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CHAPTER |

INTRODUCTION

1.1 General Statement

In general, hydrocarbon reservoirs have a certain degree of heterogeneity of
reservoir properties. To describe the distribution of reservoir properties, geostatistical
methods are often used. Geostatistics is the most effective technique to characterize
reservoir properties since it can deal with fine scale heterogeneities and give high-
resolution images of the reservoir. Due to the fact that the number of geostatistical
cells is tremendous, reservoir properties generated by Geostatistics cannot be handled

by a dynamic reservoir simulator really well.

In fact, larger grid blocks are needed for reservoir simulation. Reservoir
properties of coarse blocks must be determined. These properties have to produce
similar results to the results of fine scale simulation. The coarse scale models are
supposed to maximize the computational efficiency by minimizing the grid block

number needed to simulate the reservoir.

Conventional methods to compute properties of coarse blocks rely on
upscaling of properties of fine-scale blocks. In general, upscaling is performed for the
entire field. This approach is called global upscaling in this study. The drawback of
global upscaling is that it takes a lot of computational time -since it has to be
performed for the entire field. In order to overcome this problem, we introduce a new
method to determine properties of large grid blocks based on local upscaling. In this
method, upscaling is performed at only data locations to determine the properties at
coarse scale for these blocks. After that, the properties of the entire field can be
determined using geostatistical method.



1.2 Objective

The purpose of this study is to find the best way to reduce computational time
to prepare raw data to be used in reservoir simulation. Two different approaches
which are based on traditional global fine-scale upscaling and local fine-scale
upscaling are investigated.

1.3 Outline of Approach

To compare two different approaches, there are four steps as following:

1. Create raw data for three reservoir models. A data set of permeability is
constructed in the same nature as the real field data such as the spacing of
wells. All data in these three models are artificially created. In the first and
second model, the raw data are 14 permeability values sampled from 14
vertical wells. The study area covers 4,020 feet in the north-south direction
and 4,010 ft in the east-west direction. In the third model, the raw data are
28 permeability values sampled from 16 vertical wells and 3 horizontal
wells. The study area covers 2,000 feet in the north-south direction and
2,000 ft in the east-west direction.

2. Create three reservoir models. Three reservoir models are created using
Geostatistics.  Omnidirectional variogram  model, representing all
directions, is used to find the variogram model in this step to examine the
correlation between the data set and distance among data. In the first and
second model, Krigging- estimation -is used to generate fine scale
permeability ~distribution. In the third model, Sequential Gaussian
Simulation is used to generate 60 realizations of fine scale permeability
distribution.

3. Determine coarse scale permeability distribution based on global and local
upscaling. After fine scale distribution is found, two different approaches
based on global upscaling and local upscaling are applied to generate
coarse scale permeability distribution. The upscaling process is based on

Harmonic-Arithmetic average.



4. Compare results. Two methods are used to compare the results which are
comparison based on values of permeability and comparison based on
results of reservoir simulation. In comparison based on values of
permeability, the correlation between coarse scale permeability values
based on global and local upscaling are determined for the three reservoir
models. In the comparison based on results of reservoir simulation, only
coarse scale permeability distribution for Reservoir | and Il are used as
reservoir properties to perform reservoir simulation. There are too many
realization of coarse scale permeability distribution for Reservoir Ill. Each
realization contains a certain degree of randomness. Therefore, it is

impossible to compare the results.

PETREL and GSLIB softwares were used in the geostatistical modeling while

REDUCE++ program was used for reservoir simulation.

1.4 Dissertation Outline

Chapter 1l reviews previous works concerning with this study.

Chapter 11l introduces the methodology used in this study including
Geostatistics, and upscaling. This chapter is divided into three sections, which are

presented as follows:

- Section 3.1 discusses the principle of Geostatistics. The theory of
Geostatistics is. first presented. After that, a procedure to determine the relationship
among the set of data and the separating distance is introduced in term of variogram
analysis. In addition, discussion on Krigging estimation and Sequential Gaussian
Simulation is included to explain how to estimate the variable value at each location
of interest. All of the topics in this chapter can be applied to any variable of interest
that exhibit a certain spatial relationship, including porosity, permeability, water

saturation, and etc.



- Section 3.2 introduces the upscaling process. It briefly presents the theory of
upscaling. Two main types of upscaling techniques are also discussed.

