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CHAPTER|

INTRODUCTION

1.1 Problem and Motivation

Nowadays, there are many computational methods have bepogad for predicting protein-
protein interactions. Meanwhile, with the increasing of thumber of protein sequences, several
sequence-based methods have shown that the informatiomiobeacid sequences alone may be
sufficient for predicting protein-protein interactions.

Although using only protein sequences may be sufficient fedisting, there are three major
problems in the prediction of protein-protein interacidoy classifying technique such as supervised
neural network. The first one is extracting the feature otginopair sequences to form a feature
sequence. The second problem is conserving the informatiem equalizing the lengths of feature
sequences before classifying into interacting and nagraigting classes. The third is generating
artificial data to improve the performance of prediction. predict protein-protein interactions by
boosting neural network, both positive and negative itévas are required for training. Unlike
positive interactions, negative protein pairs are notlalsle. The negative protein pairs are generated
from the assumption that protein pairs with different sebiedar localizations do not interact or there
is no explicit evidence of an interaction. This assumptienggates a much larger number of negative
protein pairs than positive protein pairs. Thus, this peobtoncerns with imbalanced learning data.
Standard machine learning algorithms fail to classify ifabeed data which produce high predictive
accuracy over negative protein pairs but low predictiveusamty on positive protein pairs because
they are learned from imbalanced training data and the bimypothesis are fitted to the majority
data. Consequently, test data belonging to the positivielorpairs are misclassified more often than
belonging to the negative protein pairs.

From these problems, the new method was proposed to predigipprotein interactions
from amino acid sequences using only artificial boundarg daneration and boosting procedures to
improve the prediction accuracies of both positive and tiegarotein pairs. Our feature extraction is
based on the correlation coefficients of physicochemiagbenties, the statistical means and standard

deviations of secondary structures and protein propeiteslpha-helix, beta-sheet, beta-turn, coil,



parallel beta strand, amino acid composition, hydroptighiaverage area buried, and polarity. To
form the new training features by finding the new distribatébrection of these features. Then Self-
Organizing Map (SOM) was applied to find subclusters in th& training features. The important
data which lie into the boundary of each subcluster were oséd to generate the artificial boundary
data. The artificial boundary data were generated by usiogstyap resampling technique. Finally,
the only artificial boundary data of both positive and negmeirotein pairs were predicted by boosting
method based on neural network classifier. The empiricdlydtas shown that our proposed method
yielded better prediction accuracy than the sequencedbas¢hods [1], and [2] when performed on
Yeast Saccharomyces Cereviditata set. Moreover, the number of feature and the numbeaiafrig
data are less than others. We also evaluated the predictiolelmby cross-species data as the test
sets. The result showed that our proposed method also eajgapitedict with the good performance

on cross-species data.

1.2 Objective

The objectives of this dissertation are the following :

1. To predict protein-protein interactions from amino aséjuences using adaboost neural net-

work.

2. Toimprove the prediction power of classifier againstgropairs using only artificial boundary

data.

1.3 Scope and Limitations

1. This proposed method was performed¥Y@ast Saccharomyces Cerevisiamn core subset of

database of interacting proteins (DIP).

2. The results offeast Saccharomyces Cerevisitata set before and after generating artificial
boundary data based on adaboost neural network were codnwétethe method of predict-
ing protein pairs using support vector machine combinedh aitto covariance [1] and local

descriptor [2].

3. In another evaluation after generating artificial boumpdtata, we tested the ability of our pro-
posed method for predicting protein-protein interactionsne species using the interactions

from different species. Our proposed model was trained ekehast Saccharomyces Cerevisiae



1.4

and we chose the other five species as our cross-specieatesets. The five species data sets
areDrosophila MelanogasterCaenorhabditis elegang&shcherichia coliHomo sapiensand

Mus musculus

The performance on cross-species data sets were compisinegtie method of predicting pro-
tein pairs using support vector machine combined with aat@igance [1] and local descrip-

tor [2].

Contributions

The main contributions of this dissertation are a new feaaxtraction from only protein se-

quences for predicting protein-protein interactions Hase the correlation coefficients of physio-

chemical properties combined with statistical means aaddstrd deviations of protein secondary

structures and protein properties, i.e.alpha-helix, -sb&et, beta-turn, coil, parallel beta strand,

amino acid composition, hydrophobicity, average areaeouyrand polarity. Moreover, the impor-

tant protein data which lay at the boundary were only useenTthe artificial boundary data were

generated by using bootstrap resampling technique. Fjirtak boosting method based on neural

network classifier was used to predict artificial boundagtgin pairs into interacting class and non-

interacting class.

15

Methodology

Review and study related works and documents of predigintein-protein interactions.

. Propose a new method for prediction of protein-proteiaractions.
. Experiment with protein pairs data and compare with otbenniques.

. Review and study related works and documents of learnamg imbalanced data for improving

the performance of prediction.

. Propose a new method for learning from imbalanced data.

. Experiment with benchmark data sets for handling imlzdrdata and compare with the other

techniques.

. integrate a proposed method of learning from imbalanced dith a proposed method of

predicting protein-protein interactions to improve thefpenance of predicting protein pairs.



8. Experiment with protein pairs data and compute with oteehniques.

9. Analyse experimental results and conclude the results.

1.6 Dissertation Organization

This thesis is organized as follows. Chapter | provides afhrtroduction of the scope
and methodology. Chapter Il explains the concept of Neumtivdrk, Adaptive Boosting, Self-
Organizing Map, Principal Component Analysis and Boopstrasampling technique. Moreover,
briefly reviews related works. Chapter Il presents the psgal method of predicting protein-protein
interactions. Chapter IV summarizes the experimentalliestith discussion. The conclusion is in

Chapter V.



CHAPTER I

RELATED WORKS AND BACKGROUND

2.1 Related Works

Proteins carry out the majority of the biological processesells and have a large variety
of functions which can be categories into many kinds suchnéibaly, hormone, enzyme, signal
protein, and so on [3]. Different kinds of proteins must rat# with one another to perform various
biological functions. The information of protein-protdinteractions help to improve knowledge of
the functions, understand biological processes in a aedl,ptentially make the discovery of novel
drug targets.

Previously, although the protein interaction pairs wertected by co-immunoprecipitation
or chromatography, the determination of the protein-pnobeteractions cannot follow the growth
of the newly found proteins and many protein pairs. Henceipoua experimental methods have
been developed for the large scaled protein-protein ictierss analysis such as yeast two-hybrid
systems [4] , mass spectrometry [5], protein chip [6] and 50 But these methods are costly and
time consuming. Many computational methods have been peaptor predicting protein-protein
interactions which are based ganomic contexbiological contextandstructural contexbf proteins
[7].

Genomic context approachesomplete genome sequencing provided a wealth of genomic
information. Therefore, there are many methods used fatigtieg protein-protein interaction such
as protein phylogenetic profiles [8], conservation of geeigimborhood [9], and gene fusion events
[10].

Biological context approachedlany of high-throughput methods for investigating theldp
ical context of genes, such as gene expression have beepsprbplt has been indicated that many
interacting proteins are co-expressed according to miaganalyses [11,12].

Structural context approached his approach can determine not only protein pair inteyact
but also the physical characteristics of the interactioessat the protein interfaces [7]. Analysis of
hydrophobicity of amino acids can be used to predict intevacite [13,14]. Another study [15] pro-

posed the residue composition can be used to analyze six tfgeotein-protein interfaces. In [16],



they used structure matching technique to predict praieitein interactions. Moreover, the infor-
mation of binding sites and binding motifs [17—-19] for impiry prediction have been considered.

Recently, several sequence-based methods have showhedhatdrmation of amino acid se-
quences alone may be sufficient for predicting proteinginointeractions [20-22]. Moreover, the
re-occurring of short polypeptide sequences [23] can alentify novel protein-protein interaction.
However, many methods of sequence-based to predict proteiain interactions have been pro-
posed, these methods achieved the highest accuracy only IB0O8ddition, some statistical method
for extracting the protein sequence features [24] and usiipgort vector machine (SVM) combined
with auto covariance [1] have been proposed to improve thaeracy of prediction. This method [1]
predicted protein-protein interaction based on sevenipbglsemecal and auto covariance witbast
Saccharomyces CerevisiaEirst, amino acid sequences were transformed into nualeradues by
representing physicochemical properties as vectors vaith amino acid represented by normalized
valued of seven physicochemical properties. Then Auto Gavee was used to transform numerical
vectors into fixed length. After each protein sequence waesented as a vector of auto covariance
variable, a protein-protein interaction was characterizg concatenating the feature vectors of two
proteins. Finally, predicting protein-protein interacts by support vector machine. Moverover, local
descriptor (LD) [2] used an alignment-free approach wasdiegpo underlie amino acid groups. For
each local region, three local descriptors, compositiop {{@nsition (T) and distribution (D), were
calculated. C stands for the composition of each amino acidmalong a local region. T represents
the percentage frequency with which amino acid in one greupliowed by amino acid in another
group. D characterizes the distribution pattern along tiiegeeregion by measuring the location of
the first, 25, 50, 75 and 100% of residues of a given group. Blmilation of descriptors generates
63 attributes in each local region (7 for C, 21 for T and 35 fprThe descriptors for all local regions
were combined, and formed the features vector which werdigisgl by SVM.

