Chapter 2

ELEMENTS OF X-RAY DIFFRACTION AND STRUCTURE DETERMINATION

X-rays and X-ray. Diffraction

X-rays were discovered in 1893 by the Cefman physicisf W.C.
Rontgen aﬁd were so named because their néture.was unknown at tﬂe
time. It is known today that X-rays are electrémagnétié ;adiatipn_§f>
exactly the same nature.as light but of very much-shorte;rwaveiengtﬁ.
X-rays used in diffraction 'have waﬁelengths lying approximatély in
~the raﬁge 0.5-2.5 &, whe;éas the wavelengtﬁ-of visible lighfﬁis'éf'i
~the order of 6000.3, erays_aré‘ptoducéd when any electrically
cha:ged particle of sufficient kinetic energy ié rapidly decelefé;é&.
~ Electrons are usua;ly used for this pufppse, the radiation ﬁeiﬁg
produced- in an X-ray tube which'coﬁtains_an_electron>96ufce and two
metal electrodes, Tﬁe high voltage maintaineﬂfacross.these eleétfodés
faﬁidly d;awé the glectrons.tdvthéuanodé,_o; target;-whipﬁ they's;rikef
-wiih very high velocity{' X%rays;are-produced at Fhe péin: of impadt

and radiate in-alt directions.
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Fig.2.1 Cfoes section of x-ray tube

An eiécfron in ;he péth of an'unpblafized_xéray beam viﬁrétés
with>the frequency bf the incident radiatidn., péfiodical}y absorbing
energy and eﬁitting'it as.X -/fadiation of)the same frequencyf  Thé
original X - ra&s are unmodified in.wavelenéth“by tﬁé intgrqqtion'but

(are radiated in all ‘directions. . The electron has-the effect of
scattering the incident fadiétion]and acts as a source of secondary
X - rays. The nucleus, bec#ﬁse of its high mass; makeg a negligible

contribution to the' radiation scattered by an dtom.)

An atom 1is not a point source of Xpraysf' Its ele;t;dﬁs_occuby '
a space whose size is commensurable with the diétantes'befween adjacen:
atoms. fd develop the geometry'of diffraétion,‘it_is petmissiblé to
adoft the simple picture that rays are.écattered from différent-parfs

of the atom.

A crystal is an orderly arrangement of atoms. Ail atoms in

the path of an X-ray beam scatter X-rays simultaneously. In general,



the scattered waves interfere with and destroy one another, but in
certain specific directions they combine to form new wave fronts.

This cooperative scattering'is known as diffractiqn.

The diffraction of X-rays by crystals was discovered by Max
von Laue in 1912, He suggested that the periodic struc:ure_ofla
crystal might be used to diffract X-rvays just as gratings are used

to produce diffraction patterns with visible light.

* .

Fig, 2,2 Scattering of light by diffraction'grating with'thé'repeat‘

distance "a"

In Fig. 2.2'_ghé_ihcident.§eam:makesgaﬁgle.qb'wifh the
diffractich grating. ‘The intident ray CE -travé_ls-,far.t-hér than AB
before réaching the gfating, and_theiscéttéréd‘ray BG travéis.farther o
than'EH after passing the gratiné. Tﬁe_difference'in ﬁath 1enéfhs of
the beams CDEH and ABFG is DE—BF,land tﬁis-difféfénce:mﬁst'be'equai
to a whole number of wave;engths if the high intensity ;haraéteristic

of constructive interference is to be observed étréngle a. Therefore,



DE-BF = nx  eeeeieeeieeaann. L2,

Where "A" is the wavelenght of the light and "n" is an

integer. By simple geometry

DE

W

a cos o h - .

and

BF a cos © ceareraeaiaaaesas 2.3
where a is the repeat distance, so

a (cos O ~cos o) = A ci et nneanass 2.4

This is the limeardiffraction grating formula. Since: -
crystals are periodicsin ghree dimensions, three equations are

required.

a (cos o = cos ) ha ,.;.,............. 2.5
b (cos Bo'— cos B~ = ki e ciiinntriaannas 2.6

c (cos Y, " cos y) = X . |

These are called the Laue equations. The @angles between the
incident X-ray beam and the unit ceil axes a,b,c are uo’Bo , and Yo
and ¢, B, and Y are the correspouding angles‘for the-diffragted beaﬁ.
Constructive interference will occur only for vélues-of-these six

angles for which h,"k,-and 1 in-Eqs. (2.5) = (2.7) are iﬁtegers.

