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CHAPTER I

INTRODUCTION

1.1 Research motivation

The first two-wheel vehicle has been built by Macmillan in 1839 and it was developed for more

comfortable and safer along this century until it looked similar to the modern bicycle. The bicycle is

an environmentally friendly vehicle because it doesnt emit any air pollution. It also can move through

narrow streets conveniently compare to a car. The bicycle was the popular transportation just prior to

the automobile in late 19th century. However, it is the modern concerns around global warming and

could lead the bicycle to once again becoming the worldwide transportation.

The bicycle control is one of a challenge problem in a field of control. The bicycle robot has

received much attention in the past few decades. In recent years, Thai Robotics Society organizes

the Bicyrobo Thailand Championship competition in order to provide the opportunity to develop the

bicycle control technology. Several students from all universities in Thailand, including us, have

attended this competition. So this is the beginning of the bicycle project. We design the bicycle

control system that utilizes both steering control and gyroscopic stabilization since we expect that the

combination of available bicycle control techniques should give the better result. Then we simulate

the result via computer simulation in this thesis.

Piecewise Affine (PWA) Systems are defined by a series of linear subsystems. They can de-

scribe dynamics involving both continuous and discrete behaviors of hybrid system and approximate

nonlinear systems. So PWA systems are well-known structure. The main advantage of PWA systems

is that they provide a systematic approach to handle the nonlinear control design problem while main-

taining the simplicity of linear system. Moreover, we design the controller in LMI approach because

various design techniques can be combined by using LMI.

1.2 Literature review

The literature review will be separated into two parts including: a bicycle dynamic & control

part and a piecewise affine control part.

1.2.1 Bicycle dynamic & control

In the 19th century, the studies of bicycle dynamic have arisen and became a popular topic

in late of this century. The first correct linearized equation of motion for the bicycle was found in

1899 by Whipple [1]. The nonlinear equation was derived based on Lagrange mechanic but some
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constraints were missing. Many models were also derived based on Lagrange mechanic in [2], [3],

[4], [5]. Some simple models were derived based on Newton’s law in order to capture only some

major effects on the bicycle [6]. When the computing facilities were available, the more complicated

models [7], [8] were obtained using software for multi-body system. The software, such as Sophia [8]

Modelica [9] and Autosim [10], view the mechanical system as an interconnection of subsystem. The

order of obtained nonlinear model is depend on the prior assumptions. Each assumption has been

researched. For example, Roland [11] introduced side slipping and force generated from tires into the

model, Limbeer and Sharp [12] toke the tire deflation and flexible frame into account, Jones [13] and

Sharp [14] found that the design of the front fork has a major impact for self-stabilization, Jones [13]

and Sommerfeld [15] summarized that the gyroscopic effect of the wheels are very small compared

with the centrifugal effects at normal speed, etc. The good summary and history of bicycle dynamic

can be found in Limebeer [12], Åström [16] and TU Delft [17].

The bicycle robot has received much attention in the past few decades. Although the bicycle

can be self-stable but it must move with very specific speed interval. So the addition actuator should

be installed for stabilizing the bicycle. There are three major techniques for the bicycle stabilization:

Using the centrifugal force by steering control [18], [19], Using the balancer to shift the center of

gravity of overall bicycle like a leaning of rider [2], Using the gyroscopic effect by controlling the

gyroscopic flywheel [4], [20], [21], [22]. Some papers use the combination of these techniques such

as [5] combined balancer with steering control and [23] can switch the actuator to be either flywheel

or balancer. Note that we have never found the research which combined both steering and gyroscopic

stabilization as our work. In addition some works [2] focus on the navigation system for the intelligent

bicycle robot. Furthermore, several control design methods have been done on the bicycle such

as input-output linearization [3], output zeroing [5], fuzzy-sliding mode control [24], backstepping

design [25], LQR [26], sliding mode control [27] etc.

1.2.2 Piecewise affine control

Piecewise Affine (PWA) systems are categorized into a class of nonlinear system and a kind of

hybrid system which unifies the framework for describing dynamics involving both continuous and

discrete behaviors. They are defined by a series of affine subsystems. A switching among various

affine models occurs when the state moves across the partition of each region. Sometimes PWA sys-

tems are also called as Piecewise Linear (PWL) System. But some papers define PWL systems as

a series of linear subsystems. PWA systems are equivalent to another type of models such as mixed

logical dynamical systems [28], max-min-plus-scaling systems [29]. This result allows extending

all of the techniques developed for PWA models to another system. Moreover, due to the universal

approximation property [30] of PWA systems, which means any nonlinear system can be approx-

imated by PWA systems with desired accuracy, PWA systems are well-known structures and have

been developed for analysis and control design of both nonlinear systems and hybrid systems.
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During 1950s, the field of nonlinear network has received intense attention since the linear

system theory was developed to meet its best performance such as optimum linear filter. PWA system

is the powerful technique which can be used to approximate the nonlinear systems and also maintain

the simplicity of linear systems. The first work on piecewise linear model can be traced back to [31]

that represented the nonlinear resistive network in order to find the solution of the analysis problem.

The systematic algorithm of PWA technique was proposed in [32]. At the beginning, many researches

on PWA consider the model structure and their useful properties. Chua presented a Canonical PWL

representation in explicit form [33], [34], [35] and used it to model the electronic devices [36], [37].

Lin [30] proved the universal properties of CPWL approximation and Julian [38] generalized CPWL

representation for multivariable.

From the analysis problem to the control design problem, all paper contributions relating PWA

focus on two issues: the modeling of PWA system and the controller design for PWA system. For

the first issue, some researchers consider the continuous-time model such as approximating by sum

of hinging hyperplanes [39], [40], sum of hinging sigmoid functions [41], series of linearized models

at the appropriate vertices [42], applying Newton-Gauss algorithm [43], solving with mixed integer

linear programming solver [44], [45], while some researchers consider the identification method of

discrete-time model in state space model [46] and PWA autoregressive exogenous (PWARX) model.

Numerous techniques were proposed, for instance, linear regression based on least square method

[47], [48], a cluster technique which classifying the data into different groups before estimating the

models [47], Bayesian procedure for modelling parameters as the random variables [49], bounded-

error procedure [50]. These four procedures have been compared in [51], and a good overview of

identification of hybrid system can be founded in [52]. For the second issue, Sontag [53] proposed

the asymptotic properties and controller design for PWA systems which was the first step in the

development of controller design for PWA systems. The observability and controllability of PWA

systems have been proposed in [28], then the observer design in [54] and the observer-based control

in [55], [56]. To guarantee the stability of PWA systems, Hassibi and Boyd proposed a method based

on finding the continuous piecewise quadratic Lyapunov function in [57] but [58] showed that the

continuity of the Lyapunov function is not required in the discrete time case. These problems can be

formulated into LMI problems and solved by available solvers [59], [60]. Ran and Johansan extended

the stability analysis to the performance analysis and optimal control in [61] and summarized the

controller synthesis containing with BMI approach in [62]. Furthermore, MPC design method was

adopted for PWA systems in [29], [63].

Since incorporating linear matrix inequality (LMI) or bilinear matrix inequality (BMI) or model

predictive control (MPC) to deal with control design problem give a systematic approach to handle

the nonlinear control design problems, there are several applications which take this advantage in

[63], [64], [65].

In this thesis, we continue to work on the PWA controller design closely with Sompol, a for-
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mer student, in [66] which left the performance design and the implementation on the prototype of

experimental bicycle for further development.

1.3 Thesis objective

The main objective of this research is to design a state-feedback controller which guarantees

the stability of a class of nonlinear systems over the desired region and ensures some practical perfor-

mance criteria of the closed-loop system. We apply the piecewise affine technique together with the

regional pole placement and linear quadratic regulator in order that all design formulations are cast as

a linear matrix inequalities optimization problem. The discrete-time controller is also obtained from

the continuous-time controller via LMI approach. An integrated stabilization and navigation system

of an intelligent bicycle robot has been design. Moreover, we develop a novel stabilization technique

which utilizes not only the gyroscopic stabilization but also incorporating the steering control for the

intelligent bicycle robot in the computer simulation.

1.4 Scope of thesis

1. To develop a stabilization technique which utilizes both steering control and gyroscopic

stabilization.

2. To synthesize the state-feedback controller based on piecewise affine technique that ensures

some practical performance criteria of the closed-loop system.

3. To design an intelligent bicycle robot which can stay upright while following the path in the

computer simulation.

1.5 Methodology

1. Conduct the literature review on a bicycle model and PWA systems.

2. Derive a bicycle model which utilizes both steering control and gyroscopic stabilization.

3. Design a controller for stabilizing the unmanned bicycle by employing PWA technique.

4. Design a navigation system for tracking the desired path.

5. Integrate the stabilization system and the navigation system.

6. Find the practical parameters from some experiments.
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1.6 Contributions

1. A piecewise affine controller for an unmanned bicycle using gyroscopic stabilization.

2. A novel stabilization technique which combine both steering and gyroscopic stabilization for

the unmanned bicycle.

1.7 Thesis outline

The organization of the thesis is as follows. Chapter 2 introduces an essential background

knowledge that relates with the proposed controller design method. Chapter 3 presents the system

model of the bicycle. Chapter 4-5 present the controller design for stabilization system and navigation

system respectively. The integration of both system has been shown in chapter 6. Finally, we give the

conclusion and future work guideline in the last chapter.



CHAPTER II

RELATED THEORIES

2.1 Linear matrix inequality (LMI)

A linear matrix inequality (LMI) is a constraint of the form:

F (x) = F0 +
∞∑
k=0

xiFi > 0 ;x ∈ Rm, Fi = F Ti > 0 ∈ Rm×m

If the matrix inequality has the product terms between two variables but it is LMI when we fix

one of them as a constant, this matrix inequality is called bilinear matrix inequality (BMI).