In many techniques of predicting protein-protein intei@td by machine learning methods [1—
3], they failed to classify protein pairs which producedmpgyedictive accuracy over non-interacting
protein pairs (negative class) but low predictive accum@tynteraction protein pairs (positive class).
Thus, the sampling method was used to improve the perforenahclassification. The objective is
to provide a balanced distribution frooversamplingand/orundersamplingechniques to improve
overall classification [25]. In regards to artificial sanmgjj the artificial positive class oversampling
technique (SMOTE) [26] has used in various applicationse ddncept of SMOTE is to produce syn-
thetic data in minority class by selecting some of the nean@sority neighbors of a positive data and

generate artificial positive data along with the lines bemvthe positive data and its nearest positive



neighbors. In [27,28], they proposed adaptive samplindhout to generate artificial data. The main
idea of Borderline-SMOTE technique [27] is to find out thed®tine positive samples. Then, artifi-
cial samples were generated along the line between thertinedsamples and their nearest neighbors
of the same class. The key idea of the ADASYN algorithm [28%wause a density distribution as
a criterion to automatically decide the number of artifidata that need to be generated for each
positive data by adaptively changing the weights of diffiéngositive data. In [29], they combined
boosting and artificial data using SMOTE to improve the préai of the positive class. Moreover,
DataBoost-IM approach [30] was proposed to generate #&tifilata. The hard examples of both
positive and negative classes were identified during eactheofterations of boosting algorithm to
generated artificial training data. These artificial exaaplere added to the original training set and
are used for farther training to improve the classification.

In this dissertation, we proposed a feasible method to gredotein-protein interactions from
amino acid sequences with boosting neural network. Ouurfeatxtraction is based on the cor-
relation coefficients of physicochemical properties arelgtatistical means, standard deviations of
secondary structures and protein properties, i.e.alplha;lbeta-sheet, beta-turn, coil, parallel beta
strand, amino acid composition, hydrophobicity, averaga &duried, and polarity. Then to find the
new distribution direction of these features to form theénirey data. After that subclusters of each
class were discovered by SOM technique. The importantiigigiata which lay into the boundary of
each subcluster were only used to generated artificial oyrdhta. These artificial boundary data
are generated by using bootstrap resampling techniquepmira the performance of classification
not only interaction class bus also non-interacting cl&sally, the only artificial boundary data of

both classes are predicted by boosting method based ol netwerk classifier.

2.2 Background

2.2.1 Neural Network

Artificial neural network is a model of the brain which tramshs inputs into outputs to the
best of performance. The basic model of artificial neuronaiseld on the functionality of the bio-
logical neuron. The biological neural network is composédroups of its structure connected or
functionally associated neurons. These are cell body oasamon, dendrites, and synapse. Figure
2.1 shows the biological neural network. Cell body or somthésheart of the cell which contains
nucleus. There are many dendrites in each neuron that eesigivals from other neurons. Generally,

a neuron has only one axon which expands from a part of théaodil. The main function of axon



is to proceed electronic signals. At the end of axon is spiit several branches which the synapse is
adhered. Synapse is the area of contact between a neuradthér neurons and gives the strength
of the connection.

Artificial neural network, synapses are weight which repnésd by a number. Figure 2.2 de-
picts the artificial neural network. In this figure, a neurdthva dimensional input vectox;, Xz, Xs, ..., Xn }
andb bias value are multiplied by weigh input vectpry1, wi2,Wis3, ...,win}. Then these values are
fed into the summing junction. After that the inputare calculated by Equation 2.1. Finally, the
outputy of the neuron is the outcome from using some activation fana (e) on valuev which is
calculated as Equation 2.2.

V=30 xw 2.1)

y=0(v) (2.2)

Axon from another cell

Synapses

Cell Body or Soma

Figure 2.1 The example of biological neural network.

There are many activation functions are used to control ¢theahoutput. In general, the three

activation functions are commonly used as shown below :

1. Threshold function



X1
W11
X7 Wia
Wi3 Vv y
o @ Yy — () —
b
Wia
1
Xn

Figure 2.2 The example of artificial neural network.

1 ifv>0
¢(v) = \
0 ifv<O
2. Sigmoid function
O = roi—a s aisslope
3. Signum function
1 if v>0
p(v)=4 0 ifv="0
-1 ifv<O

A Layer of Neurons

1. Single layer neural network.
Figure 2.3 depicts the single layer of neurons. This netvmadn elements of input vector and
sneurons in the layer. The input vector is multiplied by weiglactor. Then these inputs are
summarized with bias value in eadh neuron. Thus, théh neuron has a summer to form
its outputy;. Finally, the neuron output layelys,ys,...,ys} are calculated by the activation

function to controls the actual outputs.
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2. Multiple layer neural network.

This multiple layer network in Figure 2.4 haselements of input vector arglneurons in the
layer. The input vector is fed into layer 1 to produce outpgtys, ...,yi}. Then these outputs
are the inputs of the layer 2 that are fed to produce oufgfity,...,y2}. After that, these
outputs are become to inputs of the layer 3. Fina[lﬁ,,yﬁ ...,y2}. are the final outputs of this
network. Each layer in the multiple layer network has thédént rules. A layer that produces
the final outputs in called theutput layer The other layers are calldddden layers Fig 2.4
has the one output layer (layer 3) and two hidden layers (layad layer 2).

Input Layer of neuron
f_H -
- I
Vi

M. e— gp(.) L,

Wi

1

> ¢(*) —2—

B
= | M H.?M

(%]

ot

|

P(®) s,

Xn Wen

p—

Figure 2.3 The example of single layer of neural network.

Learning Rules

The learning rule is applied to train the network by modifythe weights and biases to perform
the better learning. Generally, there are two types of tamiag rules that arsupervised learningnd

unsupervised learning

1. Supervised learning.
The training set is provided to learn in the neural networkisTraining set is composed of
X1t1,Xat2, ..., Xotg Wherex is an input to the neural network,is a target output, an@ is a

number of training examples. After that, the network owspaite compared with the target
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Input Layer 1 Layer 2 Layer 3
A A
N
o2 o ys
1 [ 1 b g
) > > o) ——>
by
[ ]
1
o i 2
g\\\ 2 . ¥
) > > o) ——
2
2
¥
1
VE 1,!3 ~3
— )

Figure 2.4 The example of multiple layer of neural network.
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outputs. If the network outputs do not close to the targeputst then the weights and biases

are adjusted to modify the network outputs closer to thestaogtputs.

2. Unsupervised learning.
The only inputs are used in this learning. The weight anddsiase modified based on the
input patterns. In the final step, the learning will categ®iinput patterns into a finite number

of clusters.

Neural network architecture

1. Single layer perceptron neural networkThe single layer perceptron consistssgper-
ceptron neurons. Figure 2.5 shows only one perceptron neudnich uses threshold function as its
activation function to produces the network outguilhe perceptron neuron produces network out-

puty = 1 if the inputsv are fed into the activation function is equal to or greatantty, otherwise it

producesy = 0.
Input Perceptron neuron
/_H AL
s ™
X1
Wi

Threshold function
A

X2 Wiz H
% Wi3 Vv - v
s @ > » p(®) ——>
. . ib
Wi
1

Xn

Figure 2.5 The example of single layer perceptron neurabort

Perceptron learning algorithm
The perceptrons neural network are trained on training eksnwhich consist of pairs

of input and output target.

X1t1,Xotlo, ...,XQtQ

wherex is an input to the neural networkis a target output, an@ is a number of training examples.
In each time of learning, the perceptron learning rule tradapt perceptron’s weights and biases

for reducing the erroe which is calculated by the difference between the targgiuduind an actual
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output in Equation 2.3.
e=t—-y (2.3)

Moreover, there are three conditions when input vegtigrpresented into the network to produce the
actual output [31].

Case 1.If an input vector is presented and actual output from thevoe is correct, then the
weight is not changeda =t ande = 0).

Case 2.If an actual output is 0 but the target output is 1 so the actugdut from the network is
misclassified, then the input vectoiis added to the weight vectar. This case increases the chance
of the input vector is classified gs= 1 in the future.(y =0,t = 1ande=1).

Case 3.If an actual output is 1 but the target output is 0 so the aaugdut from the network
is misclassified, then the input vectoiis subtracted from the weight vecter. This case increases
the chance of the input vector is classified/as 0 in the future.(y = 1,t =0ande= —1).

Thus, the perceptron learning algorithm can be summarigdehaation 2.4. The training ex-
amples are presented iteratively to the network and thehi®gmre updated until a maximum number
of iteration is reached.

new

whew = wold 4 ex’ (2.4)

2. Multilayer perceptron neural networkClassification problem is almost a non-linearly sep-
arable. So neural network with multiple layers and sigmait/ation function are commonly applied
to solve this problem. Figure 2.6 depicts a multilayer ppi@a neural network which consists of
input layer, hidden layer, and output layer. The trainingreples are fed into a layer-by-layer on
the network. Then, backpropagation learning algorithmsesduto train the network by changing the
weights of network based on the delta ridg. The purpose of adjustment weights is to reduce the er-
ror between the target output and the actual output. Therenarphases in backpropagation learning
algorithm :

Feed-forward.The input vectok is fed into the network and produced a set of actual output
from the network.

BackpropagationAn erroreis run backward through the network. So, the network’s wisigh
are adjusted to minimize the erreof the network.

The backpropagation learning algorithm is summarized as :

Case 1.Adjusting the network’s weights between output layer ardtlan layer. &t level k

and level j in Figure 2.6.

W™ = weid + 1 (deyi) (2.5)
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Input laver Hidden laver Output layver
(level i) (level j) (level k)
—"
X1 M1
X3
X3
Nz
Xn

Figure 2.6 The example of multilayer perceptron neural netw

wheren is learning rate parameter adgdis calculate from Equation 2.6
& = &’ (Vi) (2.6)

Case 2.Adjusting the network’s weights between the hidden level #re previous hidden

or input layer. &t level j and level i in Figure 2.5.

W?ieW:W(j)ild +n(5yj) 2.7
whered; is calculated from Equation 2.8
5 = ¢'(vj) Zkdwp (2.8)

The training examples are presented iteratively to the otvand the weights are updated until a

maximum number of iteration is reached.