Shortily after the'diséovery of X—réy diffréction;;w.ﬂ.-Bragg
discovefed that the geometry of the'process;is analogops-to the  .
reflectibn of light by a plané mirror. Because of.the_three'dimen- 
sional periodicitﬁ of a crysﬁal strucﬁure if is possible to‘construét.
sets of many pianes that are parallei with eaéhAothEr, equélly sﬁaced,
and contain identical atomic arrangemeﬁts, If an incidént X-ray béaﬁ.

makes an angle 6 with such a set of planes, the reflected beam also



makes an angle 8 with the planes, as in the case eropticalrreflec -
tion. It follows that the angle between the incident and réflected |
ravs is 20, Since .there are large numbers of parallel plénes involved
in scattering X-rays, reflections from successivé plangs will inter-
fere with each othef, and there will be constrﬁctive intefference

only when the difference.in #ath length between rays from successive
planes is equal té a whole number of wavelengths.Tﬁis is illustraﬁed
in Fig.2.3 where X-rays of wavelength A are incidentAat angle 6 on

a seﬁ of planes wiﬁh épacing de .The ray étfiking the sécohd plane

- travels a distance AB+BC fafther than the ray striking'the first

plane. These two rays will/be in phase only
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Fig.2;3 An X-ray beam makes angle|/8 with a sét_of planes with

interplanar spacing d.

ABVBC = nA o 28
' where n is some in;egef. Frém elemenpéry‘gedmefry
AB = BC = d siﬁ ] e
Therefore,

~2d sin B8 = nA Ch e niee . e 2.10



and this is the well-known Bragg's law. Eq. (2.10) provides
no information ather than that given by the Laue equations, but
the interpretation of eray diffraction patterns is frequently easier

in terms of Bragg's law since only one measured angle is requlred

~The structure Factor

The structure factor, is the resultant of j waves

Fhra
scattered in the direction.of the reflec¢tion hkl by the j atoms in
the unit cell. Each of these waves has an amplitude ptoportionai

to fj ,” the scattering-facter of the| atom, and a phase 6 of the Wave 

scattered by the atom{.

Scattering factor of the atom is exnfessed in term of the
scattering power of an equivalent number Of electrons located at the
pos1tion of atomic nucleus and is calculated for an atom at rest
Debye deduced on theoretical grounds im 1914 that the scattering
factor of an atom at ordinary temperatures (f) is related to its

scattering factor at rest (fo) by the expression.

f = £

B Gun 8y/n2 PO PR 25
O . .

where B incorporates the mean displacement oflthe atom fron
its mean position and depends onfthe kind of the atom and the
orlentation of ' the reflectlng planes in the crystal A is the
wavelength of the incident beam.and 6 is the Bragg s angle. ..The
variation of the scatterlng factor of tungsten, vanadium and ox&gen f
- with sin_Q/A are shown in Fig.Z.A At sin a/x = 0 the value of the

scattering factor is always equal to the total numbers of electrons

in the atom. As sin 8/) increases, however, the scattering factor
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decreases because X-rays scattered from an electron in one part of
an atom will be, to an increasing extent, out of phase with those

scattered in another part of the electron cloud.
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Fig.2.4 Atomic scattering factor of tungsten, vanadiumrand oxygen

as a functionsof sin 8/X

To express the phase faetors in the structure amplitude equa-

tion in terms of the positiems of the atoms in the unit cell. Consider

é two-dimensidnal structure (Fig.2.5) witﬁ.bléck atoﬁs_at the corners
of the cell and a white atom v with coordiﬁatgs XY and y+ (these“
symbols refer to fractional parté of the cell‘edges a and b). Assume
a set of (hk) "planes" reflecting in thé firs£ order.. Tﬁe closest

(hk) plane to the originlhaslintercepts-% . aand %'. b on the cell



il

cdpes. From Bragg's law these distances a?e equlvalent to. 21 phase
changes in the a and b d1rections, respectlvely The atom Y is

displaced from the origin at o by the components x . a along a and
yY. b along bﬁ The distance x, . a is equiva;ent Fo a_phase compongﬁt"

