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CHAPTER I

INTRODUCTION
/s /)
-
" :

The notion of “wavelet,_sets™ *m.aa introduced by Da,lhand Larson in [7]. Wavelet
sets have been mnstrﬂf{

=

l_',f show the existence of wavelet functions.

Since then, because: t':liq,g, !md Emct-al -like properties, wavelet sets have

,itl!mr n right {1, 2, 3, 21|. However, many

received considerable int

natural questions re Dn& of them asks whether the frequency support
.4 //Al J

t c-;mtam a }'avelet sef [17, 20]. This question is still

Add

of a given wavelet functi

open even in the simplest one-dimensional case with dilation factor 2 and integral

translation. In [2'.'}1, Rzeszotuik and Sp;ﬁ&;‘answered the question partially by
N 7

A

proving that if thq' ot ionis “small enough,” then

it is either a wavelet :-ml; or a union of two wavelet se'Es However, to the best of
< U
our knowledge, there are no other results that would point to an answer to the
open problem in a’miore general seiting. This problem) therefore seems to be more
difficult than expected. In an attempt to gain a-better insightcof the geometry
of supergets of waveleb sets, we set .{:.’-uf to find nécessary conditious and sufficient
conditions for a “small” set to contain a wavelet set without assuming that the set
is the Fourier support of a wavelet. Here, a “small” set is a 2-basic set, that is, it

covers R by integral translation and dyadic dilation but intersects itself at most

twice both translationally and dilationally. We hope that this approach will allow



a generalization to sets which are not necessarily “small.” In fact, it is mentioned
in [19] that Qing Gu has an unpublished example which shows that the techniques
used in [20] do not extend to “larger” sets. A remark is worth mentioning here.
Under the assumption that .S is small, it is proved in [20] that if S is the Fourier

support of a wavelet function then Tz(qué ﬁ}.ﬁ' ) where Ty(S) (D3(S)) is the part

of § which intersects some of 1t.s mlati’ﬁﬁg@ﬁgﬂs), We show, under the same
2 -

assumption, that if T5(S) = Da(S)

a wavelet set. We thw/_ j )qure- that the weak eondition is always valid and

a weak_{:dn:ﬂ_itinn holds, then S contains

therefore S contains a

¥

= e

t$et whenever To(S) = Da(S), a weaker assumption
FRA- oy

than S being the Fouriér
(N &
A part of this thesis wq?ﬂl&?}get construction. Since ad hoc examples
. ﬂ “4 (,"t 7;‘0 + .
wavelet sets in BY were uced, many methods to construct various classes
FYP Y v

~dla
of wavelet sets have been proposed. Most of these methods [1, 2, 3, 4, 5, 8, 9,

et

14, 16, 21] rely on cut-wd-p@t@?ﬁﬁdmi@:\ﬁhgm an initial set tiling the space
by translations is ?h_ésen Recursively, part of th&-se%évhich intersects itself by

dilations is then It‘lt;‘l}éa'i out by translations. M'&thﬁuctiun do not allow us to
choose a priori a set ﬂxt')which the to-be-constructed is ;;uhset. The novelty of our
construction of wavelet-sets is,that onecan; undﬁrﬂ-sﬂme assumption, construct a
wavelet set by carving out parts tJfNa.vgiven “small” set without any pasting.

In Chapter 2, we«hegin“hg i"rltrd‘dncii’l"gi thieGonéept of holding almbst everywhere
on sets. Next, we recall about wavelets and wavelet sets. In the last section, we
give a few properties of supersets of wavelet set.

In Chapter 3, we study geometric properties of a 2-basic set containing a wavelet
set. We start with the definition of a 2-basic set and provide a characterization

of a 2-basic set to contain a wavelet set. Next, we introduce two functions for



3

a procedure to construct two sequences of subsets of a 2-basic set whose union
never intersects with wavelet subsets of a given 2-basic set. Moreover, we obtain
necessary conditions and sufficient conditions for a 2-basic set containing a wavelet

set in terms of this union. We discuss a 2-basic set with the empty union.

In Chapter 4, we provide a few ples of constructing wavelet sets from

Finally, in Chapter ! we sumimarize of our work and discuss possi-

AONUUINBUINT )
RN ININENAY



CHAPTER II

PRE].i‘/, ARIES

In this chapter we prese: heorems used in this thesis.

We assume that the re of real analysis or measure

theory. First of All, manuscript. All sets in here

] \ﬁ,\\h\ﬁnntes Lebesgue measure
. and the set of all positive integers,
respectively. Furthermo “Nu ( o' = N Uk oo} and N§° = Ny U {oo}.
The characteristic function o = le set ' is denoted by 1. In the first

asively in later chapters to almost

=l

and wavelet sets. Finﬂ;

21 C olJ -~ o t

B (5 10 2 D i
measurj es. We ﬁm efinition of bei gm quality of
sets almost everywhere.

Definition 2.1.1. A measurable set E is a subset of a measurable set F almost

everywhere, denoted by E C F or F D E, if1g < 1p ae.
Fi Af,



Definition 2.1.2. Two measurable sets £ and F are equal almost everywhere,
dﬂm:rtedbyE— thCFandFCE
A

L8 -

Obviously, = is an equivalence relation on the set of Lebesgue measurable
ALE.

subsets of R. For convenience in usin

characterization of subset alm§v
Proposition 2.1.3. m be ﬂmsﬁ!et& of R. Then
/ \

(a) E C F if and on

ubset almost everywhere, we will give a

v difference between sets.

Because lgnp < 1}-‘,

Consequently, by {a), the statement (b) is true.

The pruperﬁmgﬂawuﬂﬁ%ﬁ% properties with be-

ing subset, such as reflexivity, anti-symmetry, trapsitivity, etc. Using the equality

ot el il o i A/ e Edongrnce

almost E\?&rywhere and d-congruence almost everywhere as follow:

Definition 2.1.4. Let E be a measurable subset of R. A countable collection P of
measurable subsets of E is said to be a partition of E almost everywhere or a
partition of E a.e. an'P EandAﬂB*ﬁwheneverA BeP withA+#B.



Remark. Clearly, if P is a partition of a set E a.e., then P’ = {C~ N :C € P}
is a partition of a set E a.e. satisfying CN D = @ whenever C,D € P' with

C # D, where N = U (AN B). Throughout this thesis, we will assume that

A BeP
A#B

every partition almost everywhere satisfying the above property.

Definition 2.1.5. Two sets E and F M'gﬁ/cnngruent almost everywhere,

denoted by E L F, if there are partitions {E,zﬁ’a Z} and {Fy : k € Z} of E and
Fae., respectwc!y. andwnge {nJ k€ Z} CZ such that Ek = F;, + ., for
allk € Z. Two sets B4l ot

- q.m A-congruent almost everywhere, denoted by

E -'i F, if there are parti /w,{E',; ks EZ} and {Fi,+k € Z} of E and F ae,,
respectively, and a se / k E-E}-f Z such that E,, = 2:1:}3”,“ forallk € Z.

a4 :/{

g 4.4 //Al +

2.2 Wavelets and w v‘elei: s_egs} *
Add7 ~dla

»«‘a,,

,(
In this section we briefly rewévr—ihe deﬁm of wavelets and wavelet sets. We
J

begin this section wttfn the Fauner transform o?n fﬂn&hDP For f € LY(R)NL(R),

the Fourier transfuﬁy f of f is defined by _:J

2 fls) = fn fltle ™ dt, seR.
By the well-knum\!al-P}anﬂmml theorem; the Fourier-transform can be ex-
tended to an isometry from L?:{R} onto itself. Nﬂﬁ, we will recall the definition of
a wavelet and its fharaci.&riaaiiﬁn,
Definition 2.2.1. A function i € L*(R) is said to be a single dyadic orthonor-
mal wavelet or wavelet if the collection {1);, : j,n € Z} is an orthonormal basis

for L*(R), where each 1), is defined by

Yinl(t) =25(2t —n), forteR.




Theorem 2.2.2. Let 1 € L*(R). Then {t;. : j,n € Z} is an orthonormal set if
and only if

Y li(s+n)P=1 ae onR (21)

nel

3 \V/] ])1b(3+n} 0 aeonR (22

Theorem 2.2.3. Let ¢ € L*(R R) b '- such [l} = 1. Then ¢ is a wavelet

and forall j > 1

wavelet or minim?}y Sup:
)

We recall here a geometrie characterization of a wavelet set. For a proof of the

owing theori, s (1 bt} V) 211/ 071710 -
T“““‘Q;Wﬂ TS N YTV Y

{W +n:n e Z} is a partition of R a.e. and (2.5)

{2W : j € Z} is a partition of R a.e. (2.6)

Remark. [n particular, if R = U“EZW +n and R~ {0} = U,Ezi W where | J

denotes the disjoint union, then W is called a regularized wavelet set. The term



was first used in [15]. Furthermore, if W satisfies the properties (2.5) and (2.6),
then we say that W tiles R by integral translation and dyadic dilation, respec-
tively. Since every wavelet set satisfies the property (2.5), it must have Lebesgue

measure 1.