2.2.2 Adaptive Boosting

Boosting is an ensemble method which focuses on hard exartifgeare difficult to classify.
The basic idea of boosting is to construct multiple classifend the outputs from these classifiers
are combined by weighted voting in the final prediction mda6l 32]. Moreover, the variance error
is associated with overfitting model. Thus, for improving therformance of the overfitting, the
combination of classifiers in boosting is used to reduce #r@amce error [33]. In each step, the

training data are re-weighted. The product of training i®ta easy examplewith low weights
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and a set ohard examplesvith high weights. In each iteration, boosting tries to ¢ans the better
classifiers that are able to predict hard examples correctly

Adaptive Boosting or called AdaBoost is used as boostindghotet AdaBoost was introduced
by Freund and Schapire [34]. AdaBoost is widely used bec#userobust, fast, and flexible to
combine with any method for finding hard examples. In thiseitation, AdaBoost was used with
feed-forward of backpropagation neural network. The atlgor of AdaBoost [32, 35] is given in
Algorithm 1. The algorithm proceeds as follows. The initial weights aidaibty D of all training
examples are set to be/h wherem is the number of training examples. In each iteration, the
weight probabilityD of easy examples that are correctly classified by the cutramed classifier
are unchanging. On the other hand, the weights probatilityf hard examples are increased by
multiplying with a factor. Then, the weights are renormadizoy dividing the normalized constant.
After reaching the last iteration or the error of hypothésisome iteration of hard examples is higher
than 0.5, the final step is to consider only the correctly ougxamples in each iteration and maximize
the sum of the weight probabilities on these examples.

In implementation AdaBoost with neural network classifieere are three possible conditions
to train neural network in each iteratidn The first condition is to train the neural network with a new
training examples by resampling with replacement once fooiginal training examples according
to the weight probability. The larger weight probabilitysh@ore chances to be selected in the new
training examples. The second is to use a different traiei@mples at each epoch by resampling
with replacement after each trained epoch, and the third @mbine weight probability with the

cost function of neural network. In this paper, the first dbad is used to implement.

Algorithm 1. AdaBoost Algorithm

Input: - mexamplegXy,y1), ..., (Xm, Ym), wherex; € X,
yieY={-1+1}
- trained classifier (feed-forward of backpropagation aenetwork).
- T specifies the number of iterations.
- sett = 1, errt =-1, whereerr! is an error of hypothesis in
t iteration.
- initial weight probability of each training examplB! = 1/m,
where 1I<i <m.
1.Dowhilet <T anderr; < 0.5

2. Train input examples by feed-forward of backpropagatiearal network
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with weight probabilityD?.
3. Getahypothesis' : X — Y.
4. Calculate the error of hypothesis
errt = i x)2,Di
5. Setpt=errt/(1—errt).
6. Update weight probability of input examples.
o, B, ifh'(x) =y

1, otherwise

t+1
DIt =

whereZ! is a normalization constant.
7. t=t+1
8. End Do while
Output: the final hypothesif(x) = argma&eyztllvht(x):ylogé.

2.2.3 Self-Organizing Map

Self-Organizing Map or called SOM is an unsupervised newetddork. For each learning iter-
ation, the only winning neuron’s weight and its neighbonvegiron’s weight are adjusted. Figure 2.7
depicts an example of SOM architecture. The input layeresgnts the input vector withhdimen-
sions which is denoted b{xs, X2, ...,X,}. The output layer is usually mapped into two dimensional
output space. Each output neuron is connected to the inyertttey weights vectofw;i, wiz, ..., wjn },
where 1< j < m. At each iteration of training, SOM finds the best matchingning neuron by using
Euclidean distance. The minimum distance is calculateddsst each input vector and every weight
vector on the output map. Letwith weight vectomw, is the best matching winning neuron which is

calculated as Equation 2.9.

[ = Wl | = min ([|x — w; ) (2.9)
where[|x —wj| =, /L, (x—wj). After the winning neurort is selected, the weight vector of the
winning neuron is adjusted by

w'e = w4 (x —wP) (2.10)

wheren is the learning rate parameter. Moreover, the weight vexfttoeighboring neurons of win-
ning neuronc are also adjusted. In the example of Figure 2.7, the neigidporeurons of winning
neuron that represented by the grey circles are also updated

The SOM algorithm is summarized as :
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Input layer QOutput layer
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Figure 2.7 The example of SOM architecture.

1. Initialization : Choose the random value of the initial weight vectors on thtpwt map.
2. Sampling : Draw the input vectox and present into the network.

3. Similarity Matching : Find the best matching winning neurorby using Euclidean distance

as shown in Equation 2.9.

4. Updating : Adjust the weight vector of the winning neuronsand the weight vector of the

neighboring neurons by Equation 2.10.

5. Continuation : Repeat steps 2-4 until the weight vectors do not change écgexice).

2.2.4 Principal Component Analysis

The main idea of Principal Component Analysis (PCA) is tauedthe dimensionality of the
data set without much loss of information. The other adwgmtaf PCA is to discover or identify new

meaningful underlying variables. The PCA steps are givéovbe

1. To calculate mean of datg andpy, wheren is the number of data.
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2. To calculate covariance matrix.

covX,Y) = z{‘zl(m—ﬁi)lx (Y— )

3. To Calculate the eigenvalués) and eigenvectorév) of the covariance matrigo X,Y). Itis
the way of finding the distribution directions in all featsref the data in terms of eigenvectors
of data covariance matrix and their variances in term of reigkies of these eigenvectors.
Generally, the eigenvector with theghest eigenvalués theprincipal componenof the data

set.

4. To select components from ranked eigenvalue by descgrader and form a feature vector.
This step gives the component in order significance. If datdnavem dimensions, so calcu-
lating m eigenvectors anth eigenvalues. Then choose only figseigenvectors to form onlp

dimensions of data set.

5. To derive the new data set.

NewData= FeatureVectol x Data

In Figure 2.8 shows a plot of original data before using PCAhentop and a plot of new data after

using PCA on the bottom.

2.2.5 Bootstrap resampling technique

Bootstrap technique was introduced by Efron [36, 37] as apuen-based method to estimate
the sampling distribution by repeatedly samplinigh replacemenfrom the original example. The
sampling with replacement means the sample data in thenatigkample have a chance to be drawn
more than once or no chance at all. For the sampling disioibirh bootstrap technique, it is usually
proposed to derive the estimates of standard errors andddhinconfidence intervals of a popula-
tion parameter [37]. The following bootstrap algorithm todfistandard error of mean is shown in
Algorithm 2 Moreover, Figure 2.9 shows an example of bootstrap resagpbncept which is used
to calculate the standard error of mean. So to find this statise can calculate the mean of edgh

bootstrap samples, wheBespecifies the number of iterations to resample, and the atdrtkviation
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of these means. In this example, the top box is an examplezeinsi 7 andB = 3. Therefore,

the three lower boxes are the resamples from original exangome values in the original example
are repeated in the resamples because of using resamptimgepiacement method. After that, we
calculate the sample mean of these resamples and caldutas¢éandard deviation of all means. The

standard error of mean value is shown at the bottom box.



Algorithm 2. Bootstrap Algorithm

Input: - mexamplegXxy,...,Xm), Wherex; € X,
- B specifies the number of iteration to do resample.
-sett = 1.

1.Dowhilet <B

2. Draw the resampléx*) with replacement fronx.

3. Calculate the resample mean of each resampling iterétjon

X = HE(X)
4, t=t+1
5. End Do while

6. Calculate the standard error of me&t,oor).
SE)OOt = \/B—Elzthl()_(Ek - meamoot)z, Where
meamoot = %Zthl)_Q*

Output: the standard error of meaSH, o).

20
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Figure 2.8: An example of a plot data. (a) a plot original dzgfore using PCA. (b) a plot new data
after using PCA
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Figure 2.9 The example of bootstrap resampling to find stahelaor of mean.




CHAPTER III

PROPOSED METHODOLOGY

In this dissertation, the prediction of protein-proteiteiraction depends on three major steps.

The first step is to extract the features of sequences iniprpaars to form feature vectors. The

second step is to improve the performance of prediction bgigding artificial boundary data on both

interacting class and non-interacting class. The third &do classify the set of feature sequences

by using AdaBoost with feed-forward neural network intoenaicting and non-interacting protein

classes. The feature extraction steps are as follows:

1. Representing amino acids by physiochemical properti€&ach amino acid is represented by

its seven physiochemical properties.

. Equalizing lengths of protein sequencegor each protein sequence, the number of extracted
physiochemical features depends on the number of amine apjokaring in the sequence. All
current neural learning techniques cannot handle inpuépest with various feature lengths.
So equalizing these feature sequences is the essential hartength of each feature sequence
extracted from the first step must be equalized by applyiagtimcept of correlation coefficient

between physiochemical feature pair in the sequence.

. Feature on secondary structures and protein propertids our preliminary experiment, we
found that the accuracy of predicting protein-proteinratéions based on only physiochemical
properties of each amino acid is rather low. The essentitdifa dictating the interaction must
be the structures and the other properties of the proteithé&Ssecondary structures character-
istics and protein properties are used as additional featurhe other levels of structure, i.e.

tertiary, quaternary, are not considered in this study.

The artificial boundary data generation step as follows:

. Finding the distribution direction in terms of eigenvectsrand eigenvaluesTo identify the
new meaningful of these features before classifying. Tldufes based on physiochemical
properties and structural properties are calculated thedistribution direction and formed the

new feature vectors based on eigenvectors and eigenvalues.
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5. Using Self-Organizing Map to find subclustersThe protein features are recursively divided

into small subclusters by SOM.

6. Finding boundary of each subclusteiTo Speed up the training process. It is not necessary to

use all the data. In this dissertation, the only boundarg dait be used.

7. Using bootstrap resampling technique to generate artifideundary data.Artificial bound-
ary data in each subcluster are generated based on therbpaismaximum standard devia-

tion.

The classifying step as follows:

8. Predicting Protein-Protein Interactions by Feed-forwamdeural Network with AdaBoosting.
The only artificial boundary data are predicted by a feedtod neural network with back-
propagation learning rule. AdaBoost algorithm is used tosbthe performance of this neural

network.

The detail of each part is discussed in the following sestidretR = (pi 1, pi2, ..., Pim) be protein

sequenceé with a set of amino acidp; x for 1 <k < m;. m is the number of amino acids .