Y

——r N X . 7= 6 . V."’..-.'. ..'..' - i.
a/h th Zy Ya . 2 }2
along a for the Y atoms Similarly,er.‘b is equivalent torthe
plase comﬁonent

w, WFF
X

i = kyY | 2“. = 6

Yb
along b. The phase fagtor for the Y atom is the sum of the two

component phase factors and -therefore

5. = 6 8
Y Ya & Yb

il

2 . + crerevemaasss 2.
(th kyY) : .2 13
It can_be,shown that for a thrée—dimeﬁsional structure

8. = 2n ﬁ + A%33 g...: : '
v ¢ (vxT kyY lzy) Peseineeen 2.14

O

Fig.2.5 A two-dimensional structure
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‘F(hkl)[ is known as the structure amplitude and is the ratio

of the amplitude of the wave scattered by all atoms in the cell to

the amplitude of the wave scattered by one electron.

{b) .

Fig.2.6 Vector represéntation of waves with different amplitudes

apd phases -

From Fig.2.6

I e —— =i
1Py ™ =LA B :
= , 2 , 2, 1/2 ,
= ¥ g am— | veas 2,16
where
¥ Ve (¢ 5, 4 £ coss. + £ § ). '
cosa’ - p 98¢ q ©°° Q- ‘R COSO pX seers 2f17
(F 12 = (f_, sin & +-f ‘sin §. + f_ sin & )2'.>7 2 18':
sina P P TQ T _ RY ST

Q Q R
Then for a unit cell with j atomé

: | 2 20172
= T , ‘ .
lF(hkl)' [(( fo,j cos §y) + (Z £0 i sin 8y)°1 [.° 2f19



where fj and 6 , refer, respectively, T

3
and the phase factor of the j th atom.

Substituting 6j = 2n (hxj + kyj + lzjjrinto Eq. (2.19) we
obtain |
P2 | 2
" (hk1) = [ Ef. cos 2m,(hx, + ky, +1z.))  +
PR 3 i i

[ 2of sin 27 ‘(hx? #ky. + 1z,)1 2 L. '2.20
god i it -

iF

The function cos x, sin x and e may be expressed by the

series

o
=

cos X Y & & F E5- 0 0 ereneeeees 2221
: 21 44
Sinx = X—z!_3+_)£5".....-...-_-_.......-....-.. 2-22
Pridsy '
o* N PR K
it - - ‘

Substituting x = 16 and multiplying both sides of the Eq.

(2.23) by f we have

fels, 5 f(1+16.—_6_2-— is” + &
' D YT TR Y i
Sl Y UBIHT s 2+ 87 - o
21 4y ' 31 5v .

]

£ (Cog™S |+ I SADS I e mer srp et 2.24

Since the right side of the Eq. (2 24) 1s ‘a complex.number
which represent a wave with amplltude f and phase angle 6§, the left
side of this equation will also represent the same meen1ng.
Therefore, the structure factor whlch is the sum of the waves

scattered by the n atoms is
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i85
= z f e et ar e .
F(hkl) fj e 2.25.

Substituting § as given in Eq. (2.14) into Eq. {(2.25) we have

24 (hx, + kyj + 1zj)'
Fout) © £, e : e, 2026

The struéture factor may be considered as the sum'bf thé
waveiets scattered from all therinfinitééimal elémen;s'of electron
density in a unit cell. Simce electron-density p‘is defined as the
number of electromns éer unit volume, it foltows that the number of

electrons in any volume element dv is

p ( x4y,2) jdy

In the exponential form the wavelet scattered by this element
is
201 (hx + ky + 1lz)
P (39y9z) € = : dv
The résultant is—the—sum of-all-the_elements in the unit cell,

i.e., the integral over its volume

' (hx + ky + 1z) '
Fme1) (7 {’lp-(x,y,z) f s dv ...l 227

The observed 1ntensit1es of the beam of X-rays dlffracted in
any glven direction from a crystal of any shape ot 512e are related

to the structure factor by the following equatlon

- /RT - g
_ -/ (hkl) T
IF0 (hkl)] -.,// Y ..i.f,.f....,...h.,z.zs



15

IF | is the modulus of the observed structure factor ,.

o(hkl)

thergfore only lFo(hkl)l can be obtained experimentally.

K is a scale factor necessary to place I on an absolute
basis and depending on crystal size, beam intensity, and a number

of fundamental constants.

