CHAPTER 4

MATHEMATICAL MODELING AND SIMULATION OF
ATMOSPHERIC AIR DISPERSION

Air quality mo\i{ esmti@ most air pollution studies.

4.1 Introduction

The perfect air pollu
concentration that w et of pollutant emissions,
for any specified location, for any time
period, with total ¢ in edi " The best currently available

models are far from thiS i cach nodel, an assessment is made

of the model limitatio d" conditions. There is no generally
accepted definition of what copstitu ind speed’. Indeed, the point at
which the wind speed may " o > will depend on the details of
the application s a as &nsﬁy bient turbulence etc

However, 1.G. Lines

m/s can be considered to be low wind” speeds. Thm corresponds to the case

where standa ﬁ certainly become misleading and
the apphcabl@u ﬁﬂﬂ%gm ’]y con31dered more
care 1l such models are applied to onewair pollutantaat a time. Most
modelﬁ ﬁ

e 168 Yo verd aitbled{Ipol bt Bk bl e apptied

separately to each. No models presented here apply to “air pollution in
general.” Finally, we give the main practical models for air pollutant dispersion

in low wind speed conditions.
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4.2 Summary of importance to dispersion modeling
4.2.1 Gaussian models
4.2.1.1 Plume models

Gaussian plume models have been used for a wide variety of purposes

for many years, and are described extensively in the literature (e.g. Gifford

[1960,1961]). The crosswind ce the plume is assumed to have a
Gaussian profile, and the e distribution is determined as
a function of the downw e-atmospheric stablllty, the roughness

Gaussian plume g § o né; pre t he concentration at any
m "M -.!
fixed downwind location #aries in:inve -7 OO o to the mean wind speed.
. NNIEL
This leads to the models predicting conce atlo which tend to infinity as the

wind speed approaches zero,’ is usually quoted for the lowest

wind speed which. ma Doury (1980) presented an

assessment of the - ) use of “plume’ m rshiort distances and light
wind conditions. H% c
reliable for wind speed‘s of less than ab ut 2 m/s, below which longitudinal

diagiion mﬁ%&lﬂ"ﬂ‘ﬁl"ﬂ@ WEINY
@W"l‘ﬂ‘@ﬁ‘im UANAINYAH

Puff models are in many ways similar to Gaussian plume models, in that

%plume models are less

the release is usually considered to have a Gaussian profile. The principal
difference is that the release is divided into a sequence of separate ‘puffs’, each
of which is modeled independently, whereas the final concentration at any

point is found by superposition of the puffs. The main advantage of these
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models is that it is relatively easy to model a time-varying release with a wind

velocity which varies in direction and magnitude.

Such puff models would appear to be well suited for modeling
dispersion in low wind speeds in that they can characterize the inherently
variable nature of the wind field, provided appropriate input data are available.

Ideally, this would take the form of raw wind data at each time step considered.

2

4.2.2 Box models

4.2.2.1 Integral plum€ models

Integral plume models 4 'e e‘ assessment of the near-
field dispersion of a‘Cong &le(v ”\\ o a crossflow. A set of

differential equationsfor the %n on (¢ u'- tum, energy, mass etc. 1s
solved simultaneously @logg the ‘plime, together: with various assumptions

concerning the rate of air éntrafnment. T tion of the differential equations

gives the plume path and the ﬂ».,- ation it enterline plume parameters such

as veloclty, temp Fat] lll-—--lun-ulnrn-li"n-fv‘u_-i:'v—ﬁi"i ] S Of these parameters
. p.Y
across the plume are ﬂn Gaussian forms.