3.1 Part 1: Representing Amino Acids by Physiochemical Progrties

There are seven physiochemical properties of amino ac]deflécting the interaction, which
are hydrophobicity, hydrophicility, volumes of size chaiof amino acids, polarity, polarizability,
solvent-accessible surface area, and net charge indesteotbains of amino acids. Lb{y, Gk, Vi,
aix, lik Sk andn i be the hydrophobicity, hydrophicility, volumes of size ttgaof amino acids,
polarity, polarizability, solvent-accessible surfacearand net charge index of side chains of amino
acids properties of amino acg in proteinR, respectively. Representirig by the physiochemical

properties is achieved bdgorithm 1
Algorithm 1

1.For pix, 1<k<mdo

2. represenp; k by {bik, ik, Vik &k Fiks Sk Nk}

3. End

SupposeR, = (pi1, Pi2, Pi.3) andPj = (pj 1, Pj2, Pj,3, Pj.4). After Algorithm 1, B andP; become the

sequences as shown in Figure 3.1.
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Protein Amino Acids

R (P2 P2 Pi3)
\J Lo
bii b2 b3
Ci1 G2 Gg3
Vit Vi Vi3
a1 Q2 a3
li1 li2 T3
S1 S2 S3

N1 N2 N3

Figure 3.1: An example of representing two protein sequgit@ndP;, by physiochemical proper-

ties.

3.2 Part 2: Equalizing Lengths of Protein Sequences

Length equalizing process is based on the correlation ceafticomputed from the physio-
chemical feature values of two amino acyglg andp;k, j < k. This implies that the distance between
pi,j andpix is k— j units apart. Each will be represented by only seven features of physiochemica
properties. The following algorithm is used to equalizelémgyths of all protein feature sequences ob-
tained fromAlgorithm 1 Let Sbe the total number of protein feature sequenced;amelthe number

of amino acids in proteif®. The correlation coefficients for hydrophobicity, hydraglity, volumes
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of size chains of amino acids, polarity, polarizabilityjvemt-accessible surface area, and net charge
index of side chains of amino acids for protein feature segeiewith distanced are denoted by these
notations:Cy, 5, C 5, Cy 5, Ca .51 G, 51 Cs.5, Cy 5, respectively. The use of correlation coefficients
is based on the assumption that all amino acids on a protgiresee must correlate to one another
in terms of physiochemical properties to form the proteiquasce. Since the length of each protein

R is rather long, it is impractical to consider all possiblstdnces between any pair; and p; x, for

j<kand(k—j) € {1,2,...,l;—1}. In this study, the maximum distancelof- j is set to 25.
Algorithm 2

1. For each protein feature sequericé <i < Scompute
2. bi=£3 b

3 T = %leizlci.j ;

4 Vi = lz'? _Vijs

5. &= %Z',-‘:laa,j :

6 fi= %Z'j‘:lri.j :

7. s=1I_8);

8.  m={Iny;

9 For each distancé € {1,2,...,30} compute

ZJI 1 [(blj bl) (bl j+6— EI)]

10.
bh \/Z b'J_b' Xz] 1(b| j+5—hi)?
11 ZJI 1 [(C'J Cl) (cl S EN. Q)]
\/Z C'J c) XZJI 1(Clj+6 Gi)? ’
shi— [(v. )% (% 15— W)
12. =1 j Bi :
e \/le f(v'l il ><zJI 1(V|J+6 vi)?
13 s [<au @)% (3 j,5-a)]
\/ZJ 1 a*l ij 1(au+5 8)? '
14, CI’, ZI [(rlj —Ti)x (i je5— Tl)] :

\/Z]I 1 I'lJ ~Ti)? XZ] 1(r|1+6 Ti)?

15. ZI [(31 §)x (S.;+5 S)]

\/Z] =1 (s,j—s) Xz":1(3,j+6*§)2
=0 [(m =) < (M 5=

\/ZJ 1 (nij—T) xZJ 1(n, j+6—T)?

16.

17. End
18.End

Since there are 25 distances and 7 correlation coefficientpated from each distanéec {1,2,...,25}
for each protein sequence, the total number of features Aftg@rithm 2is equal to 25< 7 = 175.

To predict the interaction, the features of each protein @& concatenated to form a single feature
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sequence of length 1352 = 350.

3.3 Part 3: Features on Secondary Structures and Protein Pyerties

The interaction between protein pairs essentially corscéneir structures and other protein
properties. Hence, the statistical information of thedtrres and the other properties must be con-
sidered. The secondary structures of a protein sequencsuneeain terms of statistical mean and
standard deviation are additionally used. The types ottiras considered in our case are alpha-
helix, beta-sheet, beta-turn, coil, and parallel betarstr The relative frequencies of 29 proteins with
4741 residues in alpha-helix, beta-sheet, beta-turn of afggobular proteins are calculated from
their occurrences based on X-ray crystallographic data [B8om [39], this technique calculated
the conformational parameter for coil based on the ‘doubdeliption method’ and consists of a first
prediction of the secondary structure from a new algorithhictv uses parameters of the type de-
scribed by Chou and Fasman. Parallel beta-strand werelai@durom conformational preference
for parallel beta strand by [40]. Moreover, the protein mmies i.e.amino acid composition, hy-
drophobicity, average area buried, and polarity are algol.u3hese statistical means and standard
deviations of secondary structures and these protein giepare concatenated with the correlation
coefficients computed bilgorithm 2to form a complete feature sequence. Since there are 12 basic
structures and protein properties, each structure andiprptoperties have two features, i.e. its mean
and standard deviation. Thus, the total number of strulcaumd protein properties features is equal
to 2x 12= 24 and, for any protein pair, the total number of structural protein properties features

becomes X 24 = 48. Finally, the total features are 398 in each protein pair.

3.4 Part4: Finding the distribution direction in terms of eigenvectors and eigenvalues.

This part is used to identify the new meaningful underlyihgse features. It is the way of
finding the distribution directions in all features of thealapace in terms of eigenvectors of data
covariance matrix and their variances in term of eigenalofethese eigenvectors. The following

algorithm is shown irAlgorithm 3
Algorithm 3. Finding the new distribution direction of protein trainidgta.
Input: - X = {X1,Xz, ..., Xn}, whereX is the protein training vector of features.

- 4 ={p1, o, ..., Un}, Wherep is the mean of each protein training vector.

1. Find covariance matriX.
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T=EX- )X -]
2. Calculate the eigenvectofg) and eigenvalues\() of the covariance
matrix 2.
2V=Av
3. Deriving the new protein feature vectar
A =vX

Output: the new protein feature vectd.

Figure 3.2 shows a plot of the original training example datahe top and a plot of new training

data after usind\lgorithm 3at the bottom.

3.5 Part5: Using Self-Organizing Map to find subclusters.

The aim of this process is to recursively divide the new trgjrdata into small subclusters
for both interacting and non-interacting classes. Thalitigi process can be used SOM. To consider
the example data in Figure 3.3, each subcluster is denotedragdom color. Eache” symbol is
represented the data in interacting class antisymbol is represented as the data in non-interacting

class.

3.6 Part 6: Finding boundary of each subcluster.

The main idea of this process is the only important data abtwndary between interacting
class and non-interacting class will be used. In our diatiert, theData Selectior{41, 42] method
was applied to find this boundary data. The concept is findieghearest data or minimum distance
between the data in interacting class and non-interactegs dy using the Euclidean distance. The
detail of finding the boundary of each subcluster betweesrating class and non-interacting class

is in Algorithm 4

Algorithm 4. Finding the boundary of each subcluster between intei@class and non-interacting

class.

Input: - ginteracting subcluster@miry, ...,smiry)
- r non-interacting subclustetsmaj,...,smaj)
1. For each interacting subclustemin, 1 <i < q

2. For each non-interacting subclusemaj, 1< j <r
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Figure 3.2: Example of a plot training data (a) a plot origimaining data, (b) a plot new training

data after usind\lgorithm 3

3. For each datgy € smin, 1 < k < 's, wheresis the number of

data insmin
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Figure 3.3 The example of subclusters are recursively divigdy SOM.

4, For each datay € smaj, 1 <| <t, wheret is the number of
data insmaj
5. Find the minimum distance betweppandp.

bmaj= MIN (| px — u|), wherebmajis the boundary

data of non-interacting subcluster.

6. End
7. End
8. End
9.End

10. For each non-interacting subclus@maj, 1< j <r
11. For each interacting subclustemin, 1<i <q

12. For each datay € smaj, 1 <| <t, wheret is the number of

data insmaj
13. For each datgy € smin, 1 < k < s, wheresis the number of
data insmin
14. Find the minimum distance betwepnand py.

bmin= MIN (||u — pk||), wherebminis the boundary
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data of interacting subcluster.

15. End
16. End
17. End
18.End

Output: Boundary data of interacting class and non-interactingsciia

each subcluster.

smaj; sming
smaj; smin, X /X . @

X X d=0 g h . boundary data of smaj,
>< *. boundary data of smin,
(@) (b)

Figure 3.4: An example of finding boundary data of both irténg and non-interacting classes. (a)
An example to find boundary data using Euclidean distangeAl(lboundary data of both interacting

and non-interacting classes after usilgorithm 4

Figure 3.4 displays the boundary data of both interactind) raan-interacting classes. Figure
3.4(a) depicts the example to find boundary data which censigl subclustesmaj} andsmin,. The
boundaryu; in subclusteismin, is calculated by finding the distance between datand every data
in subclustelsmin,. The distance values are 0.5, 1.2, and 0.8, respectivelys,Tiis the boundary
data because of the minimum distance value 0.5. Figure)3st@ws the all boundary data of both

interacting and non-interacting classes after ugitgprithm4.

3.7 Part 7: Using bootstrap resampling technique to generat artificial boundary

data.

