CHAPTER V

NUMERICAL SOLUTION OF THE TOPPING COLUMN MODELS

The mathematical in Chapter IV are all .des-
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The partial derivatives appearing in Jk are evaluated using the
current set of values of the variables X, - After Eg.{66) has been

solved for‘[&xk, the new values X1 for the next iteration are given

by
X T % +-£kxk (67)

Convergence of the method can often be ‘promoted by requiring that the

new xk+l satisfies the ineguality
. RN (68)
[ T £ 4 5 5

After an appropriate XL has been determined, the iterative proce-
dure is repeated until convergence is achieved. The method thus
requires that the Jaccobian matrix defined by Fq.(66) be evaluated at
each step of iteration. In the solutien of large sets of equations,
coding of the Jacohian matrix can prove to be & formidable task if
analytical expressiens of the partial derivatives be desired. The
problem can be eliminated by evaluating the partial derivatives
numerically at-s the .expense, .of . significantly more computer time.
Hence guasi-Newton methods have been proposed to Circumvent thesé

problems.

5.1 Modified Newton-Raphson Method with Broyden-Householder Formula

Tomich (22) was the first to apply Broyden's method to the
soluticn of distillation problem. Broyden's method numerically
approximates the partial derivatives appeariné in the Jaccbian matrix

with the formula
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afi fi(x +ij) - fi(x) _
5% = X _ (69)
3 J

where the approximation error is of the order 0(Ax).
If X1 does not satisfy the inequality equation (68), a
scalar 0< s, <1 that minimizes the euglidean norm of f(xk+1) is used.

In this case

R~ X sk£5xk (70)

Broyden (65) suggested /that . be determined from

L
2 —
4 JL° Gompn) 1 (71)

3n

where
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£ (x+Ax )
n 7 i xk k (72)

2
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Broyden further proposed that instead of employing the exact Jacobian
matrix at each step of iteration an approximation be used. He pre-
sented a formula te sSequentially update the approximate Jacobian at

each step as follows:
£ S e st
k+l K"k k

- (73)
sdx bx

Davidon (66} later proposed the variable metric or guasi-

Newton methods defined by

Xl = %t s S (74)
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where Hk is defined as the minus inverse matrix of Jk.

An original estimate HO is provided, . then the Broyden-

Householder's algorithm (65) is used to update Hk sequentially as

follows
T
(H vy, -+ sk£5xk)£&xkﬂk .
B = B AxT (75)
X vy
where Y, = £.1 - fk. Lucia® (67) presented a discussion that

indicated that the Broyden-Householder's algorithm when modified to

include pericdical Jaceblan restart, 1s superlinearly convergent.

5.2 Algorithm of Developed Computer Program

In this work, | the - algorithm of the developed simulation
program is based on Broyden-Householder 's with periocdical restart.

The algorithm is as follows:

Step 1: Set k=0 and choose a starting point X5 by assuming a set
of the temperatures, Tj and the flow ratios, (Vj/Lj)a.
Assumedlly ofy the ej to beregual to, 1s

Step 2: Compute f(xk) as described in 4.2.6.

Step 3: Setniter=17  Asca . first)approximationyof, the elements of J

K

use the formula

of. f.lx. +h.)y - £, (x.)
- = 1 J J ) (76)
axj h

where hj is roughly equal to 0.0lej. Then compute



Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:
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Using the latest iterative values of H and £, compute

Ax. = BE (77)

Find a s, such that the Euclidean norm of f(xk+sklkxk) is

k
a minimum among S 0.05, 0.1G, 0.15,..., 1.00. If the norm
cannot reduced at all assumed wvaluecs of Sy s return to step 3
and reevaluate..the  elements of Jk on the basis of X, -

Otherwise, ge'to the next step.

Set
Bl T RTSAX
Laom TR
Test £ for convergence, if |[f(xk+l)]|2 < e , stop.

k+1

Otherwise, set iter=iter+l. If lter=5, return to step 3.

Compute

(Hkyk + skAxk)AxEHk

and B 7 B ZSXEHkY
k

Set kek+l (and set the temperatures and the flow ratios equal
to the most recent values found in Step 6., Reset all the Gj

=1 and go to step 4.

5.3 Testing the Computer Program on a Known Problem

The computer program developed on the above algorithm was

tested on a problem originally solved by Cecchetti et al (39) and
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Hess et al.(40). The objective was to debug as well as to check the
performance of the program. The problem was based on data from field
tests of an topping column as shown in Fig.25. The theoretical
analogue column shown 1in Fig.26 1is taken to be the same as that
proposed by Cecchetti et al.

