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CHAPTER|

INTRODUCTION

1.1 Overview

Cyanide is very toxic to human even at low contation can cause death
because it can strongly inhibit the process ofutallrespiration when entering into
human blood system by interacting with a heme unihe active site of cytochrome
aag[1]. It however remains wildly used (1.5 millionrn® per year) and its poisoning
may occur in particular industry such as in metadés, mining, electroplating,
jewellery manufacturing, and X-ray film recovery].[Ih nature, cassava, cyanogenic
algae, bacteria and fungi can produce and relegm@de compounds that sometime
causes food and water contamination [3]. Waterkdelypotassium and sodium
cyanide salts have been known to be ones of the Ietb&l chemical reagents and
even used as poisoning materials [4-5]. The maximuancentration of cyanide
allowed in drinking water by the WHO manual is 2M [6]. Detection of cyanide
ion under biologically relevant aqueous solutiorthigs vital for safety management

and forensic investigation.

1.2 Fluor escence spectra

The fluorescence spectrum provides information fanalysis. The
fluorescence processes that occur between thepiosoand emission of light are
usually described by the Jablonski diagram, whig¢t8][ are used in a variety of
forms, to illustrate various molecular processest tan occur in excited states. A
simplified Jablonski diagram shown Figure 1.1 when photons is absorbed by a
molecule, the electronic state of the molecule gkarfrom the ground state to one of
many vibrational levels in one of the excited alecic states. The excited electronic
state is usually the first excited singlet st&&, Once the molecule is in this excited

state, relaxation can occur via several procesBksrescence is one of these



processes and results in the emission of photore [Emgth of time between

absorption and emission is usually relatively, oftethe order of 18to 10° seconds.
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Figure 1.1 Jablonski Energy Diagram explaining fluorescence@sses.

1.3 Locally excited and internal chargetransfer states.

Fluorescence process is begins with a moleculegaband state (SO) absorb
photon and excited to higher energy level; as aeguence, the molecule is changed
to be at the excited to state S1 or higher whightha same geometry as the molecule
at the ground state following the Frank-Condon @ple (Figure 1.2). After the
excitation, molecule usually release energy as radiative decay called internal
conversion to the most stable geometry state oki@lvn as locally excited (LE)
state. Then the remaining photon energy is emdtedn emission or radiative decay
to take the molecule back to the ground state. Wewan some cases, molecule in
the LE state may undergo other pathway to reldasemnergy without emission (non-
radiative decay). For example, a substance withcire composed of both good

electron donating and withdrawing groups by electdelocalization process can



delocalize electron pair within the molecule whishcalledinternal charge transfer
(ICT) process to convert to the ICT excited stdtagre 1.3). This ICT state has
lower energy with different geometry from the LEtst ICT excited state then relex
to the original ground state that has the same gagnas ICT excited state. This
relaxation may either give light within or outsitlee visible light spectrum [9-17].
Due to multi-step process, ICT emission generailg lower fluorescence quantum
yield somparing with LE state. The ICT state usugives longer wavelength and is
usually stabilized by polar solverfigure 1.4) due to ICT excited state stabilization
[18-19].

Y

Figure 1.2 Potential energy surfaces of the ground state i€S&)cited to and S1 or
S2 and then relaxed to LE, and ICT (FC = Franckdooi).
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Figure 1.4 Photographic images of bis-(dehydrobenzoannulemzgne (DBA)

chromophores in organic solvents under black light.



1.4 Structure of fluorescent Compounds

Attention in chemical and biological sensing systeralies upon rapid and
high selectivity. The methods have been progrelsiveproved using redox [20],
chromogenic [21], or fluorogenic [22] changes as tletection signals. Conjugated
polymers (CPs) have emerged as one of the mostriemgoclasses of transducing
materials. They transform a chemical signal tolgaseasurable electrical or optical
events. Fluorescence based methodologies havetattrenuch interest due to their
intrinsic sensitivity and selectivity [23]. Consrdéle efforts have been devoted to the
design of fluorescent compounds to be used asduaess. CPs with delocalized
electron systems have attracted an overpowerimgest due to their versatile optical
and electrical properties [24Figure 1.5 shows structures of a variety of CPs
commonly investigated, including polythiophene ([Bb], polypyrrole (2) [26],
polyfluorene (3) [27], polyfara-phenylenevinylene) (4) [28], and pagbgfa-
phenyleneethynylene) (5) [29]. The delocalized teteac structure of CPs enables
them to exhibit efficient absorption and strong €ston, and produce amplified signal

changes upon interacting with various analytes.
/ \ /\
L) {8 {05
n H /n n
1 2 3

O O=)

n n

4 5

Figure 1.5 Molecular structures of some common conjugategimets (CPs).



1.5 Fluorescent sensor s based on phenylene-ethynylene derivatives

Phenyleneethynylene is an important class m€onjugated molecules
currently applied as fluorescent transducers iniouar optical sensing systems.
Critical features spurring interest in and usefafnef this class of compounds include
their structural rigidity allowing more predictablgeometry, high fluorescence
guantum efficiency and efficient synthesBsiring the past decade, a number of
crucial developments of both small and polymeriermpheneethynylene conjugated
systems have been witnessed, mostly containingpiaayleneethynylene moieties,
into more sensitive and selective sensors for wagglications. Palladium-catalyzed
cross-coupling polymerization offers the benefitsmald reaction conditions, wide
functional group, and solvent compatibility for peasation of many para-
phenyleneethynylenes [30-31].

1.6 Cyanide fluorescent sensor s based on nucleophilic attack on hydrogen-

bonded carbonyl groups

In 2005, Lee et al. [32] have synthesized a chemiatgter having a
salicylaldehyde moiety as a binding unit and a catimskeleton as a sensing unit. A
coumarin-based fluorescent chemodosimeter has syeloped for selective
detection of cyanide ion over other anions in wadérphysiological pH. This
significantly enhanced fluorescence intensity wasbably caused by the addition of
cyanide converts the aldehyde group into tetralhecyanohydrin which in turn

destroys its electron withdrawing ability and tladuces the ICT process.

proton transfer ©
—

non-fluorescent strongly fluorescent

Figure 1.6 The mechanism of cyanide ion monitoring of cumaenivatives.



In 2009, Jo et al. [33] have reporte?l containing diphenylacetylene
derivatives in which the-conjugated backbone was functionalized with arlayde
group to render the molecule nonfluorescent. Thd-NO hydrogen bond across the
2,2- functionalized diphenylacetylene turn motif aetes the carbonyl group toward
nucleophilic attack, and structure conversion g thternal quencher site by reaction
with cyanide ion obtains a rapid enhancement. Bigaif an ammonium group to the
hydrogen bond donor part significantly increasethldbe response kinetics and the
intensity of the fluorescence signal. The strudtyraptimized moleculaB responds
absolutely tauM-level cyanide in water at physiological pH with imterference from

otheranions.

m ﬂu‘!rescance

quencher (= CHO group)

Figure 1.7 Detection of cyanide by through the formation of fluorescent

cyanohydrin addu@@a.

In 2011, Khatua et al. [34] have designed and sgitied two new ruthenium
complexes for detecting cyanide based on the fanfiousation of cyanohydrins.
Upon the addition of 2.0 equiv of cyanide, Both B2and 2[PF],was enhanced 55-
fold within 15 s along with a diagnostic blue stoftthe emission by more than 100
nm in acetronitrile. The color change from red éigw and orange luminescence can

be observed by the naked.
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Figure 1.8 Cyanide detection by Probe 2gp/Based on cyanohydrins formation

1.7 Cyanide fluor escent sensor s based on borane derivatives

In 2005, Badugu et al. [35] have developed and®gited three water-
soluble fluorescent probes to determine cyanidasisgrup to physiologically lethal
levels. The fluorescence sengsrbased on the ability of boronic acid to complex
cyanide and its change from being electron defic(@B(OH),) in the absence of
cyanide at physiological pH to being electron rifR-B-(CN);) upon cyanide
complexation Figure 1.9). Ensuing cyanide binding extenuate the interrredrge
transfer within the probes, a change in the elaeatrproperties within the probes,
consequent in enhanced fluorescence signals asmaidn of increased solution

cyanide concentration.
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Figure 1.9 Complexation of fluorescent probes with aqueoes fryanide

In 2011, Jamkratoke et al. [36] have designed awdthesized three
fluorescence sensors containing naphthoquinoneaidaand boronic acid using an
acceptor-donor-acceptor (A-D-A systef3g, 3b, and3c (Figure 1.0) that have been
developed with high selectivity for cyanide as tomcyanide probes in the CTAB
micellar system. These A-D-A probes offer considkrapromises as cyanide
selective fluorescence probes was switched on updstitution of cyanide on
sensors in the CTAB micelle with a large responséssion band at 460 nm and a
large blue shift (ca. 100 nm). In this approach ABTcan incorporate 3b and 3o

provide powerful probes for detecting a very lomoentration of CNin water.