In our dissertation, we use a neural network to classify thegn features. The neural network
divides the input space by hyper-planes which are formedhpection weights. These hyper-planes

are adopted to the class boundaries to classify the datae Ihitial connection weights are properly



32

initialized, the hyper-planes will be located near the €lbsundaries and will have the sufficiency
of classification. Thus in this dissertation, the only ai#i boundary data are used to train with the
neural network.

These artificial boundary data are generated by applyintsbap resampling technique. From
the background section, bootstrap resampling techniqused to estimate the sampling distribution
of sample data. Typically, the sampling distribution isézhen many random samples from the pop-
ulation. In stead of many samples, bootstrap method builalsymesamples by repeatedly random
with replacement from only one random sample to represensdimpling distribution. So the boot-
strap distribution is nearly close to the sampling distiidou of the original data. Fig. 2.9 depicts an
example of bootstrap resampling concept. The three lowsedare the resamples with the sample
means which are closed to the mean of the original data irofnedx. For this reason, we apply the
bootstrap resampling concept combine with the standar@iti@v of each subcluster in interacting
and non-interacting classes to generate artificial boyndata. Bootstrap resampling concept are
used to estimate the practical maximum standard deviatoon the original sample data in each sub-
cluster. Then the artificial boundary data are generatetiibyistribution to assure the future unseen
data will fall into these class boundaries. Figure 3.5 shthvesexample of artificial boundary data
after using bootstrap resampling method. The detail ofgubotstrap resampling technique to gen-
erate artificial boundary data is describedAligorithm 5 Lines 1-8 compute the standard deviation
of distance within each subcluster of interacting classrantinteracting class. Lines 9-15 describe
Case 1: If subcluster of interacting class has the maximum andard deviation of distance Then
calculating the mean of bootstrap standard deviation.rAffigt using the mean of bootstrap standard
deviation to generate the artificial boundary data in botaracting class and non-interacting class
(Line 16-27). Line 28-34 describe3ase 2: If subcluster of non-interacting class has the max-
imum standard deviation of distance. Then calculating the mean of bootstrap standard deviation
of this subcluster. After that using the mean of bootstrapdsrd deviation to generate the artificial
boundary data in both interacting class and non-intergatiass (Line 35-47). Figure 3.6 shows an
example of new artificial boundary data. Figure 3.6(a) isothginal boundary data and Figure 3.6(b)
depicts the new artificial boundary data after usigorithm 5

Algorithm 5. Using bootstrap resampling technique to generate artifiandary data for both

interacting and non-interacting class.

Input: - ginteracting subcluster@miry, ...,smiry)

- r non-interacting subclustetsmaj,...,smaj)
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y 4— hyper-plane

artificial
boundary data

Figure 3.5 The example of new artificial boundary data.

- standard deviation of data in each interacting subcluster
(SDmin, ..., SDmir)
- standard deviation of data in each non-interacting sisbetu
(SDmaj,...,SDmayj)
-T=1,B=25
Find the standard deviation of distance in each interaduigcluster and
non-interacting subcluster.
1. For each interacting subclustemin, 1 <i < q
2. Calculate the average distance within interacting sigbeismin.
avmin = %zﬁzl(MlN Wpmesmin:k£m|[ Pk — Pmll)

3. Calculate the standard deviation of distance

sdmin = \/57112§21(MIN Vpmesmin:kzm|| Pk — Pm|| —avmin)?

4.End

5. For each non-interacting subclusmaj, 1< j <r

6. Calculate the average distance within non-interactiriglsistersma;j.
avmaj = {Zi_; (MIN wpvesmaj;i2v[P = Pvl[)

7. Calculate the standard deviation of distance
sdmaj = \/%Z}:l(MlN pvesmaji2v[[Pr — Pyl —avmajj)?

8.End

Use bootstrap resampling method to calculate the mean ¢$toap
standard deviation. Supposémir, is the maximum value.
9. If sdminy is the maximum valu@hen
10. DowhileT <B

11. Draw the resample data with replacement fiaminy,.
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Figure 3.6: Example of a plot of boundary data (a) a plot aagiboundary data, (b) a plot new

artificial boundary data after usimggorithm 5
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12. Calculate the standard deviation of each resasstple
stdr = /551 (P— 125,p07?

13. T=T+1

14. End Do while

15. Calculate the mean of bootstrap standard deviatiean;q
mean¢ = 238 _;stdk
Generate artificial boundary data basechogany value for both
interacting and non-interacting classes.
16. For each interacting subclustemin
17. Calculate new standard deviation of data basetheary;: .
newSDmin= SDmin + (mears — SDmin,)
18. For each datay € smin
19. Generate artificial boundary data.
Syrk = pk + (newSDmip— SDmin)
20. End
21. End
22. For each non-interacting subclustama
23. Calculate new standard deviation of data basethear;: .
newSDmayj= SDmaj + (meany¢ — SDminy)
24. For each datg, € smaj
25. Generate artificial boundary data.
syn = p + (newSDmajj— SDmajj)
26. End
27. End
Supposesdmaj is the maximum value.
28. Else
29. DowhileT <B
30. Draw the resample data with replacement fionaj.
31. Calculate the standard deviation of each resastpie
std = /2]y (p— 5,p1)?
32. T=T+1
33. End Do while
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34. Calculate the mean of bootstrap standard deviatiean;y
meany = 158 _;std:
Generate artificial boundary data basechogany value for both
interacting and non-interacting classes.
35. For each interacting subclustsmin
36. Calculate new standard deviation of data basethear;: .
newSDmip= SDmin+ (mearig — SDmaj)
37. For each datagyg € smin
38. Generate artificial boundary data.
Syrk = pk + (newSDmip— SDmin)
39. End
40. End
41. For each non-interacting subclus&mnaj
42, Calculate new standard deviation of data basethear;q: .
newSDmayj= SDmaj + (meanr — SDmaj)
43. For each datg, € smaj
44, Generate artificial boundary data.

syn = p + (newSDmajj— SDmaj)

45. End
46. End
47. EndIf

Output: - The artificial boundary data of interacting class.

- The artificial boundary data of non-interacting class.

3.8 Part 8: Predicting Protein-Protein Interactions by Feal-forward Neural Network

with AdaBoosting.

The only artificial boundary features of two interacting ath-interacting proteins are trained
by a feed-forward neural network with backpropagationraay rule which AdaBoost technique has
been applied to this neural network classifier. The intémggirotein pairs are assigned to class 1 and

those non-interacting pairs are assigned to claks



CHAPTER IV

RESULTS AND DISCUSSION

4.1 Data Sets

4.1.1 Training data set

Yeast Saccharomyces Cerevisiae

In our experiments, we used a data set of physical proteémaotions obtained from [1], pro-
tein pairs containing a protein less than 50 amino acids ee ka40% sequence identity were re-
moved. These data are composed by 5594 positive data andngg8dive data. The negative data
were generated by the assumption that proteins with diffeseb-cellular localizations do not inter-

act. The final data set consists of 11188 protein pairs.

4.1.2 Cross-species data set

For protein pairs oDrosophila Melanogastefrom [3], the protein pairs containing a protein
with less than 50 amino acids were removed. So the proteis pas 4220 entries.

The other data set contains four species Caenorhabditis elegang&scherichia coliHomo
sapiens andMus musculusin DIP database as our cross-species test data set whiaimethtfrom
[43]. Caenorhabditis elegansonsists of 4013 protein pairEscherichia colconsists of 6954 protein

pairs.Homo sapiengonsists of 1412 protein pairs, ahtlis musculugsonsists of 313 protein pairs.

4.2 Performance Evaluation

In this dissertation, the performance of a classifier isweald by various measures [30, 44],
Overall Accuracy Sensitivity Precision G-MeanandF-Measures The confusion matrix as shown
in Table 4.1 represents the contingency table [28] for atalg the performance of machine learn-
ing algorithm on the classification learning problems. {jtn} be the positive and negative testing
examples andY,N} be the classification results given by a learning algoritbmpbsitive and neg-
ative predictions [28, 44]. In this dissertation uses theracting class as the positive class and

non-interacting class as the negative class.
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Table 4.1 Confusion Matrix.

Predicted Positve (Y) Predicted Negative (N)

Actual Positive TP FN

(p) (True Positives) (False Negatives)
Actual Negative FP TN

(n) (False Positives) (True Negatives)

Based on Table 4.1TP is true positive defined as the right recognition of true risténg
protein pairs. TN is true negative defined as the right recognition of true imberacting protein
pairs. FN is false negative defined as the wrong recognition of trueraating protein pairsFP is
false positive defined as the wrong recognition of true maracting protein pairs. The evaluation

metrics used to assess the prediction protein pairs datasetefined as:

Overall Accuracy (OA) :
TP+TN

A= .
A= TP IFPIEN TN (4.1)
TP Rate (Sensitiviry):
TPRate= w——1 (4.2)
FP Rate :
FP
Precision :
. TP
Precision= TPLFP (4.4)
Recall :
TP
Recall= TPTEN (4.5)
F-Measure :
2 . .
F — Measure— (14 B¢) x Recallx Precision (4.6)

B2 x Recall+ Precision
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wheref3 is a coefficient to adjust the relative importance of precisiersus the recall (usually
B =1). F-Measureis high when both theecall and presicionare high. It indicates that thie-
Measureis the measure ajoodnes®f a learning algorithm on the interest class [30].

TP TN
G—Mean= \/TP+ FN TN+FP .7)

G-mean :

G-Meanis used to evaluate a performance of classifier on the skeav @®/(TP+ FN) is
calledPositive AccuracyandTN/(T N+ FP) is calledNegative AccuracyThe idea ofG-Meanis to

maximize the accuracy on each of two classes while theseaies still balanced [30].

4.3 The proposed method results

4.3.1 Assessment of prediction capability

The result forYeast Saccharomyces Cerevisitata set as show in Table 4.2. The final data set
consists of 11188 protein pairs, where half are from thetpesilata set and half from the negative
data set. Three-fifths of the protein pairs from the positime negative data set were respectively
randomly chosen as the training set, and the remaining fits-fivere used as the test set. To mini-
mize data dependence on the prediction model, five trairétgyand five test sets were respectively
prepared. Each training data set were averagedforsimes experiments. Moreover, each training
set an ensemble ¢&ncomponent classifiers was created. In the experiments daféeeard neural
network with backpropagation learning rule was used aschelsssifier.