The physical properties (normal. boiling points, densities and
molecular weights) of the 34 pseudocomponents selected to represent
the true boiling point.eurves of the feed, distillate and sidestreams
are given by Cecchettis et al, Curve fits of the K-values and
enthalpies of pseudecomponents are presented elsewhere (14). On the
basis of these data, a feed haVing the meolar compositions and total
flow rate shown in' Table 6 was used by Cecchettl et al. For the
theoretical analogue column shown in Fig.26, its specifications are
given 1in Table 6 and the plate location variables as defined in 4.2

are as follows:

Plate NW(i) =6,11,16,23
NV(i) _ = 5,10,15,22
NP{i) | =19
NQ({i) = 18
NE = RT
NT = 28
NTOP(i) = 29,32,34,36 -
NBOT(i) = 31,33,35,37

The complete sets of total and component material Ybalances

are obtained in the manner described in 4.2.2-4.2.3 and represented
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Table 6 Composition of the feed stream and other specifications for the theoretical
analogue column shown in Fig.26 (40).

mel/h)

Component Feed(1b. Other specifications

1 0.73000 «x 'ID1 The hydrocarbon feed enters the column at 637°F with

2 0.25700 x 102 69.038% of feed vaporized and 2 total enthalpy of

3 0.38000 x 102 219,890 x 10 Btu/h. The steam enters the main

b D.43800 x 102 column and the sidestrippers as superheated steam

5 0.95700 x 10° at 552°F ot thesdtes FS, = 66, FS, = 6.94, FS, =

6 0.71400 x 102 26.8, and FS_.=-15.8 1b.mol/h. TEe sidestrippers

7 0.63300 x 10° are withdraun ot thewtates L, = 293.66, L, =

B 0.63300 x 102 122458 0 Lo = 329.57, and L 7 * 107.70 1b.mol/h.

9 0.76250 x 102 The pumpareund stream is withdrawn at the rate of
10 0.72250 « 102 W = 8223 1b.mol/h and the intercooler duty Q =
1 0.43950 x ’102 18.0 « 10 Btufh. The reflux ratio L1/V1 = 10.95
12 0.43950 % 107 dnd the BEilup ratip VofL . = 0.13245. The pres-
13 0.86500 x 102 sure in the accumulator is 23.1 psia, and the
14 0.29400 x 102 pressure on plate 28 is 29.24 psia. An equal pres-
15 0.29400 x 102 sure drop per plate mey be assumed for the main
16 0.51000 «x 102 column and ‘the sidestrippers. The pressure on the
17 0.34000 x 102 top-plate of each sidestripper may be taken equal
18 0.34000 x 102 to-the pressure of the plate in the main column
19 0.30640 x 102 from which the sidestream feed to the stripper
20 0.30650 x. 40" originated.

21 0.67600 x 10
22 - 0.65600 x 10°
23 0.42400 x 10°
2k 0.71200 x 102
25 0.67500 & 102
26 0.12780 x 'IO3
27 0.11360 x 10°
28 09700 102
29 0.81200 'x 102
30 0.67800 x 10°
31 0.47700 x 102
32 0.57300 x 10°
33 0.29600 x 10°
34 0.28300 x 10°
3 0.26400 x 107
Total feed = 0.22032 x 10" 1b.mol/h
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Table 7 Elements of matrices for total material balances.
I. Elements of the square matrix T
a, =1 j = 2,3,...,28
j +J
b1 = —(l+Rl+RORl)
b. = —(14R.) =3l S A 28
] ]
cj = Rj+l S 1,2, T
II.Elements of the column wvector F
fj = 0 except as follows
£, =Wt gf4 E Rogtng L fg =AW, Eg = W
fa6 = Vp i Fi9=Ryplay Ey s Wy fhg= W
fa7= Lp #.8s =Rylaa, =Y,
fi,g = FS) AEge=Raghagge il Tr3 = g
where
Lyg = (MiRypllgg——TRyylyy Ally = 4R 5 lng - Ryglag
Lag = (l+R31)L.31 ,W3 (l+R32)r..32 - R33L33
Lyy = (l+R33)L33 - FS, My (l+R34)L34 - Ryclag
Ly (1+R35)L35 - FS, W (l+R36)L.36 ~ Ryqlg
Lyg = (l+R37)L37 - ES¢

which are’obtained by\ sequentia

i substitutions.
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Table 8 Elements of matrices for component material balances.

I. Elements of the square matrix Ci
i) For water on stages j = 1 and j = 2

by

-(l'i'A ) ,C, = 1

Oc 1

a, =0, b, =-(1+a 1

)\ L H

2 2
ii) For all hydrocarbon components on stages j = 2 through j = 37

2c

and for water on stages = 3 through j 37.

aj = Aj—l i for*ald 4 /except for j = 29,32,34,36, and for
these values 6f j, aj = 0.

29,6 7 U /Bglhgs . @y, 0= (Wy/L A

34,16 e/ Mg Aes 1 Agg a3 = Ms/Ly)As
bj = _(l+Aji) for ‘all 'j except for j = 1,6,11,16,19,23 and

for these values of j:

bj = —[l+A (l+W/LJ)] , Where W =W, (for j = 1),
W= 2 (for =5 ), W= W3 {for j = 10),
W=, (for j = 16}, W = W (for j = 19),
and W = W (for j = 23).
cj = ¥ar |all dekcept! for 5 2/18)
aid for j = 18, Cig = 1+(W /ng 195"
51290\ $10,320 |7 Sas30 F S27 36| =)L
II. Elements of the column vector fi
fji = 0 except for the following:
£261 = Vpi » Ta73 = 1py
f28c = FS) » 330 = FSy , £55, = FS; , £, = FSg
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Table 9 Nonzero values of the coefficients of the generalized enthalpy-balance
function (Eq.60-62).
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Table 10

Initial and final column profiles obtained by the present computer program and

published by Hess et al.(40).