Aey 344 nm / Aemi 560 nm Dy 344 nm A 460 nm
e$ CN
- =
\N \
CH,
Low fluorescence High fluorescence

Figure 1.10 Reaction mechanism 88, 3b, and3c.
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1.8 Cyanide Fluorescent sensor s based on heterocyclic ring systems

In 2006, Yang et al. [37] have designed and symkdsnew fluorescence
sensors, that selective chemosensor has been geddio detect cyanide in water at
micromolar concentrations. The acridinium salt usethis sensor system is prepared
in a single step from an acridine orange base.dleteis based on the acridinium ion
(Figure 1.11), nucleophilic addition of cyanide ion to the 9sgimn of the acridinium
ion. This process induces a great reduce in fleerese intensity and a noticeable
color change. The sensitivity and selectivity oé thystem in aqueous media for
cyanide ion over other anions is surprisingly highaddition, the sensitivity of both
the fluorescence- and colorimetric-based assalysl@v 2.7 pM, the concentration is
acceptable to limit allowed of CN- to be presentadwater by World Health
Organization (WHO) suggested by the World Healtlgadization (WHO) as the

maximum allowable to be present in drinking water.

H CN o
WeAY P o XX
N N N N N N~ N N N
I | 3 | | L |

|
1L CO2Bn CO,Bn CO4Bn
strongly fluorescent non-fluorescent

e e et —— — e S— = -

1 1/CN-

Figure 1.11 Reaction mechanism of recepfior the CN sensing.
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1.9 Cyanide Fluor escent sensor s based on indolium

In 2011, Kim et al. [38] have reported containing a conjugated indole-
coumarin skeletonHigure 1.12) has been prepared and displayed considerable dual
changes in both absorption (blue-shift) and emisgiarn-on) bands exclusively for
potassium cyanide sensors. It is obviously thoughtiat in1 an ICT takes place
from the N atom in coumarin to the positive chargedble group. However, The
ICT was disrupted by CNreaction withsimply because the nucleophilic addition of
the cyanide anion toward the —C&N of 1. Thus, the reaction weakens to give an
apparent color change @ffrom deep blue to pale yellow that upon the additof
CN, The ICT blocking inl-CN is due to the conjugation breaking between cmim
and indole groups, which can be a main reasonh®ifliorescence enhancement of

1-CN is mainly due to the blocking of conjugatiorsbd ICT process.

(a) \L_(j j’ P
L\ = Y Ne gy

(leﬂl]\:\ \‘0\/\‘,?/ / K'CN ‘\N\/h/jjj;oxv ,t»-‘)
LI N J L

(b)'J (c)
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0.4

Absorbance

0.2+

Fluorescence Intensity (a.u.)
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0 . ; —
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Figure 1.12 (a) Reaction mechanism of 1 for the GNdition. (b) Absorption spectra
of 1 (20.0 mM) and fluorescence spectra (b) of.0 (M) withaddition of K salts

of F, CI, Br, I, CHCO,, HSQ,, HPQ?, HCO;, NO5, ClOs, CN, and SCN(10
equiv, respectively) in FD—CH;CN (5 : 95, v/v).

In 2011, Shiraishi et al. [39] have developed aehand highly sensitive
fluorescence sensor based on coumarin—spiropytarecent probes?) for the

determination of cyanide. The recep®ra coumarin—spiropyran conjugaféidure



12

1.13), is nonfluorescent, but shows a blue fluorescesi@ea nucleophilic interaction
with cyanide ion under UV irradiation. The deteatiimit determined based on the
S/B criteria is 0.5 pM and enables accurate detetion of the lowest level of

cyanide ion in a buffered water/MeCN mixture (8/2;\pH 9.3).

Figure 1.13 Reaction mechanism of receptor 2 for the &#hsing.
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1.10 Objectiveof thisresearch

This research aims to synthesize new fluorophooesaming salicylaldehyde
group as a sensor unit. All compounds contain pleaeyethynylene repeating unit.
For the assessment of ICT process effect on fluwmgs, the study of photophysical
properties of these fluorophores and fluoresenchamtement ratio () are

conducted and used for the applications for amalyscyanide ion in aqueous system.

F1 =) = () F4

Figure 1.14 Structures of target molecules.



CHAPTER Il

EXPERIMENTAL

2.1 Chemicals and materials

N,N-dimethylaniline, trimethylsilylacetylene, triphdphosphine,
bis(triphenylphosphine)palladium(ll)dichloride (Pd®Ph),), sodium thiosulfate,
benzyltrimethylammonium chloride, potassium hyddaxi potassium carbonate,
calcium carbonate, and were purchased from Flukaph&nylamine, iodine
monochloride, copper (I) iodide, 1, 8-diazabicy¢t4.0] undec-7-ene (DBU), 18-
Crown-6, 1,4-Diiodobenzene, 2-hydroxybenzaldehydw auinine sulfate were
purchased from Aldrich. All other reagents were -setectively purchased from
Sigma-Aldrich, Fluka or Merck and used without het purification. For most
reactions, solvents such as dichloromethane artdrattéde were reagent grade stored
over molecular sieves. In anhydrous reactions estd/such as THF and toluene were
dried and distilled before use according to thenddiad procedures. All column
chromatography was operated using Merck silica6§e(70-230 mesh). Thin layer
chromatography (TLC) was performed on silica geltgd (Merck F245). Solvents
used for extraction and chromatography such aslalmimethane, hexane, ethyl
acetate and methanol were commercial grade aniflegisbefore use while diethyl
ether and chloroform were reagent grade. Milli-Qevavas used in all experiments
unless specified otherwise. The most reactions wemgied out under positive
pressure of Nfilled in rubber balloons.

2.2 Analytical instruments

The melting points of all products were acquirednfr a melting point
apparatus (Electrothermal 9100, Fisher ScientitiSA). Elemental (C, H, N)
analyses were performed on a PE 2400 series yzara(Perkin-Elmer, USA). Mass
spectra were recorded on a Microflex MALDI-TOF massectrometer (Bruker
Daltonics) using doubly recrystallizedcyano-4-hydroxy cinnamic acid (CCA) as a
matrix. The HRMS spectra were measured on an elgmay ionization mass
spectrometer (microTOF, Bruker Daltonics). Foutransform infrared spectra were

acquired on Nicolet 6700 FT-IR spectrometer equippaeth a mercury-cadmium
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telluride (MCT) detector (Nicolet, USA)'H-NMR and *C-NMR spectra were
acquired from sample solution in CRChcetone-g CD;CN, CD;OD and DMSOds

on Varian Mercury NMR spectrometer (Varian, USA)480 MHz and100 MHz,
respectively. The UV-visible absorption spectraavebtained from a Varian Cary 50
UV-Vis spectrophotometer (Varian, USA) and the flegcence emission spectra were

recorded on a Varian Cary Eclipse spectrofluorom@tarian, USA).
2.3 Synthesis of fluorophores F1-F3

2.3.1 Preparation of 5Stert-butyl-2-hydroxybenzaldehyde.

OH OH
16 eq. NaOH, 4 eq. JD
>

CHQ,, Reflux, 4 h

16 %

4-tert-Butylphenol (10.00 g, 66.57 mmol), NaOH (21¢5.53 mol) and DI
water (2.4 g, 0.132 mol) were mixed in trichlorohrte (150 mL) by stirring with a
magnetic bar in a round-bottom flask. The mixturaswefluxed for 1 h and then
NaOH (10.62 g, 0.265 mol) and DI water (1.2 g, 6.06ol) were again added. After
1 more hour, NaOH (10.62 g, 0.265 mol) and DI wéie2 g, 0.066 mol) were added
for the third time. The stirring was continued eflux temperature overnight before
the mixture was allowed to cool to room temperatiifee organic layer was separated
and the aqueous phase was extracted with dichldhame (2x 50 mL) and the
combined organic was dried over anhydrous MgS®e solvent was evaporated and
the residue was dissolved in a minimal amount ofildromethane. The solution was
eluted through a silica gel column by gradient sotg starting from pure hexane to
dichloromethane/hexane (1/3 v/v) to afford the dbkproduct after solvent removal
as a brown viscous liquid (1.90 g, 16% vyief#). NMR (CDCk, 400 MHz):8 (ppm)
10.88 (s, 1H), 9.89 (s, 1H), 7.58 = 8.8 Hz, 1H), 7.51 (s, 1H), 6.93 (@ 8.8 Hz,
1H), 1.32 (s, 9H)**C NMR (CDCE, 100 MHz):8 (ppm) 196.4, 159.2, 142.4, 134.3,
129.4,119.7, 116.9, 33.7, 30.9.
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2.3.2 Preparation of 5-tert-butyl-2-hydroxy-3-iodolenzaldehyde.