The multiple LMIs, F (i)(x) > 0 for all i ∈ {1, 2, ..., p}, can be formulated as a single LMI:

diag(F (1)(x), ..., F (p)(x)) > 0

Next, we introduce some useful properties of the LMI which related our controller design.

Theorem 2.1. Schur complement
Given the matrices Q(x) = Q(x)T ∈ Rn×n, R(x) = R(x)T ∈ Rm×m and S(x) ∈ Rn×m ,

which depend affinely on x. Then the LMI Q(x) S(x)

ST (x) R(x)

 > 0

is equivalent to the following LMIs

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0

or
Q(x) > 0, R(x)− S(x)TQ(x)−1S(x) > 0

Theorem 2.2. S-procedure for quadratic forms and nonstrict inequalities
Let Q0(x), ..., Qp(x) be quadratic functions of x ∈ Rn,

Qi(x) = xTAix+ 2bTi x+ ci =

x
1


T Ai bi

bTi ci


x
1

 ; for all i ∈ {0, ..., p}, Ai = ATi

If there exists τ1 ≥ 0, ..., τp ≥ 0 such that

Q0(x)−
p∑
i=1

τiQi(x) ≥ 0

then the following condition holds

Q0(x) ≥ 0 for all x such that Qi(x) ≥ 0 for all i ∈ {1, ..., p}
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Unfortunately, the converse of theorem 2.2 is in general false except for p = 1. Moreover,

if we replace the non-strict inequalities by strict inequalities, the converse theorem in case p = 1 is

also not true. This result may lead to the conservatism in our controller design approach. However, it

appears to work very well in practice [62]

2.2 Piecewise affine system (PWA)

The Piecewise Affine system is a kind of nonlinear system which has its own linear dynamics

in each local region. The advantage of PWA system is it can be used as a tool for extending several

techniques of linear system to nonlinear system via approximated PWA system.

2.2.1 Model representation

In this thesis, we consider the continuous-time piecewise affine systems in state-space form:

ẋ = Aix+ ai +Biu

y = Cix+ ci

 x ∈ Xi (2.1)

where x is the state vector, u is the control input, i is the index of polyhedral region Xi ⊆ Rn.

For convenience, we can rewrite the PWA model in a more compact form

˙̄x = Āix̄+ B̄iu

ȳ = C̄ix̄

 x ∈ Xi (2.2)

where

x̄ =

x
1

 , Āi =
Ai ai

0 0

 , B̄i =
Bi
0

 , C̄i = [Ci ci

]
Next, let us introduce two types of cell bounding for describing polyhedral region Xi

• Polyhedral cell bounding

A polyhedral cell bounding is a matrix Ēi =
[
Ei ei

]
which Ēix̄i ≽ 0 for all x ∈ Xi. Note that

the notation ≽ means greater than or equal for all vector elements.

• Ellipsoid cell bounding

The ellipsoidal cell description can be written in form ε = {||Six + si||2 ≤ 1}. The parameters

(Si, si) of the approximated ellipsoid bounding, which contains the polytope described by vertices

{v1, ...vm}, can be computed by solving the convex optimization problem

min
Si,si

log detS−1
i

subject to

 I Sivj + si

vTj S
T
i + sTi 1

 ≥ 0

Si = STi > 0 for j = 1, ...,m

(2.3)
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2.2.2 Piecewise affine model approximation

There are several method for approximating the piecewise affine system. However, we use our

own approximation method base on least square technique which have been proposed in [68] due to

its simplicity. We start with defining the regions that will be approximated by PWA model. In fact,

the defined boundary is selected to minimize the error of overall regions under some prior information

such as the number of partition, the range of operating region and the form of partition. The more

regions lead to more accurate model but more calculation is needed.

First, we linearize the nonlinear system around the operating point in order to make this region

the most accurate and avoid the error of equilibrium point in the approximated model. Then, we can

approximate the nearby region with 2 alternative methods:

• Least-square error approximation with discontinuous boundary

To obtain the PWA model, we formulate the least square problem from the approximated linear

model of region i

yN×1 = G
(i)
N×(n+1)θ

(i)
(n+1)×1 + µN×1 (2.4)

where

G(i) is the state vector with affine term
[
x
(i)
1 ... x

(i)
n 1

]
θ(i) is the estimated plant parameters

[
θ
(i)
1 ... θ

(i)
n θ

(i)
n+1

]T
y is the exact value of nonlinear function, i.e. φ̈ or α̈ for the bicycle dynamic equation

µ is the approximation error

x
(i)
k is the vector of kth state containing N realizations of a uniform random variable in

the range [xkmin
, xkmax ] in each Xi

N is the number of realization

Then we can present the problem as

θ̂(i) = argmin
θ(i)

∥∥ y −G(i)θ(i)
∥∥2
2

(2.5)

The closed form solution is

θ̂(i) = (G(i)TG(i))−1G(i)T y (2.6)

Since there is no constraint in the least square problem, we can approximate the system matrices

for each region separately.

• Least-square error approximation with continuous boundary

Recall the least square problem (2.5). The additional constraints are taken into account when an

approximation is done with the continuous boundary. The problem formulation for region i becomes

minimize
∥∥ ÿ −G(i)θ(i)

∥∥2
2

subject to G
(i,j)
γ θ(i) = G

(i,j)
γ θ(j) ; For all Xj which connect to Xi

(2.7)
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where G
(i,j)
γ is the state vector with affine term

[
x1 ... xn 1

]∣∣∣
xk=γ

for the common boundary of region i and j which describes by xk = γ

Note that we can approximate all regions simultaneously in order to minimize the error of the

overall region

2.3 Controller design via LMI

2.3.1 Quadratic stabilization

Theorem 2.3. Lyapunov stability
Consider the autonomous nonlinear system ẋ = f(x). If there exists a scalar Lyapunov func-

tion V (x) which satisfy following conditions:

(1) V (0) = 0

(2) V (x) > 0 ; ∀x ̸= 0

(3) V̇ (x) < 0

Then, the equilibrium point xe = 0 is asymptotically stable.

There is no general method for searching the Lyapunov function. However, the task of find-

ing the Lyapunov function for linear system is much more systematic with the prior assumption on

lyapunov function. Fortunately, we can analyze the stability problem of nonlinear system around the

equilibrium point from the linearized system that can be formulated as LMIs.

Theorem 2.4. Quadratic stability
Consider the autonomous linear system ẋ(t) = Ax(t), assume the Lyapunov function is

V (x) = xTPx, called quadratic lyapunov function. The equilibrium point xe = 0 is asymptoti-
cally stable if there exists a symmetric matrix P = P T satisfying these LMIs

P > 0

ATP + PA < 0

(2.8)

Proof. Substitute the Lyapunov function directly into theorem 2.3. We get

V̇ (x) = ẋTPx+ xTPẋ = xT (ATP + PA)x < 0

For the controller synthesis purpose, we can apply theorem 2.4 by replacing system matrix A

with close-loop system Acl. However, the problem won’t be the LMI problem but we can recover it

as following theorem.

Theorem 2.5. Quadratic stabilization
Suppose the linear system is ẋ = Ax + Bu. The closed-loop system is stable if there exist a
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symmetric matrix Y = Y T and a matrix W such that

Y > 0

Y AT +AY −W TBT −BW < 0

(2.9)

Then, the system can be stabilized by a state feedback controller u = −Lx where L =WY −1.

Proof. From theorem 2.3, we replace A with A−BL and multiply both left and right with P−1

P−1 = (P−1)T > 0

P−1(A−BL)T + (A−BL)P−1 < 0

Then, change the variables Y = P−1 and W = LP−1. This completes the proof.

Note that the controller design of regional pole placement and LQR technique in another sec-

tion are based on these theorems. Next, let us introduce the extension of previous stability analysis

for piecewise affine system.

Theorem 2.6. Piecewise quadratic stabilization [62]
Given the PWA system ẋ = Aix+ai+Biu for x ∈ Xi whose the region Xi is contained in the

ellipsoid {||Six + si||2 ≤ 1}. If there exist a positive definite matrix Y = Y T > 0, positive scalars
vi ≥ 0 and a matrix W such that

Y ATi +AiY −W TBT
i −BiW < 0 ; 0 ∈ XiY ATi +AiY − (BiW )T −BiW − viaia

T
i Y STi − viais

T
i

(Y STi − viais
T
i )
T vi(I − sis

T
i )

 < 0 ; 0 /∈ Xi

(2.10)

Then, the PWA system can be stabilized by a state feedback controller u = −Lx where L =WY −1.

Proof. The first LMI is the result from theorem 2.5. For the second LMI, substitute the quadratic
Lyapunov function directly into theorem 2.3 for closed-loop system. We get the LMI:(Ai −BiL)

TP + P (Ai −BiL) Pai

aTi P 0

 < 0

And the ellipsoid cell bounding can be also written in LMI as−STi Si −STi si

−sTi Si 1− sTi si

 ≥ 0

By applying S-procedure, we obtain the LMI condition(Ai −BiL)
TP + P (Ai −BiL) Pai

aTi P 0

+ τi

−STi Si −STi si

−sTi Si 1− sTi si

 < 0
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Consider the system as norm-bound linear system. The quadratic stability can be interpreted as H∞

norm of the system is less than one. With a duality property of the system ẋ = Aclx+ap, q = Sx+sp

and ẋ = ATclx+ ST p, q = aTx+ sT p, we get the LMIs in this theorem by changing the variables.