In pr1 va r even zero wind
speed condltldgsun su?xrmmons there wo :j(l))e no momentum
transf é( by its own
momen m'ﬁ ﬁmwﬂﬁﬁﬁmﬂgl oaj to the near

field. So, although they may not be useful for predicting the distance range of
the lower flammable limit, they may be useful for predicting the ranges for

accidental releases of most toxic substances.
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4.2.2.2 Heavy gas dispersion models

Box models for heavy gas dispersion are similar to integral plume
models, except that they generally apply to ground-level releases and
incorporate additional spreading of the plume due to the initial density-induced
slumping behavior. In the near field, the dispersion is often dominated by this

gravity-induced slumping and, as the wind speed has relatively little effect, it is

considered that this phase of the would still be appropriate for low
‘cloud disperses and begins to
of dispersion-model assumes that the spread

rbulence, as for a standard

wind speeds or calm conditi
be affected by the wind;
of the cloud is determi

Gaussian plume model.
4.2.3 CFD modeli

Computational E
involving fluid flow, heat siated phenomena such as chemical

reactions by means of computet-based simulation. The technique is very

ﬁ
€

The results of CFD model

industrial application

15“‘

areas including one cfing area: dispersion of

pollutants and efflu ng would effectively be

limited to lo ﬁ unless large eddy
simulations areyu ﬂ( H\EI ﬂ ?ﬂ/ﬁ‘Tﬂdﬁ be taken that the
bound m eﬁa i ence model
was s:’if gaﬁn‘iﬂn rzl’lsﬁ‘ls eﬂﬁj Ellwﬂl be two

particular problems in the specification of a turbulence model. The first relates
to the fact that, even if the mean wind speed drops to zero, the effective
viscosity will approach a constant, the laminar viscosity. The second is that
there is almost always residual turbulen(;e in the atmosphere, even at zero mean
wind speed. However, CFD modeling is specially valuable when considering

dispersion around buildings and complex terrain; some preliminary results
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from research by the Health and Safety Executive (HSE) are presented by
Gilham et.al. (1996) and Havens (1995) has also presented preliminary results
of CFD modeling of large-scale dense gas releases in low wind speed

conditions.

Havens et al.(1996) analyzed one of the Thorney Island low wind speed

trials (Trial 34) using the CFD code MARIAH II. This code used a local

In this study, the diffus \ del of interest is developed by

Dr. Yukimasa Takemo kKa k\~ . This model has been

§ion \\ ¢ from stack emission of

petrochemical plan \ een found that simulation

results trend to agree \ existing one-dimensional
WL-

plume model (1972) a

described in the next section. +

X ). The model’s details are
= ;:,

4.3 The advect yw-_diffusion _model for 3D sern rallzed coordinate

Y X

system m
43‘ﬂﬁﬂ‘ﬁ‘ﬁﬂﬂ§WHWﬂ‘§

L NCAEL P Y8 )
thermal ¢onduction and/or mass sion are include e governing three-

dimensional equations for an isothermal unsteady, incompressible, viscous

flow system are:

a) Equation of continuity
ou ov ow _
— +—+—

4.1
ox oy 0z L)

rectangular
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b) Momentum equation: Navier-Stokes equation

x-component ( horizontal)

ox 2 ay? 8z’

ox

ou ou du ou) oP o’y *u du
— 4+ lU—+V— W — |+ —=Uu + o (4.2)

p(av Lo, ' v 1o, ok o%v o'
t x JOZ0) 0¥ ox? ay? 9z?
'+ pg, (43)

Generally, the the present work.

s
z-component (horrzontal -
3 o,

ow ow L 40
P +Uu / r= 5 4
ot ax [ . , oy’ oz

ﬂ‘iJEl’WlHWlﬁWEI’]ﬂ‘i
9 arm AR RENBN A i

2C—~+(u?£+ E aC ‘9(K,,£)+i Ky aC —a—(KHEJ'f‘Q
ot ox oy az )% ox ) oy ay y ) 0z 0z
4.5)