OH P OH O
4 eq. b, Pyridine/Dioxane | H
>

0°C, 4h

99 %

lodine (11.40 g, 44.89 mmolyas dissolved in dioxane (10 mL) and pyridine
(10 mL) by stirring with a magnetic bar in a roulbottom flask at 0 °C for 15 min.
The solution was added with tért-butyl-2-hydroxybenzaldehyde (2.00 g, 11.22
mmol) and the mixture was stirred at reflux for .4The solvent was evaporated and
NaS,03 solution (20% wi/v) was then added to the darkauscresidual oil until it
turned light yellow. The mixture was extracted witithloromethane (3 x 50 mL).
The combined organic phase was washed with water 120 mL) and dried over
anhydrous MgS@ The solution was evaporated by rotary evaporeiaafford the
desired product as a brown solid (3.31 g, 97% yiéld NMR (CDChk, 400 MHz):8
(ppm) 11.6 (s, 1H), 9.8 (s, 1H), 7.5 (s, 1H), B31H);*C NMR (CDCls, 100 MHz):
d (ppm) 195.5, 158.0, 144.7, 143.6, 130.3, 119.72,883.9, 31.0.

2.3.3 Preparation of N,N-dimethyl-4-((trimethylsilyl)ethynyl)aniline.
NG N

1.1eq. Me;Si——H
-
PdACL(PPh),, Cul, DBU

I Toluene, rt, overnight

4-iodoN,N-dimethylaniline (2.51 g, 10 mmol), Pd@?Ph), (0.35 g, 0.5
mmol) and Cul (0.08 g, 0.5 mmol) was dissolvedoinéne (10 mL) by stirring with a
magnetic bar in a round-bottom flask. 1,8-Diazatioyndec-7-ene (DBU, 1.67 g, 11
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mmol mL) was added and followed by trimethylsily¢gdene (1.08 g, 11 mmolJhe
reaction mixture was stirred at room temperaturedftn and then filtered. The solid
precipitate was washed with toluene (3 x 15 mL) #radfiltrate was evaporated. The
residue was dissolved in a minimal amount of diaiiieethane and eluted through a
silica gel column by gradient solvents starting niropure hexane to
dichloromethane/hexane (1/3) as an eluent to atfeeddesired product after solvent
removal as light yellow solid (2.17 g, 90% vyieldp: 88-89°C;'H NMR (CDCl,
400 MHz):8 (ppm) 7.11(dJ = 7.2 Hz, 2H), 6.35 (d) = 7.2 Hz, 2H), 2.72 (s, 6H),
0.01 (s, 9H);*C NMR (CDCE, 100 MHz):5 (ppm) 149.9, 132.9, 111.3, 109.6, 106.3,
90.9, 39.9, 0.01.

2.3.4 Preparation of 4-ethynyIN, N-dimethylaniline.

93%

N,N-Dimethyl-4-((trimethylsilyl)ethynyl)aniline (1.00g, 4.6 mmol) and
K>CO; (0.059 g, 0.43 mmol) were dissolved in dichloromagie (15 mL) and
methanol (15 mL) by stirring with a magnetic bar anround-bottom flask. The
reaction mixture was stirred at room temperature2fbh. Next addition of water, the
organic layer was separated and the aqueous phase extracted with
dichloromethane (2 x 50 mL) and was then dried avdrydrous MgSO4. The filtrate
was evaporated and the residue was eluted throwgilica gel column by gradient
solvents starting from pure hexane to dichlorometffaexane (1/3) as an eluent to
afford 4-ethynyIN,N-dimethylaniline as a brown-yellow solid (0.60 d, % yield).
mp: 67-69°C*H NMR (CDCk, 400 MHz):5 (ppm) 7.37 (dJ = 8.8 Hz, 2H), 6.62 (d,
J = 8.8 Hz, 2H), 2.97 (s, 7H}*C NMR (CDCI3, 100 MHz)3 (ppm) 150.4, 133.2,
111.7, 108.7, 84.9, 74.9, 40.
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2.3.5 Preparation of F1.

H -+ PACKPPh),, Cul, PPh
>
THR 1t,4h

5-tert-Butyl-2-hydroxy-3-iodobenzaldehyde  (1.14 g, 3.7 mmol),
PdCL(PPh), (132 mg, 0.19 mmol), Cul (36 mg, 0.19 mmol), §Bh mg, 0.19
mmol) and 4-ethynyl-N,N-dimethylanilin0.66 g, 4.51 mmol) were dissolved in
tetrahydrofuran (10 ml) and triethylamine (10 mly)dsirring with a magnetic bar in a

round-bottom flaskThe reaction mixture was stirred at room tempeeator 24 h

The mixture was filtered and the filtrate was evaped. The residue was eluted
through a silica gel column by gradient solventartstg from pure hexane to
dichloromethane/hexane (3/1) as an eluent to affdrés a yellow solid (0.83 g, 54
% yield).'H NMR (CDCl, 400 MHz)3 (ppm) 10.60 (s, 1H), 7.79-7.77 (m, 4H), 6.82
(s, 1H), 6.78 (dJ = 8.8 Hz, 2H):3.04 (s, 6H), 1.41 (s, 9 H)**C NMR (CDC}, 100
MHz) 6 (ppm) 188.6, 158.5, 152.8, 150.7, 146.1, 13128,3, 123.0, 120.5, 119.8,
112.0, 99.9, 97.4, 40.2, 34.7, 31.6.; MALDI-TOF n@alcd for GiH23NO,, 321.173
Found: 320.457.

2.3.6 Preparation of 4-iodo-N,N-diphenylaniline

Q0 - p eEmme g g

DM, reflux 12 hr.

I
64 %

Diphenylamine (1.00 g, 5.91 mmol), 1,4-diiodobere¢b.84 g, 17.7 mmol),
Cu (400 mg, 6.31 mmol), £0; (980 mg, 7.09 mmoland 1,4,7,10,13,16-
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hexaoxacyclooctadecan€l8-Crown-6, 42mg, 0.160 mmol) were dissolved in
dimethylformamide (10 ml) by stirring with a magieebar in a round-bottom flask.
The reaction mixture was stirred and refluxed farhl Next addition of water, the
organic layer was separated and the aqueous phase extracted with
dichloromethane (2 x 50 mL) and was then dried omehnydrous MgS® The
mixture was filtered and the filtrate was evapaiafehe solid precipitate was washed
with dichloromethane (3 x 15 mL) and the filtratasvevaporated. The residue was
eluted through a silica gel column by gradient sotg starting from pure hexane to
dichloromethane/hexane (1/2) as an eluent to th®redk product after solvent
removal as a white solid (1.30 g, 60% yiefJ. NMR (CDCk, 400 MHz):5 (ppm)
7.50 (d,J = 8.8 Hz, 2H), 7.26 (1) = 2.7 Hz, 4H), 7.10-7.02 (m, 6H) [40].