The fact that a wavelet 1) satisfies eﬁu&ﬁ)&on (2.1) and (2.3), implies that the
Fourier support K of ¢ covers K by bnth mtag\"g.'ﬁbanslatmns and dyadic dilations,

that is, |J,.o K — n = Mﬂ Uﬁ? 2 K = R, respgctwe]} Thus it is interesting

to ask: “Must the s

of the Fourier transform of such a wavelet function

contain a wavelet

i bv’pgj, ﬁrd;blgm was posed by Larson, see [17]. In the

next section we will _mp'&rti? of supersets of wavelet sets.
i’ | 4

- d
/./d‘ J

n ltm s f u ersets of wavelet sets
P or f p

Ad A

2.3 Necessary c

SREE ? 35{/4
In this section, we introduce Ewn:mmm functions and discuss some of their
- i J

‘/ / \“-‘

properties which wlll be useful in our wurk Finalhr fwe give our basic results.

We begin our dmt:&iﬁlnn of supersets of wmelqtaetsbxﬂ'st defining the following
two functions. Let .S/he a measurable subset of R. We define 75 : R — N§° and
ds : R — N§° by

1s(z) == Zlg(z + n] and 65(:1:} = Z 15(2x)

. j§%
for each, 7 € R. Tt is clear that 7s(z) = 'Enez 15 () hiesslzy L Eﬂ 1,-:5(7)
for each z € R. Set Tp(S) := 75'(0) and Dy(S) := 65'(0), and, for each m € N>,
let T3,(S) := SN7g'(m) and D,,(S) := SNdg'(m). Obviously, T,,(S) and D,,(S)
are measurable sets for all n € N°. When the context is clear, we shall write T,

and D,, for T,,,(S) and D,,(S), respectively.



Noticeably, 75(z) counts the number of times that z € § — n and similarly for
ds(x). Furthermore, 7s(z + k) = 7¢(x) and d¢(2'x) = dg(z) for all k,i € Z and for
all z € R. The following proposition summarizes several properties of 7s and d5

in term of T, and D,,, respectively.

Proposition 2.3.1. Let S be a
(a) S = Umean and
(b) R =ToU(U,ez S +
(¢) Upez S+n=Th

(d) 75" (m) = Uy ez

S by using both functmls nd ds. of is easy, ﬂd will be omitted.

Proposion 28] u‘%ﬂﬁﬂ%mﬁ
RN fﬁ%‘mﬁfm’m YRE

(b) bs = l]ae if and only if | )
(¢c) s <1lae. ifand only if foralln€Z, (S+n)NS = @;

(d) 6s <1 ae. if and only if for all j € Z, 228N S = 2.
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Remark. Consequently, by Proposition 2.3.2, we obtain that W is a wavelet set

if and only if w = 1 ae. and oy = 1 ae.

Proposition 2.3.3. Let S be a measurable subset of R and A, B measurable subsets

Wn Tg =74+ Tg and ds = 64 + d3.
O

Some necessary conditi in a wavelet set are listed below.

of Swith ANB=2 and S=AUB

Proof. It follows from the

Theorem 2.3.4. Le

set W. Then S have

Proof. Obviously, the results (¢ : read@ from the result (b), that

is, Ty UD, C W. It remains to show the results (a) and (b). To prove the

i 0 DA b VHEA T B e 5
of S, A 2“1#’} = 0 for all k> 0. ently ng a wavelet

- IR TR
to check thaL Uken Ak = (0,1). Recall the fact that A(W) = 1 and W has to
cover both Rt and R~ by dyadic dilation. It follows that A(W NR*) :=¢c < 1.
By definition of A;, we obtain that 2*A, L:. W NRY for all £ € M. It implies

that 28A(Ax) = A(2¥Ax) < AM(W NRY) = ¢, that is, A(Ag) < 5 for all k € N.
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Hence 1 = AM0,1) = MUien A%) < 2ken AMAk) < 2 ienze = ¢ < 1, which is a
contradiction. Similarly, we can prove that A(SN(-1,0)) > 0.
Now, we will prove that Ty C W. Since W is a subset of S, we get that

ae.

R UnEzS-!-n Then T, = R\[U“#u5+ﬂ}CR\{U ,mW-i-n} W, which

is a consequence of Pmpcsltmn 2.3.1(e). Similarly, D, C W follows. Therefore,

(b).

Example 2.3.5. These

set.

(a) S := [-1,—1) U[2,4) daes ot conta wavelek set because 51 (0,1) = &.

(b) S :=[— yu [ set because N(Ty U D) =
where T, = [3,]

. In the problem (5;3@- z0tnil Speegle answered the

satisfying 1 < 7 < 2ae. and 1 <685 < 2 ae,, theﬂK contains a wavelet set.

In the next chapter, we will study-the geometric_properties of sets satisfying both

- m@j@mw:gmﬂsﬂ;}ﬁwj e
QW’]@\? NITUNATINETINE



CHAPTER III

TWO-BASIC SUPEEW} OF WAVELET SETS

In this chapter we inves sufficient conditions for a

2-basic set to contain. we define a 2-basic set

and provide a simplescharacterizati ntaining a wavelet set,

Consequently, we obtain se: essary” condition _.\&.3 2-basic set to contain
a wavelet set. Section " and d;, and prove several
properties of both funct t section. In section 3, we
provide a procedure to co /o sequences of subsets of a given 2-basic set
whose union never mtersectwel},t/as 2-basic set Importantly, we
get a useful nec _basic sct o cor a wavelet set in terms

of this union. In sectil e tﬁnditions for a 2-basic set

S containing a wavelet set m terms of the union in Section 3. In the last section,

““““““”ﬁﬁ’fﬁju%%ﬁ‘l‘_f‘?ﬂ pey =
01 TR ) Al 7 i -

persets of wavelet sets

We begin this section with the definition of a 2-basic set and give examples of

92-basic sets which do not contain a wavelet set.
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Definition 3.1.1. Let S be a measurable subset of R. We say that S is a two-

basic set or a 2-basic set if 1 <715 <2 ae. and 1 < g < 2 ae., that is,

(i) R = Unez S+nand S = TYU T, and

(a) In [6], S is said to

(b) One can easily comeap wath e « : - ationally and dilationally.
but do not contain @
by dilation and covers R & . 51 : 01 ' Wnez are not disjoint. Since
any proper subsets of 8 canng _ "-_ y dyadi dilation, S does not contain

a wavelet set. Other e / u(g, 2), [—I l]U[m,Z], ete.

(¢) There are pt‘enty of emmﬂea‘;ﬂj wavelet funictions whose supports are 2-basic.
in [-3,—3]U[5:3
which is abmoust'g@ An imple Tre wavelets whose Fourier

J

supports are [—ia, —ua)u[l-— a?—-a) 0<a<l, se [13].

oo 5. 8] BV ALI ALY R T ATt 5
R T ol IeNRe

Proof. ASsume that S is a 2-basic set, that is, Ty (S)UT2(5) = S = Dy (S)UD,(S)
and |
Clearly, S € S. Moreover, S = S because Ty (S)UTy(S) = § = D, (S)UD,(S).

nel

S+n =R = U, 2S. Put § = [{Ti{S}UTng}] n {DI(S]UDE (SN

Then S is a 2-basic set. To show that 75(z) < 2 forall z € R, let r € R. If

r ¢ S —nfor all n € Z, then we are done. Suppose that there exists an integer
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ng such that * € § — ng. Thus z 4 ng € S, and so r + ng € T1(S)UT5(S). Hence
Ts(z +np) < 2. Since S C S, we get that 75(z) = T5(x + ng) < Ts(x +ng) < 2.

Similarly, we can prove that dz(x) < 2 for all z € R. O

Remark. We know that if Sy and S; are 2-basic sets such that S; = S; and S,
a.e,

contains a wavelet set, then S, w w set. By the preceding theorem,
i ’ s ‘ : S=D1UD2,

such that {W +n:n € Z}

asurable subset R of S such that

15 a partition of R a.e. if nndpjﬂjjﬁﬁﬁdﬁ @ theas
3 1 either case, we have 5( R(R=S~W)