Here Ky is the horizontal dispersion coefficient, Ky is the vertical dispersion

coefficient and Q is amount of pollutant released per volume per unit time.
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The above governing equations are written for the rectangular
coordinates. To handle non-planar topography or boundary condition,
transformation between the physical space using rectangular coordinates with
complex finite-difference grid systems to accommodate the non-planar
boundary condition and the computational space using terrain-hugging
curvilinear/generalized coordinates with rectangular finite-difference grid

system is necessary. The type of generalized coordinate system suitable for this

transformation is the boundary-fittes te system discussed subsequently

in section 4.5. Thus, the ‘:‘ ; r coordinates (X, y,Zz) of the

(4.6a)
(4.6b)
(4.6¢)

so that the ﬁnite-differeng) : '_ n the computational space becomes

rectangular in shape

MI. e
Equations (4&) to

involving one or morefpastial differential.equations written in terms of X, y, z

and t as the ﬁl w’}m ﬂfg M r}ﬂ ﬁltmmty, momentum

and diffusion equatlons In these g¢quations, the independent yariables x, y and

oy W ok TV G G § 5 i

derlvatlves with respect to x, y, and z in the original partial differential

Y

the @oordinate transformation

equations with their corresponding derlvatlves with respect to &,7, and &. Ihis
derivative transformation from the original physical space to the computational
space given by Equations (4.6a) to (4.6c) makes use of the chain rules of

differential calculus as follows:
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B w
ox \ o \ox) \onpf\ox) \a¢ \ox ‘
IR G
oy) \on\oy) \o¢ '
FHILgRIE
z |\ o o¢
- d (49) ﬁ derivatives with respect to

0 o \ respect to &,n and ¢. For
example, in the governiag /// \\\ ons (4.1),(4.2),(4.3),(4.4),

and (4.5), a partial deriative /r “T€S
(4.7). So can the de

Equations (4.7),

X,y, and z to be trai

n be replaced by Equation

and " Z. The coefficients of the

derivatives with respCciftof ¢, i, and"

i \"- “ metrics™; for example,
(8¢ ox), (8¢ [ dy), (8 [@x)ad  ; by) 2 J > metric terms which can be
obtained from the genera ; siven by Equation (4.6a) to (4.6c).
However, in many. CFD-application ormation, Equation (4.6a) to
(4.6¢), is carried ;m; the metric terms are
calculated using ﬂlt

transformation may be dugre convementl&lexpressed as the inverse of Equation

(4.6a) to (4. 6ﬂ 1& H@eﬂrﬁ})ﬁﬁjﬂeﬂtﬁfﬂ%areh are written as:
q ‘mmmm A R ) o

any applications, the

z=3(¢) (4.12)
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The metrics (dx / 8&), (8y | dn), etc. are defined as the inverse metrics,
say, (8& [/ 0x ), (dn/ dy ), etc. of Equations (4.7), (4.8) and (4.9).

4.3.2 Equations of changes in generalized coordinates

Making use of the chain rule, inverse metrics, and Jacobian determinant,

Equations (4.1), (4.2), (4.3), (4.4), and (4.5) are transformed as follows;

wxamng;

oEox onox ofox 0z 0¢ oz
(4.13)
The equation of co
s 3 (4.14)

1N Ly (L L
WA AEN BRI AN

ox
ac oC oc
ox oy oz|
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Three-dimensional Navier-Stokes equation

X-component

ou  (ouds oudn oudg ou o&  ou dn  du ¢
pl—+Uul — V| ——=+— +
ot "\ arax Tagax T ac ox 2 oy on oy @ oc oy

ouds ouon oudc)| oRldEy 0P on 0P 3¢ _(_r:)
0F 8z 0n 8z 3L X N & .;; ax ¢ ox oc? \ox

AR L] 18 ) o
a; on\ox \ox ) @ O& on® \ox
) 2 /// o2u (o)
2 () o) A ). 2 (<
617 o¢ \ ox \ ox ) #%6 0X 5 ac? \ox
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y-component

ov, fovee ovem ovos ovoE  avon oval
pl—+ Ul — V| — =+ — +
ot “N\agax "o ax T o ax 2oy "onoy  oc oy
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onoc\oz \oz) on?

