique. For this test, the base case is 

calculated from the median values of each input parameter. 
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Table 7.4 demonstrates the statistical output from each method. The result 

obtained from Box-Behnken experimental design is nearest to the Monte Carlo 

simulation method. This is to confirm that the Box-Behnken shows a good potential 

of statistical output estimation. It should be noted that the predictive result of Box-

Behnken deviated from the base case value in this set of input parameters because 

most of the Box-Behnken’s experiments are concentrated on the mean value thus the 

result obtained from those experiments is possibly close to base case which calculated 

from mean value instead of median value. In addition, the predictive output from the 

first-order approximation method provides the original oil in-place calculation close 

to the base case. 

 

Table 7.4 Comparison of the statistical results of original oil in-place for new 

PVT data  

Statistics MCS RS (scattered) First-order Box-Behnken   
(quadratic) 

RS (LHS 
technique) 

Max 1,463,736 1,579,981 1,466,519 1,470,123 1,468,510 

Min 1,147,076 1,054,765 1,318,672 1,137,664 1,266,122 

Mean 1,291,891 1,320,869 1,392,833 1,300,895 1,367,164 

Variance 3,303,181,465 6,685,473,334 1,906,848,625 2,987,005,021 1,432,577,164 

SD 57,473 81,764 43,667 54,653 37,849 

P10 1,216,083 1,213,533 1,350,634 1,231,480 1,316,759 

P25 1,250,475 1,264,090 1,363,689 1,265,061 1,340,398 

P50 1,290,026 1,327,379 1,395,092 1,300,103 1,367,905 

P75 1,332,430 1,373,642 1,417,206 1,333,641 1,392,838 

P90 1,369,613 1,425,448 1,446,082 1,371,417 1,416,756 

Runs - 36 36 62 36 

 

Table 7.5 percent deviation of each method compare to the reference Monte 

Carlo Simulation for new PVT data 

Statistics RS 
(scattered) First-order Box-Behnken   

(quadratic) 
RS (LHS 

technique) 

Mean 2.2 7.8 0.7 5.8 
Variance 102.4 42.3 9.6 56.6 

SD 42.3 24.0 4.9 34.1 
P10 0.2 11.1 1.3 8.3 
P25 1.1 9.1 1.2 7.2 
P50 2.9 8.1 0.8 6.0 
P75 3.1 6.4 0.1 4.5 
P90 4.1 5.6 0.1 3.4 
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Table 7.6 Comparison of the predictive results of original oil in-place for new 

PVT data 

 Base case RS 
(scattered) First-order Box-Behnken    

(quadratic) 
RS (using LHS 

technique) 
Predictive 

output 1,396,127 1,343,872 1,392,833 1,299,443 1,372,161 

 

From the above discussion, the conclusions of this study are following; 

1) The reservoir pressure and initial reservoir pressure are an important 

factor in determination of the original oil in-place of oil reservoir 

under natural water drive mechanism. 

2) There are several uncertainty estimation methods which can be the 

alternative methods to Monte Carlo simulation and quantitatively 

estimate uncertainty in original oil in-place with comparable results. 

3) The response surface method can be utilized in several manners 

depend on the pattern of sample arrangement. In order to obtain 

both statistical and predictive result at optimum accuracy, the Box-

Behnken experimental design with response surface method is 

recommended for fitting the surrogate equation. 

4) The experimental designs, especially the Box-Behnken design 

together with the response surface method, offer good potential to 

reduce computational efforts in estimating uncertainty in material 

balance equation while maintaining accuracy comparable to Monte 

Carlo simulation approach. But it should be noted that the result will 

be deviated from the base case when the base case is not calculated 

from the mean value of each parameter.   

5) The response surface method provides the advantage of predictive 

equation since the complex equation can be transformed to the 

convenience one. 