R C T and T,
—
show tlﬁ the set W = 5~ R tiles

V|
Proof. To prove the su%l:mnt conditio

R by integral translation. From 7s S 2, it is easy to verify that ry = 75 — 75. We

show only that r&ﬂj,ﬂ%@w%@jﬁﬂat J(R—n) = 1'5‘[2}
and (R @ for all n € Zv Since Th R ~
ot AL TR AU A UELIEL - -

have U“Ez[R —n) € |U,ez(T2 — n). Hence 75'(2) = |J,.z(R — n). To show that
a.e. a.e,
(R—n)NR = @ for all n € Z by contradiction, suppose that there exists a nonzero

integer ng such that A((R—ng)NR) > 0. From T; ~ R ~ R, there exists a nonzero
.o,

integer ny such that A((R—no)NRN((T>2~ R)—n,)) > 0. Obviously, n, # ng. Set



15

o {R—m}ﬁRﬁ({Tng}—nl}. Then z, z+ng, z+ny € S forall z € P, and hence
75(x) > 3 for all z € P, which is impossible. Conversely, set R = § ~ W. Since
T E W, we get that R l% T,. We will show that T5 ~ R :r: R. Set G=T,~R.
Theln G =WnNT; and W .: T, UG. Since (Ty —n)N R E re'(1)N75'(2) =

for all n € Z, we get that |J,.,(Th =) N R = 2, and so H n% Unez G — n. For
eachn € Z, welet R, = (G =n)NA. Weée(,@{ﬁn 'nE E} is a partition of
R ae. For each n € Z, letGy= R, + n. FianIyi -ﬁéa&aim that {G, :n€Z} isa

partition of G a.e. Sinc‘E/LJ‘ﬁ

S = T\UT; and GN (U Jﬂ)r—ﬂ weobtmnthatGCUﬂTg—irn Since

L = 1U(Ljnﬂ3.+:ﬂ), G C UpsoS +n. From

: -fﬂral‘l*n € Z ~ {0}, we have G c U“#DR-{HH
Umz{@,ﬁ‘fﬂ+ﬂ)] = U,ez2(G-nNR)+n=
Al i

U,ez Ba + 1 = Uyez G, anid this proves the result. O
i

;-\'A" 1‘/]4 L

nﬂk&ﬁbfe sﬁﬁfﬂ(m}' R such that S = DyUD, and

R UJEZE 'S. There exists wm:émabie&}agﬁi—’ of S such that {2?W : j € Z}
LY

To=GURand W +n
ae
Hence G = G N (Unez

Lemma 3.1.4. Let S be

is a partition of R & é‘dubeet R of S such that

R C Dj and DE\R‘EB i W = S < R (R =S~ W).

Proof. To prove the sufficient’condition, we will show that the set W = S~ R tiles
R by dyadic dilation, From ds <2, it is easy! to chedk that dy)= ds —dr. We show
only that g = 1.1 €. That is, we shall prove'that | J, ;2 R = E (2) and
EJRI“IR EI forallj € 7. Sirlce' I'.HxR R it follows that D" C U cz(R—n),
and so 155‘{2} = U;e2 2 D2 C Ujez ZR. By the property of R tha.t R E Dy,
we obtain that |J,., 2R 5 UJEIE 'D,. Then 85'(2) = U,ez 2 R. To show that

2%RN R = @ for all j € Z by contradiction, suppose that there exists a nonzero
.

integer jp such that A(27°RN R) > 0. From D\ R L R, there exists a nonzero
a.e,
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integer j; such that A(27RN RN271(Dy ~ R)) > 0. Clearly, j1 # jo. Put
P=29RNARN2 (D, ~ R). Then x,2%z, 2"z € S for all r € P, and hence
6s(z) > 3 forall z € P, which is a contradiction. Conversely, set R = S~ W. Since

Dy € W, we get that R C Dy, We will show that Do\ R ; »'-’- R. Set H = D~ R.
| D\NR & &g’(l)nﬁg‘[z] = @ for
I\X'W 50 R E U,ez 27 H. For each
see- &E} is a partition of R a.e.

t {H;:j € Z} is a partition

Then H = WnD, a.ndW = D'ILI

all j € Z, we get that (U’EZK
jEZ welet R =277

25, From § = D,UD,

JEL Ujez Jr

O

Theorem 3.1.5. Let § be u;;m/uy%m a wavelet subset W of S if
Eﬂ{t ﬂﬂ!y ;f thm 1% f-"i-f-.‘l:i’i-t-.i’-_-ijm;;;:_u-;ll ’, T‘anZr Taz\ R Y R_

and D~ R ~ R. Iﬂﬂtﬁé rase, we hav 2R = S~ w).

Proof. This result is an obvious copsequence of Lenma 3.1.3 and Lemma 3.1.4. O

The following res qg&l‘!t}nl;gam Emlelrj lﬂ :l'ljevmus theorem.
AW RO TALUYIA ’l%&ls’lo&& wavelt

set W. T?nen we have the following properties
f'ﬂfj T.‘i:l{l} USUPP{T-HHD,] .il Rr and

(b) 85'(1) Usupp(Snynp,) = R.
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Proof. By Theorem 3.1.5, there exists a measurable subset R = S\W of S such
that R C T,N Dy, To\R < R, and D;\R 5; R. It is enough to show that

75" (1) Usupp(7) = R and &5'(1) Usupp(éa) Z R

From the facts that |J,.,2'Di =

"

Now, we claim that R = supp(dg)
e,

§5'(1) and U, 2Dy = phas that

This proves the result (b). A simi - I o dws'that 75 ' (1) Usupp(7r) = R. O
Lemma 3.1.7. Let S be
R and

(a) Trup, = 1 ae. if and

(b) Spur > 1 ae. if

Proof. We shall only p _] e (a)

for (b). To show the only

, J
if part of (a), we assume tha.t fﬂu;., > 1 ae. From the fact that Ty U (Dy N

T,}:(Tlum)m u?l ﬂ 3.“ » > 1ae Then
RﬁeUEz(T;U{DzﬂTg}-i‘ﬂ— lﬁ [Um:l T"IT&,+11} Since

T SN mmwmwma 4

R B 'rg ‘(ﬂ U supp(D, N Ty). By the above argument, the converse holds.

Corollary 3.1.8. Let S be a 2-basic subset of R such that S contains a wavelet

set W. Then we have the following properties

Trup, = 1 ae. and dp,ur, 2 1 ae.
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Proof 1t follows from Corollary 3.1.6 and Lemma 3.1.7. O

The converse of the previous Corollary is not true as there exist 2-basic sets
satisfying the above conditions that do not contain a wavelet set, as shown in the

next example.

and

It implies that Tr,up, 2

v s MY MUY B g P

we claim that S does not contain a wavglet set. Asssge that S contaeins a wavelet

. SO BT b BRI T 3R Gt v

R by difatia?l, it implies that \(W ~ (Ty U Dy)) > 0. Hence A(W) > 1 which 1s a

contradiction. This proves our claim.
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3.2 7 and J, functions

In this section, we introduce two functions and discuss their properties which will

be useful in obtaining a necessary condition for a 2-basic set to contain a wavelet

set. We begin this section by mnsiderin; !he properties of T, and D,.

\ // 5 there exists a unique nonzero
and for each , there exists a unique nonzero

integer n such that x +n g
Ta: Ty — T, by

integer j such that 27z

where n is the nonzer

—

R

F“={$ETz:ab-bnE2} and MJ,-:EE D,y : 2z € Dy}.

Clearly, {P, : nam:] Uﬂgmum}]ﬁd D, respectively.

Furthe e n M i ! ts for all
e N I A VIEINEL, o

Lemma 3.2.1. Let n,j € Z~ {0}. Then

We shall study (properties of fi st of all, we will give
v [ LR o S ‘ .

1

(a) if A is a subset of P,, then To(A) = A+ n is a subset of P_,,, and

(b) if B is a subset of M;, then 8,(B) = 2B is a subset of M_;.
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Proof. (a) Assume that A is a subset of P,. To show that m(A) C A+ n, let
y € 7a(A). Then there exist * € A and a nonzero integer n; such that y =
a(z) = x + ny € T,. By assumption, it implies that r € P,, and so r +n € T5.
By definition of T,, we obtain that n = n;. Thus y = 2 +n € A 4+ n. Hence

72(A) C A+ n. Now,lety € A+n.

By assumption, we have z & . /hal; z+n € T,. Since n # 0,
y=1r4+n="mz)€ Tﬁ then iQA +n C 7(A). Therefore,
n(A)=A+n. Uhviu( : a subset of P_..

O

ere exists © € A such that y =z +n,

The proof of (b) is

Proposition 3.2.2. of Ty under 7 15 a mea-

surable set. Furtherm ‘ , ot all measurable subset E of T;.

Uﬂ 40 E,. By Lemma

{E, : n # 0} are m&asurahymﬁz of B, that is, E =

n 1s measurable. Since

Since Lebesgue measure is translation invariant, we have

0171 ¥ MR )5
ammmmﬁﬁﬁ%maﬂ

= A(E )

r:guﬁlill+

NUE)
n#l

= AE).

Il

This proves the proposition. O
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Remark. From the preceding proposition, we obtain that 7; ' is a measurable func-
tion in sense that every inverse image of measurable sets 1s measurable. Indeed, T

is also measurable because 7; ' = Ta. Moreover, 7, and 7; ' preserve measure.