P is the polarization factor which is given by

2 ‘ .
1 + cos- 20 - _ 2.9

P = 2 .Il‘llll‘.l.o...lilbtti

The Lorentz factory L .depends on the precise measurement
technique used. TFor the equi - inclination Weissenberg it ié.given-

by

1 = Ay ' .. 2230

! . R A
sin 26 51n26 - sin
where p is the equi ~‘“inclination gsetting angle. A is an

absorption correction,

Electron Pensity

Atoms are positiens of relat1ve1y h1gh electron -density in
the crystal. Thus the electron density varies throughout the crystal
reaching maximum values at locations of atom ceqters, lower_values
at chemical bonds, and falling virtually to zero elsewheére-in thé,
stfucture. If the electfon density could be'mapﬁed'throughﬁﬁt the
unit cell and each atom gave a fecognizable peak on the map, the
" structure could be ea511y deduced and then proved by a comparlson of
intensities calculated fo; the tentative structure with the 1n£ens1t1es_

measured on the crystal; The first step in the implementing such a

013500
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procedure is to adopt a method of evaluating the electron density.
Atoms are arranged in a periodic fashion in space and therefore the
electron density also varies_periodically throughout the crystal.

They‘are described by periodic fumction, known as Fourier series.

One form of a general one - dimensional Fourier series may

be written aé follows :

foy =3 * 2" (a, €os 27 hx +b,sin 21 hx) Lieo.nonen 2.31

where the h's are integers, and b, are constants, and x is a
. = o . ,

- fraction of a period.

It is often conwvenient to tépresent the Fourier series in

terms of complex notation.

271 hx
e

= zn n‘-----o--o---.--a'-l---c-- L) . ‘.
. Ch | SRERER) 2.32

-n

£

where we dgflne Ch = (ah - 1bh)/2, CE = (ah +71bh?/2’ and CO =a_
The three-dinensional-periodie clectron-density in a cerystal:
can be represented by a three - dimensional Foutier series similar

to Eq. (2.32)

274 (h' stk y+1 ' 2)

o (x,y,2) =% "L "L Gy & 0 e 2.33

h' k' 1°

where h',B',1" an integers between -« and .
Substitution of Eq. (2.33) into Eq. (2.27) gives

. . | . 1 ) 4 .
=S £ =C 2T (h ' xH LT 2) 27 (hxkky+lz)

F(hkl) v h' k' 1' hrkllv
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- 1 ? 1
f L I & 211 [(hth')x+(k+k'yy+(1+1") 2}
Fhk1) v Rt 1 Carkr1 © AT
If h' = -h, k' = -k, 1' = -1, the Eq. (2.34) becomes
Qhkl) = fcC dv = VC
' v hkl. hkl
c - Y L e, e 2.35
TRL v  (hkl) M - :

In Eq. (2.33) substitution of h, k, 1 Forh' k',1' and of C

hkl
from Eq. (2.35) gives the wxequired seriesg :
' ‘ ~2mi ( ‘
o (xuy.x) = A A R I) 2.36
VhoidAa hkl

The comparison of the expression [for, the electron density, Eq. (2.36),
with that for the structure factor, Eq. (2.27), shows that the electron
den51ty is the Fourier transform of ‘tHe structure factors and in turn

the structure factors are the Fourier transform of electron density.

The structure factor can be written in the form

271 al ¥ io

_ hkl _ hkl ,
Fohk) -~ IF(hkl)l e 'IF(hkl)i e cee.. 2,37
' ; 3
where Zﬁ o'k s nthey phase ang}ef
Substitution in Eq; (2.36) gives ’
, 1 ; o (hk+ky+1z-a' y
= W= |Z(Z 2 | :
pLGGLY.2)UE Ny O |F(h_kl)l_ © Dkl 2.38

ThlS form of the three - dimen31onal Fourler serles 1s advantageous

because the phase angle 2ﬂa hkl for each coeff1c1ent appears exp11c1tly;
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Patterson Function

The lack of knowledge of the phases of structure factor
prevents us from directly computing an electron—den51ty map and so
showing the positions of the atoms in the unit cell ‘A, L Patterson
approached this problem:in a way that he used the squares of the
moduli as Fourier coefficients; these.quant1t1es atre dlrectly related
to the observed intensities and so they can always be measured The

function he derived is now known as Patterson function.