However, it may be difficult to find a single Lyapunov function for all region especially when

deal with the numerous constraints. To relax this problem, we can replace Y with Yi to get the

piecewise controller gain Li =WY −1
i which can stabilize each local region.

2.3.2 Regional pole placement

The pole placement problem for any controllable system can be obtained from several well-

known methods. We can design full state-feedback which yields the desired closed-loop poles. How-

ever, in many practical applications, the strict assignment is not necessary. So the regional pole

placement has been introduced.

Definition 2.1. Kronecker Product
Let P = (pij) ∈ Rm×n and Q = (qij) ∈ Rp×q. Then the Kronecker Product of two matrices

is defined as

P ⊗Q =


p11Q · · · p1nQ

...
. . .

...

pm1Q · · · pmnQ

 ∈ Rmp×nq

Definition 2.2. LMI region
A subset D of the complex plane is called an LMI region if there exist a symmetric matrix

Lreg = LTreg ∈ Rn×n and a matrix Mreg ∈ Rn×n such that

D = {z = x+ jy ∈ C | Lreg + zMreg + z̄MT
reg < 0} (2.11)

Example 1.

The vertical half-plane, disk region and conic sector shown in Figure 2.1 can be written in LMI

region as

Vertical half-plane

D = {z = x+ jy ∈ C | x < −α}

=

{
z = x+ jy ∈ C | z + z̄

2
< −α

}
= {z = x+ jy ∈ C | 2α+ z + z̄ < 0}

Disk region

D = {z = x+ jy ∈ C | |z|2 < r2}

=
{
z = x+ jy ∈ C | − r + z̄r−1z < 0

}
=

z = x+ jy ∈ C |

−r 0

0 −r

+ z

0 1

0 0

+ z̄

0 0

1 0

 < 0


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Conic sector

D = {z = x+ jy ∈ C | x tan θ < −|y|}

= {z = x+ jy ∈ C | x sin θ + y2 cos2 θ

x sin θ
< 0}

= {z = x+ jy ∈ C |

 x sin θ y cos θ

−y cos θ x sin θ

 < 0}

=

z = x+ jy ∈ C | z

 sin θ cos θ

− cos θ sin θ

+ z̄

sin θ − cos θ

cos θ sin θ

 < 0



Figure 2.1: LMI region

Theorem 2.7. D-stability [69]
The matrix A has all eigenvalues belong to the LMI region (2.11) if and only if there exists a

symmetric matrix P such that

Lreg ⊗ P +Mreg ⊗ATP +MT
reg ⊗ PA < 0 (2.12)

Proof. Let λ be any eigenvalue of A and vH , v ∈ Cn be the left and right eigenvector corresponding
to λ. From the identity:

(I ⊗ vH)(Lreg ⊗ P +Mreg ⊗ATP +MT
reg ⊗ PA)(I ⊗ v) = (vHPv)(Lreg + λMreg + λ̄MT

reg)

It’s obviously see that the LMI condition in this theorem with P > 0 imply λ ∈ D

Applying theorem 2.7, we can design a controller from the following theorem

Theorem 2.8. D-stabilization [69], [70]
Consider the system ẋ = Ax + Bu and a LMI region defined by (2.11). If there exist a

symmetric matrix Y = Y T > 0 and a matrix W satisfying

Lreg ⊗ Y +Mreg ⊗ (AY −BW )T+MT
reg ⊗ (AY −BW )<0 (2.13)

Then, the state feedback controller u = WY −1x yields the closed-loop system with all eigenvalues
in the LMI region.
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Proof. The derivation is done in a similar fashion to the theorem 2.5 by multiplying both left and
right the equation (2.12) by I ⊗ P−1 instead.

The limitation of D-stabilization is the assignment LMI regions must be a connected set. The

complement of this method can be found in [71] which allows the non-connected assignment regions

via the partial pole assignment in LMI problem.

Relying on the notion of dominant poles, we can extrapolate the ideas associated with the

second order system to higher order system or nonlinear system. Let us review the relationship

between pole locations and time-domain performance of the second order system briefly.

Given the transfer function of the second order system is G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

which has

the poles located at

s = −ζωn ± ωn
√
ζ2 − 1

where ζ is damping ratio, ωn is undamped frequency. The stable system (ζ > 0 or α > 0 ) can be

classified into three types depend on ζ as follow

• If ζ > 1 (θ = 0, r > α), the system is overdamped

• If ζ = 1 (θ = 0, r = α), the system is critically damped

• If 0 < ζ < 1 (θ > 0, r > α), the system is underdamped and has the complex conjugate poles

s = −ζωn ± jωn
√

1− ζ2 = −α± jr sin θ (α = ζωn, r = ωn, ζ = cos θ)

The important transient performance characteristics for underdamped system are

Settling time (2%) Ts =
4

ζωn
=

4

α

Rise time (10% to 90%) Tr =
1−0.417ζ+2.917ζ2

ωn
=

1−0.417 cos θ+2.917 cos2 θ

r

Peak time Tp =
π

ωn
√
1− ζ2

=
π

r sin θ

Damping period Td =
2π

ωn
√
1− ζ2

=
2π

r sin θ

Percentage overshoot M = exp

(
−πζ√
1− ζ2

)
= exp(−π cot θ)

Note that the effect of increasing ζ or decreasing θ tends to decrease the maximum overshoot

and the effect of increasing ωn or r or α tends to make the system faster ( ωn is a scaling factor

of time axis)
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Rise time

Settling time

10%

90%

98%

Damping period
Overshoot

Figure 2.2: Unit step response of the second order system

2.3.3 Linear quadratic regulator (LQR)

Assume a continuous-time linear system is

ẋ(t) = Ax(t) +Bu(t)

To design a controller u = −Lx which minimize the cost function:

J =

∫ ∞

0
(xT(t)Qx(t) + uT(t)Ru(t))dt (2.14)

where R > 0, Q = HTH ≥ 0. ( H is obtained from cholesky factorization)

From the Lyapunov stability (Theorem 2.3) with additional positive definite terms, the system

is also stable if there exists the Lyapunov function V (x) > 0 which satisfy

V̇ (x) + xTQx+ uTRu < 0 (2.15)

Assume the system is stable, i.e. V (x)
∣∣∣
t=∞

= 0. The relation between the above condition and

the cost function can be shown as follow.∫ ∞

0
V̇ (x)dt+

∫ ∞

0
(xTQx+ uTRu)dt < 0

J =

∫ ∞

0
(xTQx+ uTRu)dt < V (x0)

(2.16)

Using the above result, we can design the LQR controller gain from the next theorem.

Theorem 2.9. LQR controller synthesis [70]
Consider the system ẋ = Ax+ Bu. The state feedback controller u = −Lx which minimizes

the cost function (2.15) can be obtained by solving a symmetric matrix Y = Y T > 0 and a matrix W
of the optimization problem:
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max
Y,W

Tr(Y )

subject to


Y AT +AY −W TBT −BW YHT W T

HY −I 0

W 0 −R−1

 < 0
(2.17)

Then, the state feedback controller is u = −WY −1x

Proof. Substitute the quadratic Lyapunov function into (2.15). We get

(A−BL)TP + P (A−BL) +Q+ LTRL < 0 (2.18)

Multiply both left and right with P−1 and introduce the new variables Y = P−1,W = LY .

Y AT +AY − (LY )TBT −BLY +

[
Y HT Y LT

]I 0

0 R


HY
LY

 < 0 (2.19)

By using Schur complement theorem, we get the constraint in this theorem. In order to minimize the
cost function (2.15) for all initial value x0, we will minimize Tr(Y −1) or maximize Tr(Y ) where

J < V (x0) = xT0 Y
−1x0 (2.20)

Finally, we obtain the optimization problem in this theorem.

The LMI formulation for LQR controller synthesis may have various forms but some of them

lead to the numerical problem in LMI solver. We use the formulation in theorem (2.9) since it works

well in practice.

2.3.4 Discrete-time controller redesign

Suppose we have designed the continuous-time controller which ensures the desired perfor-

mance of the closed-loop system. The approximated discrete-time controller can be obtained from

the controller redesign technique as follow:

Given a continuous-time system and the corresponding discrete-time system with sampling

period T

continuous : ẋ(t) = Ax(t) +Bu(t)

discrete : x[k + 1] = Adx[k] +Bdu[k]

where Ad = eAT , Bd =
∫ T
0 e

AτB dτ

With the designed continuous-time controller u(t) = −Lx(t), the continuous-time closed-loop

system and corresponding discrete-time closed-loop system become

continuous : ẋ(t) = (A−BL)x(t)

discrete : x[k + 1] = Gcx[k]
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where Gc = e(A−BL)T

We can find the discrete-time controller u[k] = −Ldx[k] from the following theorem.

Theorem 2.10 (Controller redesign). [72]
Given the system ẋ = Ax + Bu and the continuous-time controller u(t) = −Lx(t). If there

exist a symmetric matrix Yd = Y T
d > 0, a matrix W and a positive scalar γ > 0 to the optimization

problem

min
Yd,Wd

γ

subject to

 −Yd (AdYd −BdWd)
T

(AdYd −BdWd) −Yd

 < 0

 −Yd (GcYd−AdYd+BdWd)
T

(GcYd−AdYd+BdWd) −γI

 < 0

(2.21)

then the discrete-time controller u[k] = −WdY
−1
d x[k] can guarantee the stability of this system while

give the response of digitally controlled system close to the response of the system controlled by the
continuous-time controller.