2.3.7 Preparation of 4-(trimethylsilyl)ethynyl-N,N-diphenylaniline.

3,0 a0

lleqMeSi—H

PdClK(PPh),, Cul, DBU
Toluene, rt, overnight

SiMez

87 %

4-lodo-N,N-diphenylaniline (0.71 g, 1.914 mmol), Pd@EPh). (70 mg, 0.096
mmol) and Cul (19 mg, 0.06 mmol) was dissolvedaluene (10 mL) by stirring
with a magnetic bar in a round-bottom flask. 1,&fbicycloundec-7-ene (DBU,
0.32 g, 2.105 mmol) was added and followed by ttinylsilyl acetylene (0.206 g,
2.11 mmol).The reaction mixture was stirred at room tempeeafar 4 h and then
filtered. The solid precipitate was washed wittuesle (3 x 15 mL) and the filtrate
was evaporated. The residue was dissolved in amairmmount of dichloromethane
and eluted through a silica gel column by hexaneftord the desired product after
solvent removal as light yellow oil (0.57 g, 87%lgl). '"H NMR (CDCk, 400 MHz):

d (ppm) 7.32-7.24 (m, 6H), 7.09-7.03 (m, 6H), 6.85J = 8.8 Hz, 2H), 6.81 (d] =



20

8.4 Hz, 2H), 0.24 (s, 9H}’C NMR (CDCE, 100 MHz:5 (ppm) 148.1, 147.2, 132.9,
129.4, 124.9, 123.5, 122.2, 116.0, 105.4, 93.1, 1.0

2.3.8 Preparation of 4-ethynyl-N,N-diphenylaniline.

WY WY

KoCG;, Cl—bClleeO—I»

rt, ovemight

91 %

4-(Trimethylsilyl)ethynylN,N-diphenylaniline (0.50 g, 1.46 mmol) and
K2CO; (1.73 g, 1.46 mmol) were dissolved in dichloronaeth (15 mL) and methanol
(15 mL) by stirring with a magnetic bar in a roulnottom flask at room temperature
for 4 h. Next addition of water, the organic lay&as separated and the aqueous phase
was extracted with dichloromethanex250 mL) and was then dried over anhydrous
MgSQO,. The solvent was evaporated and the residue wssolded in a minimal
amount of toluene and eluted through a silica giiran by gradient solvents starting
from pure hexane to dichloromethane/hexane (1/4fftord the desired product after
solvent removal as a blown soli@.36 g, 91 % yield)*H NMR (CDCk, 400 MHz):8
(ppm) 7.32 (d,) = 8.8 Hz, 2H), 7.28-7.24 (m, 4H), 7.10-7.03 (m, 661P7 (d,J = 8.8
Hz, 2H), 3.01 (s, 1H)**C NMR (CDCE, 100 MHz):5 (ppm) 148.5, 147.3, 133.2,
129.6, 125.2, 123.8, 122.2, 115.0, 110.9, 84.1.
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2.3.9 Preparation of F2

A,

@\ /@ OH O
N X | H  pdaoyprh),, cul, PPy ‘
THF, 1t, 4h I
oH
I o
H H

66 %

5-tert-butyl-2-hydroxy-3-iodobenzaldehyde (0.37.¢22 mmol), PAG(PPh);
(36 mg, 0.056 mmol), Cul (11 mg, 0.056 mmol) andhfR5 mg, 0.056 mmol) were
dissolved in tetrahydrofuran (10 mL) by stirringthvia magnetic bar in a round-
bottom flask. Triethylamine (10 mL) was added awotlofved by 4-ethynyl-N,N-
diphenylaniline (0.36 g, 1.11 mmol). The reaction mixture was strrat room
temperature for 4 h and then filtered. The soligcjpitate was washed with
dichloromethane (3 x 15 mL) and the filtrate wasorated. The residue was
dissolved in a minimal amount of dichloromethane a&tuted through a silica gel
column by gradient solvents starting from pure Imex#& dichloromethane/hexane
(3/1 viv) to afford the desired product after solfveemoval as a yellow solid (0.33 g,
66 % yield)."H NMR (CDCk, 400 MHz)3 (ppm) 10.70 (s, 1H), 7.94 (d,= 4.8 Hz,
2H), 7.86 (dJ = 8.8 Hz, 2H), 7.43-7.18 (m, 12H), 1.53(s, 9L NMR (CDCE, 100
MHz) 6 (ppm) 188.0, 157.2, 152.4, 148.2, 146.7, 146.0.6,3129.0, 125.7, 124.5,
123.2, 123.0, 122.7, 122.2, 121.1, 119.6, 99.04,331.3.; MALDI-TOF m/z Calcd
for C31H27NO,, 445.204 Found: 445.540.

2.3.10 Preparation of 2-hydroxy-3,5-diiodobenzaldefde.

H_O H_O
OoH 4eq. ), Pyndme/Doxa»ne OoH
0°C, 4h I I

76 %
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lodine (24.90 g, 98.03 mmolyas dissolved in dioxane (20 mL) and pyridine
(20 mL) by stirring with a magnetic bar in a roulbottom flask at 0 °C for 15 min.
The solution was added with 2-hydroxybenzaldehy’i8Q( g, 24.55 mmol) and the
mixture was stirred at reflux for 4 h. The solvemés evaporated and p&O;
solution (20% w/v) was then added to the dark wisc@sidual oil until it turned light
yellow. The mixture was extracted with dichloronatk (3 x 50 mL). The combined
organic phase was washed with water (2 x 100 mld dned over anhydrous
MgSQO,. The solution was evaporated by rotary evaporédoafford the desired
product as a purple solid (6.99 g, 76%); NMR (CDCk, 400 MHz):8 (ppm) 11.70
(s, 1H), 9.68 (s, 1H), 8.21 (s, 1H), 7.81 (s, 1HE NMR (CDCE, 100 MHz): &
(ppm) 194.2, 159.6, 152.5, 141.6, 121.4, 86.7,.80.7

2.3.11 Preparation of F3.

H_O ‘ CH
ot PdOL(PPh),, Cul, PPh
> = A
| | Il THE, 1t, 4h O
N

2-Hydroxy-3,5-diiodobenzaldehyde (0.93 g, 3.07 mmeldCL(PPh), (132
mg, 0.19 mmol), Cul (36 mg, 0.19 mmol) and EBh mg, 0.19 mmol)were
dissolved in tetrahydrofuran (10 ml) by stirringthve magnetic bar in a round-bottom
flask. Triethylamine (10 mL) was added and followds 4-ethynyl-N,N-
dimethylaniline (0.49 g, 3.38 mmol). The reaction mixture was strrat room
temperature for 4 h and then filtered. The soligcjpitate was washed with
dichloromethane (3 x 15 mL) and the filtrate wasrated. The residue was
dissolved in a minimal amount of dichloromethanel atuted through a silica gel
column by gradient solvents starting from pure Imex#& dichloromethane/hexane
(3/1 viv) to afford the desired product after solveemoval as a yellow solid (0.41 g,
42 % vyield)."H NMR (CDCk, 400 MHz)3 (ppm) 10.51 (s, 1H), 7.83(s, 1H), 7.82(s,
1H), 7.75(d,J = 8.8 Hz, 2H), 7.40 (d] = 8.6 Hz, 2H), 6.79 (s, 1H), 6.75 (@ = 8.6
Hz, 2H), 6.65 (d,) = 8.2 Hz, 2H), 3.02 (s, 1H), 2.98 (s, 6M}c NMR (CDCE, 100
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MHz) 6 (ppm) 187.8, 132.5, 131.7, 130.1, 128.2, 126.7, 126.4,2.2120.2, 119.1,
111.9, 111.7, 96.9, 40.0, 29.90MALDI-TOF m/z Calcd for G7H24N20,, 408.184
Found: 408.783.

2.3.12 Preparation of 4, 4 4"'-triiodotriphenylamine.

O samewa O
D SR oL

77%
Triphenylamine (5.00 g, 20 mmoal) in chloroform (180) and methanol (50
mL) was added with BTMAIGI(23.41 g, 67 mmol) and CaG(@2.00 g, 120 mmaol).
The reaction mixture was allowed to reflux for 72td 20% Ng5,03 solution was

then added to the mixture until the mixture becdiglet yellow. The mixture was
fillered and the filtrate was extracted with didlolmethane (3 x 50 mL). The
combined organic phase was washed with water (20& rhL) and dried over
anhydrous MgS@ The solution was concentrated and the residuerg@ecipitated
in methanol from dichloromethane solution. Triiadgimhenylamine was obtained
(9.78 g, 77%) as a white solid: mp; 182-184'"H NMR (CDCk, 400 MHz):8 (ppm)
7.53 (d,J = 7.5 Hz, 6H), 6.80 (dJ = 7.5 Hz, 6H);**C NMR (CDC}, 100 MHz):8
(ppm) 146.6, 138.5, 126.1, 88.7; MALDI-TOF m/z Galdor GgH1slsN, 622.810
Found: 622.561.