The following are the recommendations for future work. More research is 

recommended to test these techniques in other drive mechanism or combine drive 

mechanism reservoir simulation study. The material balance equation is needed to 

expand to have more complexity and number of uncertainty variables. The detail of 

each parameter is needed more research i.e. the parameter regarding water influx, gas 

cap and the time dependent parameter. 
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Moreover, the author recommends more research to study on other patterns of 

experimental design method and higher order of surrogate equation for estimating 

uncertainty in the reservoir engineering study. 
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APPENDIX A: Sensitivity coefficients 

 
 The sensitivity coefficients (partial derivatives) for each variable are derived 

as follow:  

From the general expression of material balance equation as 
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Rearranging, the equation become 
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Then 

                                                                21 FFN −=                                                 (A.5) 

 

Where the nomenclature of each parameters are as follow: 

 

Rs  solution gas oil ratio (scf/stb) 

Rsi  initial solution gas oil ratio (scf/stb) 

cf  compressibility factor (psi-1) 

co  oil compressibility factor (psi-1) 

pi  initial reservoir pressure (psi) 

p  reservoir pressure (psi) 

Swc  connate water saturation 

Wp  cumulative produced water (stb) 

Bo  oil formation volume factor (rb/stb) 

Boi  initial oil formation volume factor (rb/stb) 
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Bg  gas formation volume factor (rb/scf) 

Rp  cumulative gas oil ration (scf/stb) 

Np  cumulative oil production (stb) 

We  Water influx term (MMstb) 

 

The derivative of each parameter is shown as follow: 

 

1. Water influx term 

From general expression of material balance equation as 
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From power rule   
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2. Connate water saturation 

From general expression of material balance equation as 
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Rearranging, the equation become 
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From (A.10), we assign  
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3. Formation compressibility 

From general expression of material balance equation as 
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Rearranging, the equation become 
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From (A.10), we assign  

                                  ( )( ) ( )( )( )wcwpegspop SBWWBRRBNA −−−−+= 1                            (A.11) 
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4. Cumulative oil production 

From general expression of material balance equation as 
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5. Cumulative water production 

From general expression of material balance equation as 
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6. Initial reservoir pressure 

From general expression of material balance equation as 
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From Standing’s correlation 

                                                Ei
gsi

pR 104.1
18

⎟
⎠
⎞

⎜
⎝
⎛ += γ                                             (A.30) 

and                                          ( )TAPIE 00091.00125.0 +=                                (A.31) 

Substitute API = 42.3 and T = 212 F in (A.31) 

Then                                        E = 0.72 

Substitute E = 0.72 and gγ = 0.75 (A.30) 

Then                                       51.521.0 += isi pR                                                      (A.32) 
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From Standing’s correlation 

                                              ( ) 2.15 2651.1101297.0 +×+= −
sioi RB                        (A.33) 

Substitute (A.32)  in Equation (A.33) 

Then                                      ( ) 2.15 27123.0101297.0 +×+= −
ioi pB                            (A.34) 

For the common term in (A.3), we assign 
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Substitute (A.32), (A.34) and (A.35) into (A.3) the equation become 
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From (A.36), we assign  
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Substitute (A.32), (A.34) and (A.35) into (A.4) the equation become 
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From (A.41), we assign  
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7. Reservoir pressure 

From general expression of material balance equation as 
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From Standing’s correlation 
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and                                          ( )TAPIE 00091.00125.0 +=                                     (A.31) 

Substitute API = 42.3 and T = 212 F @25th month condition in (A.31) 

Then                                        E = 0.72 

Substitute E = 0.72 and gγ = 0.75 @25th month condition in (A.30) 

Then                                       51.521.0 += pRs                                                        (A.52) 

From Standing’s correlation 
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From Standing’s correlation 
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From figure 4.8 compressibility factor as function of pressure, substitute in (A.56) 
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For the common term in (A.3), we assign 
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Substitute (A.52), (A.54), (A.57) and (A.35) into (A.3) the equation become 
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From (A.58), we assign  
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Substitute (A.52), (A.54), (A.57) and (A.35) into (A.4) the equation become 
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wpe

BppCBRRBp
BWW

F
−+−+−+×+

−
= − 27123.0101297.0

2 5
            (A.65) 

From (A.65), we assign  

                                                            ( )( )wpe BWWA −=2                                         (A.66) 

           ( )
p

RRpRBpB si
sisioi

28.310310627123.0101297.0 482.15
2 +×−×+−+×+= −−−  

                  
p

pp 75.1258.010510 528 +−×+− −−                                                          (A.67) 
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Partial derivative of (A.66) and (A.67) 

From constant rule                                     02 =
∂
∂

p
A                                                 (A.68) 

From power rule 

                    ( ) p
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RRp
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B si

si
8

2
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p
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From quotient rule                     
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                                                                                                                               (A.71) 
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APPENDIX B: Response surfaces 