Proof. Substitute the quadratic Lyapunov function into theorem 2.3 in discrete version. We get

V [k + 1]− V [k] = xT [k]((Ad −BdLd)
TPd(Ad −BdLd)− Pd)x[k] < 0

By using schur complement, the matrix inequality becomes −Pd (Ad −BdLd)
T

(Ad −BdLd) −Pd

 < 0

Multiply both left and right with

P−1
d 0

0 I

 and introduce the new variables Yd = P−1
d and Wd =

LdYd. We get the first LMI condition. Next, the second LMI is used to minimize the difference be-
tween discrete-time closed-loop system with discrete-time controller and continuous-time controller
by minimize γ of the condition:

(Gc − (Ad −BdLd))
T (Gc − (Ad −BdLd)) < γPd

By using the same procedure, we found that the second LMI is equivalent toP−1
d 0

0 I


T  −Pd (Gc −Ad +BdLd)

T

(Gc −Ad +BdLd) −γI


P−1

d 0

0 I

 < 0



CHAPTER III

BICYCLE SYSTEM MODEL

3.1 Bicycle model for both steering and gyroscopic stabilization

3.1.1 Model derivation

Figure 3.1: The bicycle geometry

The provided bicycle geometry, Figure 3.1, contains the physical parameters :

φ is the bicycle rolling angle (rad)

α is the flywheel precessing angle (rad)

δ is the bicycle steering angle (rad)

Fd is the disturbance force (N)

(mB,mG) is the mass of bicycle body, gyroscopic flywheel (kg)

(zB, zG) is the height of center of mass of bicycle body, gyroscopic flywheel (m)

(IBxx, IByy, IBzz) is the bicycle moment of inertia about x, y and z axis (kg-m2)

(IGxx, IGyy, IGzz) is the flywheel moment of inertia about x, y and z axis (kg-m2)

ψ̇ is the bicycle rotation rate around vertical axis or yaw rate (rad/s)

σ is the bicycle forward velocity (m/s)

Ω is the gyroscopic flywheel spinning angular velocity (rad/s)

b is the bicycle wheel base length (m)

ρ is the track radius curvature (m)

g is the gravitational acceleration (m/s2)
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We follow the derivation of a bicycle model for gyroscopic stabilization in [66] which simplifies

the model in [3]. We use this model because it can describe the bicycle dynamic even though the

bicycle is moving forward. To keep it simple, we assume that

• The steering axis has no trail and is perpendicular to the ground.

• The steering angle δ is the control variable. So the rotational degree of freedom associated with

the front fork then disappears. Moreover, the steering angular velocity is assumed to be small.

• The bicycle moves on a flat plane.

• The tires have no width and no deformation.

• The bicycle rolls without slipping that implies the yaw rate ψ̇ =
σ

ρ
≈ σ tan δ

b
(see Figure 3.2)

• The moment of inertia of the front and rear wheel are neglected.

• All inertia products, i.e. IBxy, IBxz, IByz, IGxy, IGxz and IGyz , are also neglect.

Figure 3.2: Top view of the bicycle Figure 3.3: Side view of the bicycle

The model derivation is done by Lagrangian method. The bicycle will be separated into 2 parts

including body and gyroscopic flywheel. The total kinetic energy T of the system is

T =
1

2
mBv

T
BvB +

1

2
ωTBIBωB +

1

2
mGv

T
GvG +

1

2
ωTGIGωG (3.1)

where

vB = ψ̇


zB sinφ

0

0

+ φ̇


0

zB

0

+


σ

0

0

 ωB = ψ̇


0

sinφ

cosφ

 + φ̇


1

0

0



vG = ψ̇


zG sinφ

0

0

+ φ̇


0

zG

0

+


σ

0

0

 ωG = ψ̇


− cosφ sinα

sinφ

cosφ cosα

+ φ̇


cosα

0

sinα

+


0

α̇

Ω


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Also the potential energy V of the system is

V = mBzBg sinφ+mGzGg sinφ (3.2)

We define the generalized coordinates as

q1 = φ : Bicycle rolling angle

q2 = α : Flywheel precession angle

Hence, the generalized forces are

Q1 = FdzB cosφ : Torque due to lateral disturbance force

Q2 = τα : Torque due to the precessing motor

Formulate the Lagrange’s equations as follows:

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
+
∂V

∂qk
= Qk (3.3)

Substitute each term in equation (3.3) and rearrange the equations. We get the equations of motion:

Bicycle rolling equation

(k2 + k3 + k6 sin
2 α)φ̈+ k6φ̇α̇ sin 2α− k1σψ̇ cosφ

+ψ̇α̇(k6 cos 2α− IGyy) cosφ− 0.5ψ̇2(k7 − k6 cos
2 α) sin 2φ

+IGzzΩ(α̇+ ψ̇ sinφ) cosα− k1g sinφ


= FdzT cosφ (3.4)

Gyroscopic flywheel precessing equation

IGyyα̈+ ψ̇φ̇(IGyy − k6 cos 2α) cosφ+ 0.5k6(ψ̇
2 cos2 φ− φ̇2) sin 2α

+IGzzΩ(ψ̇ cosφ sinα− φ̇ cosα)

 = τα

(3.5)

where
k1 = mBzB +mGzG k2 = mBz

2
B +mGz

2
G

k3 = IBxx + IGxx k4 = IByy + IGyy

k5 = IBzz + IGzz k6 = IGzz − IGxx

k7 = k4 − IBzz − IGxx

3.1.2 Model analysis

We have neglect the front fork steering dynamic under the assumption that our steering motor

can track the desired steering angle fast enough and the desired steering angle is changed slowly.

Most authors use only the gyroscopic effect to stabilize the bicycle. But we will take the advantage

of the centrifugal force in this model to stabilize the bicycle too. The interpretation of each term in



20

Table 3.1: Torque definition

Dynamic term Symbol Torque description

Bicycle rolling equation

−k6φ̇α̇ sin 2α τBφ̇α̇ Torque depend on bicycle rolling and flywheel precession

k1σψ̇ cosφ τ
Bψ̇

Torque due to centrifugal force

−ψ̇α̇(k6 cos 2α− IGyy) cosφ τ
Bψ̇α̇

Torque depend on bicycle yawing and flywheel precession

0.5ψ̇2(k7 − k6 cos
2 α) sin 2φ τ

Bψ̇2 Torque depend on the square of yaw rate on bicycle

−IGzzΩα̇ cosα τBΩα̇ Gyroscopic torque of flywheel precession turn spin axis

−IGzzΩψ̇ sinφ cosα τ
BΩψ̇

Gyroscopic torque of bicycle yawing turn spin axis

k1g sinφ τBg Torque due to gravity force

Gyroscopic flywheel precessing equation

ψ̇φ̇(k6 cos 2α− IGyy) cosφ τ
Gψ̇φ̇

Torque depend on yaw rate and bicycle rolling

−0.5k6ψ̇
2 cos2 φ sin 2α τ

Gψ̇2 Torque depend on the square of yaw rate on flywheel

0.5k6φ̇
2 sin 2α τGφ̇2 Torque depend on the square of rolling rate

−IGzzΩψ̇ cosφ sinα τGΩψ Gyroscopic torque of bicycle yawing turn spin axis

IGzzΩφ̇ cosα τGΩφ̇ Gyroscopic torque of bicycle rolling turn spin axis

Kt,m2Im2 −Beq,m2α̇ τα Torque due to precessing motor

the equations of motion has been shown in Table 3.1. The bicycle model for gyroscopic stabilization

contain a lot of coupling effect between each state variables, i.e. φ, φ̇, α and α̇. Using the bicycle

parameters given in Table A.1 and control law proposed in [67] with forward velocity σ = 2 m/s,

yaw rate ψ̇ = 0.3 rad/s and initial condition x0 =
[
0.05 0 0 0

]T
. The simulation results show

all torque components acting on the bicycle and flywheel in Figure 3.4. The major effects for bi-

cycle stabilization are τBΩα̇ and τBψ like a basic principle for gyroscopic stabilization and steering

stabilization respectively.

τBΩα̇ is a torque due to gyroscopic effect from the precessing of flywheel. It is proportional

to a flywheel spinning velocity (Ω) and a flywheel precessing angular velocity (α̇). For the best

performance, we should operate the flywheel around zero precessing angle because its effect will be

reduced with a factor of cosα. This torque plays an important role in bicycle stabilization under low

forward speed.

τ
Bψ̇

is a torque due to centrifugal force which is proportional to a square of forward speed

(σ2) and is also approximately proportional to a steering angle (δ). When the bicycle is moving with

sufficient high speed, this effect will dominate the gyroscopic effect and become the main stabilizer.
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Figure 3.4: Comparison of torque components in the bicycle model

In this thesis, we define the state variables as x =
[
φ α φ̇ α̇

]T
and input u =

[
ψ̇(δ) τα

]T
.