When two atoms oe€unfat locationa XYy zl'and X, ¥y 2,5

there arises a peak insthe Patterson function at location uvw such

that
u =ix- xl /
A - UY SR AT
wo= 2, Z24

Patterson deéfined a function P (uvw) of the form

Plovw) T v S p(gyz) P (xtu,ytv,ztw) dxdydz feeees 2.39

0o 0 O

1f we substitute in this expression the'walues |for ‘the electron

densities given by Eq. (2.36) we arrive at the eduatioﬁ

1 A - .
P =1X flfl 100009 71 F exp ' {-2mi(hxtky+lz)}
o I A I AL S - T

F(h'k'l') exp {—2wi(h'x+k'y+l'z)}

exp (-2ri(h' W' w1} dx dy dz  ...ee..e... 2.40

The right - hand side is zero unless'h=—h'; k=-k",1=-1', when

this condition applies,



1
P ==L L L™ F F,=—=
(4, VeW) YV oy Jamn (hkl), (hk1)

i ' = ——
From Friedel's law, I(hkl) I(hkl)

F (hkl) and F (bkI) is obtained.

19

exp {27 (hutkv+lw)}
...... ceen. 2,41,

the relationship between

Fig.2,7 Vector representation of F(hki) and F(Eﬁi)
]
F (k1) VIR TR L 2.42
FaRDy = Fema)” Aok T F Py oottt 2.43
F Floet = A7 | + B
(hkl) %(hkl) (hkl) (hk1) .
According) to the Pythagorean theorem
2 2 . 2 o,
A(h‘kl) + B(hkl) - ‘F(hk1)1 -------- EERREE 2.44
Thus--
F e 2.45
(hkl) (hkl) L (hkl - " EEE R .o .
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Substitute in Eq. (2.41) we get

‘F ‘2 2T (hu+kv+;w)

1
Pluvw) = — L L L
ViK1l (hkl)

The exponential in Eq. (2.46) can be expressed,ih the form

of its real and imaginary components according to the well-known

Eulerian relation

eI® - cos¢ + isind A\ R .... eieneen. 2.47

When this is substdtuted for the exponential in Eq. (2.47),
the Fourier representation of Patterson's function can be written

i : VIl LF :
P(uvw) = B I I¥ )" teos 2n (hutkutly) +
h kd _
1 sin 20 (Hutkv+iw) ] .;.;;.;.........}{ 2.48 -

According to Friedel's 14w, F(Bkl) and F have equal

(_EEI)

. 12 2
magnitudes but opposite phases. Therefore lF(hkl)l and_|F(hk1)|

have equal magnitudes., There occur the following rerms for positive

and negative values of h,k,1 ¢

. ) _
|F (hk1) 1€ cos 2my(hutkvtlw)
|F -Iz'éos 2% (Eu 4 kv + iﬁ)'='|f |2 cOos 2“ tﬁu+kv+1w)‘-
(hkl) S : hkl" -7 - S
‘F ' ‘2 isin'2m (hu +7kv + 1w)
_(hkl) . ‘N

v N T 2

IF(EEE)I isin 27 (hutkv+lw) = lF(hkl)I isin 2m (hufkv+1w{
It will be observed that the sine terms are equal and opposite.

They therefore cancel one another in pairs, and Eq. (2.48) assumes

the simple form



21

P(uvw) = | F

& b

P (hkl)lz cos 27 (hutkvHlw) ....e..... 2.49
hkl .
This function is centrosymmetrical because it has identical

values for positive and negative values of the parameters uvw.

The labor of computing a full three - dimensional Patterson
Fourier synthesis for a crystal is very great; 1t is much more usual
to compute the progections of thls synthesis. In making projections
of the three—dimensional Patterson Fourier synthe51s, the pro;ectlons
on planes normal to xeswof a_erystal for T - are P i.e.
planes ¥ a N (xy2Y" (xy)’ a3
the coordinate =z vanishes when projected along c.'Coeff1c1ents for
, . ) _ IR
F . A8 W . _
‘P(xy) are l (hko)l s ohtainable from.a single c axis Weissenberg or

preoession photograph.