2 2
().
o on\ oz \ oz
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(5] ) S E %) (2]
o&? oson\oy \oy) o&al\oy \oy) onos\oy \oy
) WIJﬁq@@Fwﬁﬁﬁ
oy onog\oy \oy ) ogo&\oy \oy) o¢on\oy \oy
2
S A a1 220518,
342 P} [55 ocon\oz \oz) aroc\ oz \ oz

) (BB (1)
677 o0&\ oz \ oz a,,z oned g oc 06\ oz \ oz

2
o ( )(54) 4.17)
0¢ on\ oz \ oz
Equations (4.5 { can he réwritten in the following
dimensionless advecti
g1, 0 ;5 Luw + P %)
ot o¢
_ii =1 M1 +M4QL—/‘ Msa—u +
Re| a& 0 ¢

2w %mgs’amggmwmm (419
Q'maﬂﬂifu UA1INYA

L JWU +P 65)+ 'I(VV+Pa—”)+iJ’1(VW+P—a£)
ot ag on oy" o8¢ oy
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-1 hadl bl -1
52] (M3 — M 5 yva CD+J g, (4.19)

JM 0 s P2y O 5w + P9y 2 i + P
ot ¢ 2z’ " an oz’ T ac oz
1(o R
Re oz 677 ag
O 5 ;. O o 1. D e NS 420
% ( 3 52 7 \ (4.20)
Where

- ':}l

HWW%‘?W 81173

qw“\zﬁh‘%@ﬂn&ﬁmmaﬂ
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My “axox oy ay 0z 0z
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3T oxox oyody ozoz
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ox oy 0z
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677 o¢ 67) 64’ on o¢
 ox ox ay oy az 0z

w3 (5 (%)

5

Equation of continuity of air pollutant (dispersion equation):

ac +u(ac ag oc on

ac S oc on ocac) | [oc a¢
ot Y\ oz ax T on ox

V| 27t oy * 3¢ oy o& 0z
12
o¢ \ ox \ ox
()

ac \ax

2+3C %\(_a_ﬂ_
64 aX)KaX)

6C on oc d¢ W )\ o€ (1. ¢ f]
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s

ac ¢\ 8¢)
g\oy \oy )

%65 ‘77 oy
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p i’és(_aﬁ 917.}61(@)22(95)(@) .
. on|og\oz \az) on\az) = o¢\oz Noz

¢ ifés(éé 95}61(@](%}64(%)2
& o¢ | oc\oz Naz) " on\oz \oz) " ¢\ oz

+Q | (4.21)
To simplify the above eqg 1l be rearranged and rewritten as
follows: | WAL _—
e arlcy Il o | ‘\C?", oc .4 _ oc
6t+ o + oz P g26_77+J 9355
: N
A, &yt g, O g 2
on ¢ ))
oc .4 oc)
Ay kel
Gs P +J "G o )
4
—lhz a_c_ J—lh ng
on Y
1 5 4 1 2 )
on 2y
S
Ting %, rip S
f O ": 377 aé')
fa tJ'Qu (4.22)
we, AUEINENINEING

e AR A o
o=(E IR - o3
o= (325)- (&) () ()
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AN 8¢ o ot 3¢
/71': A ity s e 1/73:_—
dy oy oy oy oy
2 2
e = 9_71) I Y's ,,,6=(z¢_}
\oy oy oy oy
o 09¢& 9¢
ox o0y o0z
7= on 0n On
ox oy 0z
a0
ox 0y
In next steps,% ralized coordinate system
will be discretised by | akemoto,Y. et al.,1986).
After applying 3D ms with the help of the
finite difference appr 1 control volume), Adams-

Bashforth algorithm erical time integration

ry

4.4 The discretisats

¢ :