2.3.13 Preparation of 4, 4’, 4”-trimethylsilylethynylphenylamine.

SiMe3

© 33eq.Me,S———H
=

PdO,PPh),, Cul, DBU
Toluene, 1t, 4 h
| | 4 _
Me;S 83% SiMe3

Vi
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Triiodotriphenylamine (2.00 g, 3.2 mmol), Pd@Ph), (0.11 g, 0.16 mmol)
and Cul (30 mg, 0.16 mmol) was dissolved in tolu€¢bh@ mL) by stirring with a
magnetic bar in a round-bottom flask. 1,8-Diazabicyndec-7-ene (DBU, 2 mL)
was added and followed by trimethylsilyl acetyle(@e09 g, 11.2 mmofj.The
reaction mixture was stirred at room temperaturedftn and then filtered. The solid
precipitate was washed with toluene (3 x 15 mL) #radfiltrate was evaporated. The
residue was dissolved in a minimal amount of digiiieethane and eluted through a
silica gel column by hexane to afford the desireddpct after solvent removal as
light yellow oil (0.57 g, 83% yield)*H NMR (CDCk, 400 MHz):8 (ppm) 7.34 (d))
= 8.4 Hz, 6H), 6.96 (dJ = 8.4 Hz, 6H), 0.24 (s, 27H}°C NMR (CDCE, 100 MHz):
o (ppm) 146.7, 133.1, 123.8, 117.7, 104.8, 93.9, 0.1

2.3.14 Preparation of 4, 4’, 4”-triethynylphenylanine.

SiMes; H
I I
K0, O‘bClz/MEO‘L
rt, ovemight
Me;Si SiMe; H 890 % H

4.4 .4"-Trimethylsilylethynylphenylamine(2.00 g, 3.7 mmol) and IO
(0.508 g, 0.43 mmol) was dissolved in dichloromath§l5 mL) and methanol (15
mL) by stirring with a magnetic bar in a round-loott flask. The reaction mixture
was stirred at room temperature for 24 h. The daoglyer was separated and the
aqueous phase was extracted with dichloromethame5@ mL) and was then dried
over anhydrous MgS©The solvent was evaporated and the residue vgaslded in
a minimal amount of dichloromethane and eluted uphoa silica gel column by
gradient solvents starting from pure hexane to ldidmethane/hexane (1/4 v/v) to
afford the desired product after solvent removad ddown solid(1.06 g, 89% yield).
'H NMR (CDCk, 400 MHz):8 (ppm) 7.38 (d,) = 8.4 Hz, 6H), 7.01 (d) = 8.4 Hz,
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6H), 3.06 (s, 3H)*C NMR (CDCE, 100 MHz):5 (ppm) 147.0, 133.3, 123.9, 116.8,
83.4, 77.0.

2.3.15 Preparation of F4.

| H PdCK(PPR),, Cul, PPR
+ >
THF, i, 4h

H H H
OH 68%

H O

EQ
4
\
9
W
YA
2
o]

5-tert-Butyl-2-hydroxy-3-iodobenzaldehyde  (1.17 g, 43.8 mmol),
PdCL(PPh), (95 mg, 0.144 mmol), Cul (27 mg, 0.144 mmol) amh{38 mg, 0.144
mmol)were dissolved in tetrahydrofuran (10 mL) by stigiwith a magnetic bar in a
round-bottom flask. Triethylamine (10 mL) was addmod followed by 4,44"-
triethynylphenylamine (0.60 g, 0.96 mmol). The teatmixture was stirred at room
temperature for 4 h and then filtered. The soligcjpitate was washed with
dichloromethane (3 x 15 mL) and the filtrate wasporated. The residue was
dissolved in a minimal amount of dichloromethane atuted through a silica gel
column by gradient solvents starting from pure Imex#&o dichloromethane/hexane
(3/1 viv) to afford the desired product after solveemoval as a yellow solid (0.28 g,
68% vield).'H NMR (Acetone-I3, 400 MHz):5 (ppm) 10.4 (s, 3H), 7.88 (d,= 8.8
Hz, 6H), 7.87 (s, 3H), 7.81 (s, 3H), 7.20 (dr 8.8 Hz, 6H), 7.18 (s, 1 H), 1.36 (s,
27H); **C NMR (Acetone-R, 100 MHz):8 (ppm) 189.9, 158.9, 154.0, 149.2, 133.0,
128.2, 126.8, 126.2, 125.4, 124.3, 122.3, 102.3},32.9; MALDI-TOF m/z Calcd
for Cs;Hs7NOg, 845.372 Found: 845.455 [}
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2.4 Photophysical property study
The stock solutions of 500 uM fluorophores in DM801 % DMSO in 10
mM HEPES buffer pH 7.4 were prepared.

2.4.1 UV-Visible spectroscopy
The UV-Visible absorption spectra of the stock sohs of fluorophores were

recorded from 250 nm to 600 nm at ambient tempezatu

2.4.2 Fluorescence spectroscopy

The stock solutions of 500 uM fluorophores wereutéil to 1 and 5 puM,
respectively, with their respective solvents. Thession spectra of fluorophores were
recorded from 370 nm to 700 nm at ambient temperatising an excitation

wavelength at 360 to 400 nm, respectively.

2.4.3 Fluorescence quantum yields

The fluorescence quantum yield of fluorophores wgeeformed in DMSO
and HEPES buffer (10 mM) pH 7.4 by using quininpkate (°F = 0.54) in 0.1 M
H,SO, as a reference [41]The UV-Visible absorption spectra of five analytica
samples and five reference samples at varied ctiatems were recorded. The
maximum absorbance of all samples should nevereekdé:l. The fluorescence
emission spectra of the same solutions using apptepexcitation wavelengths
selected were recorded based on the absorptiommaxiwavelengthiinax) of each
compound. Graphs of integrated fluorescence irtiessivere plotted against the
absorbance at the respective excitation wavelen@tash plot should be a straight
line with 1 interception and gradiemt[42].

In addition, the fluorescence quantum yiedeF}] was obtained from plotting
of integrated fluorescence intensitgg absorbance represented into the following

equation:
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Grad,\ [ n3
q'ﬁ . = #:' -
A T (Gradsr) (?}gr)

The subscriptsbst denote the fluorescence quantum vyield of a stahdefierence
which used quinine sulfate in 0.1 Mp,$0, (@ = 0.54) anddx is the fluorescence

guantum yield of sample amgis the refractive index of the solvent.
2.5 Fluorescent sensor study
2.5.1 Anion sensor

The excitation wavelength was 378 nm, 373 nm, 382and 395 nm for F1,
F2, F3 and F4 and the emission was recorded fro8i788 nm. Sodium anion
solutions were prepared in Milli-Q water. Concetitnas of all stock sodium anion
solutions were adjusted to 150 mM and were addéd tve desired volumes (1Q)
to the fluorophore solutions. The final volumeghod mixtures were adjusted to 1 mL
to afford the final concentration ofv for the fluorophores and 1,5QMM for anion.

2.5.2 Surfactants study

The excitation wavelength was 373 nm and the eomsgias recorded from
383-700 nm. Surfactansolutions were prepared in Milli-Q water. Concetitnas of
all stock sodium anion solutions were adjusted QoM and were added with the
desired volumes (200QL) to the fluorophore solutions. The final volumest the
mixtures were adjusted to 1 mL to afford the ficahcentration of 5uM for the

fluorophores and 1AM for surfactants.



CHAPTER IlI

RESULTS AND DISCUSSION

3.1 Cyanide fluorescence sensors from F1, F2 aR@

In this contribution, we investigated fluorophoréd-F3 (Figure 3.1)
containing the salicylaldehyde probe conjugated hwiphenylene-ethynylene
fluorogenic units. In our design to enhance the €nsitivity of the probe, different
electron donating amino groups were incorporatetth@bther end of the phenylene-
ethynylene conjugated system to promote the initi@T process of the
salicylaldehyde probe. One of these fluorophoreegishows excellence sensitivity

that it can be use in aqueous HEPES buffer system.