Among the disadvantages of working with Pattefson projeotions
is that the resolution of peaks. is much pooref than in the full
Patterson synthesis, and in moderately complicated crystals,_it'may
be so poor that the Patterson progectlon is nearly or quite useless.
Harker pointed out the advantages of certain two-dlmen51onal sectlons
and one—dimen51onal 1ines through the full three-dlmen51ona1 Pattersoo
function. Such sectlons do not suffer from overlap of - peaks as do
progectlons. They'can belchosen so that they contaln peaks due to_
pairs of symmetry equivalent atoms. For example, in momoclinic space
group there 'is a mirroxr: plane perpendlcular to the b axis (Fig. 2.8)
and thus for every atom with coordinates X, y, z there is another
"X, ;, 2. The vectors between these atoms ‘all have the coofdinates
0, 2y, o,i.e.) are concentrated on the Harker 1ioeAwhich is the v

exis in the Patterson.
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Fig.2.8 (a) Projection of a structure in space group Pm on the ab
face. (b) Harker peaks prbducgd along the v'axisvbyvthe

atoms in (a)

Difference Synthesis

Anﬁther extremely valuable approach to finding atoms lies in
the AF or differehpé synthesis,Tﬁis is a Fourier syntheéis which may
be expressed in the form | |

| ol .—ZHi(hx+k§¥lz)
ARELA I

where Gé is the phase of Fc

The.difference éynthésis has two majof §i:fues.. First, if-
the phasés @ are correct, it pgpvides a direet méasuté ofs the errors
between the model used! and| the trhe_strquure implied by'tﬁg IFbl's.r
Thié,ﬁroperty is Eighly usefﬁl for :efinement.. Secohd,'it-perﬁits
the selection and use of a partial set_of-data for,which the probabi-
lities are especially high tha; the assigned phaées are cdrfect.
Furthermore, this partial_set proves to be particularly rich in'

- useful information, which cannot be extracted.by an Fo synthgsis. The

second case is considered only in detail. The fundamental arguments

4
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behind these assertions may be seen by considering three limiting
cases of ‘Fol's and chi‘s. In the first lFol = IFC‘. 1f the
phasing model is a suitable one, there is a high probab@lity that
o, js approximately that corresponding to the true phase of Fé. 1f
a. differs from the true value, 2 large \Fol can ‘introduce serious
errors into the resulting synthesis. The ese of these reflections
offers ‘at this stage relatively 1ittle gain, and tﬁe possible risk
of large distortions so these reflectloqs are automatically‘elimi—

nated.

If \f | >> lF \ , the probabillty of correspondence between
o, and a‘ is small and dlminishes ag lF | approaches zero. In the
'dlfference synthesis, lF | - lF |/ will-berlarge. “and contribute to
the summation, but the phase uncertalnty is still present and can

provide grounds for rejection.

. the third and most interestlng case 1s \F | >> \F |. These
reflections carry informations about the disagreement between the
model and the true strucfure which.cannot_be obtained by a ¥
synthe51s because they are too wea ak to have much effect on the
summation. llFol lF Il will be 1arge and, a 31gn1f1cant contributor
to differernce syhthesis. Furthermore, it . can be shown_that these
terms will be more or less correctly phased regardless of dlfferences

between . and a . The truth of precedlng statement ¢an be seen from

Fig.2.9.
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Fig.2.9  (a) Vectors for the case JFCI >|Fo|.
{(b) Vectors for the same case if % is taken as.equal't0 

.
¢ : ia,

(c) Comparison for vectors_Fo - Fc and AFe .

The coefficients which are actually desired for the difference

synthesis are
AF = F - F
vA

jag] 0ei®s os |_F§| &% L0 Fa%

These expre351ons correspond to Fig. 2.9%a and merely state
that the coefficients are the wectors required to- correct the current

AF to the true F . As usual, ao is unknown, s0 the-assumptlon is

made (Fig. 2.9b) that



25

o == a
O C )
lar] %% L |F | eiac - |F |'eia
= 1o c
joe] ol (le_|-le D) e
e = *s c
. : io
|aF] ™2 L aFr e ©

Since we are considering at present only the reflections for
which AF is negati#e, the approximation'actually used is.

. ia
AF e]_.aA = —‘AF! je F

From Fig. 2.10, ﬁhe end of AF must‘always be-on:é smaller éirqle of
fadius |F°[ . It can be seen thatlaé'the smaller_ciréle is smaller
and émaller, the range over Which aA'wili vaf& gs ad‘changed is

smaller too. _Tberefore,'the approximdtion that ag‘ié ngarly_eq#al

to ac becomes more and more reliablie.

It should beglear from these arguments that the most valuable '
reflections for use in difference synthesis-are'those for which |F6|'

is very small and |Fc| very'large.'