We present the results achieved when using Auto covaridtjcedcal descriptor [2], and our
proposed method. Our proposed method shows the resulteditping protein-protein interactions
before generating artificial boundary data and after geimgrartificial boundary data. For each
method in Table 4.2 illustrates the results in terms of @werall Accuracy Sensitivity Precision
F-measuresG-mean TP rates and the average prediction performance across five runs.

Our proposed methoflising original training datawhich using 398 feature vectors yields a
protein-protein interactions model with the average dacauracy, sensitivity, precision, F-measures
of both classes, G-Mean, and TP rates of both classes at%@0&8201%, 91.69%, 89.81%, 90.22%,
90.00%, 88.01% and 92.03%, respectively. The averageqti@uioverall accuracy, sensitivity, pre-
cision, F-measures of both classes, G-Mean, and TP ratestlofctasses of the Auto covariance
method and the Local descriptor method were also calculdtechn be found that Local descrip-

tor method which using 1260 feature vectors achieves therfggérformance than Auto covariance



Table 4.2: Results ofeast Saccharomyces Cerevista set :Overall accuracy Sensitivity Precision F-measureof interacting (positive) class;-
measureof non-interacting (negative) clags;mean True Positive ratef interacting (positive) class, affadue Positive ratef non-interacting (negative)

class using (1) Auto covariance, (2) Local descriptor, &)d(r proposed method.

Methods Number of ~ Number of Testset Overall Sensitivity Preision F-measure of F-measure of G-Mean TP rate of TP rate of
Feature  Training Data Accuracy positive class  negative cks positive class negative class
1 88.66 85.85 90.96 88.33 88.97 88.62 85.85 91.47
2 88.13 85.42 90.31 87.80 88.44 88.08 85.42 90.83
Auto covariance 420 6713 3 88.64 86.67 90.22 88.41 88.86 88.62 86.67 90.61
4 88.66 87.16 89.86 88.49 88.83 88.65 87.16 90.16
5 88.44 86.40 90.07 88.20 88.67 88.42 86.40 90.47
Average 88.51 86.30 90.28 88.25 88.75 88.48 86.30 90.71
1 89.24 87.19 90.92 89.02 89.46 89.22 87.19 91.29
2 89.29 86.76 91.38 89.01 89.55 89.25 86.76 91.82
Local descriptor 1260 6713 3 88.86 87.05 90.32 88.66 89.06 88.84 87.05 90.67
4 89.53 87.48 91.23 89.32 89.75 89.51 87.48 91.59
5 88.55 86.36 90.32 88.29 88.80 88.52 86.36 90.74
Average 89.12 86.97 90.83 88.88 89.35 89.09 86.97 91.26
1 89.71 87.68 91.39 89.50 89.91 89.67 87.68 91.74
2 90.59 89.13 91.80 90.45 90.72 90.57 89.13 92.04
our proposed method

3 89.91 87.32 92.09 89.64 90.17 89.87 87.32 92.50

o o 398 6713
(original training data) 4 89.58 87.30 91.47 89.34 89.81 89.55 87.30 91.86
5 90.32 88.64 91.72 90.15 90.48 90.30 88.64 91.99
Average 90.02 88.01 91.69 89.81 90.22 90.00 88.01 92.03
1 90.04 88.62 91.22 89.90 90.18 90.03 88.62 91.47
2 90.65 88.55 91.80 90.45 90.85 90.63 88.55 92.75

our proposed method

3 90.38 88.13 92.29 90.16 90.59 90.35 88.13 92.63

o 398 6654
(artificial boundary data) 4 90.63 88.42 92.51 90.42 90.83 90.60 88.42 92.84
5 90.65 88.55 92.44 90.45 90.85 90.63 88.55 92.75

Average  90.47 88.45 92.18 90.28 90.66 90.45 88.45 92.49

(017
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method which using 420 feature vectors. Otherwise, theopmdnce of our proposed methfusing
original training data)is better than the other two methods. The overall accurangitvity, pre-
cision, F-measures of both classes, G-Mean, and TP ratestlofclasses values obtained from our
proposed method are 1.51%, 1.71%, 1.41%, 1.56%, 1.47%%1.5Z1% and 1.32% which higher
than the Auto covariance method. Moreover, the overall @@yt sensitivity, precision, F-measures
of both classes, G-Mean, and TP rates of both classes vahiemed from our proposed method
are 0.9%, 1.04%, 0.86%, 0.93%, 0.87%, 0.91%, 1.04% and OWH&h also higher than the Local
descriptor method. These results show the best perfornwdmee proposed method compared to the
other two methods.

The average prediction overall accuracy, sensitivitycisien, F-measures of both classes, G-
Mean, and TP rates of both classes of our proposed mdtigidg only artificial boundary data)
are 90.47%, 88.45%, 92.18%, 90.28%, 90.66%, 90.45%, 88&%3692.49%, respectively. Our
proposed method using only 6654 artificial boundary trajrdata and 398 feature vectors which less
than Auto covariance and Local descriptor method. Compafeuto covariance, Local descriptor,
and our proposed methgdsing original training data) our proposed method which usiraply
artificial boundary dataachieves the best performance. The overall accuracy,tiségsprecision,
F-measures of both classes, G-Mean, and TP rates of boieslaslues obtained from our proposed
method are 1.96%, 2.15%, 1.9%, 2.03%, 1.91%, 1.97%, 2.1%5P4.@8% which higher than the Auto
covariance method. The performance values obtained frarproposed method are 1.35%, 1.48%,
1.35%, 1.4%, 1.31%, 1.36%, 1.48% and 1.23% which higher titahocal descriptor method. This
our result indicated that our proposed method which usinly artificial boundary datais large
improvement against with Auto covariance and Local desarimethod. Furthermore, to consider
in F-measure of both classes, our proposed method cortsispeaduced higher performance than
other methods. Hence, these results indicate that our pedjpmethod does not only achieve learning
at one class, but also achieve learning at both classesep@ating and non-interacting class against

other methods.

4.3.2 Performance on cross-species data set

In another evaluation, we tested the ability of our proposexhod for predicting protein-
protein interactions with cross-species data set. Thdtsefum sectionAssessment of prediction
capability provide the final five training models. In order to evaluate waining models, we tested
these model against the data sets which are independen¢ d¢faihing data set. Thus, we chose

the other five species as our cross-species test data sepeffoemance of our proposed method is
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summarized in Table 4.3, Table 4.4, Table 4.5, Table 4.6,Tabtke 4.7. The average performance of
our proposed method which using only artificial boundanadatpredict orCaenorhabditis elegans
Drosophila MelanogasterEscherichia coli Homo sapiensandMus musculuschieved at 81.27%,
79.18%, 76.70%, 84.65%, and 86.77%, respectively. Themmge performance are shown that our
proposed method can predict correctly in the interactirggam pairs with the accuracy over 80%
on Caenorhabditis elegansiomo sapiensandMus musculusHowever the average performance on
Drosophila MelanogasteandEscherichia colidata set have lower 80%, the average performance of
our proposed method still outperforms other methods. itndadhat our proposed method which using
only artificial boundary data is also able to predict the srggecies data with the better performance

than other two methods.
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Table 4.3: The prediction results Gaenorhabditis elegardata set based on final five training models
of Yeast Saccharomyces Cerevistiga set using (1) Auto covariance, (2) Local descriptod, @)

our proposed method.

Methods Test set  Overall Accuracy
1 73.34
2 72.79
Auto covariance 3 74.41
4 74.91
5 72.86
Average 73.66
1 77.37
2 75.93
Local descriptor & 75.50
4 77.52
5 77.17
Average 76.70
1 83.10
2 81.34
Our proposed method 3 80.19
(artificial boundary data) 4 81.16
5 80.56

Average 81.27
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Table 4.4: The prediction results 8frosophila Melanogastedata set based on final five training
models ofYeast Saccharomyces Cerevisthta set using (1) Auto covariance, (2) Local descriptor,

and (3) our proposed method.

Methods Test set  Overall Accuracy
1 74.88
2 74.05
Auto covariance 3 75.12
4 75.88
5 75.02
Average 74.99
1 78.08
2 78.25
Local descriptor & 76.64
4 79.43
5 76.54
Average 77.79
1 82.91
2 76.94
Our proposed method 3 80.50
(artificial boundary data) 4 76.78
5 78.79

Average 79.18
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Table 4.5: The prediction results Bfscherichia colidata set based on final five training models of
Yeast Saccharomyces Cerevisileda set using (1) Auto covariance, (2) Local descriptad, @) our

proposed method.

Methods Test set  Overall Accuracy
1 76.03
2 75.11
Auto covariance 3 76.19
4 77.14
5 74.42
Average 75.78
1 63.50
2 65.14
Local descriptor & 63.29
4 65.11
5 63.34
Average 64.08
1 77.96
2 75.47
Our proposed method 3 76.68
(artificial boundary data) 4 77.73
5 75.68

Average 76.70
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Table 4.6: The prediction results éfomo sapienglata set based on final five training models of
Yeast Saccharomyces Cerevisilada set using (1) Auto covariance, (2) Local descriptad, @) our

proposed method.

Methods Test set  Overall Accuracy
1 78.97
2 79.46
Auto covariance 3 79.39
4 79.46
5 79.39
Average 79.33
1 75.50
2 73.51
Local descriptor & 75.35
4 74.15
5 74.79
Average 74.66
1 87.89
2 83.50
Our proposed method 3 84.77
(artificial boundary data) 4 83.92
5 83.14

Average 84.65
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Table 4.7: The prediction results Mus musculugiata set based on final five training models of
Yeast Saccharomyces Cerevisilada set using (1) Auto covariance, (2) Local descriptad, @) our

proposed method.