AL

F1 F2 F3

Figure 3.1 Fluorophore moleculdsl, F2, andF3.

3.1.1 Synthesis and characterization of F1, F2 arfeB

The fluorophores K1-F3) were synthesized according to Scheme 3.1 using
Sonogashira coupling as the key reaction. The sgighwas started with the
Sonogashira coupling of 4-iodo-dimethylaniline wigthynyltrimethylsilane using
DBU in toluene and followed by desilylation to affiod-ethynyIN,N-dimethylaniline.
The reactive core ofF2, 4-ethynylN,N-diphenylaniline was prepared from
substitution reaction of diphenylamine with 1,4edibbenzene followed by the
Sonogashira coupling with ethynyltrimethylsilaneings DBU in toluene and
proceeded by desilylation. The subsequent couminthe resulting 5-tert-butyl-3-
iodosalicylaldehyde  with  4-ethyny§N-dimethylaniline  and  with  4-
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ethynyltriphenylamine gavel andF2 respectively. FOF3, salicylaldehyde was fist
double iodinated to give diiodosalicylaldehyde. Téwbsequent coupling with 2.2
equivalents of 4-ethynyi,N-dimethylaniline yielded the desiré8.

O OH O OH
16 eq. NaOH, \ | \ |
4 eq. HO 2
CHOL, reflux 6 h Widirf:?oxme
1 2
(1629 (97%%)
@
°NT O TMSCGCH N HO
Rj(PPh3)2(:|2, OJI: 2, Pd(PPh3)2(]2, QJI, O
DBU, PPh, KCO;3, CH,A,, PPh..NEt i
e MeOH, 1t, 4h
| Toluene, 4 h . THS 4hr. < F1
4: 0 )
I 4RH @9 N 2%
R

3; R=SiMe; (87%9)
499 @p R
T™S CGCH
©H© ~—

Pd(PPha) ,Cl, QU
= DBU, PPhs, 7 R=H

(9199

Cu, 18crowmn-6, K,CO3 Toluene, 4 h ‘ ‘
DMF, reflux 12 hr.

64% 5 R
6, R=SiMey

@\ N/@ (879

2, Pd(PPhy)Cl,, Qul,
P%,NE; O

THF, 4hr. I
(66%9

% I2
Pyridine/Dioxane

4 hr. ! :

8
(7679

Scheme 3.1Synthetic route of fluorophoi€el, F2, andF3.
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The 'H-NMR spectra of compoun®, 4, andF1 are shown irFigure 3.2 All
signals can be assigned to all protons in eachesponding structure. Initially,
compound 2 showed two singlet signals at 11.6, 9.8, 8.0, @@l 1.3 ppm
corresponding to its aldehyde, hydroxy, aromatid atkyl protons, respectively.
Then, compoun@ coupling with4 by using Sonogashira reaction, the methyl amine
product showed signals of the methyl amine protassa singlet at 3.0 ppm and

singlet signals at and 10.6 as a aldehyde protam tompoun .

120 11.0 0.0 a0 20 7.0 &0 50 4.0 20 20 10 0o .0

Figure 3.2'H-NMR (400 MHz) spectra of starting material compds of2, 4 and
F1lin CDCl.

Compounds showed signals of aromatic protons as two triptef.3 and 7.0
ppm and three doublet signals at 7.5, 7.1 and pt8. @’hen, compound8 coupling
with ethynyltrimethylsilane by using Sonogashiraaatton, the trimethylsilane
product showed signals of the methylsilane protagsa singlet at 0.2 ppm. The
desilylation of compoun@® gave compound. The spectrum showed that the singlet
signal of the trimethylsilane protons at 0.2 ppntalty disappeared upon the

desilylation. Upon incorporation of compour#]l F2 showed new signals of the
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aldehyde proton as a singlet at 10.7 ppm and amgesisignals of alkyl protons at 1.5
ppm Figure 3.3).

b e
e bc,___a_c'i a@C:@I

:-,IM' ,

elitAd a[ibjf;é//f :
_“_i"sl_,,_ ) @ \ . )L

A fQ
f edb,fc,i,ah cge HQ 268 ]
\ |/ A 7 = h
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Y
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Figure 3.3'H-NMR (400 MHz) spectra of starting material compds of5, 6, 7 and
F2in CDCl.

The'H-NMR spectra of compour8, 4, andF3 are shown irFigure 3.4 The
compound8 showed four singlet signals at 11.7, 9.7, 8.2 &@dppm corresponding
to its aldehyde, hydroxy, and two aromatic protaespectively. Then, compour&d
coupling with compound by using Sonogashira reaction, the methyl amielyort
showed two signals of the methyl amine protons sisglet at 3.0 ppm (3.00 and 3.04
ppm) and the spectrum showed that the singlet smfrthe aldehyde proton at 10.5

ppm totally appeared upon incorporation of compo8ind
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a, ]

Figure 3.4'H-NMR (400 MHz) spectra of starting material compds of8, 4 andF3
in CDCl.

3.1.2 Photophysical property study of F1, F2 and F3

The electronic absorption and emission spectrosobpil-F3 were studied in
an aqueous DMSO solvent and their photophysicgdgutes are compiled ifiable
3.1 The fluorophores exhibited two major absorptioaxima (300-335 and 380-385
nm; Figure 3.5 associated with twa-n* electron transitions (S8S2 and S6>S1)
of the n-conjugated phenylene-ethynylene system[4&2jch fluorophore showed a
single maximum emission wavelength around 415-4#4(fFigure 3.5). The greater
Stroke shift ofF2 andF3 implied the greater involvement of the ICT processhe
excited states of these fluorophores. To eval&t&3 as the cyanide sensors, the
emission spectrum of each fluorophore solution teefand after the addition of

sodium cyanide was recorded.
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Table 3.1Photophysical properties Bfl-F3 in 90%DMSO/10 mM HEPES buffer
pH 7.4

Compound Aab (NM) log € Xem (NM)
F1 320, 380 4.35, 4.24 415
F2 300, 383 4.40, 4.52 440
F3 335, 385 4.91, 3.49 444
12 - —— Absorption F1

= Absorption k2

—— Absorption T3
=>~=EmissionF1
—>&TFmission F2

0.8

0.6 =+=Emission F3

Intensity (a.u.)

04

02 -

270 370 470 570 670
Wavelength (nm)

Figure 3.5 Electronic absorption spectra and emission spattfd, F2, andF3 (5
uM) in 90%DMSO/10 mM HEPES buffer pH 7.4

The presence of cyanide ion substantially enhatfee@mission signal of the
fluorophores Figure 3.6). The results clearly demonstrate tRdtF3 are promising
as the fluorescence turn-on cyanide sensors. Thetgfof solvent on the sensitivity
of the fluorophores were studied by varying theteoh of DMSO in the buffer
solution from 10-90%Figure 3.7 shows that the optimum media fét, F2 andF3
should contain 80%, 70%, and 90% DMSO, respectivelyheir optimum medium,
F3 provided the highest sensitivity with fluoreseredancement ratio (ylof 114.