Consider the equilibrium points of this model by setting the derivative of the state ẋ = 0, disturbance

force Fd = 0 and torque of precessing motor τα = 0. The system model becomes

Bicycle rolling equation

−k1σψ̇ cosφ− 0.5ψ̇2(k7 − k6 cos
2 α) sin 2φ+ IGzzΩψ̇ sinφ cosα− k1g sinφ = 0 (3.6)

Gyroscopic flywheel precessing equation

0.5k6ψ̇
2 cos2 φ sin 2α+ IGzzΩψ̇ cosφ sinα = 0 (3.7)

From the gyroscopic flywheel precessing equation implies ψ̇ = 0 or sinα = 0 or cosφ = 0 or

k6ψ̇ cosφ cosα = −IGzzΩ

• When ψ̇ = 0 (δ = 0 or σ = 0)

Bicycle rolling equation k1g sinφ = 0

The equilibrium points are (φ, α, ψ̇) = (0, αe, 0) ; α0 ∈ R

If σ = 0, the equilibrium points are (φ, α, δ) = (0, αe, δe) ; αe ∈ R, δe ∈ R

If σ ̸= 0, the equilibrium points are (φ, α, δ) = (0, αe, 0) ; αe ∈ R

• When cosφ = 0 (φ = ±π
2
)

Bicycle rolling equation IGzzΩψ̇ cosα− k1g = 0

Assume ψ̇ = ψ̇e is an equilibrium point

The equilibrium points are (φ, α, ψ̇) = (0, arccos

(
k1g

IGzzΩψ̇e

)
, ψ̇e) ; ψ̇e ∈ R

However, it’s impossible to operate under this condition
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• When sinα = 0 (α = 0)

Bicycle rolling equation −k1ψ̇σ cosφ− 0.5ψ̇2(k7 − k6) sin 2φ

+IGzzΩψ̇ sinφ− k1g sinφ = 0

Assume ψ̇ = ψ̇e is an equilibrium point

If φ = 0, the equilibrium point is (φ, α, ψ̇) = (φ, α, δ) = (0, 0, 0)

If φ ̸= 0, the equilibrium points are (φ, α, δ) = (φe(δe), 0, δe) which satisfy above equation.

The equilibrium points of this case are shown in Figure 3.5. And it should be noted that

the effects of turning left and right are not symmetry for a single gyroscopic flywheel
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Figure 3.5: Equilibrium point at zero precessing angle

• When k6ψ̇ cosφ cosα = −IGzzΩ

Bicycle rolling equation −k1σψ̇ cosφ− 0.5ψ̇2(k7 − k6 cos
2 α) sin 2φ

+IGzzΩψ̇ sinφ cosα− k1g sinφ = 0

It’s too complicated for finding the equilibrium points in explicit form

3.1.3 Linearized model

We examine the stability of the equilibrium points via linearization technique. Moreover, we

will design the controller from this model to compare with our designed controller in the next section.

Let define the deviation variables to measure the difference.

∆x , x− xe, ∆u , u− ue

Then, we linearize the nonlinear model (3.4) and (3.5) about the equilibrium point xe =
[
φe 0 0 0

]T
with equilibrium input ue =

[
ψ̇e 0

]T
. We get
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(k2 + k3)φ̈+ k1σ(ψ̇e sinφe∆φ− cosφe∆ψ̇)

−(k7− k6)(ψ̇e sin 2φe∆ψ̇ + ψ̇2
e cos 2φe∆φ)

+IGzzΩ(∆α̇+ sinφe∆ψ̇ + ψ̇e cosφe∆φ)

+ψ̇e(k6 − IGyy) cosφe∆α̇− k1g∆φ = 0

(3.8)

IGyyα̈+ ψ̇e(IGyy − k6) cosφe∆φ̇

+k6ψ̇
2
e cos

2 φe∆α+ IGzzΩ(ψ̇∆α−∆φ̇) = ∆τα
(3.9)

Rearrange into a state-space representation :

d

dt


φ

α

φ̇

α̇

 =


0 0 1 0

0 0 0 1

a31 0 0 a34

0 a42 a43 0




∆φ

∆α

∆φ̇

∆α̇

+


0 0

0 0

b31 0

0 b42


∆ψ̇
∆τα

 (3.10)

where

a31 =
−k1σψ̇e sinφe + ψ̇2

e(k7 − k6) cos 2φe − IGzzΩψ̇e cosφe + k1g cosφe
k2 + k3

a34 =
−ψ̇e(k6 − IGyy) cosφe − IGzzΩ

k2 + k3

b31 =
k1σ cosφe + ψ̇e(k7 − k6) sin 2φe − IGzzΩsinφe

k2 + k3

a42 =
−k6ψ̇2

e cos
2 φe − IGzzΩψ̇e cosφe

IGyy

a43 =
−ψ̇e(IGyy − k6) cosφe + IGzzΩ

IGyy

b42 =
1

IGyy

Note that when the equilibrium point is xe =
[
0 0 0 0

]T
, ue =

[
0 0

]T
. The linearized

model parameter will be simplified into

a31 =
k1g cosφe
k2 + k3

, a34 =
−IGzzΩ
k2 + k3

, b31 =
k1σ

k2 + k3
, a42 = 0 , a43 = Ω , b42 =

1

IGyy

We will focus on the equilibrium point at αe = 0 for the best performance of gyroscopic

flywheel actuator. Four eigenvalues of the linearization model around the equilibrium point at -1 rad/s

to 1 rad/s yaw rate have been shown in Figure 5.1. They are pure imaginary roots or contain a positive

real eigenvalue. So it can imply that most of them are unstable but it cannot conclude the stability for

some equilibrium points by linearization technique. Figure 5.2 show the response of rolling angle and

precessing angle with different 4 initial conditions for the autonomous system. Although the velocity

parameter affects the eigenvalues of the system, the pole trajectory is also moving in the same pattern.
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Figure 3.7: Phase portrait of open loop responses
with 4 initial conditions

3.1.4 Piecewise affine model

We divide both bicycle rolling angle (x1) and flywheel precessing angle (x2) into 3 regions.

So the overall system is divided into 9 regions as shown in Figure 3.8. We approximate the bicy-

cle nonlinear model (3.4)–(3.5) with a PWA model by using least square error with discontinuous

boundary method in section 2.2.2 because it is simple and also gives the smallest error compare to

another method as shown in [68]. Applying this approximation method over the operating region

x1 ∈ [−30, 30] degree, x2 ∈ [−30, 30] degree, x3 ∈ [−30, 30] degree/s and x4 ∈ [−50, 50] degree/s

with the same parameters in Table A.1, we get the PWA model in state-space form (2.1) as follows.

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

x
1
: bicycle rolling angle (degree)

x 2: f
ly

w
he

el
 p

re
ce

ss
in

g 
an

gl
e 

(d
eg

re
e) X

1
X

2
X

3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

Figure 3.8: Polyhedral partition of the bicycle state.
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Piecewise affine model of the bicycle using both steering and gyroscopic stabilization

A1 =


0 0 1 0

0 0 0 1

10.230 −0.019 0 −2.977

−0.054 0.007 388.496 −0.011

 A2 =


0 0 1 0

0 0 0 1

10.238 0 0 −3.171

−0.006 0.006 413.739 −0.003



A3 =


0 0 1 0

0 0 0 1

10.230 0.020 0 −2.977

0.042 −0.049 389.073 −0.013

 A4 =


0 0 1 0

0 0 0 1

10.886 0.002 0 −2.977

0.090 0.073 388.447 0.002



A5 =


0 0 1 0

0 0 0 1

10.896 0 0 −3.171

0.001 0.015 413.736 0

 A6 =


0 0 1 0

0 0 0 1

10.885 0 0.001 −2.977

−0.081 −0.162 389.087 −0.027



A7 =


0 0 1 0

0 0 0 1

10.231 0.016 0 −2.977

0.040 0.045 388.498 −0.005

 A8 =


0 0 1 0

0 0 0 1

10.238 0 0 −3.171

0.005 −0.007 413.73 −0.002



A9 =


0 0 1 0

0 0 0 1

10.229 −0.018 0 −2.977

0.131 −0.011 389.075 −0.017

 B1 = B2 = ... = B9 =


0 0

0 0

2.228 0

0 7.246



a1 =


0

0

−0.151

−0.011

 , a2 =


0

0

−0.145

−0.003

 , a3 =


0

0

−0.152

0.025

 , a4 =


0

0

0.001

0.020

 , a5 =


0

0

0

0



a6 =


0

0

0

0.045

 , a7 =


0

0

0.150

0.006

 , a8 =


0

0

0.145

−0.001

 , a9 =


0

0

0.152

−0.047


C1 = C2 = ... = C9 =

[
1 0

]
c1 = c2 = ... = c9 = 0
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3.2 Direct current (DC) motor model

Figure 3.9: DC motor with gear

The mechanical linkages between the motor and the load in a gear drive with an equivalent

motor circuit have been shown in Figure 3.9. The related parameters are

(θm, θL) is rotor and load shaft position (rad)

Ke is the electromotive force constant (V-s/rad)

Kt is the torque constant (N-m/A)

I is the armature current (A)

V is the armature voltage (V)

(N1, N2) is the number of teeth on a gear of motor and load

(Jm, JL) is the moment of inertia of motor and load (kg-m2)

(Bm, BL) is the viscous damping of motor and load (N-m-s/rad)

R is the terminal resistance (Ω)

L is the terminal inductance (H)
We derive a simple linear model of DC motor under the assumptions mentioned below.

• The armature resistance and inductance can be regarded as constant

• The effect of armature reaction and brush voltage drop have been neglected

• The static friction is negligible and the frictional torque is proportional to angular velocity.