Plate Temperature, °F Liquid flow rate; 1P mol/h
No. Initial Final Hess Initial Fipal Hess Initial
1 100.00 111.85 111.64 217840 2126.7 2129.8 198.90
2 l 122.22 167.08 116.79 217800 2107.0 2108.9 2862.0
3 144,44 192.83 192.56 2177840 2052.0 2053.4 2862.0
4 | 166.67 210.98 210.74 2878 40 1984.0 1965.4 2862.0
5 188.89 228.06 227.83 2178.0 189373 1894.% 2862.0
6 211.11 247.67 247.41 186406 L4l 1463.3 2825.3
7 233.33 272.82 272.47 1864 .6 |35 /=1 1356 .9 2825.3
8 255.56 297.35 296.95 1864.6 1.301.4 1303.0 2825.3
9 277.78 316.61 316.27 1864.6 12802 1281.4 2825.3
10 300.00 329.73 329.46 1864.6 1264.% 1265.5 2825.3
1l 322,22 339.30 339.07 1728.5 1100.9 1102.5 I 2818.4
12 j 355.55 348,25 348.00 1728.5 1059.3 1061.2 [ 2818.4
13 f 366.67 357.96 357.68 1728.5 1001.5 100374 i 2818.4
14 388.89 370.14 369.84 1728.5 920.23 922,26 i 2818.4
15 1 411.11 386.94 386.60 -.1728.5 808.78 812.16. | 2818.4
16 433,33 411.03 410.45 . 1360.1 323.29 329.69 | 2791.6
17 | 455.55  441.16 436,86 | 01360.1/) 0 277180, 9128559 1) 2791.6
18 : 477.78 455,55 453,90 2183.1 158.91 1607.8 ; 2791.6
19 i 500.00 488,46 486.45 | 1360.1 B858.57 879.87 E 2791.6
20 © 522.22 510.64 508.06. 11, ©136071 836.42 859071 (1] 727216
21 544.44 523.76 520.82''| "1360.1 786.80 816.99 27%1.6
22 566.67 535.00 531.37 | 1360.1 711.65 759.57 2791.6
23 588.89 547.70 542.52 | 1234.7 486.69 554,13 2775.8

Vapor flow rate, lb mol/h

Final Hess
195.48  194.50
2814.1 2816.1
2794.3  2795.2
2739.3 2739.7
2671.3  2671.6
2561 .4 2561.5
2442.2  2443.3
2339.0 2340.0
2282.5  2283.1
2261.3 2261.4
2224.8  2225.0
2197.6 2198.2 |
2156.1  2156.8
2098.3 2099.1
2017.0  2017.9
1840.0  1842.2
1722.6  1728.1
1677.1 1684.0
2165.4  2183.3
2257.9 2278.3
2235.7  2258.1
2186.1 2251.4
2078.0  2124.4

T0T



Table 10 ({(continued)

Plate Temperature, °F

No. Initial Final Hess
24 611.11 563.28 556. 74
25 633.33 576.88 572.98
26 £655.55 588.75 593.34
27 677.78 621.56 629.46
28 | 700.00  617.99  626.51
29 211.11 256.72 256.46
30 233.33 261.30 261.04
3 255.56 267,08 266.80
32 322.22 332.14 331.89
33 344,44 322.20 321.95
34 433.33 404,97 404,36
35 455,55 396,19 395.54
36 588.89 541,22 535.40
37 611.11 530.92 524.46

Liquid flow rate, lb mol/h

vapor flow rate, 1lb mol/h

Initial Final Hess Initial Final Hess
1234.7 466,58 462.72 2775.8 1578.4 2044.5
12344 345.16 god 2 2775.8 1898.3 1853.1
123447 162\ 70 154.74 2775.8 1836.9 1844.6
191648 814.67 811.63 1254.7 133.38 123.98
728. 12 77747 778.86 1254.,7 103.21 98.768
31344 326.69 326.68 36.63 19.688 19.775
313.4 33 2l 387%53 36.53 32.942 33.020
27648 293.75 293.66 36.63 38.814 38.866
136.1 330,74 130.74 6.94 20,434 20.442
136.1 122.58 122.58 6.94 15.102 15.105
368.4 352.43 352.74 26.80 65.521 65.626
368.4 329.32 329,59 26.80 49.911 49,969
125.4 118.22 117.97 15.80 32.940 33.464
125.4 108.21 107.70 15.80 25.809 26.072

cot
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by matrix equations. An abbreviated display of the elements of the
above matriceé is shown in Fig.27. A complete definition of the
elements is given in Tables 7 and 8.

The sets of independent functions Fj and G. are formulated

J
using Eq.(54-56,60-62), and the coefficients C,. to C,. have these

13 7j
nonzero values given in Table 9.
The sets of temperatures ‘and flow rates obtained by the
present computer program arée presented in Table 10. The table also
shows that the obtained.results agreed well with those published by

Hess et al.(40).
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