34

60 20 120 -
50 100 -
15
40 - - ~ 80
- = =
E = <
= el s —TF3
230 - n 10 —F2 Z 60
Z . z 5 F3+cyanide
= Fl+cyanide z F2+cyanide & ’
) 1 ' =
220 = E 404
£
10 20 -
0 T ' " 0 T T " 0 T " —
350 450 550 650 350 450 550 650 350 450 550 650
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Figure 3.6 Emission spectra of the solutionskdf, F2 , andF3 (5uM) upon the
addition of sodium cyanide (1.5 mM) in 90%DMSO/1MrREPES buffer pH 7.4.
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Figure 3.7 Fluorescence enhancement ojl/bf F1, F2, and F3 (5uM) upon the
addition of sodium cyanide (1.5 mM) in 10 mM HEPB&fer pH 7.4 mixed with
DMSO (10-90% v/v).
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The drastic drop of the sensitivity observed in medth high water contents
may be attributed to the poor water solubility loége fluorophores. To determine if
the sensitivity was associated with the ICT procéss fluorescence quantum yields
of the fluorophores were determined before and #fie addition of cyanide ion. It is
clearly seen that the fluorescence quantum yieigsifeantly increased after the
addition of cyanide ion which readily react withetthydrogen-bonded aldehyde
group. Assuming that the cyanohydrin products db allow the ICT process, the
quantum vyield difference (@FCN-%DF) should fairly represent the fluorescence
guenching by the ICT process. As shownTiable 3.2 F3 exhibited the highest
guantum yield difference implying tha&3 has the highest initial ICT quenching
which may be attributed to the fact th&8 has two quenchable fluorogenic branches.
It is also interesting to note thR, despite having a larger (6CN-%®d¢) value, has
lower fluorescence enhancement thdnas a result of higher quantum yield Fe2.
The results confirmed that the sensitivity of tleasor is also depended on the initial
guantum yield of fluorophore. Ideally, a highly séive fluorescence turn-on cyanide
sensor would require a low initial quantum yieldtlwilarge quenching effect
contributed by the ICT process. In the case, suskrsor design was achieved by
combining two fluorogenic units with one ICT unithigh also acts as the cyanide

active site.

Table 3.2 Photophysical properties &f1-F3 upon the addition of sodium cyanide
(2.5 mM) in 10 mM HEPES buffer pH 7.4 mixed with [3@

Compound| %DMSO| 1§l | %dr | %N [%dN-%d:

F1 80 62 1.8 28.2 26.4
F2 70 17 3.1 32.5 29.4
F3 90 114 2.6 39.8 37.2

Quinine sulfate in 0.1 M 60O, (®F = 0.54) was the reference.

3.1.3 Fluorescent sensors study of F1, F2 and F3

Since cyanide ion is more commonly found in aquemedia, we next

decided to investigate the useFk8 for cyanide sensing in aqueous micellar system
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because of the poor solubility of the fluorophareure aqueous buffer. Fluorescence
study was performed in HEPES solution pH 7.4 inghesence of various surfactants
using the excitation wavelength at 373 nm. As etgukfor anion sensors, the cationic
surfactants (DTAB, CTAB and TTAB) generally gavegler sensitivity than the
anionic surfactant (SBS and SDS) and nonionic stafd (Brij and TWEENZ20).
However, among eight surfactants tested, the nansurfactant Triton X-100 gave
the highest sensitivityFigure 3.8). This unique effect of Triton X-100 has been
observed before in the sensors based on phenyleyeyiene that is likely to be
attributed to the oligo(ethylene glycol) chain ahd aromatic ring in the structure of
Triton X-100[44-46]. The oligo(ethylene glycol) @i can bind with sodium cation
which in turn concentrate cyanide anion aroundniselle and the 30 mM where the

system gave the fluorescence enchantment rati8 Figure 3.9).

i
1 i .
s & .9 & &
& & <

Surfactants

Figure 3.8 Bar chart representing the fluorescence enhandeftigj of F3 (5 uM)
upon the addition of sodium cyanide (1.5 mM) in HESPbuffer pH 7.4 (10 mM) in
the presence of various surfactants (10 mM). Th®rélscence intensity at the

emission peak of each system was used.
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Figure 3.9 Bar chart representing the fluorescence enhandetik) of F3 (5 uM)
upon the addition of sodium cyanide (1.5 mM) in HESPbuffer pH 7.4 (10 mM) in
the presence of various surfactants (10 mM). Th®réscence intensity at the

emission peak of each system was used.

The fluorescence response in relation to cyanice@atration was monitored
upon the addition of various equivalents of sodiayanide in an aqueous solvent
(HEPES buffer at pH 7.4, 30 mM Triton X-100). THedrescence intensity initially
increased almost linearly with the cyanide con@ditn up 1000 equivHgure 3.10.

It is important to mention that the emission speetiere acquired at 5 min for all
sensing experiments to ascertain the completiahefeaction although the reaction
between cyanide ion anB3 was complete within 90 sedigure 3.11). The pH

variation also showed only little effect of the pHthe range of 6.0-8.5 on the cyanide

sensitivity Figure 3.12.
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Figure 3.10The bars represent the fluorescence enhancenmen(lfiy) of F3 (5uM)
at various equiv of cyanide in Triton X-100 (30 mIMEPES buffer pH 7.4 (10mM).
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Figure 3.11Time-dependent changes in the fluorescence irtyeosF3 (5uM) upon
addition of cyanide 1000 equiv in Triton X-100 (3OM)/HEPES buffer pH 7.4
(10mMm).
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Figure 3.12Bars represent the fluorescence enhancement(blgjoat various pH of
HEPES buffer (10mM) in Triton X-100 (30 mM)

In the selectivity and interference tests, F3 exbdtbhigh specificity toward
cyanide ion Figure 3.13 g with very low interference from other anionsigure

3.13 b.
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Figure 3.13(a) Fluorescence enhancement ratig)(Bihd fluorescence spectrafes

in the presence of various anions. (b) Fluorescemt@ncement ratio (y)l of F3 in
the presence of cyanide and another ion. The data Wwased on the fluorescence
intensity at 440 nm acquired from the solution iERES buffer pH 7.4 (10mM)
containing Triton X-100 (30 mM) withH3] = 5 uM and [anion] = 5.0 mM.
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The detection limit at was estimated by a plonbat 440 nm versus cyanide
concentration, which shows a well-behaved linearetation down to the value of 1.6
uM (Figure 3.14. This value is comparable to the WHO guideline€afuM. (0.07
mg/L) cyanide allowed in drinking water.
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Figure 3.14A plot of the fluorescence intensity change ()44 x 100) ofF3 vs
[CNT in Triton X-100 (30 mM)/HEPES buffer pH 7.4 (10

Paper-based solid state sensors have recntly becmme of the most
convenient and economical sensing platforms [47-81¢ decided to tedt3 as a
sensing agent for cyanide detection on paper stiperies of 1.QuL of F3 solutions
in EtOH (0.01 mM) was dropped on to a filter papéip (7 x 11 cnf) at 0.5 cm
above the bottom end of the strip. After air dryydlow fluorescnt spots, each
containing 0.01 nmol oF3, appeared. The strip was dropped with a serieswofil0.
sodium cyanide solutions, containing 5-1000 nmanige ion, at 2 cm vertically
above the positions of the fluorophore blots. Atteying, the bottom of the strip was
dipped into dichloromethane/hexane (1/1, v/v) inl@sed chamber and allowed for
the solvent to run up to the top. The strip wasta&ut from the chamber, air dried
and visualized under an ordinary 20 W black ligimp. Four strips using 0.5, 1.0, 2.0
and 5.0 nmol of3 were tested. The photographic images of the s$tiyosved green
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emission spots captured at the cyanide blots. Bpermstrip with 2.0 nmol df3 gave
the best visual sensitivity and lowest emissionkgemund from the unreacted
fluorophore. This paper strip showed the naked dstection of cyanide down to 5
nmol (Figure 3.195. To our knowledge, this is the first fabricatioh fluorescence
cyanide paper sensor strips which are conveniemtty economically prepared from

microliter drops of florophore and sensitive enotgtvisually detect nanomole level
of cyanide ion.

F3: [0.5 nmol] [1.0 nmol] [2.0 nmol]

[5.0 nmol]

nmol CN-

Figure 3.15Photographic images for paper-based detectioryafide ion under 20
W black light.
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3.2 Cyanide fluorescence sensor from F4

In this contribution, we investigated fluorophorég!l containing three
salicylaldehyde probe conjugated with three phemsdethylene fluorogenic unité4
was designed in order to compare the Gahsitivity of the probe with phenylene-

ethylene fluorogenic units containing one sensimig (F1-F3).