Theorem 3.2.3. Let A and B be measurable subsets of R such that AUB C Ty

%\W/)A NT) = B. h

Proof. Assume that A - ~ n t3ere tition {Ay : k € Z} of A

and ANB =@. ThenA B

ae. and a sequence { hat {A+n, : k€ Z}isa

partition a.e. of B. ethat ng #0forallke Z

because AN B = @. Ak.ﬂk+ﬂkCT~zfﬂrﬂﬂ

\_‘L

ke Z. From A =4 for @ }%E Z, which implies that

AyNT, C Ty —ny for N (T: — ny) for all k € Z.
e

By Lemma 3.2.1 (a) an neasure zero, we obtain that

= Ap+ny

— amﬁmwwﬁfmm B

W{_i iﬁ]&m tﬁsofT Fnre%éﬁnEZ\{ﬂ}
let A, = ﬁ 0 in- ,&J;V#!( lg;:!euﬁ(ﬁn} =

n(ANT;) = B. Thus A % B. O

Proposition 3.2.4. The image of a measurable subset of D, under §; is a mea-
surable set. Moreover, if F' is a measurable subset of Dy such that MF) =0, then

A&(F)) = 0.
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Proof. Let F' be a measurable subset of D;. We recall that {M; : j # 0} are
measurable partitions of Dy. For each j € Z ~ {0}, let F; = Fn M;. Then
{F; : j # 0} are measurable partitions of F, that is, F' = L'_J#OF_,-. By Lemma
3.2.1 (b), we obtain that & (F) =, 4 Eg{F-} = U, 40 2’ F; is measurable. Since &

is injective, we get that {d;(F}) : 3(7\ : rable partitions of &;(F). Now,

we suppose that F' has measu fﬂl‘ all 7 # 0. By a property

of Lebesgue measure ,

O

§ measurable function

irable. Since &;1 = 4y,

we obtain that &, is also measurable. Moreover, even though 8, and 8;" obuviously

e SRS

Theorem 3.2 i, Let A and B be measturable subsetssof R such thabAU B C D,

AN A Rhdba kA b Byl B TN E) ™

Proof. Assume that A 2 B. Then there exist a partition {4, : k € Z} of A ae.

LR

and AN

and a sequence {ji : k € Z} of integers such that {2/*A, : k € Z} is a partition
of B a.e. Without loss of generality we assume that j; # 0 for all k € Z because
ANB = @. Since AUB C D,, we obtain that Ay, 27« A, C D for all k € Z. From

a.e,
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Jh,- = Aknﬂg and 2‘]-".:"* ; Dy forall k € 2’., which i.mp[i&ﬁ that A,ND, '-; 27,
[‘arn]lkez ThUSA;;r"I.Dz = AkﬂﬂgﬂE D, for all k € Z. By Lemma 3.2.1

(b) and as &, preserves sets of measure zero, we obtain that

S(Ax N D) = &(AcNDyN27%Dy)

that &,(AND;) = B
We recall that {M, : j # surab 2 3 . For each j € Z~ {0},

welet A, = ANM,. The ‘» A1 Moreover, U, ;527 4; = U, 4o02(4;) =
5(ANDy) = B. Thus A_ -4 O
Remark. Let S be a 2-basic sef4ohich contains'@ wavelet set W and R = S~ W.
By Theorem 3.1.5. ﬂjglpiw\ﬁ'q{ L R. Then we have

n(T;\R) = R, 7o

Ly =14 i 4;‘ 5] DEHR} Dj\R
as consequences of The&m 32%a

H@MH use these results in

AOUUINBUINT

3.3 Two test sequences of subsets of two-basic ‘séts

FWIANNIEUNKRINIETINE

Notice thatjif S is a 2-basic set containing a wavelet set W, then T, ~ D, = TaN Dy

the next section.

is contained in W, and so the image of T3 ~. Dy under 72 must be disjoint from W.
Similarly, we get that (D, ~ T:) must be disjoint from W. From this concept,
we will construct two sequences of subsets of a 2-basic set S which will be useful

in deriving a sufficient condition for a 2-basic set to contain a wavelet set.



Definition 3.3.1. Assume that S is a 2-basic set. Set

Ag = 72(T2 \ D2) and By = 8;(D; \ T3).

For each n € N, let
=T1o(Ta N da(D;, N \\\1 W b2(D2 N 72(T3 N By-y)).
Put A= | A, and Basle)By 4 4
neNg
The following properties e consequences of the construction se-

quences.

(a) ACTyand BC D

(b) If there exists n, €
A,.zﬂ]fnrallnz

i = @), then A, = @ (or
J{}‘i‘i&'f:ﬁ :

= 3
(¢) If there exists n; € I } “ B,, = @), then B, = @ (or

¥/

(@) IFT; € Dy, thenm = . m

o TSTRAMAIVEUINNT
AN NI YR Y

(8) 62(DiN7(T3 N B)) = U, Bn-

w = @) for all >

Proposition 3.3.2. Let S be a 2-basic set. Then, for all n,m € Ny with n # m,

A.NA,=@@ and B,NB,, =
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Proof. To show that A, N A, = @ for all n,m € Ny with n # m, let n,m € N,

be such that n # m. Without loss of generality we assume that n < m. If n = 0,

then
Au mn .r‘lm = T-z[Tz ~ DN Tg['rz M Jp[ﬂ'g n Am—l}]
# (D20 Apy))
since 7, is an injectio , / 1]« Now, we suppose that 0 < n.
= \ ‘.
Since m — n > 0, by the® , .dﬂh
AnE‘: 7y
&)
Applying 4, to the above equation; we hav

o e e
HEAEES <

We take 7, on the r‘y————

N
T2(T F\M{Da N Ag)) N7a(T2 N 52{5': n ‘ﬂ-n)] -

which implies tﬁ ﬂﬂWmWaﬂWn times, we obtain

that A, N A, = @. Asmﬂa:pmuf$owsthat ﬂBm—Efwlln,mENn

AN IRINTUNANVERE o

The next theorem explains that A and B are bad parts of the 2-basic set S in

the sense that every wavelet subset of S does not intersect A U B.

Theorem 3.3.3. Let S be a 2-basic set. If S contains a wavelet set W, then
AUBCTaND; and W C S~ (AUB).
Ao a.o.
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Proof. Assume that S contains a wavelet set W. By Theorem 3.1.5, we obtain
that there exists a measurable subset R = § ~ W of S such that R u% Ty N Dy,
TR X R and D,~R . % R. Itimplies that 75(Ty\R) = R, 2(TaNR) = TR,
&{HE\R] = R, and &(D2NR) = D2\ R.

First, wew:lI claim that AUB. , i

ces to prove that A,, B, € R for

o,

all n € Ny. We prove by usi e of R and the fact that both

Taking 73 to 82(D; r1 An) &E&a{a‘%"

Anir = Tz{TzE& ﬂiﬁ-ﬁd}; T
i .
This proves our claim. Cons&quently, AuBC ThnDand W C S~ AUB. O

R, o Y 4 5 s st v

AC D,and B C Ty. It is unknown whether theceonverse is trie/or not as we

e ANAR DTSN ARE 7 b

has no wavelet subset.

In general, a 2-basic set S may not satisfy AUB C T, N D,. In lieu of the fact
g

that A C Ty and B C D,, it means that it may not be the case that A C D, and

B C T; as the next example shows.

A
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Example 3.3.4. We will give some examples for which AND, # @ or BNOT\ # @.

(a) Let S = [-2,-3) U [-3,-}u [1.1). Then we have

oo Deli) e[ LEDR)

Hence A = [-5,— [-3.,—%). We see that

BNnTy=2 but AN that (A~ D) >0, and

so Theorem 3.3.3 implies n a wavelet set. Furthermore,

this example 3.':?:? that hich Tr,up, = 1 a.e. and

dp,ury, = 1 ae. ,.:,-?; has no a wavelet subse ')

B 5= (50U [0 LD DY Then U

n- saam%wwﬂ 9
AN RGTSANITH] “jq

Obvidusly, A = @ and B = D;. Then A NnD, =@ and

Indeed, S does not contain a wavelet set since A(S ~ (AU B)) <

(c) §=[-1,=5)U[3:5). Then

nef)ed mepd)eld)
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1 T3 3 7 37
D= [-1,—*2—) L [E, E) , and Dy = [Z, E) U [E,E) .

From Ty N D, = @, we get that A =T, and B = D;. Moreover AN D, # @
and BNT) # @. Since \(T\ U D,) =3 > 1, S does not contain a wavelet set.

It is interesting that any set of the fonm S = [-l,m%) u [%+E‘,%+E) does

not contain a wavelet set for varion € (0.4].

\2‘\
NGW, we St-'l.'ld:f SEVEI'&[ propertles
some sufficient conditions 12-basic set to an “--ﬂ; wavelet set in the next

section.
Lemma 3.3.5. Let S

.‘?‘A’"
Proof. First, we shall prove the "’"1“:&" ‘ £ @ for all n,m € Ny. From

the fact that B,, € D for allm & Ny, we has

Agﬁ 'j -=ﬂ

for all m € Ng. Since A, C T; for all n € Ny, we get that
=\ =Y

WA USRS
AN TERUATATRITRE

foralln e M. Fix n,m € N,.

If n < m, then m — n € Ny. Thus we have

Ao n T-z(Tz an—n} =&
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Applying 8, to the preceding equation, we get that

02(Dy N Ag) N &2(D2 N7a(T2 N Bi—n)) = @,

which implies that

Wm0 S R T N )
AR IR

Repeating this process m time, we have A, N72(T: N B,,) = @.

Similar arguments show that B,, N &,(D, N A,) = @ for all n,m € Ny, o

Lemma 3.3.6. Let S be a 2-basic set with the sets A and B defined in Definition
3.53.1. Then
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(o) ANT(TaNB) =2,
(b) Bndy(D,NA) =@,

(c) BN1(A) =@,

(d) ANGy(B) = 2.