- Section 3.3 discusses two different approaches used to determine coarse
scale permeability distribution which are based on global and local upscaling of fine
scale permeabilities.

Chapter 1V presents the approach taken in this study including generating raw
data, simulating realizations from the data using Krigging estimation and Sequential
Gaussian Simulation, coarse scale permeability distribution based on global and local
upscaling and comparing the result using reservoir performance and similarity

between generated properties.

Chapter V summarizes the results of this study. The conclusions and

recommendations are also presented.



CHAPTER Il

LITERATURE REVIEWS

In order to efficiently manage hydrocarbon reservoirs, field scale simulations
are performed. Small-scale heterogeneities in the reservoir have a significant effect in
the performance of reservoir. However, limitations of calculation process for today’s
reservoir simulator prevent us from performing fine-scale simulation. Therefore, there
is a need to perform reservoir simulation at a larger scale, and the rock properties have

to be upscaled well enough to provide a good result.

Upscaling is a technique that transforms a detailed geological model to a
coarser grid simulation model such that the fluid flow behaviors in the upscaled
system are at best preserved. Upscaling consists of two parts: gridding and averaging
(1). Gridding is the part that fine-scale grids are redrawn into coarser grids. Averaging
is the step to calculate effective properties of the coarse grid blocks while preserving
fine grid fluid flow dynamics (pressure and flow rates etc.) within the coarse grid
blocks. Lozano, J.A(2) presented that there are three main techniques of permeability
averaging, ranged from the simplest techniques which are analytical techniques
(arithmetic, harmonic, and geometric means) to intermediate techniques such as
renormalization(3) and the most complicate techniques which are numerical
techniques (pressure solver method(4)). Simple and intermediate techniques are fast
but less accurate while numerical techniques are accurate but time consuming and

costly.

For analytical techniques, it is well known that the arithmetic mean is derived
for flows parallel to the layering direction and the harmonic mean is derived for flows
perpendicular to the layering direction(5). However, Cardwell and Parsons(6)
commented that the arithmetic and harmonic mean give only the upper and lower
limits of the effective permeabilities rather than the effective permeabilities

themselves. Warren and Price(7) conducted several numerical experiments to



investigate the effective permeability and concluded that the effective permeability of

randomly generated three-dimensional permeable medium equals the geometric mean

of the individual permeabilities. However, their conclusion is only good for purely

uncorrelated permeability fields that seldom exist in the real world.

Tang(8) conducted a study to compare coarse model performances of the
combination of analytical techniques which are Arithmetic-Harmonic and Harmonic-
Arithmetic average. His study shows that the results of Harmonic-Arithmetic average
are more accurate than the results of Arithmetic-Harmonic average. Therefore,

Harmonic-Arithmetic average was used in this thesis to upscale permeabilities.

Christie(9) stated that in the pressure-solver method, Christie sets up a single-
phase-flow calculation with specified boundary conditions and then determine the
value of effective permeability that yields the same flow rate as the fine-grid
calculation. The results depend on the assumptions made, particularly with regard to
boundary conditions. The most common assumption is that there is no-flow boundary

condition.

There are several intermediate averaging techniques between the traditional
simple averaging methods and the pressure solver techniques. A frequently used
intermediate method is renormalization. Renormalization includes a series of multiple
step calculations using an equivalent resistor network approach. There are two major
problems for the renormalization technique. First, it is not flexible and not accurate
for some cases. This problem arises because the renormalization technique requires
that the fine grid blocks must be grouped in a particular fashion, e.g., 2x2 that makes
solving a three-dimensional problem using the renormalization method quite difficult.
Second, the unrealistic boundary conditions used in the renormalization technique

sometimes result in estimation errors over 100%(10).



CHAPTER I

Methodology

This chapter presents the theory and technique of geosatistic and upscaling. This

involves two steps, which are geostatistical analysis and upscaling analysis.

3.1 Geostatistics

The enormous expense of developing heterogeneous offshore fields and the desire
to increase ultimate recovery force oil companies to use innovative reservoir
characterization techniques to determine how various properties are distributed
throughout a reservoir. Geostatistics is one of many new technologies often incorporated
into the reservoir characterization process. It is used as a means of calculating the values
of properties between the actual measured data points (interpolation), thereby creating a
grid of values which can be used to create maps, cross-sections, and flow models.
Geostatistics may be defined as a study of spatial correlation between variables. This
rapidly growing branch of applied statistics and mathematics offers a collection of tools

aimed at understanding and modeling spatial variability.