In thisﬁﬂﬂh? ﬂﬂﬂfm ﬂljle is introduced in

order to reducejtruncation errors and enhance filumeric | Stability. The use of
; - <

R A O A e

transportiveries EUI n :E st- a aﬂmakes them

prone to errors caused by numerical dissipation '(artiﬁéial viscosity) and
numerical dispersion (artificial diffusion) ( J.D. Anderson.,1995). Such errors
can be minimized by employing high-order discretisation. Higher-order
schemes involve more neighboring points and reduce the discretisation errors
by bringing in more approximation terms. The QUICK scheme is the one of the

widely used upwind schemes with high order of accuracy.
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4.4.1 Quadratic upwind differencing scheme: the QUICK scheme

In the present study, the solution procedure uses spatially third-order
accurate upwind difference technique based on the QUICK algorithm that has
been extended to generalized coordinates. The QUICK method was developed
by Leonard (1983&1984).

For example, Navier-Stokes equation is to be integrated over the

control-volume computing cell on a waiform regular grid shown in Figure 4.1.

e of cell

j+1

— uw,v,U,V,p

I

An

s

At=An=1

Y

T
2

o, & LY ,
AUBINENINYING

U
liﬁure 4.1 Schematics of a transformed computational grid.
\
N
9

TANNIUARTINEIRE
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uv,U,V,p
j+1 = ~
| Um0 34U )
_____ g ---- ///
i / PR 5 A 5 \
' \\\\ é
i+%‘]
n §i
A
i+2
> £
Figure 422 Parabolicinterpolation b ature terms

This involves the fise/af focal ¢ ates (y,8,1)at nodes (/, j, k) of

the finite difference grid wherery =& 5=n-n;, and A=¢-¢,. In

-—
(YLd

ﬁ:m_-.v‘—u \-I;""T_'L}:'.' ‘ in the x_momentum
Y A

equation, (J'uU), '_’. oet t
¥

equation (4.18),

pr
[
iF |

¢

[ A, .

o “

AR AINTUAHININY1AY

9 (4.23)

(

Here, apply third-order-accuracy upstream control volume scheme 3D QUICK

method for (J7'wU) , o obtain
,+iljl
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Ut e =00 5% Cury ué
" UU/+ Tk T J U/+ j/( (ul+1,j,/( uij,j, E)= _B—CURVU 1
I+§,j,k
LA CURV u" ac? CURV (¢ (4.24)
2 2!]! 24 ""2111/(

Here the curvature terms using parabolic interpolation (CURV) and depending

i+-,J,k =0
CURV u',=f+1 e B =)
L <0
Jik
‘L : A ‘ y -0
CURY Ul;}_ ) Iy: | : J 2' ' (4.26)
v 7 A r S i+1,j,k <0
ﬂ‘lJEJ’J‘VIEWl‘iWEJ’]ﬂ'i
oue EAEE
CURVu e Vu o o . e
2,1, ( i,Jk+2 Algz,kﬂ 17,k ] , J~1U1+1,j,k <0
2

A regular grid matching v, v, w, U ,V W, and P is used. Thus, in terms

of two dimensions, CURV u® for the control volume plane ( I k)
2 f 4 ’
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becomes a three-point interpolation in accordance with the upwind direction

u 4 _ksuch as given in Figure 4.2. The upstream side may be selected
I+—I.’I
2

according to the wind direction for CURV u’and CURV ué of intersection

directions.