" We shall 1 s | d) can be verified in a similar
Proof. We shall prove (a) .

manner. By the definiti

) 180 5:(0: 0 A

n=0

SRR NS

5N B, N &,(DsA A,)

AN TR 2R Y

which is 8mpty by Lemma 3.3.5. The proof is complete.

Lemma 3.3.7. Let S be a 2-basic set with the sets A and B defined in Definition

3.3.1.

(a) If A C Dy, then AN&y(DyN A) = @, and ANT(A) = @.
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(b) If B C T3, then BN 72(T2N B) - @, and BN d2(B) = @.

Proof. (a) Assume that A C D,. It is easy to verify that

408020 4) = U U 416D 01 A).

Then it suffices to show th = @ for all n,m € Ny. Fix

n,m € MNy. If n =0, then

) N 72l (T 62( D2 N An)))

a5 N62( Dy N Ay)))

which is a consequence fro C D,. Now, assume that n # 0.

By an argument si

milar __ 2 ' 12
‘\‘
m A N &y Y=2.
B,
We apply 4, to the above equatiof, it im%&s that™

SIS N3

62{91 n -&ﬁ) n Am+n

AN TINENAY

Applyiang to the previous equation, we

72(Ta N 82(D2 0 Ag)) N T2 Np( D2 N Aryni) =2

which implies that A; N&(Ds N Apsn) = @. By continuing process n time, we
have A, N & (D2 N A,,) =9 ThenAnﬁg(D,nA};m.
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~ Consequently,

AN TE{A] = AN D TQ{AH}

ri=()

= AN[(Ta~ D) U | T2 N&(D2N A,

n=0

&(Dn | J An))

n=>0

5s(D, N A))]

6,( Dy N A)]

follows from A C D, ag

(b) can be proved by similar O

o\ J“ﬂ

Proposition 3.3.8. Let § be a
AdA )I

. Definition 3.3.1 satisfy A IL_r:
a.e

- _ZTRN b
(a) {AUB}F‘IE;[D 7 (A @ and {AUB]]: @
A
.‘ = AUB.

he sets A and B defined in

J (b) 2(Ta ~ (AU B}

J

' Proof. (a) It is easily seen t&\jt.

mumﬁmu]u'mwamm
AN nInkm N NG

[(ANd&x(Dy N A) U [En&,{D, N A))

U[ANé&y(B) U (B N&(B).
By Lemma 3.3.7 and Lemma 3.3.6, it implies that

(AUB)N&(D;N(AUB)) = @.
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The set equation (AU B)Nn(Tan (AU B}} = @ can be proved very similarly
under the assumption that A C Dy and B C Tz

(b) Suppose &,(D; ~ (AU B]] = Au B. Applylng 8z, we get that

Dz~ (AU B) = 8(D; N A)U (D N T3) U(D; N7a(T3 1 B)).

Taking complement i
~ (AU

We apply 72 and get

O

3.4 Sufficient @m

In this section, \ujjjm qﬁ[% ﬁ basic set S, there
exists a subset gﬁﬁﬂ g the prnpertms in Theorem :) 5, whmh implies that
s cny PEOYEYS A TR RNE VR0

S contain§ a wavelet set. Indeed, AU B € R. We will give some conditions on

measure which imply that A U B satisfies the same properties as R in Theorem
3.1.5. We start by recalling a lemma of Grochenig and Madych
In [11] Gréchenig and Madych verified the next lemma which, along with the

generalized lemma that follows, is useful in proving our main theorem.
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Lemma 3.4.1. [11] Suppose Q) is a measurable subset of R such that | J,,(Q +

k) :_R. Then the followings are equivalent

(a) QI’]{Q-}-k}_: @ whenever k is a nonzero element in Z.

(b) MQ) = 1.

Lemma 3.4.2. Suppose QQ

following statements impl
() Upea@+ K) =
(}) QNQ+k) =&
(c) NQ) =1.

Proof. From Lemma 3.4 t statements (a) and (b) imply

the statement (c), and the tw s ¥hnd (¢) imply the statement (b).

Finally, we will sho d (¢) imply the statement (a).

{
Assume that the two st

oid Without loss of generality we

- unzﬂ element in Z. We will
prove by contradiction. Suppose th&t AR~ {Ukeﬁ +k)) > 0. Since [0, 1) covers

R by trauslatium&] EH‘MQ)‘V] @E‘w‘ﬁ ﬂ S-]tﬁwhich implies that

A0, 1) N UWQ +k) <1 Thus o

ARTRYNIPENTINEAL

q
= MU@n[kk+1)

keZ

= > MQnk.k+1))

keZ

= ) M@-k)nlo,1))

ke



= Y M@Q+K)n[o,1)

kEZ

= AU@+kno,1))

kel

= Ao, )nJ@+K) <1,

kel

which is a contradiction. The proof is ,’; O
& P tai ,,@t, then A(S~ (AUB)) > 1.

ns
‘—

wdition but certainly not a sufficient

Thus A(S ~ (AU B)) ‘
condition. The next theorem gives a s sient cond ion for S~ (AU B) to be a

wavelet set.

s A and B defined i Defi-
=1, then S~ (AUB) isa

wavelet set. In fact, it is the wavelet stbs ot of S up to measure zero.

Proof. Assume that AUB% 1D, and | S (AU B)) = 1. Then we have

which follows from AU B C Ty N D, and Proposition 3.3.8. It implies that

s mem~d¥e e 1 N3
AR IV LR

which implies that AUB C |, .z(Te ~ (AU B)) + 1 C U,2(S~ (AU B)) +n.

Hence S C U, cz(S~ (AU B)) +n, andsoR = U,ez(S ~ (AU B)) + n. By the
assumption A(S\(AU B)) = 1 and Lemma 3.4.1, we get that

[S\.{AUB}]E’]{S\(AUB}+11}:'E,
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forallne Z~ {0}. Set C={z€To~(AUB):n(r) €Ty~ (AUB)}. Toshow
that A(C') = 0, we suppose that A(C) > 0. Then there exists a nonzero integer m
such that A((T: ~ (AU B)) +mn (T ~ (AU B))) > 0. Hence

A(S~(AUB))+mN (S~ (AUB))) >0

which is a contradiction. Thus A(€) = /

W,

i a:{m 3.3.8, we obtain that

. rrom Fropos
F - g 13
"
I

Therefore, (T ~ (AU
83( Dy~ (AUB)) = AUB
Then S~ (AU B) isa wa

wd Dz (AUB) ~ (AUB).
ence of Theorem 3.1.5. O
Example 3.4.4. Let S <[4, 2 UL 1) 0[3.4). \Then T, = 2,T; = S and
Dy = [-1,-3) U[3:3) , Do [§HFU13,4): Thus we can define

[yt Yl R T
T2 [ L, 2)\3 7 ) E 3,4)
Hence A = [3,4) an ) U [3.1). Then

MS ~ (AU B)) = 1, which implies that S~ (AU B) is a wavelet set. In fact, this

e A TEIVETS NS

Next, weWne another measure ji'b o o
NWIANOEONea
e |zl E |zl
where E is Lebesgue measurable. It is easy to see that u is absolutely continuous
with respect to A. Indeed, we shall show that A is also absolutely continuous with

respect to u in the next lemma.
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Lemma 3.4.5. )\ is absolutely continuous with respect to p.

Proof. Let E be Lebesgue measurable such that A(E) > 0. Then there exist an
integer n such that A(EN(n,n+ 1)) > 0, say E, := EN(n,n+1). If n = 0, then

ﬁ{l;:i:—lforﬂﬂIEEn,Mdm

(a) QN2*Q = & (u-ae.) zshjneuer kisa nanzera element in Z,

o wonen RELIGMAREUTNT
ot BRG] S YR T

Jliz)=1 Se. on R. Then
W@RY) = [lowS

2 f . 1,,-,{:.:)-—

JEL

I
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Similarly, we obtain th
Conversely, Ass

assumption, we obtain

that f(r) > 1 a.e. on

=2
1
and
-1
QNR™) =In2.
-2
It implies that F(%) “ ={#) = 1 a.c. on R. Thus
QnN2kQ =0 whenev@!: is a ne _ nNZ. | O

Proposition 3.4.7. Let S be-d 2-basic set with thesets A and B defined in Defini-

fon 83,1, mﬁ@ﬂﬂ,]ugogllﬂﬁ;kzﬂ'lﬁ\%mm; -
HNIRYTITIN AN INE IR Y

Proof. Simillar to that of Proposition 3.4.3. o

Clearly, any subset of a 2-basic set covering R by translation and dilation is
2-basic. Another special property of the sets A and B constructed from a 2-basic
set S is that if AU B C T, N D,, then the sets Ty and D, of the good part
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§ = S\(A U B) are equal. Here, Ty, is the set of all points in S whose integral
translates beiong to S exactly twice and D; is defined analogously.