 
 The response surface is derived using a second-order model as per below 

equation  

                                            ∑∑∑
= ==

+++=
n

i

n

j
jiij

n

i
ii XXaXaaY

1 11
0 ε                                      (5.5) 

Where Y is the observed response, i.e. original oil in-place, and the input 

variables Xi are as follow: 

 

X1  Formation compressibility (psi-1) 

X2  Connate water saturation  

X3  Cumulative oil production (stb) 

X4  Cumulative water production (stb) 

X5  Reservoir initial pressure (psi) 

X6  Reservoir pressure (psi) 

X7  Water influx term (stb) 

 

The a0, a1 and aij coefficients are determine by the method of least squares, 

which minimizes the sum of the squares of the error, ε . 

From table 5.2, we rearrange the data to matrix form        

                                                       [ ] [ ][ ]βXY =                                                           (B.1) 

Then 

                                               [ ] [ ] [ ][ ] [ ] [ ][ ]YXXX tt ×=
−1

β                                                (B.2) 

The response surface derived from 36 randomly chosen iterations from the 

Monte Carlo simulation is, 
 7654321 12173932133721,482328,051,830,30001,530,2 XXXXXXXY −−−+−++=  

      6151413121 976,297,18648,200,4697,120540,42216,993,697,12 XXXXXXXXXX −++−−  

      
5343726252423271 001.03196317.04.0928,140 XXXXXXXXXXXXXXXX −−+−+−−−  

      75657464547363 003.000001.0003.0004.000002.0004.0 XXXXXXXXXXXXXX +−−+−++  

      2
7

2
6

2
5

2
4

2
3

2
2

13
76 54.000001.0000001.0063,144)104(004.0 XXXXXXXXX +++++−×−−  

                                                                                                                                  (B.3) 
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The response surface derived from 36 selected chosen iterations from the 

Monte Carlo simulation, where the input variables are at the edge of the range, is 

 

7654321 4010722291046348,792,3224,052,728,27644,681,1 XXXXXXXY +−−+−+−=  

      6151413121 264,021,19128,879,12190,302,2786,436288,228,321,69 XXXXXXXXXX +−−+−  

      
5343726252423271 004.00004.04307,1183327252,353 XXXXXXXXXXXXXXXX −++−−−+−  

      75657464547363 006.0002.004.0006.0002.0 XXXXXXXXXXXXXX +−−−−−−  

      2
7

2
6

2
5

2
4

2
3

2
2

13
76 002.04.000006.00000025.0636,139)1015(01.0 XXXXXXXXX −++++−×−+  

                                                                                                                                  (B.4) 

The response surface derived from 36 selected chosen iterations from the 

Monte Carlo simulation, where the input variables spread out over their entire ranges 

is, 

 

7654321 18365,2076,38818012,245743,096,4682,810,3 XXXXXXXY −+−+−−−=  

      32716151413121 25597,5500,24222087,159,1 XXXXXXXXXXXXXX −+−+−−−  
      63534372625242 01.0006.000001.02061431150 XXXXXXXXXXXXXX +−−+−+−  

      76756574645473 008.0008.02001.00001.0001.00001.0 XXXXXXXXXXXXXX −+−−+−−  

      2
7

2
6

2
5

2
4

2
3

2
2

2
1 001.028.0001.000002.0684,24426,396,5 XXXXXXX −++−−+−  

                                                                                                                    (B.5) 

The response surface derived from 36 selected iterations from Box-Behnken 

using LSH technique, where the input variables spread out over their entire ranges is, 

 

7654321 250,1520,47700,8476120278,251,49000,000,250,515,1944,356,35 XXXXXXXY −+−++−−=  

      6151413121 708,502,537980,210,72738,204,6281,498,7056,037,117,43 XXXXXXXXXX +−−+−  

    
5343726252423271 006.0006.089448,1950941171331,139,8 XXXXXXXXXXXXXXXX −−−+−++−  

      75657464547363 006.0059.0001.0058.0004.016.0 XXXXXXXXXXXXXX +−+−−−−  

      2
7

2
6

2
5

2
4

2
3

2
2

16
76 02.09.65.103.0001.0554,010,23)103(52.0 XXXXXXXXX −−+++−×−+  

                                                                                                                                  (B.6) 
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