4.4.2 Numerical time integration method (fractional step method)

First, divide the integration proccssALed two steps. In step 1, take into
consideration the conveg [erms & viscous (dissipation) term

and in this case ap B \- eme. The Adams-Bashfort
scheme, whose pri ' m \

expansion, is used to

Ve = Ve et QN (4.28)

Y )
and t-1, respective

J 1y
I st éﬁuﬁ Wﬁwﬂﬂaﬁnﬁs ave solved By e

implicit methody ) ~ y
15 Doy g Lo L A LG VR

The concept of the boundary-fitting coordinate system is based on the

f;, f;_y areghefirst-order derivative of y Witlf sgspect to to t at time t

i

-

solutions of suitable elliptic partial differential equations to generate boundary-
fitting curvilinear coordinates. The solution of the elliptic partial differential
equations for the case of a ground .protrusion generally allows smooth

generation of the curvilinear coordinates.
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A two-dimensional example using an O-Grid to explain the principle is
shown in Figure 4.3. Transformation of the curves in the physical plane (X, y)

to straight in the computational plane. (£,77) is provided by the following

equations.

$=E (xy) (4.29)
(4.30)

Here y and 75 represent, he vertical d@ igure 4.3, to transform the

points on the physical( owing Pc cquation, an elliptic partial

differential equation 1n 1€ solved. to generate the curvilinear

(4.31)

(4.32)

_v 7
T

‘R(Z,m)and S(&,7), grid

. ¢ Q . . .
points can b ﬁm Mmlﬂw[ﬁjmm or a specific
coordinate linﬂn verse 2-1 on, ndependeént variables and the
R S BT T T Y
A : .
2 2

Using suitabm inhomogeneous function

%x ?x  9%x 2( ox ax)

X2 b P P R B (4.33)
o&? # oson * on? o on

o8 22V 0¥ =—12(Ra—y+5 a—yj (4.34)
oE? oson " on o  on
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The coefficients of the above is:

_ox ox 6y oy
677 677 on on
B = ox ox ay oy
6/‘ 617 o0& on
OXx 0x 0y oy

F=5E e oz pe

Here the Jacobi oordinate fransformation is:

Concerning the functi ?"’rﬂ‘-'g\? 93 he present CFD model, the grid
can be drawn toward the m in the 0, that function R can be

Y

assigned the valué<ze dard normal distribution

function is used: -

ﬂ‘LlEl’JVIEWIiWEI’Iﬂ‘i

R(g,m),= (4.35)

A" &N\ﬂ‘i&u N&ﬂ}’&f&l&ﬂ A o

where a; is standard normal variate at height j (Y. Takemoto et al.,
1996)

For simplicity the transformation of the non-planar physical surface is
carried out by means of the above boundary fitting curves with the z
component being fixed for each curve in order to simplify the transformation.

As a result, the curved physical plane (x, y, Z), at a fixed z is transformed to a
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corresponding rectangular computational plane (&,7,{) at a constant

corresponding ¢ . The above elliptic partial differential equation is solved again
when z is moved to new neighboring z and the relation between the physical

plane (X, y,Z), and the computational plane (&,7,{), is thus obtained at the

new Zz.

yA

Physical Plane

(a)

LI smputatio Iane v
Ausdngninanns
QRPN IUEIINYIRY

Figure 4.3 (a) Physical plane; (b) Computational plane.
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4.6 Assumption used in the present model
For simplicity, the present model is based on the following assumptions:
1. The investigated system consists of chemically non-reactive air
pollutants.
2. The air flow is assumed to be isothermal, incompressible and
viscous.

3. The wind direction and wind speed are kept constant during the

entire period of simu !/
Since the equation
city an

turbulence effec

er the case of high Re or the

%ﬁeld is not accurate if

significant turbule : vever, the values of the horizontal and

vertical dispersiog i b tl f dispersicn are obtained
by accounting fo ) n effect and turbulence
effect. In othe Absen - ence terms in the equation of
motion is comp t d : eX quation of dispersion by
the high values ofhoriz onfg}&kﬂj £ rsion coefficients

Simulation is @ verful de variety of problems. To

simulate is to imitate t e behav1or of a system or phenomenon under study. The

basic idea belﬂdwm% ﬂs}swlmjo model the given

system by meafi$ of the mathematlcal equatlons and then determme its time-
dependatm ﬁQ l?l d with the
computational power n hig -spe%g gita compl‘IEexr es simulation a
powerful tool. Normally, simulation is used when either an exact analytic
expression for the behavior of the system under investigation is not available,

or the analytical solution is to time-consuming or costly to obtain.