Lemma 3.4.8. Let S be a 2-basic set and S = S~ (AUB). IfAUB C Ty Dy,

then S is a 2-basic set with To = Da. Moreover,

[

’f'g=Tg\{AUBU/ and m{AuBuﬁz{AuB}
Proof. Assume that A/ o _" Proposition 3.3.8, we obtain that

Tl =Ty Un(AU B),

(AUB)N (T N (A and (AU B) (183D, N (AUB)) = 2.
It implies that
(AU B) C TQ(T, (.Dz S [AU B}}
Then AUB C Umz(ﬂ\{A%@E ; B C Uyez 2(D2 ~ (AU B))
which tmph&s that S S+na Thus R C |J,cz5+n
deCUEZE'S ifice S C S, we get that

TS{TS{Emdﬁg{S{E Thus S is a 2-basic set. It

s m%mﬁawmﬂwﬂ s
« ARIRINTOUNAINERE

840, N (AU B)) = 8,(D; N A) U (D, ~ T2) U (D2 N 7o(T; N B)).

s easily seen that

It then follows that

Tz\[A UBU Tz{Tg n (A W] B)]]

=T~ {AUBU(T] ~ Dg}U{TinazfﬂzﬁA]}UTg[TgﬂH”
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='.r2\[AUBU{T'Q\Dg}Uﬁz{DznA}Ufg(TgnB]]
= [Ta~ (Ta~ Dy)] N [AUBU (D2 N A) U Ty(To N B)]
= [Ta N Dy) N [AUBUSs(D, N A) U (T3 N B

62(D; N A)Un(Ta N B)]

=[Da~ (Da~TR)| N [AUB

Because T, must be sub
Similarly, we get that \ B))|. Then T, = D,.
Hence Ty = Ty U (T2 N4 N (AU B)). Furthermore,

T] = D;. D

4 A
5 - _zul A
ST,

mw‘ﬁﬂs'fmﬁﬂ ﬂ«LﬁJWYJ‘V]EI']ﬂEI
2R AR -
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From Ty~ Dy = [~2,—1) and Do~ Tz = [.3), we obtain that A = [3,3) and
By = [5, 2). This implies that

5(D3 N Ag)N'T; = EE) NT, =@

and

Tg{Tg Dzzﬂ
Thus A, = @ and B, = @ for € NIt that AUB = [4,3), and
so T2(A U B) 2 A0BY ‘Therefore, 5 = S\ (AUB) =

It follows from Theo = Sﬁ to contain a wavelet set

W, then W cannot mters.ect A U B. So our next gual is to find wavelet subsets

o5 =5 A T Y 44 FF o e

satisfying T = Dj. Let us begin with-a proposition and a corollagys

Pm,,;ﬂmm NIRUAIANEIRE, <...

Set Ty = SN75'(1) and Ty = SN75'(2). Then M(T1) = 1 if and only if AM(T2) = 0.

Proof. Recall Ty N (T, + k) = @ for all k € Z ~ {0}. Assume that A(T}) = 1. By
Lemma 3.4.2, we get that | J,_,(T\+k) = R. Thus | J,cz (T +F) I"‘ITgl Tz Since
Ty + k € 75'(1) for all k € Z, we get that (T +k)NT; = @ for all k EZ. Hence
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MT;) = 0. Conversely, we assume that A(T3) = 0. Thus S =T, and so 1 <
a.e. Hence | J5(Th + k) = R. By Lemma 3.4.1, we obtain that A7) = 1. O

Corollary 3.5.2. Let S be a 2-basic set such that T, = Dy. If M(Th) =1, then S

is a wavelet set.

Proof. Assume that AM(Th) = @W%/ﬂd so D, = @. Hence S = T,

~ ae and @ = . This implies that 7s = 1 a.e.

NS

O

= Dy and MG) > 0.

12(X) = X = 8:(X) lﬂre Tists 4 non- - for which (YY) = 8,(Y)
and &,(Y)NY =@.

Next, We wﬂ:ﬁia @MQMIQH%M@ sufficient condition

for a 2-basic set S, with G := T, = B3, to containca wavelet set. ©./

e, 1N S ABRH LT LIVIEL LG, . o o

S contains a wavelet set Wy, then Wy = T\ U Ry is a wavelet subset of S where

R, = S~ W,. Furthermore, § = W, UW, and A(W,AW;) > 0.

Proof. Suppose that S contains a wavelet set W,. Without loss of generality we

assume that Ty C W,. Set R, = S ~ W, and W, = T} U R,. Because T; = D;, we
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have Wj = D[URl. Since T1 g W] and Tg = Dz., which l.'l.'llp]jBS that R[ g Tznﬂg.

By Theorem 3.1.5., we have To ~ R, ~ R, and Dy~ R, ;f; R;. Put R =G~ Ry.
LR B

Thus Ry € T5NDa, Ta~ Rz ~ Ry and Dy~ Ry _é_ R,. Then Wy = T\UR, = S~ R,

is a wavelet set which follows from By Theorem 3.1.5. The proof is complete. [

Lemma 3.5.5. Latsmazbagé\é:v = T, =Dy and \(G) > 0. If 8
contains a wavelet set, thenm:?é -8

/ S
Proof. Assume that S co & {e’b Wuntmns two wavelet sets

that A(Y) > 0 and 6,(Y) =X N5 = 7). Moteover, 5,(Y)NY = @. Hence
a. THM -, R a.e
S is a Té-separable set. O
N ,
Lemma 3.5.6. Let G te a Lebesgue me sith finite measure and let [

be an index set. Suppﬁ e {Fa:

that for all o, 3 € I, ezthar Eq C Eﬂ or Eg C E,. Then there exists a sequence

MUY
if;f’; A Nty a1 ) T

a€l. Amumethatl[E ) < L for all a € I. For each n € N, there exits a, € [

N
nﬁwumbh subset of G such

such that L < M(E,,) + L. Set C = U, en Ba,. We will show that E, C_: C for

all @ € I. Let a € I. Then there exists n € N such that 1 < L — A(E,). Then

AEa) < L— 1 < \(E,,). This implies that E, C E,, C C. O
ac. A,
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Lemma 3.5.7. Let S be a 2-basic set with G := T, = Dy and A\(G) > 0. If
S is a Td-separable set, then there erists a measurable subset M of G such that

n(M) = G\ M and 6,(M) = G~ M. Moreover, S~ M is a wavelet set.

Proof. Let Mg = {E € M : E C G} where M is the collection of Lebesgue
measurable sets. Let a relation = megjtﬁ ‘members of Mg; be defined by setting

=z 7 -.J —
[Mg] be the collection qjj.u.th! quiv c&glm@'es_gg___iﬁh respect to the equivalence

relation =. By the 7

.,

: | e suﬁset Z of G such that

-ﬁ:az‘(g},md 6(2)"2Z = .
DL

E; e&z)g&:ms}, and 6,(E) N E = @}. Clearly,

and hence there exis
AMZY >

Let P = {E € [Mg] :

P # @ because Z € P. oragqg% Ry ? a partially ordered set. Let £ =

EeS ne a,‘

{E, : a € I'} be a linearly ﬂrd&bﬁﬁubﬁtﬁ that is, if £, F € L, then E C F

- / 4 \!\‘\ —~—— A,

or F C E, whera\his an index set. By Lemma 3.5. 6l b, there exists a sequence

.

{Eﬂﬂ }nni in L Su{'-h‘é@t E c— C= UnEI'I thﬁrﬂl E‘Jf Clt—‘arl}'. Z C C and
12(C) = 8,(C). It m?ﬁsy to venl’y that &

1 Uﬁif%} ”UEM F LJ &:(Fa,) N Ea.

Len meN nEN meN
Fix n,m EN H Ea,., ‘C By, &h!m ﬁg(Eh}ﬂEn 5; %{En,,}ﬁﬁfw =2 If
E,, € E,._. then az(Eﬂ“}nE -:: Jz{Eaﬂ}nEn = ras Hence 8,(C') ne =,
and s:{: .C € P. By Zorn's Lemma [1'IZI]1 P has a maximal element, say M. Then
Z C M C G, Tz{M} EE{M} and &,(M)N M = @, and so AM(M) > 0. We
shall prove that G oy MUE;(M}‘ Suppose that A(G ~ [M U d;(M)]) > 0. Set
H := G\(MUd(M)). Clearly, A(H) > 0 and d,(H) o H - 72(H). By the above
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argument with & replaced by H, there exists a measurable subset N of H such
that A(N) > 0, 73(N) = 8(N) and &[N}ﬂN = @. Then M ¢ MUN which
contradicts the fact tha.t M is a maximal element of P. Hence G i M U 8,(M).
Since EZ(MJHM = @, we obtain that G~ M = Eg{M} and so G ~ M = rg(M}.

Thus G~ M ~ MandG'\Mﬂe“wuenﬂjﬁb}?'rheuremlilﬁ S\Mts

a wavelet set.

Theorem 3.5.8. Let S

Z:hp::mns underﬁ ﬁ%r.w E] ﬂ% ﬁ );1 %urable subsets of X
v Y R LG EH%JM@%%&H@ v = v

Note that U; NV =2 for at most two pairs of (i, j), for 7,5 € {1,2}.

