CHAPTER VI ## CONCLUSIONS AND RECOMMENDATION The conclusions emerged from this research are the following: - 1. The results of XRD and FT-IR analysis indicate that the formation of crystalline V_2O_5 starts well before the surface of TiO_2 is completely covered by V_2O_5 surface species. - 2. The optimal vanadium oxide loading is around 23 %wt. Too low loading will result in too high NH₃ oxidation in the temperature over 300°C. On the other hand, too high loading will decrease SCR activity. - 3. The presence of SO_2 can lead to reversible deactivation of catalyst, but no complete deactivation was observed. The deactivation is caused by adsorption of SO_2 on two types of vanadium sites : one being irreversible poisoned at low temperature but reversible at high temperature. The other being reversible poisoned. - 4. H₂O has no effect on the deactivation of catalyst. ## Recommendation for the future work For low vanadium oxide loading catalyst it is well know that increase surface acidity by adding some oxide species (e.g. WO₃, MoO₃) can improve catalytic activity. Therefore, this method should be tried on the optimal catalyst found in this research.