In this section the simulation algorithm for determining the wind

velocity profile and spatial concentration distribution of the dispersed air
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pollutant are presented and their simplified flow charts are illustrated in Figures
4.4 through 4.10. The simulation is carried out according to the following

steps:

1. Survey the topography of the area of interest.
2.To enhance computational precision, create a three-dimensional grid

over the entire physical space corresponding to the rectangular gird

solving equations (4. (4. mconstant value of ¢ . The

results are use

continuity and Navier-Stokes in

equations in three-dimensional

'7'7:":7 '_-;:‘:‘_i__ -------- ; ‘ nates (5, 77,;).
3.2 Inp 2 per of @d points in the x, y and z
physical space, grid 31ze ,Ay,Az), integration time step size

ﬁm eyl &l%‘i ciicht of kg pover taw (pow.

easured wind dirgction (WD),.measured wind speed (v,), and

q mmmmwa@dnm ﬁ d
3.3 Read grid positions (X, y, z) vs. (£,7,¢ ) and corresponding

values of the relevant metrics from “Grid Data” file.
3.4 Initialize all values of the upper atmospheric wind velocity v
(velocity in x direction) and w (velocity in z direction) at various

heights except y = 0 using the power law and v,(the measured

velocity at hight y, ). It is assumed that the vertical wind speed v
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is essentially zero. as for y = 0 (ground surface), v,vand w are
assigned to be zero.
3.5 Set the following boundary conditions in the computational
space:
-On ground surface (j=1), all u, v, and w in both spaces are
Zero. '
Aty = jmax u and win the physical space are estimated

by the po .\\“ ;W/ assigned to be zero.

w in the physical space are

estimated by the § ow v is assigned to be zero.

-A n the physical space are

estimated b ' o-power law and v is assigned to be zero.
3.6 Calculate \ %, Ys and z in the physical
space by sélving 1€ 1er-Stokes equation in the
computatioq pa .:n ‘i \‘ and Adams-Bashforth
rF i :Wﬂ .
schemes, the a hé \ onto the physical plane.

3.7 Check i bo "
—r———

between updated ¢,and old v

are less than epsilon. If it

and eel

" "g (Cydemax)-
gre&r than or equal to the
specified ¥alue of icycle. Ifitds, go to the next step. If it is not, let

AUYINENINEINT

3‘5 Write the output data, i.e. 4,V and win th@hysical space
q Miadbdamait 111818 2
4 Taking the wind field obtained from the above steps to be the inputs
of the dispersion equation.
5.To predict the concentration distribution of the air pollutant, the
concentration field calculation is carried out by overlapping with the
same generalized coordinates used for the flow field calculation in the

computational space. The calculation steps are as follows:
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5.1 Transform the dispersion equation in the rectangular
coordinates (X, y, z) of the physical space into the corresponding
equation in the three-dimensional generalized coordinates
(&,n,¢) of the computational space.

5.2 Input data, i.e. number of grid points in the X, y and z space,
grid size (Ax, Ay, Az ), step size (At ), Ky, Ky.

5.3 Read grid positions in the physical space from “Grid Data™
file and the wind {i data fuém the output file of step 3.9.

described 1 d Sub ne- flowchart in Figure 4.10.
trati ution the computational

space usi n.equation combined with

3D-QUICK aud ‘*." s-Bashfor: emes.

5.6 Chec the results. If it is, go to the
next step. [{no I______Jﬂ!’.k Ste
ILa
5.7 Transforn he . .concent
ot

space back ontothe phy ice. Write the output the data onto

ibution in the computational

designated.f
-

;1 g ———y—————————————

e simulation is ended.