Methods Test set  Overall Accuracy
1 79.87
2 81.15
Auto covariance 3 83.07
4 83.39
5 83.07
Average 82.11
1 75.72
2 74.44
Local descriptor & 75.08
4 72.84
5 72.84
Average 74.19
1 89.46
2 86.58
Our proposed method 3 87.22
(artificial boundary data) 4 84.98
5 85.62

Average 86.77
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Our proposed method #te artificial data generation stepnot only using as the method to
predict protein-protein interactions but also is applieth@ndle the imbalanced data problem.

Standard machine learning algorithms have an error toifyldathalanced data sets which the
number of data in one (majority) class is larger than therdiinénority) classes. The performance of
traditional classifiers produce high predictive accuragronajority class but low predictive accuracy
on minority class. We proposed a new method for handlingrii®lanced data sets. The main idea
of our proposed is based on the fact that only artificial bemypdlata are generated on both minor-
ity and majority classes and using boosting technique toorgthe performance of classification.
Firstly, the new direction distribution of input data sets ealculated and used to form the new input
data. Then using Self-Organizing Map (SOM) to partitionsth@ew data into many subclusters of
minority and majority classes. After that only boundaryadat each subcluster are used to generate
synthetic boundary data based on bootstrap resamplingiteeh To increase efficiency of predic-
tion, only artificial boundary data are classified base onptida Boosting (AdaBoost) algorithm.
Our proposed method applied to ten highly imbalanced désauseng feed-forward backpropagation
neural network as base classifier. In addition,Fhmeasures, G-meamdoverall accuracyare used
to evaluated the merit of classification results. From theedrental results, our proposed method is

very efficient to handle imbalanced data and our perform@&nbggher than other methods.

4.4 Experimental Results on Imbalanced Data Sets

4.4.1 Benchmark Data Sets

Ten data sets are used to test with our proposed method asasirmdhin Table 4.8. Table 4.8
shows the number of example in the data set, the number ofrityirmtass, the number of majority
class, the class distribution, and the number of input featu These data sets are available from
the UCI Machine Learning Repository [45]. Moreover, theatadsets is used to test the learning of
imbalanced data problem from two-class, we made modificatom several of the originals data sets
according to the literary results from similar experime2f,[30]. A brief description of modification

is discussed as follows.

1. Monk Data setThis data set includes 169 examples and 2 classes. Eachlexamgpresented

by 6 attributes [30]. There are 105 majority class examphesGdt minority class examples.

2. lonosphere Data setThis data set includes 351 examples with 2 classes (good retgns

and bad radar returns). Each example is represented by 3dricui@atures. We choose 225
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Table 4.8 Summary of the data sets used in this paper.

Dataset Case Min. Maj. Class Feature
Class Class Dist.
Monk2 169 64 105 0.37:0.63 6
lonosphere 351 126 225 0.35:0.65 34
Breast-W 699 241 458 0.34:0.66 9
Vehicle 846 199 647 0.23:0.77 18
Hepatitis 155 32 123  0.20:0.80 19
Glass 214 29 185 0.13:0.87 9
Vowel 990 90 900 0.09:0.91 13
Abalone 731 42 689 0.06:0.94 8
Yeast 483 20 463  0.04:0.96 8
Car 1728 65 1663 0.04:0.96 6

examples of good radar returns as majority class and 126 @garnof bad radar returns as

minority class.

. Breast Cancer Wisconsin Data sethis data set has a total of 699 examples and 2 classes
(benign, malignant). Each example is represented by ®atds. We use benign class as the
majority class and malignant as minority class, which gis€b8 majority class examples and

241 minority class examples.

. Vehicle Data setThis data set has a total of 846 data examples and 4 classssgaab, bus
and van). Each example is represented by 18 attributess @ass selected as the minority
class and the remaining classes is used as the majority. Cldss gives us an imbalanced

two-class dataset, with 199 minority class examples andh&drity class examples.

. Hepatitis Data set.This data set includes 199 examples with 2 classes (die amd IEach
example is represented by 19 features. We choose 123 exaofmkass live as majority class

and 32 examples of class die as minority class.

. Glass identification Data setThis data set has a total of 214 examples and 6 classes. Each
example is represented by 9 attributes. We choose bkasdlampsas the minority class and

the remaining classes are combined as the majority class giMes an imbalanced two-classes
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dataset, with 29 minority class examples and 185 majoragscexamples.

7. Vowel recognition Data sefThe original dataset includes 990 examples and 11 classeh E
example is represented by 13 attributes. Since each vowle ioriginal data has 10 examples,
we choose the first vowel as the minority class and the remgiekamples are in the majority
class [28]. Therefore, there are 90 examples in minoritgsckEnd 990 examples in majority

class.

8. Abalone Data sefThe original dataset includes 4177 examples and 29 claBseb.example in
represented by 8 attributes. We choose clésss the minority class and cla8ss the majority

class [28, 30]. This gives us 42 minority class examples &®@dnBajority class examples.

9. Yeast Data setThe original dataset includes 1484 examples and 10 claEseh example in
represented by 8 attributes. We choose cRGX as the minority class and cla€s'T as the

majority class [30]. This gives us 20 minority class exarm@ad 463 majority class examples.

10. Car evaluation Data set.The original dataset includes 1728 examples and 4 classash E
example in represented by 6 attributes. We choose ulgg®das the minority class and the
remaining class as the majority class. This gives us 65 ntynolass examples and 1663

majority class examples.

4.4.2 The proposed method result on benchmark data sets

Results for the ten data sets, as shown in Table 4.9 and 4Hi€seTdata sets were averaged
over five standard 10-fold cross validation experiments: dexh 10-fold cross validation, the data
set was first partitioned into 10 equal sized sets and eackiasein turn used as the test set while the
classifier trains on the other nine sets [30]. For each folérssemble oten component classifiers
was created. In the experiments, a feed-forward neuralarktwith backpropagation learning rule
was used as based classifier.

For each data set, we present the results achieved whenthsifegged-forward neural network
(NN), AdaBoostM1, SMOTEBoost [29], DataBoost-IM [30], andr proposed method. For each
method, Table 4.9 and 4.10 present the results in terms a@vili@ll accuracy F-measuresG-mean
andTP rates

The results as shown in Table 4.9 indicate that our proposgtod performs very well in term
of overall accuracy F-measure®f both minority and majority classes, amé rateof majority class.

In some cases, the value GEMeanand TP rate of minority class are slightly higher or the same



Table 4.9: Results of imbalanced data se®verall accuracy F-measureof minority class,F-measureof majority classG-mean true positive rateof

minority classtrue positive rateand of majority class using (1) the NN classifier, (2) AdaBbtlk (3) SMOTEBoost, (4) DataBoost-IM, and (5) our

proposed method.

Data set Methods Number of Overall  F-measure of F-measure of G-Mean TP rate of TP rate of
Name Training Data Accuracy min. class maj. class min. class maj. class
NN 140 82.13 59.22 88.30 71.64 60.83 88.01
B AdaBoostM1 140 79.46 51.83 86.75 67.12 54.17 86.28
Hepatitis
SMOTEBoost 313 80.75 54.83 87.62 70.51 60.83 86.22
DataBoost-IM 140 80.79 54.49 87.59 69.07 57.50 87.12
Our proposed method 120 84.00 59.55 89.94 71.00 57.50 91.15
NN 316 86.64 78.60 90.23 81.98 71.47 95.14
AdaBoostM1 316 87.21 79.47 90.65 82.39 71.47 96.05
lonosphere
SMOTEBoost 722 85.79 77.39 89.53 81.03 70.64 94.21
DataBoost-IM 785 88.34 80.56 91.62 82.85 70.58 98.22
Our proposed method 258 89.21 81.66 92.33 83.66 71.47 99.11
NN 761 96.34 92.30 97.60 95.32 93.50 97.22
) AdaBoostM1 761 96.93 93.43 97.99 95.84 93.97 97.83
vehicle SMOTEBoost 1473 96.34 92.34 97.59 95.63 94.47 96.91
DataBoost-IM 1542 97.17 94.07 98.14 96.56 95.50 97.68
Our proposed method 459 97.52 94.70 98.38 96.58 94.95 98.30
NN 152 68.70 58.03 74.84 65.67 58.33 75.45
AdaBoostM1 152 74.00 64.31 79.23 70.84 64.29 80.27
Monkz SMOTEBoost 290 70.95 56.17 76.39 62.66 55.71 80.09
DataBoost-IM 326 69.25 58.74 75.24 66.24 59.29 75.55
Our proposed method 151 76.43 66.20 81.81 72.79 64.76 84.09
NN 658 94.39 39.80 97.06 52.01 35.50 97.97
Abalone AdaBoostM1 658 95.49 50.71 97.63 60.68 42.50 98.70
SMOTEBoost 1142 92.20 51.56 95.73 79.47 69.00 93.62
DataBoost-IM 1359 95.08 49.57 97.41 62.25 45.50 98.11
Our proposed method 376 96.17 54.01 98.00 60.30 47.50 99.13

TS



Table 4.10: Results of imbalanced data se@s/erall accuracy F-measureof minority classF-measureof majority classG-meantrue positive rateof

minority class,true positive rateand of majority class using (1) the NN classifier, (2) AdaBbts (3) SMOTEBoost, (4) DataBoost-IM, and (5) our

proposed method.