Fig.2.10 Construction showing range of ad
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In addition to the useful applicacions have been mentioned
above, difference densiry maps have another useful application. When
a crystal contains atoms having a wide range of atomic numbers, very
light atoms are difficult to notice.in‘an ordinary synthesis of
electron density, because the peaks of light atoms are about the same
heights as the background fluctuations. But-since che background

fluctuatlons occuring in p and Pe are. nearly the same; they
g obs _

al
cancel in the difference density, 1eav1ng as a re51due and real

difference in the electron dencities of the structure and model;

The difference synthesis corresponds to a point - by - point

_subtractlon of an F Four iér from an F Tourier calculated with the
same phases. Correctly placed atoms w1ll not appear in the synthesis,
incorrectly placed ones will be in holes, and missing ones will appear
as peaks. Thus it can be used as . a éuide to the removal of‘etoms
which are incorrectly placed. The_aﬁpearance of:euch.holes should

not lead automatically to the conclus1on that the partlcular atoms

or the whole structure, is incorrect. There are Various reasons.

The most common is failure to incluee'afA F000 térm in synthesis for
which the model is less than the whole ;structure. . Another is the use
of Weighting or cutoff functions which reduce the contributlons frOm N
»reflections for whlch |F | < IF | The effect of these functions is
to make the effective average value. of IF | too large and the
corresponding calculated electron den51ty too high. Phy31cel reascns‘
for the appearance of atoms in hqles_are_the ‘use of too small.
temperature factors, which increases the calculated-peak densitj:over

what it should be, and the misidentification of atom types.
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Fig.2.11 Difference electron ﬂf;;= Y ing from overestimation

of temperature mo

i
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Refinement

The chief obstacle to overcome in the analysis of a crystal
structure is the determinationrof the rough strucrure._.lt'is a
routine matter to refine this roughly knowﬁlsrructure to any preci-~
sion which the data permit. The degree to which a structure hae'

been improved is commonly measured by a dlscrepancy index

3 | lFobsI J

L \F

[Fhb L2250
obs| |

This is a crude measure of ‘how much the model departs from
the actual structure, as expressed by the dlfferences in thelr
diffraction amplitudes. The/valle bfithis index is 1imited by the .
quality of the data, and may he as small as 2 percent. Well-refined
structures commonly have R inithe neighborhood of 5 to 6 percent.
For a completely wrong structure the expected value of R is 82.8
percent if the crystal-is centrosymmetrical, or758.6 percent, if
noncentrosymmetrical. Model with_R.values.bf 45'perceet or lower

are worth trying to. improve by refinement.

An andlytical method of refinement-of great power and genera-
lity is that based on the principle of least'squeres. Cpneider a4
linear ‘funcEion with n varlable Xy §) (Xgve 5K @ f These variables can be
thought at as defining a space whose value af any p01nt is determined
both by the locatiom xl, xz...x' and by 1ndependent parameters pl’

pz, <ees Py which define the function. Thus

£ = Pl 1+p2x2+p3x + R R 2.51
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If the values of the function are measured at m different
points with m > n, the principle of least squares state that the

best values for the parameters P, b Pl oeees p are those which -

2
minimize the sums of the squares of the properly weighted differences
between the observed and calculated values of the function for all

the observational points. Thus the quantity to be minimized is given

by

Wolf - £ iieeieieinnieee 2,52

where f is one of the mi'obsgerved values of the functlon, fcr is the
corresponding calculate value and W, the welght to be a531gned an
observation, is equal to the rec1procal of the varlance of that'

observation.

In X-ray diffraction, the quantity most commonly minimized is

o
]

A 1 (IFOI kD2 o veeaeeaasa. 2,53
hkl hkl : B '

where £ indicates summation over 211 the observed reflections and
hkl ' : ‘ ' '
is the weight of the observation,

Yhil
Errors ‘of measurement tend tocbe related to the actual valpe

of IFOI. One_of weighting scheme suggested, by Cfuickshenk is
W o= (a+ |1«“0I+c:'|15‘0|2)"1 eeeeesesiaaas 2,54

where a = 2 ]Fo minl

e =2/ IFq max |
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To obtain the best fit, it will be necessary to consider the
parameters p as variables which may be adjusted to minimize D. |
Mlnimization js achieved by taking the derivative with respect to
each of the parameters and equating to zero. This 1eaﬁs to the n.
normal eqeations

ikl Wy (IFol-lkFc(pl,pz,.f.,pn)‘\3‘kFc(Plf---,Pn}L
: ' ap.