From the equivalent circuit diagram, the electrical differential equation obtained from Kirchhoff’s

voltage law is written as

L
dI

dt
= V −RI − Ve (3.11)

where back-emf is defined as Ve = Ke
dθm
dt
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From the mechanical diagram, the equations of motion obtained from Newton’s law are written as

At motor:

Jm
d2θm
dt2

= Tm −Bm
dθm
dt

− T1 (3.12)

At load:

JL
d2θL
dt2

= T2 −BL
dθL
dt

− TL (3.13)

where Tm = KtI is the torque generated by the motor

And apply the relationship between two ideal gears:

N1

N2
=
T1
T2

=
θL
θm

=
θ̇L

θ̇m
(3.14)

Then, the governing equations of DC motor system are

L
dI

dt
= V −RI −NKe

dθL
dt

(3.15)

Jeq
d2θL
dt2

= NKtI −Beq
dθL
dt

− TL (3.16)

where N =
N2

N1
is the turns ratio

Jeq = JL +N2Jm is the equivalent moment of inertia at load shaft

Beq = BL +N2Bm is the equivalent viscous damping at load shaft

Using Laplace transforms, we get the transfer function as follows.

when the output is a speed

θ̇L(s)

V (s)
=

Kt

(Jeqs+Beq)(Ls+R) +KeKt
(3.17)

when the output is a position

θL(s)

V (s)
=

Kt

s((Jeqs+Beq)(Ls+R) +KeKt)
(3.18)

Or rewrite the above dynamic equations in a state-space form

d

dt


θL

θ̇L

I

 =


0 1 0

0 −Beq
Jeq

NKt

Jeq

0 −NKe

L
−R
L




θL

θ̇L

I

+


0

0

1

L

V



CHAPTER IV

CONTROLLER DESIGN FOR STABILIZATION SYSTEM

4.1 State feedback redesign for PWA system with regional pole placement perfor-
mance

A state feedback gain for stabilizing a bicycle is designed in two steps. We design a continuous-

time controller first and then we convert it into a discrete-time controller in the second step.

4.1.1 Controller synthesis for PWA system with regional pole placement performance

To design a continuous-time controller, we combine 3 controller design techniques including

1) Regional pole placement, 2) Linear quadratic regulator, 3) Piecewise quadratic stabilization.

Since the regional pole placement, linear quadratic regulator and piecewise quadratic stabiliza-

tion technique can be formulated in LMIs problem. We will combine these techniques and illustrate

the advantage of this method.

Using the regional pole placement technique with the intersection of all LMI regions in example

1, we can design the controller to ensure many requirements of the closed-loop system [See section

2.3.2]. In more detail, we can ensure that the closed-loop system will decay faster than e−αpt, have

a minimum damping ratio ζ = cos θ and a maximum damped natural frequency ω0 = r sin θ around

the operating region by the following constraints:

A5Y + Y AT5 −B5W −W TBT
5 + 2αpY < 0 : Vertical strip −rY A5Y −B5W

YAT5 −W TBT
5 −rY

 < 0 : Disk sin θ(Y AT5−W TBT
5+A5Y −B5W ) cos θ(Y AT5−W TBT

5−A5Y +B5W )

cos θ(−Y AT5+W TBT
5+A5Y −B5W ) sin θ(Y AT5−W TBT

5+A5Y −B5W )

 < 0 : Conic sector

(4.1)

Combining with the LQR technique, it provides the smallest possible to both control signal

and states of the controlled system. We can tune the system to meet a desired performance via

the weighting matrices. Typically, the stability margins may be very small (small robustness) but

this disadvantage can be recovered by increasing αp for a vertical half-plane constraint. The LMI
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Figure 4.1: Combined LMI region

formulation for LQR technique is

max
Y,W

Tr(Y )

subject to


Y AT5 +A5Y −W TBT

5 −B5W YHT W T

HY −I 0

W 0 −R−1

 < 0
(4.2)

Moreover, we use the piecewise affine technique to extend the stability region of nonlinear

system by giving the additional constraints:Y ATi +AiY − (BiW )T −BiW − viaia
T
i Y STi − viais

T
i

(Y STi − viais
T
i )
T vi(I − sis

T
i )

 < 0 for all i ̸= 5 (4.3)

Note that we apply (2.13), (2.17), (2.21) only on the model which contains the equilibrium

point and we neglect the first LMI in (2.10) because this constraint is already included in (2.13)

Numerical result

Recall the numerical result in section 3.1.4, the PWA model of the bicycle obtained by approx-

imating the nonlinear of the bicycle (3.4)–(3.5) is written in state space form as

ẋ = Aix+ ai +Biu

y = Cix+ ci

 x ∈ Xi (4.4)

where x =
[
φ α φ̇ α̇

]T
is the state variable and u =

[
ψ̇ τα

]T
is the control input.

To stabilize the bicycle to stay upright at φ = 0, we apply the proposed design method by determining

the control specifications of the compensated system for coarse tuning as

(1) settling time less than 4 s : Ts =
4

αp
< 4

(2) maximum overshoot less than 0.0008% of the final value : M = e−π cot θ < 8× 10−6

(3) maximum damped frequency less than 7.765 rad/s : ω0 = r sin θ < 7.765
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The corresponding parameters of LMI region for above specifications are

αp = 1, r = 30, θ = 15◦

Select the weighting matrices Q = diag(100, 2000, 10, 300) and R = diag(4000, 50) in the

LQR constraint (2.17) for fine tuning. We get the continuous-time controller gain L, by YALMIP [60]

toolbox accompanying with SDPT3 solver [59], as shown below.

L =

 2.8001 0.6394 1.3587 −0.0018

−39.5661 −2.7001 −0.4673 2.3797


The simulation result with an initial condition x(0) =

[
−0.262 0.349 0 0

]T
is shown in

Figures 4.2–4.4. We conclude that these controllers can stabilize the original nonlinear system under

the required specification.

Figure 4.2: Pole location of the closed-loop system

4.1.2 Discrete-time controller redesign

We convert the continuous-time controller L in the section 4.1.1 into the discrete-time con-

troller by solving the problem (2.21) for the model that contains the equilibrium point.

min
Yd,Wd

γ

subject to

 −Yd (Ad5Yd −Bd5Wd)
T

(Ad5Yd −Bd5Wd) −Yd

 < 0 −Yd (Gc5Yd−Ad5Yd+Bd5Wd)
T

(Gc5Yd−Ad5Yd+Bd5Wd) −γI

 < 0

(4.5)

where subscript 5 refers to the discrete-time models obtained from region 5 of PWA model.
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We obtain the discrete-time controller gain for sampling period 0.09 s.

Ld =

 4.3447 3.1230 −0.2237 −0.6589

−64.8661 3.6038 31.6640 0.2039


The simulation result in Figure 4.4 shows that both controllers give similar responses and can

stabilize the bicycle nonlinear system perfectly. Comparing with the controller designed by classical

LQR technique

Ld,LQR =

 2.6706 0.3770 −0.3630 −0.4114

−24.6556 −2.3421 16.0030 0.2256


This controller gain can stabilize the linearized system. However, the original nonlinear system

becomes unstable as shown in Figure 4.3. Moreover, we found that tuning by the classical LQR tech-

nique is a difficult task to find the controller gain which can stabilize the system with high nonlinearity

over the desired region.

4.2 Position control for steering motor

We transform the continuous-time models into the discrete-time models with zero-order-hold

method as follows:

Assume the continuous-time model is

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(4.6)

the corresponding discrete-time model with sampling period T is

x[k + 1] = Adx[k] +Bdu[k]

y[k] = Cdx[k] +Ddu[k]
(4.7)

where
Ad = eAT , Bd =

∫ T
0 e

AτB dτ

Cd = C , Dd = D

The design objective is to track a desired position. Let a discrete-time plant of DC motor be

described by (4.7) where

x[k] =
[
θ[k] θ̇[k] I[k]

]T
y[k] = θ[k] =

[
1 0 0

]
x[k]

(4.8)

In order to cancel the steady-state error between the desired position r[k] and the output position y[k],

we add the integral state to ensure zero steady-state error as follows:

z[k + 1] = z[k] + (r[k]− y[k])

= z[k] + r[k]− Cdx[k]
(4.9)
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Figure 4.3: Comparison of the responses between the proposed controller and the classical LQR
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We get the following augmented system.x[k + 1]

z[k + 1]

 =

Ad 0

−C I

x[k]
z[k]

+

Bd
0

u[k] +
0
1

 r[k] (4.10)

Let define new variables to measure the difference of steady state value.

x̃[k] , x[k]− x[∞]

z̃[k] , z[k]− z[∞]

ũ[k] , u[k]− u[∞]

(4.11)

The augmented system in new state variables becomesx̃[k + 1]

z̃[k + 1]

 =

Ad 0

−C I

x̃[k]
z̃[k]

+

Bd
0

 ũ[k] (4.12)

Then the present problem is determining the augmented state-feedback matrix

ũ[k] =
[
F H

]x̃[k]
z̃[k]

 (4.13)

We design the control law by Linear Quadratic Regulator (LQR) method. The weight matrices Q,R

have been selected and find the state-feedback gain that minimizes a quadratic cost function

J =
∞∑
k=0

(
x̃T [k]Qx̃[k] + ũT [k]Rũ[k]

)
(4.14)

The solution can be obtained by solving the Ricatti equation which can be solved efficiently via lqr

function in Matlab software
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Numerical result

By using the motor specification provided in Table A.2, a continuous-time system of steering

motor is described by

d

dt


θ

θ̇

I

 =


0 1 0

0 −170.45 1214.81

0 −670.86 −4775.51



θ

θ̇

I

+


0

0

4.0816

V (4.15)

We transform it into discrete-time system with sampling period 0.01 s as
θ[k + 1]

θ̇[k + 1]

I[k + 1]

 =


1 0.0048 0

0 0.1810 0.0001

0 −0.0264 0



θ[k]

θ̇[k]

I[k]

+


2.9515

30.4396

4.2709

V [k] (4.16)

The augmented system becomes
θ[k + 1]

θ̇[k + 1]

I[k + 1]

z[k + 1]

 =


1 0.0048 0 0

0 0.1810 0.0001 0

0 −0.0264 0 0

−1 0 0 1




θ[k]

θ̇[k]

I[k]

z[k]

+


0.0008

0.1367

8.5280

0

V [k] (4.17)

Select Q =diag(0.1, 10, 10, 50000), R = 800. We get the controller gain[
F H

]
= −

[
85.5021 0.4610 0.0003 −5.3381

]
The simulation results of motor tracking when the desired position is step function and sine

function have been shown in figure 4.5
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Figure 4.5: The response of DC motor with tracking controller



CHAPTER V

CONTROLLER DESIGN FOR NAVIGATION SYSTEM

In this chapter, we present the algorithm to calculate the steering angle for tracking purpose.