Data set Methods Number of Overall F-measure of F-measure of G-Mean TP rate of TP rate of
Name Training Data  Accuracy min. class maj. class min. class maj. class
NN 891 99.19 95.66 99.55 98.01 96.67 99.44
AdaBoostM1 891 99.09 95.14 99.50 97.96 96.67 99.33
vowel SMOTEBoost 1719 98.89 94.08 99.39 97.84 96.67 99.11
DataBoost-IM 1915 98.59 92.39 99.22 96.14 93.33 99.11
Our proposed method 510 99.39 96.72 99.67 98.64 97.78 99.56
NN 193 96.26 86.00 97.84 91.72 86.67 97.84
AdaBoostM1 193 95.35 81.57 97.32 89.06 83.33 97.31
Glass SMOTEBoost 561 95.28 84.10 97.22 92.70 90.00 96.17
DataBoost-IM 640 95.35 82.48 97.31 90.69 86.67 96.78
Our proposed method 123 96.28 86.38 97.84 93.20 90.00 97.34
NN 435 97.30 49.67 98.61 55.17 45.00 99.57
AdaBoostM1 435 97.30 49.67 98.61 55.17 45.00 99.57
veast SMOTEBoost 708 95.02 40.67 97.38 58.43 45.00 97.18
DataBoost-IM 901 97.30 49.67 98.61 55.17 45.00 99.57
Our proposed method 311 97.72 61.00 98.82 67.99 60.00 99.35
NN 629 94.84 92.45 96.08 94.10 92.10 96.28
AdaBoostM1 629 95.13 92.98 96.27 94.67 93.35 96.07
Breast-W
SMOTEBoost 1142 95.27 93.07 96.40 94.91 94.17 95.85
DataBoost-IM 1295 95.00 92.72 96.17 94.36 92.53 96.28
Our proposed method 294 95.85 93.87 96.86 95.19 93.35 97.15
NN 1555 99.83 97.79 99.91 99.20 98.57 99.88
AdaBoostM1 1555 99.88 98.46 99.94 99.23 98.57 99.94
car SMOTEBoost 2324 99.76 97.03 99.88 99.25 98.57 99.76
DataBoost-IM 2913 99.94 99.09 99.97 99.13 98.33 100.00
Our proposed method 626 99.94 99.23 99.97 99.26 98.57 100.00

Zs
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value as other techniques. In Table 4.10, the results of mygsed method perform well in term of
F-measureof minority class ands-Mean Moreover, theoverall accuracieof our proposed method
are higher than other techniques. In some cases, the valksenefasureof majority class and P rate

of both classes are slightly higher or the same value as t#hkniques.

1. Hepatitis Data set.Our proposed method using only 120 training data which leasa the
other four methods. Theverall accuracy F-measureof both classes an@P rateof majority
class indicate that our proposed method performs very we#innxcomparing with the base
classifier NN, AdaBoostM1, SMOTEBoost, and DataBoost-IMimeés. The proposed method
achieved armoverall accuracy84%, F-measure®f both classes at values 59.55%, and 89.94%

respectively,TP rateof majority class at values 91.15%.

2. lonosphere Data seflhere are 258 training data which are used in our proposedaneB16
training data are used in NN and AdaBoostM1, 561 training @ae used in SMOTEBoost,
and 640 training data are used in DataBoost-IM. The reswolivsithat our proposed method
performs well in terms obverall accuracy both minority and majority classes Bfmeasures
G-Mean and TP rate of majority class which are large improvement against welseclas-
sifier NN, AdaBoostM1, SMOTEBoost, and DataBoost-IM method he proposed method
achieved amverall accuracy89.21%, botH--measuresf minority and majority classes at val-
ues 81.66% and 92.33%-Meanof 83.66%, and P rateof majority class at values 99.11%. In
addition, theTP rateof minority class, our proposed method is the same as NN, Adsi/11

but higher than SMOTEBoost, DataBoost-IM.

3. Vehicle Data setOur proposed method using only 459 training data is lessdtiaar four meth-
ods. Theoverall accuracy F-measuresf both classess-Meanand TP ratesof both classes in
our proposed method is higher than the base classifier NNBdastM1, and SMOTEBooOSt.
Otherwise, our theverall accuracy F-measure®f both classes3-Meanand TP ratesof both
classes perform slightly higher than DataBoost-IM. Tikerateof minority class, our proposed

method is lower than DataBoost-IM by only5%%.

4. Monk Data setln our proposed method, there are only 151 training datased.ur heoverall
accuracy bothF-measuresG-Mean and bothT P ratesof minority and majority classes of our
proposed method surpasses of all the other methods. Thegaopnethod achieved awerall
accuracy 76.43%, bothF-measuresof minority and majority classes at values.B8% and

81.81%, G-Meanof 72.79%, bothTP ratesof minority and majority classes at values. 3%
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and 8409%, respectively.

. Abalone Data setThe only 376 training data are used in our proposed. Our gegpmethod
achieved 96.7% overall accuracy F-measuregand TP ratesof both minority and majority at
54.01%, 98%, 4550%, and 99.3%, respectively which indicate that there are large inm@ro
ments of our proposed method than NN, AdaBoostM1, and Datst8/.

. Vowel recognition Data sefThere are only 510 training data which are used in our prabose
method. Our proposed method performs3®36 overall accuracy 96.72% F-measureof mi-
nority class, 9%7% F-measureof majority class, 9%4% of G-Mean 97.78% TP rate of mi-
nority class, and 9896% TP rateof majority class. The results F-measureof minority class,
G-Meanand TP rate of minority class surpass that of all the other methods aedrihjority

class ofF-measureand TP rateare slightly higher than other methods.

. Glass identification Data setThere are 123 are used for our proposed method. Our perfor-
mance is evaluated byverall accuracy G-Meanand F-measuresare comparable with oth-
ers. The proposed method performsZB8%overall accuracywhich higher than AdaBoostM1,
SMOTEBoost, and DataBoost-IM methods, and slightly highan NN method. The values of
both F-measuresninority and majority class of our proposed method ar88% and 97/84%
which higher than AdaBoostM1, SMOTEBoost, and DataBobtbt slightly higher than NN
method. Moreover>-meanvalue andTP rate of minority class of our proposed method are
highest of all other techniques at valuesZBb6 and 90%, respectively. TP rate of majority
class at 98B4% higher than AdaBoostM1, SMOTEBoost and DataBoost-I¥Itwer than

NN method by (6%.

. Yeast Data setThere are only 311 training set being used in our proposetiodetOurover-
all accuracyand F-measureof majority class are slightly better than NN, AdaBoostMhda
DataBoost-IM. Otherwise, our proposed method performidsgin terms oF-measureof mi-
nority classG-MeanandTP ratedof minority class which achieved a minority cldssneasure
of 61.00%, G-Meanof 67.99% and a minority clas§P rateof 60.00%. Furthermore, the per-
formance of all measures in our proposed method are ablohitgher than SMOTEBoost

method.

. Breast Cancer Wisconsin Data sdthere are only 294 training data are used in our proposed
method. The minority clasB-measureof 93.87%, G-Meanof 95.19% and the majority class

TP rate of 97.15% show that our proposed method is the highest performaHdogever in
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terms ofoverall accuracyat 9585%, F-measureof majority class at 986% and the minor-
ity TP rate of 9335% indicate that our proposed method performs slighthhé&ighan NN,
AdaBoostM1, and DataBoost-IM.

10. Car evaluation Data setln our proposed method using only 626 training data whileealzee
at least 1555 training data are used in the other techniqOes.proposed method performs
99.94% overall accuracy 99.23% F-measureof minority class, 997% F-measureof majority
class, 926% of G-Mean 9857% TP rate of minority class andl'P rate of majority class at
value 100%. Our proposed method produced slightly higheiroilar to other four methods
in all terms of evaluation. In this data set, our proposedhois obtained that the only 626

training data still achieve with high performance.

In this work, our proposed method using only artificial boarydtraining data which the num-
ber of training data are less than other four methods. Tresdts show the superiority of our pro-
posed method compared to the others. Moreover, our propuséitbd achieved promising results
when consideringverall accuracyandF-measure®f both classes. Such as Hepatitis, lonosphere,

Monks2 and Abalone theverall accuracyandF-measure of minority classurpass of all the others.



CHAPTER YV

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation proposes a new feature extraction froly primary protein sequences for
predicting protein-protein interactions. Each proteigusnce is characterized by its correlation coef-
ficients with physiochemical properties, statistical mfi@tion of its secondary structures and protein
properties as additional features. The prediction is aelidy using a feed-forward neural network
with boosting technique. The experimental results ingiddlhat the proposed method performs better
than the others’ method. The number of feature¥esdst Saccharomyces Cerevisikada in our case
is obviously less than those of the other’s.

Moreover, bootstrap resampling technique is used to genartficial boundary data. So the
only artificial boundary data are used to construct the finadlistion model. The proposed method
can improve the performance of predicting protein-protetaractions in terms of th®verall Accu-
racy, Sensitivity Precision F-measuresG-mean TP rates The performance prediction shows the
superiority of proposed method which using only artificiaubdary data compared to other meth-
ods. In addition, to consider iR-measureof both classes, these results indicated that our proposed
method does not only improve predicting at one class, botathieve predicting at both classes of
interacting and non-interacting class.

The prediction performance of the final model which using/@itificial boundary was evalu-
ated on cross-species data set to obtain a more reliablesasset. It can be found that the proposed
method is capable of prediction over cross-species whitpesiorms other methods. Hence these
features from the proposed method can be represented asdatueels ofCaenorhabditis elegans
Drosophila MelanogasterEscherichia coliHomo sapiensandMus musculus

In addition, Our proposed method te artificial data generation step not only using as
the method to predict protein-protein interactions bub agsapplied to handle the imbalanced data
problem. Our results are promising and show that the praposthod compares well in comparison
with a neural network base classifier, a standard boostguyithim and two advanced boosting-based

algorithms for handling imbalanced data set. The resuttEate that the proposed method does not
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achieve one class prediction, but also produce high piedgtagainst both minority and majority

classes.

5.2 Future Work

There are some solutions which can make this research nfertied as follows:

e The other physicochemical properties and other proteipgates will be considered as feature
representation. Since the number of feature vector of jprp@rs may be reduced which still

have the good performance of predictions.

e To speed up the finding boundary data process, the otheiithlgoto find the boundary data

should be instead.

e Overall, the proposed method is expected to be a powerfllftocexpediting the study of

protein interaction networks.
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