AU INENTNEINS
RIAINTUNRINYIAY



Main Program for Wind Field Calculation

" START
N

‘ ‘ Input grid size, Ax,Ay,Az,At, i
“Reynolds no., icycle, pow,WD,WS,yo
T

= v o
/ Read 'Grld ’/

Initialize wind velocity (v, \!

’ /180)
i\ *n/180)

ﬂUB?ﬂﬂﬂﬁﬂBﬂﬂi
ama\mmﬁmwmaﬂ

-

69
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( "

cycle =cycle+1 |

| CALLNA3ZRL=7 \ﬁf;“-ﬂ-:"!& LLNAVI31 |
I e g ‘ y l"'-.ll ..,_ e Al,_ = < end

e
J

Y .

AUEINENGNEING =

1
a{mmmg;aﬁm 1Y

YES
\

Write output data, i.e.
u,v,and w in file

STOP \>
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NAVI31 SUBROUTINE

[ START \)

‘Calculate:
CURVu (superscibed &,m,and §),
CURVY (superscibed &,m,and(),
'CURVw (supersc1bedE_, n,andQ)

of all grld 0)

1. transformed
Vapp u QUICK

‘, J>Jmax 1‘? S

=] >1max 1"

1
YES

k.
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NA32PI SUBROUTINE

N
L START
.._;_.__-

Calculate:
'CURVu (superscibed &n,and §),
CURVYv (superscibed &,1,and(),

iy

CURVw (superscibedt,n,and()
of all grid pong
Y ||

o o | = oo H
'||II 11,““
3 - ) T . -
Calculatg updated un,Vv. \ i 1 :
— | NavieStokes Hgs. by applying Adam: ,
Bashforl séhghie /™ % % "\
! A \

NO

.‘ii .
queingghiens
AN IR INYAY

— -~ i>imax-1?
~— e - #

o

YE

KRETURN )

e



GKAKU3D (Dispersion Eq.
Main Program

START

\
/
A
e |

Input grid size, Ax,Ay,Az,At,
Kh, Kv,tprint,tmax

———

/ ‘Read "Grid
/ Data"and"Wind field"Files

|
|

ﬂuﬂqm@ﬂﬁwwwnb

Qﬁﬂﬁ\iﬂ‘imﬂi MINPINY
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DIFFEQ SUBROUTINE

[Calculate:
'CURVu (superscribed &,n,and &),
CURVY (superscribed &,1,and(),
CURVw (superscrlbedf;,n and()
of all grid points

j>jmax-1?

ﬂumw_ NUNT
ama\mmh“‘“ ANgaY

il 1>1max-1'7
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BOUND SUBROUTINE
START
. A j=1 Surface condition (ground
| 1_—1 1 surface)

J=Jmax+1 Outer B.C.

Y

Lmax+1.k) =0/

ﬂummmwmm
'J"ﬂ&l'lﬂ&l

: v:‘.[:i:>imax-1“_?f P s
/"1\
(1

N
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BOUND SUBROUTINE (CON.)

“/ l \:

NS

{ k{2 7 I=1,Imax+1 condition

v
| e

y
JC(le) C(2JK) l'
' C(lmax+l ) .

NO

k=1,kmax+1 Outer B.C.

A1ANYIAY

L_'_Ei{i -

(2)
N, =
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BOUND SUBROUTINE (CON.)

- ié 1 4 Vertical Column Line B.C.

C(1,,1)=00
- C(imax+1,j,1) =0.0
C(1,j,km+1)=0.0
Clim+1kmax+1) =0.0

no s

oii : Upper Column Line B.C.

i L

2C(ijmax+ 1K) = 0.0 9
 @(igmax+1.kmax+l) =0.0

AUSTNER NGNS
ARAINIRHMIING A

.
C(1,jmax+1,1)=0.0
C(1,jmax+1,kmax+1)=0.0
C(imax+1,jmax+1,1)=0.0
C(imax+1,jmax+1,kmax+1)= 0.0

B

{ RETURN |
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