Firstly, we introduce the equation for describing a bicycle motion. Then we propose a simple tracking

algorithm. After that we will add the complexity in our algorithm step by step for improving its

performance.

5.1 Bicycle equation of motion

We use the equations of motion proposed in [73] for describing a rear wheel of the bicycle. On

the assumptions that the bicycle moves without slipping and the steering axis is perpendicular to the

ground, these equations become 
ẋr

ẏr

ψ̇

 = σ


cosψ

sinψ

tan δ

b

 (5.1)

where (xr, yr) is the x-y coordinate of rear wheel (m)

ψ is the yaw angle of rear wheel (rad)

σ is the bicycle speed or rear wheel speed (m/s)

δ is the steering angle (rad)

b is the bicycle wheel base length (m)

After we obtain the position of rear wheel, we can calculate the front wheel position fromxf
yf

 =

xr
yr

+ b

cosψ
sinψ

 (5.2)

where (xf , yf ) is the x-y coordinate of front wheel (m)

5.2 Path tracking

To determine the desired steering angle for path tracking purpose, we will use the algorithm

which can be divided into 3 steps as follows.

• Step 1: Shifting the coordinate

Suppose we have collected N desired way points (x1, y1), ... , (xN , yN ). We transform these

way points into the position with respect to a front wheel that represents an observer on the
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bicycle by the following equationx′i
y′i

 =

 cosψ sinψ

− sinψ cosψ

xi − xf

yi − yf

 (5.3)

• Step 2: Searching the nearby way points

For a convenience in explanation, we will consider way points (x′i, y
′
i) as the coordinate on

complex plane z′i = x′i + jy′i = |z′i|∠θ′i. We select the way points that satisfy the following

criteria ∣∣z′i∣∣ ≤ Srad and |θ′i| ≤ Sang (5.4)

where Srad is the maximum searching radius, Sang is the maximum searching angle. With

these parameters, we can imply that the desired steering angle doesn’t exceed Sang.

Figure 5.1: Bicycle on a global coordinate Figure 5.2: View of the observer on the bicycle

• Step 3: Calculating the desired steering angle for path tracking purpose

We find a straight line, described by y′ = m̂x′, that fits to the nearby way points obtained in

step 2 and pass through the front wheel position. We use linear regression using least square

error technique for finding the parameter m as the following optimization problem.

m̂ = argmin
m

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣


y′1

y′2

...

y′n

−m


x′1

x′2

...

x′n



∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
(5.5)

where (x′1, y
′
1), ..., (x

′
n, y

′
n) are the nearby way points obtained in step 2.

The closed form solution is

m̂ =

n∑
i=1

x′iy
′
i

n∑
i=1

x′2i

(5.6)
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Finally, we get a desired steering angle.

δtrack = arctan m̂ (5.7)

We generate a map and way points in the simulation and then test our algorithm. The simulation

result shows the bicycle can move along the desired path. However, there are some distance errors

when moving along the curvature path but it’s acceptable as long as it doesn’t run out of the track.

5.3 Simulation setup

We generate a map like an athletics track that includes two straight line paths and two semicir-

cular paths as shown in Figure 5.3. Way points are laid on the desired path described by

(x(t), y(t)) =



(t, 7.5) 0 ≤ t ≤ 30

(30 + 7.5 sin(π( t−30
30 )), 7.5 cos(π( t−30

30 )) 30 ≤ t ≤ 60

(90− t,−7.5) 60 ≤ t ≤ 90

(−7.5 sin(π( t−90
30 )),−7.5 cos(π( t−90

30 )) 90 ≤ t ≤ 120

(5.8)

These way points are located with 2 meters equally space on a middle track between an inner track

and an outer track. The width of this track is 6 meters.
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Figure 5.3: Map with the desired way points

We simulate a bicycle trajectory with an update period 0.09 s. for δfilter (the same period as the

control signal of the stabilizing system) and 0.5 s. for δdesired obtained from path tracking algorithm.

Note that the update period of δdesired must be greater than 0.2 s. due to the limitation of GPS.

5.4 Steering signal filter

With our proposed path tracking method, the desired steering angle will suddenly change when

some way points are added or removed from searching algorithm. So we smoothen this signal with a

following equation.

δfilter[k] = δfilter[k − 1] + wfilter(δdesired[k]− δfilter[k − 1]) (5.9)



38

where wfilter is the filter weight. The comparison of the signal with 2 different filter weights are

shown in Figure 5.4
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Figure 5.4: Comparison of the responses with different filter weights

Since the bicycle model in section 3.1.1 is derived under the assumption that a steering angular

velocity is small, we must avoid to changing the steering angle too fast. So we select the parameter

wfilter = 0.07 for our algorithm.

5.5 Effect of the searching radius and searching angle

There are two adjustable parameters in our path tracking algorithm. We will show the effect of

the variation of these parameters in this section.

• Searching radius (Srad)

Searching radius parameter determines how far we have to consider the way points in front of

the bicycle. If this parameter is small, a bicycle trajectory will be oscillated. If this parameter

is high, a bicycle trajectory will be smooth especially for a straight path, but it may move too

close to the inner track of a circular path as shown in Figure 5.5

• Searching angle (Sang)

Searching angle parameter determines how wide we have to consider the way points from a

heading direction of the bicycle. This parameter seems not to affect a bicycle trajectory as

shown in Figure 5.5. However, the effect is arise in the noisy system as shown in Figure 5.6.

If this parameter is small, the bicycle will run out of the track because it cannot detect the way

points. If this parameter is high, the tracking algorithm will be more reliable but the desired

steering angle will be high.

So we select the parameters Srad = 8 and Sang = 65◦ for our algorithm because it works well

on the simulation even in the noisy system.
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Figure 5.6: Comparison of the responses in noisy system with different angle searching at Srad = 8

5.6 GPS Filter

Since a GPS has an uncertainty in its measurement, we will use a position estimator instead of

a measured data to calculate a desired steering angle for tracking purpose. We use Extended Kalman

Filter (EKF) [70] to estimate the position of rear wheel as follows.

From the equation of motion (5.1), we get a discrete-time model with sampling period Tnavi

x[k] = f(x[k − 1], δ[k − 1], w[k − 1]) = x[k − 1] +


σ cosψ[k − 1]

σ sinψ[k − 1]

σ

b
tan δ[k − 1]

Tnavi + w[k] (5.10)

with a measured state

z[k] = x[k] + v[k] (5.11)

where x =
[
xr yr ψ

]T
is the state variable, w and v are random variables that represent the

process noise and the measurement noise. They are assumed to be Gaussian random variables with

probability distributions N(0, Q) and N(0, R) respectively.
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Then we obtain the EKF algorithm as shown below

• Prediction step

Prior estimated state: x̂−[k] = f(x̂[k − 1], δ[k − 1], 0) (5.12)

Prior estimate error covariance: P̂−[k] = A[k − 1]P̂ [k − 1]AT [k − 1] +Q (5.13)

• Correction step

Kalman gain: K[k] = P̂−[k](P̂−[k] +R)−1 (5.14)

Posterior estimated state: x̂[k] = x̂−[k] +K[k](z[k]− x̂−[k]) (5.15)

Posterior estimate error covariance: P̂ [k] = (I −K[k])P̂−[k] (5.16)

where A is the Jacobian matrix of partial derivatives of f with respect to x,

A[k − 1] =


1 0 −Tnaviσ sin ψ̂[k − 1]

0 1 Tnaviσ cos ψ̂[k − 1]

0 0 1


Q is the process noise covariance

R is the measurement noise covariance
We assume that the measured data is obtained by quantizing the actual bicycle position plus

gaussian noise with zero mean and variance 5 m2. The quantizing resolution for x-position and y-

position is 0.18 and 0.185 m. respectively. These resolutions are determined by the resolution of GPS

measuring around the faculty of engineering, Chulalongkorn university. (Latitude 13◦14.2647′N,

Longitude 100◦31.9049′E) Then we simulate the bicycle trajectory using the parameters Q =

diag(0.005, 0.005, 0.5) and R =diag(5, 5, 0.005) from the simulink diagram in Figure 5.8. The

simulation results show that the algorithm with EKF provide a better performance in Figure 5.7.
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CHAPTER VI

INTEGRATION OF THE STABILIZATION
AND THE NAVIGATION SYSTEM

In chapter 4–5, we have designed the controller for the stabilizatiion system and navigation

system separately. Unfortunately, the control signal of these systems has the desired steering angle as

a common variable. To combine them together, we need to recalculate the desired steering angle that

can track a desired path while maintaining the bicycle to stay upright.

6.1 Compromise algorithm

Suppose we get the desired steering angle for tracking purpose δtrack and the desired steering

angle for stabilizing purpose δstat. We will recalculate with the following equation.

δactual = wstatδstat + (1− wstat)δtrack (6.1)

where wstat ∈ [0, 1]. We also define a tracking cost for indicating a tracking performance and a

stabilizing cost for indicating a stabilizing performance as follows.