Lemma 3.5.9. If U; NV} has measure zero for at least one pair of 1,5 € {1,2},
then there erists a measurable subset Y of X such that A(Y) > 0, m(Y) = 8,(Y),
and &,(Y)NY = 2.
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Proof. Assume that U; N V; has measure zero for at least one pair of 1, j € {1,2}.
Without loss of generality we assume that U; NV, - @. If U; N V; has measure

zero for another pair of ¢, j € {1,2}, then it implies that [/, N} =9 and hence
U’; Vz and we choose Y = U,.

Assume that U; N V; has measur VV only one pair of 7, j € {1,2}. Then
Us € Vi, Vo C U, and A(UsQ W) > S Z, let
ne. A &4

n,m € Z. First, we show that gf*‘?’"‘ '
=4 ‘F‘-\_’ﬁ,

forn > 1. Smce Ug 1', ii; _:' ies
s0Ys=(mo Eg][Y C U,. This prove our claim.
Next, we shall prove thﬂt’Y_ 2 V, for all n“© N. Since 75(Yp) C Vi

e ORI BT e
L CEN R Tl R

Y ,.C V,forall neN.
a.e.

Now, we will prove that ¥, N d,(Y,,) =9 for all n,m € Z. Fix n,m € Z.
Ifn,m>1,then ¥, N&(Y,) C VNV, = @.

If n,m < —1, then ¥, Né&(Y,,) C VanV, = @.
am ae
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If n =0 and m > 0, then Yy Né&y(Y,) € V.ﬂlf'g:_:a.
If n=0and m < 0, then, from m +1 <0,

Yo Nda(Ym) = Yo N 72((12 0 82)(Vim)) = Yo N 72(Yin41) ‘% Uy N U, =@.

If n>0and m =0, then Y, N8,(Yp) € 11:'11@,?@.
If n < 0 and m = 0, then ¥ N 8a(Y;

If n >0and m < (

: OQN And if n > k, that is,
n—k>0, wegetth/

Yanaé

......

X
<0, w%bta.'m that

CLgilvelitiininer g

QW"I R PR EAR TG ¢

= (120 8;)" (Yo N (m2((82 0 2)* 1 7"(Y0))))
= (120 82)" (Yo N (72((82 0 72) ™47 (¥y))))
= (120 8;)" (Yo N (12((72 0 8)™*1"(Y0))))

= (12 082)" (Yo N (m2(Yons14n)))

Bt iEAE K thak is,Ez-l—
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= mo)(@)

Finally, if n < 0 and m > 0, then Y, N8;(Yam) = 6,(82(Ya) NYam) = 6,(@) =

Then Yﬂ&[V};ﬂ. v ’l 0O
Theorem 3.5.10. Let S &’ﬁ = Dy and \(G) > 0. Let
\,.

zUanQ = E‘J = Vlnvr,,
). IfU,r!lf} hnsmeusum

zero for at least one pa & {1,2}, thes 1 S 15 a Td-separable set, and hence S

Proof. Assume that U  measure zero for at least one pair of i,j € {1,2}.
Without loss of generali : nv; Suppose X is a measurable
subset of G with A(X) >0 a 3:(X). It is easy to check that

Tz(xnﬂl) = XﬁU and 4

P

e have A(X NU,) > 0 and
A(XI"IW) }ﬂfﬂr Al

(Xnm.)u()fnz =X (xnvlmJ[anz}

e

" ﬂﬂ']‘U‘LL’J‘VIEI‘Uiﬂ'ﬁ

(Xn)n(Xnth) =2 = (XNW)N(X

From @mwmmw:@%m@m =

then
Xn¥, = (XnWwu)nX

= XNWN(XNT)UXNB)

= [(Xn¥WB)n(XnU)]u[(XNnV)n(XnU)
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= @

which contradicts the fact that A(X N'V;) > 0. Then A((X NU,) N (X NV3)) > 0.
Similarly, we can prove that A((X NU2) N (X NV;)) > 0. By Lemma 3.5.9, the
O

Corollary 3.5.11. Let S \ = D, and M(G) > 0. If there

" uc%a%i G, VNé(V) =g, and

proof is complete.

exists a measurable subs

VN 7(V) = &, then 5

Proof. Assume that ‘of G such that VUS,(V) =

G, VNé(V) =4 @ an U (V)]) = G [VUn(V)).

Then we can find a me:

and ZUy(Z) = G ~ [V nf(V ; ﬂf LUV = m(ZUV), V; = &(V),
AN SN

and V; = V. Hence U, y’ﬂﬁ‘{?_ 1, U, U s : G=VuW,, and
72(Uh) = Uy d2(V1) = Va. M eov

= @. The proof is complete once

we apply Theorem 3.5 'w —_— ' O

N N
Remark. [t is still Elm

own wheth

-bas:?ﬂm?th G : =T, =D, and

AMG) > 0, then S always contains-a wavelet set, as we cannot find an example of

v 8 614 i e e .
3 RrRSER AT aas



CHAPTER IV

WAVELET SETS

e
e —

CONSTRUCTION

In this chapter, we provi e constructed from a

2-basic set S satisfying ct wavelet sets from
a 2-basic set S such that"S TUL sure one. After that we consider a

92-basic set S such that S 1UB ﬂ s greater than one.

Example 4.1.1. Let 5 e k > 2. Obviously,

S is 2-basic. Since k 242, we

D - Hﬂﬁmu’mammﬁ

iwﬁﬁﬂ% F* i

-zk ' 2k+t

btain that

Thus we can define

1 r el 1. 1Y,
R ) Rl )



al

1) € [12) and [1,2) 2 (g ).
From Do ~To = Doy =1

B, C [ 3%) Jor alln & : 52_ '

we get that Ay C [1,2), awheeh implies that A, C |¥ 14 3¢). Thus AC D

o C [g8. k). [t implies that

e T,~ Dy, CTon Dy = Dy,

Hence AU B C Ty N D§Y Maftegter, A N\B'= @. We can find that
! A AA\ Lo
By = [zk-i-l’ g AR U 0ROk gki1 ok T gk ok+l
1 ] )
u [:'?.: -
B, = 2_:ﬁ A \ U[pn, gn) U [Sn, t0)
©EE
dhe 2757, 73
N e S 7 7 5 i ——" a——" " € 5 4 1
Pn = FW : 1/ —“ 2k+l}
= 2 nml J 1 fni+1
In = 2”1' 1—Ek'l¥1' +-ZJ; {2k+1 ok I(gleﬂ}

A ATRTNINGRE

for all n€N. Similarly, we have

1 1
Ay = [ﬂ—ﬁi,z-am),

T 1 1,

A, = luml'n]



52

where
1—(zm)" | 1 | P ~
= e (*—zkﬂ} - 2k+l and
| { El*‘ ]n 1 1 1 n+1
R = 1+1‘+' o [-2::+1 " tzk-ﬂ}

for all n > 2. It is easy check \ W
\\

MBn)

MAn) =

for alln € No. By Proy £4t \\ @ and B,N B, = @ if

I

n # m, we have A A
Theorem 3.4.3, we ob

S~(AUB)

: . g {" k+1
% Tk’ k4l | T 1) gl J 2+ - B,

Nmﬁﬂﬁ‘ﬁqiﬁﬁf};‘iﬁﬁ[

““‘"“?"ﬁ’Wﬂmmmumammaﬂ

Similérly, we believe that
(a) [~ —zr) U [z, %) U[m,m + 1) where k > 2 and m € N
(b) [~2z,—z)U[z,2r) U[1,2) where 0 < z < §

are 2-basic sets that contain a wavelet set.



53

4.2 S~ (AU B) has measure greater than one

In this section, we consider a 2-basic set S for which S~ (AUB) has measure greater
than one. By Lemma 3.4.8, we have that S§ = S~ (AU B) satisfy Ty = D,. Wedo

not have an explicit construction of a wavelet set from a 2-basic set S satisfying

of G as in Theorem 3.5.10, then

e proof of Lemma 3.5.9. We

shall illustrate the met ‘the next example.