] ' ,
=0(j=1,2’--o,n) " o_-...--cn--o'o---so---.- 2.55

If the normal equations ake not linear, they may be made

linear by opproximating thegfunction as| a Taylor series,

f(pl,pz,..., pn) = f(al’aZ"""an)'+ af(al’?Z!"“ an)(plfal) +

#of (agsdgmesa )Py = 2) 0 2,56
9p.

n

f(plsPZQOO-’Pn) ™ f'(al’aZ"""ah) ar af(al’a.Z”""an)' ‘Apl +
) p
1

+ 8£(ay,ay, .0 -58y) ey

teveea.s 2,57
8P,

where terms in Ap of powers higher than the fi?st ﬁave been neglécted.,:
- The aJ are gpproximate values of Pi and, f(al, 2,...,a ) af(al,az,...,.
a') / apl...af(al,az,...,a ) / ap, are the function and its derlvatlvesr
evaluated at these approximate values. If.the aJ are suff1c1ent1y goodi‘
appfox1mat10ns, application of a 1east*squares process to the linear
equatione (2.57) will give valuee for the quantities APj such that the

ag's given by
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l..‘.l..'..".-'.....'."l..l...l. 2-58

a = a, + AP
] J

3

are better approximation than the initial aj's. Because of neglecting
second and higher powers in the Apj's{ the calculations must be ,
repeated ﬁsing as approximate values for each repetition of the

results derived from the preceding caltulapion. The iterative process
is complete when there is no significént change in tﬁe parameters
are required and thersolution of the normal equafionS'giveé their

values without iteration.

The function chl in'Eq. (2.55) is expressed as a Taylor

series. Second and higher/powers are neglected so that:

lqu(pl,..{,pn)l = lkFc(al,...,an)|_+ BIkFCI Ap17+ .3}..,;.,;
?Pl
+ BlkFcl'Apn

3,

0. 1

~where Pys-++>P, may be any of the scale, positienal, or thermal

parameters and Apj =_pj -~ a,. Substituting-Eq..(2.59) in (2.55)

3
gives '
hklwh'kl(lFol' _IkFc(_al,.--,.an)I B{kE_[ap - 8[KF |8p ) .
. ' 3Py VBPn '
BIkFC| ‘ : . : ,
—3;——— =40 . (G =.1,2,...,n) -..,;..;...1..... 2.60
b - : '
or

I W, - | IkF
L hq (BF-3|KF_|ap, ..._a|kFc|Apn>.a|kFC[ Y

ap, ap P

(3 = 1,2,...,n) SN Cerarae.y 2,61
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Expansion and rearrangement of Eq.(2.61)leads to the following set

of equations

- ,
i=1 w_ (3|kF rl ) bp, + 12- . v, 3|kF_ | a|kF_ | ap, +
3P1 aPl _ 8P2
m - m '
+z . o|kF, | d|kF __ | ap, =z W, AF_ alkFcrI
r= r=1- _-é—_
- 0Py BPn _ pl,
P w_olkr | alkE_| op, 45" % (3|KF__| sp, +
=1 ¥ cr cr T e cr 2
m S o
+ §=1 V. d|kF__| plkF, |/ dp, = 1Zc=i v, oF, BlkFcrl
81327 BPn L : ' apz
§=1 Ve alkFcr‘ a‘kF_crI-':\pl f'iél % _alkFcrlra‘-k,F,crI Ap2h+
) 3 B CLANVNN - P2
m ; Y N 20N\ T -
+ ;1 v (alkFcrl) AP 'E=1 W_AF al.kFcr|
ap ' gy opP

n g n

These equatiohs are linear 'in the Afj's and solvable for
them, Combination-of these with the initial approximation, the a's,
gives better. These may be used to repeat the process until conver—

gence is obtained , and successive cycles produce no further changes.

With the development /and improvement of high-speed'electronic,
computers, it is now common oractive to.refine structures‘by the
method of least squares because it seeksrthe'best values of the
variable parameters for each atom to fit the obeerved iﬁtensities;
It is used not only to find the best coordinate of each atom but

also to find the thermal parameters of'each—atom.
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