3.2.1 Synthesis and characterization of F4

To enhance the cyanide fluorescence sensing offltlt@ophores, Sert-
butylsalicylaldehyde was installed as the periphgraups of the target molecules.
The peripheral building, Eert-butylsalicylaldehyde was synthesized by Reimer-
Tiemann reaction of %ert-butylphenol with chloroform followed by heating thvi
sodium hydroxide. The iodination of thet&t-butylsalicylaldehyde using iodine in
pyridine and dioxane gave 5-tert-butyl-3-iodosdatyehyde. The reactive core,
4, 4, 4"-triethynylphenylamine, was prepared from tripldiration of triphenylamine
using benzyltrimethyl-ammonium iododichloride (BTM&,) [52] and proceed with
the Sonogashira coupling with ethynyltrimethylsdafollowed by desilylation to
afford the reactive core. The Sonogashira couptihnghe reactive core and tBrt-

butyl-3-iodosalicylaldehyde gavet (Scheme 3.2

1>Fes e W<
© 33eq. BIMAIG) MesS-CCH KOOz CHCl, MeOH N,©/

@J\k@ Ca0Q, CHCh, MeOH PdQx(PPhg)2, Cul, DBU, PPhg t,4h
Reflux, 36 h Toluere, 1t, 4h
|
A I I
7% i N
10 11
(8% (89%
I

2, Pd(PPhe)2Ad>, Cul, Il

| ®
MO ap
sl
Ne) %

Scheme 3.5ynthetic route of fluorophoie4.

THF, 4h
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The compoun® showed signals of aromatic protons as two dowdilét5 and
6.8 ppm Then, compound® coupling with ethynyltrimethylsilane by using
Sonogashira reaction, the trimethylsilane produuwsed signals of methylsilane
protons as a singlet at 0.2 ppm. The desilylatibooonpoundl0 gave compound 1.
The spectrum showed that the singlet signal ofdtiylsilane protons at 0.2 ppm
totally disappeared upon the desilylation. Uponormporation of compoun® to
compoundll, F4 showed new signals of aldehyde proton as a siag&d.4 ppm and
one singlet signals of alkyl protons at 1.4 pgfig(re 3.16.

In CDCl,

IncDCl;

IncDCl,

InAcetone-Dy

a

130 12.0 110 10.0
ppm ()

Figure 3.16'"H NMR spectra of starting material compou8g40, 11 and F4.
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3.2.2 Photophysical property study of F4

In 75% DMSO/10 pM HEPES pH 7.E4 showed emission maximum at 463
nm. The time-dependent fluorescence changes eetibthe increase of the
fluorescence intensity upon the addition of sodayanide (1.5 mM) that reached the
saturation after 5 minH{gure 3.18. To ensure completion of the spectral change, the
mixing time of 10 min was allowed for all subsequexperiments. A slight blue shift
from 397 to 390 nm in the absorption maximum weas albservedHRigure 3.17)
suggesting a small loss afconjugation length. These spectral changes as agell
their time scale are in good correspondent withréaetion of cyanide adding to the

aldehyde group to form cyanohydrin.

0.05
0.04

0.03

Abs

0.02

0.01

0.00

300 350 400 450 500 550
Wavelength (nm)

Figure 3.17Electronic absorption spectrafd in the absence and presence of .CN
(Medium = 75% DMSO/HEPES buffer pH 7.44] = 1 uM; [CN'] = 1.5 mM)
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Figure 3.18Time dependence of the fluorescence spectfal @i.x = 397 n) after
the addition of CN (Medium = 75% DMSO/HEPES buffer pH 7.4 = .M,;
[CN] = 1.5 mM)

3.2.3 Fluorescent sensor study of F4

We also tested the pH dependence of the sengitf/ff4 toward cyanide ion
in the pH range of 6.5-8.0. The results revealeat the physiological pH of 7.4
buffered by HEPES gave the highest fluorescencarem@ment with fluorescence
intensity ratio (I/p) greater than 50Fgure 3.19. The relatively neutral pH of the
optimum sensing condition confirmed the need ofrtbarby phenolic proton to assist
the addition of cyanide ion to the aldehydic cagpaarbon as previously proposed in

literatures.
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Figure 3.19pH-dependence of the fluorescence spectf@dhcx = 397 nm) after the
addition of CN. (Medium = 75% DMSO/HEPES buffelF4] = 1 uM; [CN] = 1.5
mM)

To study the selectivity d¥4 for cyanide detection, 11 other aniong (NO;,
F, CI, Br, I, H,PO,, HSQ,, HCO;, AcO, NOs) were also testedrigure 3.20
clearly shows that only cyanide ion can enhancdltltrescence signal. The results
demonstrated very high selectivity B toward cyanide ion against these ions. The
interference test was also conducted by addingidgaand another anion to tlire
solution. As shown irFigure 3.21, the presence of another anion did not give any
significantly different fluorescence responseFdf compared to cyanide ion in the

absence of these interfering anions.
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Figure 3.20 Fluorescence spectra B# andF4 + anion (N, NO,, F, CI, Br, I,
H.PO,, HSQ, HCGs, AcO, NOs, CN,). Insets show histograms ofgl/bbtained
from the corresponding fluorescence spectiax € 397 nm; Medium = 75%
DMSO/HEPES buffer pH 7.4F4] = 1 uM; [anion] = 1.5 mM)
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Figure 3.21 Fluorescence spectra &4 upon the addition of CNin the
presence of another anions(NNO,, F, CI, Br, I, H,PO,, HSQ,, HCG;, AcO,
NOs, none). Insets show histograms ofg libbtained from the corresponding
fluorescence spectrakef = 397 nm; Medium = 75% DMSO/HEPES buffer pH 7.4;
[F4] = 1 uM; [anion] = 1.5 mM)
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The degree of the fluorescence intensity change ({)/lo x 100) plotted
against the cyanide concentration in the range -&0 1M yielded a linear line
(Figure 3.22. The plot also gave the detection limit (ak 30ise) of cyanide ion as
1.3 uM or 35 ppb below the concentration limit of 21K allowed to be present in

drinking water by WHO guideline.
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Figure 3.22 A plot of the fluorescence intensity change ((b)/lo X 100) ofF4 vs
[CNT. (Rex = 397 NM;kem = 463 nm; Medium = 75% DMSO/HEPES buffer pH 7.4;
[FO] = 1 puM;)

We determined the fluorescence quantum efficien®y) (of F4 in the
presence of cyanide ion 1.5 mM in comparison vithalone and found that the
fluorescence quantum efficiency increased from Qd®D.20 upon the addition of
cyanide ion. The increase of the quantum efficiasqgyresumably associated with the
change of the internal charge transfer (ICT) prec@&be addition of cyanide converts
the aldehyde group into tetrahedral cyanohydringhvim turn destroys its electron

withdrawing ability and thus reduces the ICT praces



CHAPTER IV

CONCLUSION

4.1 Conclusion

Four new fluorophores F(-F4) containing phenylene-ethynylene as
fluorogenic center and salicylaldehyde as selecpivebe for cyanide ion were
succesfully synthesized via Sonogashira couplirgtren. All fluorophores showed
highly selective fluorescence “turn-on” signal upthie addition of cyanide anion in
agueous media. Among these four fluorophoF&sdisplayed the highest sensitivity
toward cyanide detection. The fluorescence quanieids determined in the absence
and presence of cyanide ion revealed that the degence quenching by the ICT
process irF3is reduced the most by the cyanide addition. Theatien limit of F3 is
1.6 uM (42 ppb) which is below the concentration limiteg WHO in drinking water
of 2.7uM. Paper-based solid state sensor for cyanide msmailso fabricated frofR3.
The naked eye detection of cyanide anion downnanble was achieved by a simple
dropping and eluting technique.

o. HO__CN
o &
m¢l¢ Fo. AL
I k pH 7.4 Triton X-100 | /L
il\__'{', - e
/"-':// = - o, lf’:’i/ g\:
SN weddyfluoescent 2 Sy SN drongly fluorescent S
| i |

In HEPES buffer without organic solvent!

Fi: [0.5 nmol] [1.0 nmol| [2.0 nmol] [5.00 nmol]

nmiol CN

Figure 4.1 Reaction mechanism of recept8 in aqueous media and photographic
images for paper-based detection of cyanide iorru@ W black light.
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4.2 Suggestion for future works

This study be continued for the future applicatisnsh as analysis of real
samples in an industrial or natural water sourtasrefore, we further focus on rapid
and simple turn-on paper-based fluorescence selugoto the decreases of ICT

process into a commercial application.
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Figure A.42 Fluorescence spectra b# (1.0 uM) (black line) and after  (color-
coded) time addition of NaCN 1,500 eq at 75% DM$EPES pH = 7.4, 10 mM.
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