Example 4.2.1. Let S g [32. ' U [1,3)U[2.2). Then we
obtain that
4 4 ‘. 2 : £ \"“.
D, = [-51-1 ’ ; \‘- .. A \
AGE D | " :
= [-2,-2 . ., Vs o 12.2),
o - [ o DRI b))
T, = @ and = >

Ty = [—2.—Qy_-gi ? _1“ ;Ef)

TR
[12 2) x} [ 2) '

We see that [-2,-3) <5 [~4,-}) and [-§,-) = [-4-9) € [-2-9)

It is clear that B = @. From T, ~ Dy, = D) = [—- -1) [—% —%] we have
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Ao = [$:2) U [-5.-1): Thus A= [-5. -9 U [-§.—F) € [-2.-3)- Then
we obtain that, for each n > 2, A, = [a,,b,) U [c,, dy) where
19, 1 19, 4 1
= L o ety T St ) ool I e, WL s [ . L |

b = (o &) (-3) SGFT (-3 - 30— ()

. L +1!b'n+l]

Then A = [_%‘ =i {y;ﬁ.f‘._.,'_f':::___fff’;‘- nd A g Dﬂ- Mﬂ'rﬂﬂﬂﬂ'ﬂ.
5:(A) = [~ 2.~ 3) U [0, ~B)0U, 22 3o U [18). Set § = S~ (AUB).

o AR
TARERINE A

Then, by Lemma 3.4.8, we have

T,=D, = D;~(AUBUGB(AUB))

27 3 9 11 347
=0 e I i F=Er e el
[ ¥ lﬁ) u [ 21 64) U [ g B 25‘6) Ug[bﬂi'hﬂn'i‘l}
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1 27 3 91 11 347 1
U I:—E, —6—4) U [—E,—ﬁ) U [_Et_m) ngib“+hﬂn+l)

1 5 frsrdl
U[E,E)U -I,E) and

Ty=D, = DyU&(AUB)

RERY

ﬂj_ = {IEG
_ u[ : O 3 Bosicusss)
= — 3 Vn+l1tn+ls
2 v
15
U[E*Iﬁ

a2
A
i

N Ol | U | (basicasts),
-@@r ] _ fl:-Jil +1Cn+15 )

3 -, ."
()

Vi = {z€G:0< 222 <1}

- el Dy )

Il
|
=
|
|

.~

W 6(a) - P~
TR

Then UyNVy = @ and Uy NV, = [1,3). By Theorem 3.5.10, S contains a wavelet

set. Next, we will find a wavelet subset of S by using the method in Lemma 3.5.9.
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For eachn € Z, let
Y, =(r208)"(U:NV)

where (13 0 8;)° = ddg and (T2 08,)™ = (f07)" on G, for n € N. Then
i=[-{-8)c[-2-%) andY_ —1). From the fact that
[-2.-4) 2 [~4,~1) and [-4,

eachn > 2, Y, = [s.,t.) ang

2,—1), we get that, for

on = (m - ()
ty = (r20 —( )
za = (629 (-b“-‘}
2= (60 -
Clearly, Y, C [-2,-%) a ralln € N. Moreover, Y,NY,, = @

if n # m. It is clear that b, = 03{Tnes , &Tay, Co = tasr and s, = 0(zn) =
foralln > 2. Then | ’ ‘ |

~ell

g[hn+h > Y mtuﬂ]

Q7 ng{ I:I1+‘1:3"r1+2]'g':| U [3n+‘21tn+2]

NOUIGRBYATTNT

nz1 g Nzt o

o s ) BN, mwnmnm &L, v

Fhrthﬁrmam,
_ (g 2y [L3 9 [u s
U vu U &) = [2 16)“[ 2 E4)U[ & 256)

—-3<n<3 -3<n<3
1 27 3 9 11 347
® ['af‘a) ¥ [‘5= ‘1—25) o [‘5—4' ‘m)



57

1 5 5
¢ [E' E) . [1' z) -

Now, set Y = U, ez Yn- ThenYU8,(Y) = G and 8,(Y) = 7a(Y). From the fact the
U,NV, = @,see in Lemma 3.5.9, it implies that Y Ndy(Y) = @. Then W, = D,uY

and Wy = Dy U8y(Y) are wavelet subse 'f/
K\ /

Next, we will give anothe

velel; set. We first thought
that the 2-basic set in t 3 C Ty N D3 but does not

contain a wavelet set.

Example 4.2.2. Let S = G- =1 L U[1,2). Then S is a

SO
Y e

5’ : [_E'*%) ﬁ[ 16’ 32) [115 ;) x: 14,3).

We see that [£,1) 25 [1,2) € [1,2) and [1,2) — [m, 1). It is clear that
A=@. From D;~T; =T, C [1,2), we have By C [&,1) and B, C [, 3) for
alln € N. Then B C Ty, and so AUB C Ty D,. By the definitions of §; and 73,
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we have
B = U [zm yn] U [zn: Fn} U IQ'm rn} U {3111 tn)
neMy
where
1 1
Inp= [fsg a 'Tg]n [« 3,
)
1
1ﬁu+l}
1
T6n1)
‘ - 1 l
: L q-
3 gé\‘(-({ 41‘ 1ﬁn+l]
for all n € Ny. It is easy to é,,\ = Gn = Tn S 8y Sty Tngt = Un
T AR s e fhrad P 1 | g mg 1 1 .
and tyyy = 2, for a c’-m - At amplic iZmdnd = | 75 15) Since

me%gmmuﬁg Umﬂmﬂig
we obtain *’*“ﬁﬂ']UlL’JVIEIUiﬂ'ﬁ
aWﬂWﬁ:ﬁ"zﬁﬂiﬁw% Rel

Then Y
1 1 63 1

n=0

and so

d6,(B) = [ 12) u U 16 - [$p41,P0) U U 16 - [gu, 70) U [53 )

n=0
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Hence

1 3 31 63
['l_ﬁ"'r g) ~B= U [rl'l-i"hsﬂ'i-l) U U [pﬂ! [2551 gﬁ) T

n=0

which implies that

1260 = J16- bnngprv (16 a0 [ 3. 5).

Ty=D, = 0ni Ta) U [2—2,2) and
b, -
)
31 E)
- 16’ 32
Next, we shall find a subset '. ' ':I ) } N8:(Y) = @ and 8§,(Y) = no(Y).
Choose Y = [--1-,-5 Uz 016 - [rust5ns1) U [2,82), Then
5(Y)=[-1,-3 . 016 - [, ga) = Do\ Y,

and so Y N Eg(Y] =g 1 fnr each n € Ny,

16 41

l
)+1= E{l“""; lﬁ“ﬂ] 16+ prss

4 QJﬁnH

qmummmmﬁ .
W’f&*ﬁmﬁmﬁﬁﬁwﬁmﬁ'

we obtain‘that T2(|U2" o [Pr:@n)) = Uneg [Py @) +1 = U2, 16 - [pn, qa). From

tl= (1

209 1 200 1
Tn+1:—[1+ﬁ lﬁ“+l]+ "_"_':1 lﬁ lﬁﬁ+2}=lﬁ+1’n+1
and
1 433 1 433 1
ot 1= 0 5 ) ¥ 1= U 5 ) =16
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for each n € Ny, it implies that T2(Upeg [FasrsSns1)) = Unzy 16 - [Tusry Snsa),
that is, (U2, 16 « [rugrs Sus1)) = Uneo [Fasrs .-:“H] It is easy to check that

T?([_ ' )) 16 - [Pﬂ o), T2(16 - "1 51)) = [m ' 512 Ti{ :é g) __'!"')
Therefore, T(Y) = 6;(?’} D, \ Y, which implies that S contains a wavelet
set. Indeed, Wy = DyUY and W = . 5,(Y) are wavelet subsets of S as a

consequence of Theorem 3. L. \

AONUUINLUINNS )
ANRINITNINENAY



CHAPTER V

CON 7SION

\\.

This thesis has been co ‘with the W 2-basic sets containing a

_\G&;supersets of wavelet sets.

wavelet set. First,
Next, we introduced 2-ba ; :
characterization of a i . i \ a vélet a% That is, a 2-basic set S
contains a wavelet set i ‘ :
that R t; T,ND,; T;

prncedure to construct t

denoted by AU B, never i -‘.-JQ:

called the “bad ﬁé

A
is a necessary mndit'r for a 2-b:

a 2-basic set S whose union,

_s»!_.tbsets of S. Hence, AUB is

that AUB C T, N D,
ae.

T velet set. Conversely, we

obtained that AUB C Tgr-lﬂg and l[.ﬁ'\ (AU B]} = 1 is a sufficient condition for

a 2-basic set w&nﬁq ﬂusjgm %Tﬁfgjsﬂﬁ is the only wavelet

subset of S. Furthermore, we prwedcjlat o= \g U B) is 2-basic, with Ty = Dy
o TR VD5 A B
a 2- baslc set S, with T, = D,, to contain a wavelet set. The property used in
the characterization is called Té-separable which is believed to be so weak that
every measurable set is Td-separable. Moreover, we gave a sufficient condition for

a 2-basic set S, with G := T3 = Dy, to contain a wavelet set. That is, if there
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exists a measurable subset V of G such that VU &i(V) = G, VN&(V) = @,

and V N (V) = @, then S contains a wavelet set. Finally, we presented a few
a.c.

examples of construction of wavelet sets from some 2-basic sets.

Although, we obtained some necessary conditions and sufficient conditions for

a 2-basic set to contain a wavelet set, we still do not know whether every 2-basic

set with 7, = D, must contain & wavelet @5 is equivalent to the problem
’

whether there exists an example of a 2 wich AC Dyand BC Ty
N a.e. n.e
but there is no wavelet ling problem is whether one can

(i) s AUB C T, N D, a suff
a.e, -

et St

i ,
wavelet set’ ‘:é

—- iy
it 1

(iii) Does a 2-basic "' 13 = D, always contain a

wavelet set?

o e s RRGBR NS
© O T TR | ) )

(vi) Dﬂc';hese results somehow have connections with the open problem posed by

Larson?

The problems (ii), (iii) and (iv) are equivalent.
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