Definition 6.1. Tracking cost
Let etrack(t) be a shortest distance measured from a desired path to a rear wheel of a bicycle

at time t. The tracking cost over time t = 0 to t = T is defined by

Jtrack =

∫ T

0
e2track(t)dt (6.2)

Definition 6.2. Stabilizing cost (or State cost)
Let estat(t) be a the different of a present rolling angle and a rolling angle of an equilibrium

point at time t. The stabilizing cost over time t = 0 to t = T is defined by

Jstat =

∫ T

0
e2stat(t)dt (6.3)

The simulation results with weighting parameter wstat 0.2, 0.3, 0.4 and 0.5 have been shown

in Figure 6.2–6.5. The comparison of the tracking cost and stabilizing cost for different weight is

provided in Table 6.1.
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According to the simulation results, we found that the higher weighting parameter wstat tends

to give a better stabilizing performance. However, this statement is not true when we continue to

increase the weighting parameter from 0.4 to 0.5.

In more detail, when the weighting parameter is too small, the gyroscopic flywheel must sta-

bilize the bicycle alone. So the flywheel precessing angle will be shifted from the equilibrium point

until the gyroscopic flywheel cannot produce torque to stabilize the bicycle. As a result, the bicycle

will fall down. On the contrary, if the weighting parameter is too high, the tracking performance will

be degraded and the tracking system will provide the high desired steering angle. These incidents

make the system oscillate, especially when the bicycle almost runs out of the track, and also cause

the bicycle to fall down.

Table 6.1: Comparison of the tracking cost and the stabilizing cost

Weight (wstat) Total time Average tracking cost Average stabilizing cost

0.2 38.10 s. [Failure] 0.8023 0.01358

0.3 50.00 s. 0.6306 0.00202

0.4 50.00 s. 0.2796 0.00146

0.5 39.30 s. [Failure] 1.4162 0.00975

6.2 Effect of a delay time in steering control

In the previous section, we assume that the steering angle is delayed from the actual desired

steering angle in 0.01 s. (If we set the delay time to 0 s., the Simulink program will crash an algebraic

loop problem.) In this section, we will add the steering motor dynamic into the simulation and show

the results.

We assume the steering dynamic is described by the second order model of steering motor in

(4.15). The simulink diagram of steering system, contains the plant of motor and ±12 volt saturation

block for limiting the control input, is shown in Figure 6.6. Suppose that the bicycle is moving at a

constant speed in a steady state. Then we can neglect the driving motor dynamic in the simulation.

We simulate the bicycle trajectory as provided in Figure 6.7–6.10 by using three types of steering

dynamic in Table 6.2.
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The simulation result shows that a steering controller with the settling time 0.5 s. and small

overshoot (type A) give an excellent result for the overall system. The type B controller gives a

poor result due to its slow response. The type C controller makes a system oscillate due to its high

overshoot response and lead the bicycle system to be unstable even if it has the same settling time of

type A controller.

Table 6.2: Types of steering controller

Type Controller gain in equation (4.13) Settling time (5 %) Overshoot

A –
[
85.5021 0.4610 0.0003 −5.3381

]
0.5 s. 6.20 %

B –
[
24.3932 0.1392 0.0001 −0.4792

]
1.0 s. 4.32 %

C –
[
108.5533 0.5732 0.0004 −8.3230

]
0.5 s. 16.70 %
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Figure 6.2: Simulation result for the weighting parameter wstat = 0.2
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Figure 6.3: Simulation result for the weighting parameter wstat = 0.3
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Figure 6.9: Simulation result for the weighting parameter wstat = 0.4 with type C steering controller
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CHAPTER VII

CONCLUSIONS

7.1 Summary

In this thesis, we present the design of an unmanned bicycle that can stay upright while fol-

lowing the path autonomously in a computer simulation. The bicycle consists of two main systems;

stabilization system and navigation system. We design each system separately and combine them to-

gether. We develop a novel stabilization technique for unmanned bicycle which utilizes not only the

gyroscopic stabilization but also incorporating the steering control for an intelligent bicycle robot. To

design a controller for stabilizing the bicycle, we design a state-feedback controller which guarantees

the stability of a class of nonlinear systems over the desired region and ensures some practical perfor-

mance criteria of the closed-loop system. We apply the piecewise affine technique together with the

regional pole placement and linear quadratic regulator in order that all design formulations are cast as

a linear matrix inequalities optimization problem. The discrete-time controller is also obtained from

the continuous-time controller via LMI approach. The controller design for navigation system is ob-

tained by applying a linear regression using least square error method. An integrated stabilization and

navigation system of the bicycle has been design. Since the control signal of the stabilization system

and the navigation system has a common variable; desired steering angle, we propose the compromise

algorithm for recalculating this control signal when we integrate both systems together.

Chapter 1 contains a research motivation. A literature review on piecewise affine (PWA) sys-

tems and bicycle dynamic & control is provided. Many researches on PWA work about model rep-

resentations, system identifications and controller designs. For the literature review on a bicycle, it

covers the bicycle dynamic model and bicycle stabilization method. Then we present an objective, a

scope and contributions of this thesis.

Chapter 2 brieftly introduce the background knowledges of Linear matrix inequality (LMI) and

Piecewise affine (PWA) system. A great advantage of LMI techniques is various design techniques

can be combined via LMI. Then, some control design strategies formulated in LMI constraints have

been shown. All of these techniques will be used to design a controller for stabilizing the bicycle in

chapter 4.

In chapter 3, the models of each subsystem of the bicycle are provided. The bicycle nonlinear

model for both steering and gyroscopic stabilization has been proposed. We show some behavior

analyses of this bicycle such as a bicycle dynamic, a linearized model and a piecewise affine model.

DC motor model is also provided because it contains in a bicycle mechanism.
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In chapter 4, the state-feedback controller design with performance improvement for piecewise

affine system has been proposed. The controller synthesis is performed by solving the optimization

problem under LMI constraints which combine regional pole placement for coarse tuning, LQR for

fine tuning and piecewise quadratic stabilization to guarantee the stability over the desired region.

Moreover, the discrete-time controller is also obtained via LMI approach. This proposed design

method is applying to find the controller for stabilizing the bicycle.

In chapter 5, the controller design for tracking purpose has been developed. The desired steer-

ing angle is calculated base on a linear regression using least square error method. Some digital

filters, including integral filter and Extended Kalman Filter, are applied to improve the effectiveness

of tracking algorithm in noisy systems. The effect of the variation of adjustable parameters in the

proposed algorithm has been illustrated.

In chapter 6, we propose the compromise algorithm for weighting the control signal of the

integrated stabilization and navigation system since the control signal of these systems has desired

steering angle as a common variable. The simulation result for different weight has been shown.

Afterward, the delay time due to a steering motor is taken into account.

Finally, the results from each chapter have been discussed and we give a future work guideline

at the end.

7.2 Future work guideline

1. Development of bicycle model for both steering and gyroscopic stabilization

The bicycle nonlinear model for both steering and gyroscopic stabilization in chapter 3 has

been derived under the assumption that the steering angular velocity must be small. So we can

neglect the front fork dynamic of the bicycle. However, this model may describe the bicycle

dynamic inaccurately in practice when this assumption is violated.

2. PWA observer of an unmanned bicycle using gyroscopic effect

We have assumed that all bicycle states of stabilization system are measurable. So we don’t

design an observer for this system. Even though we don’t use an observer for the stabilization

system, it works well because we don’t take the uncertainty into account. In case of noisy

systems, we should implement the PWA observer to reduce noise for better performance.

3. Implementation on the real bicycle

All of the results in this thesis have been illustrated via the computer simulation. However,

these results should be verified by implementing the proposed controller on the experimental

bicycle. We have tested some functions on the bicycle prototype but it is still not complete due

to the mechanical problem.
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APPENDIX



BICYCLE PARAMETERS AND EQUIPMENT SPECIFICATIONS

Table A.1: Parameters for experimental bicycle with gyroscopic flywheel

Parameter Symbol Value Unit

Bicycle body mass mB 30 kg

Flywheel mass mG 9 kg

Bicycle moment of inertia (IBxx, IByy, IBzz) (5.947,8.083,2.295) kg· m2

Flywheel moment of inertia (IGxx, IGyy, IGzz) (0.138,0.138,0.274) kg· m2

Height of bicycle center of mass zB 0.49 m

Height of flywheel center of mass zG 0.88 m

Flywheel spinning angular velocity Ω 2000 rpm

Gravitational acceleration g 9.81 m/s2

Bicycle speed σ 2 m/s

Bicycle wheel base length b 1.07 m

Table A.2: Parameters for steering motor (Maxon DC motor RE40)

Parameter Symbol Value Unit

Speed constant Ks 581 rpm/V

EMF constant Ke 0.0164 V/rad

Torque constant Kt 0.0164 N·m/A

Steering viscous damping Bsteer 0 N·m·s

Rotor viscous damping Bm 0.0023 N·m·s

Steering inertia Jsteer 0 kg·m2

Rotor inertia Jm 1.35 ×10−5 kg·m2

Terminal resistance Ra 0.117 Ω

Terminal inductance La 2.45×10−5 H

Nominal voltage Vmax 12 V
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Global Positioning System (GPS)

We calculate the GPS resolution from the LS20030-3 series GPS module which can measure

the latitude and longitude with the resolution 10−4 minutes parts ( 1
60 × 10−4 degrees). The approxi-

mated resolutions in xy-coordinate are obtained by using explicit haversine formula [74]

d = 12742000 arcsin

(√
sin2

(
lat2 − lat1

2

)
+ cos(lat1) cos(lat2) sin

2

(
lon2 − lon1

2

))

where d is the spherical distance between two points (m)

lat1, lat2 are the latitudes of two points (rad)

lon1, lon2 are the longitudes of two points (rad)
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