Spatial variability includes scales of connectivity (heterogeneity) as well as
directionality within the data sets. Reservoir data show spatial connectivity to greater or
lesser degrees because as the distance between two data points increases, the similarity
between the two measurements decreases. Moreover, the similarity between two
measurements will also change with direction. By understanding how data values vary
with distance and direction, we can interpolate values at unsampled locations throughout

our study area.



3.1.1 The basic of the regionalized variable and spatial correlation

The main purpose of regionalized variables and spatial correlation is to estimate
the continuity of sample properties with distance and direction. For example, two wells in
same vicinity are more likely to have similar reservoir properties than two wells which
are further apart; however there are the limitation of distance and direction, needed to be
considered. Spatial correlation analysis is one of the most important steps in Geostatistics
because it conditions subsequent processes, such as kriging and conditional simulation

results, and their associated uncertainties.

A Regionalized Variable is any variable distributed in space or sometime time.
Any measurement of Regionalized Variable can be viewed as a realization of random
function. The theory introduces four definitions, which are Regionalized Variables
(ReV), RealizationZ(x,), Random Variable (RV), and Random Function (RF).

Regionalized Variables are measurable quantities which characterize the natural
phenomena such as porosity of rock, ore grade, level of ground surface, etc. Realization
is defined as a collected value of the Regionalized Variables. Random Variable is defined
as a variable that takes a certain number of numerical values according to a certain
probalility distribution or in specific a univariate distribution function. And, Random
Function is the set of auto-correlated random variables or in specific a multivariate
distribution function with n Random Variables (ne D ; D = study domain). From the
definition of Random Function, the phenomenon of study domain is completely described
by RF. In reality, it is impossible to have a complete data to characterize natural
phenomena. However, it can be said that the Random Function maodel is an effective way
to characterize uncertainty inherited in the model. The spatial variability structure can be
found from the Random Function model. Spatial correlation describes the relationship
between regionalized variables sampled at different locations. Samples that are correlated
are not independent with distance. The closer two variables are to each other in space the

more likely they are related. In fact, the value of a variable at one location can be



predicted from values sampled at other (nearby) locations. The two common measures of
spatial continuity are the variogram and its close relative.

3.1.2 Variogram analysis

Regionalized variable theory uses the concept of semivariance or variogram*' to

express the relationship between different points on a surface. Semivariance is defined as:

y(h) = [U2N (W] 2 [(Za) - Z (xi+h)]* (3.1)
Where:
v(h) = variogram value at distance h
h = lag (separation distance)
Zyi = value of sample located at point xi
Zyit+h = value of sample located at point xi+h
N(h) = total number of sample pairs for the lag interval h.

Variogram is used to describe the rate of change of a regionalized variable as a
function of distance. Variogram value is evaluated by calculating » (h) for all pairs of
points in the data set and assigning each pair to a lag interval h. The plot of variogram
values versus lag distance, called experimental variogram. The experimental variogram is
based on the values contained in the data set, and is computed as a preliminary step in the
kriging process.. The experimental variogram.serves as a: template. for the model

variogram. Fig. 3.1 shows the basic components of a variogram model.
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Figure 3.1: Basic components of a variogram.

As seen in Fig.3.1, there are three major components of variogram which are sill,
range, and nugget. The sill represents the maximum variance of the measured spatial
process being modeled. The lag distance at which the sill is reached by the variogram is
called the range, which represents the maximum separation distance at which one data
point will be able to correlate with any other point in the data set. Nugget represents the
variation at small scale and should be zero at zero distance. But in practice, nugget value

comes from two sources, measurement error and small scale variation.

3.1.2.1 Variogram search strategies

When computing the experimental variogram, the following search parameters
must be taken into account. Fig 3.2 shows the example of search strategy along azimuths
45 and 135 degrees.
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Figure 3.2: Search strategy along directions 45 and 135 degrees.

- Lag: the lag distance is the separation distance, h, between sample points used

in calculating the experimental model.

- Search direction: because reservoir data often exhibit directional properties, a

certain direction for the search strategy needs to be specified. Such is the case

when the continuity of a reservoir property is more prevalent in one direction

than in another direction. The search direction also has a direction tolerance.

- Bandwidth: the bandwidth restricts the limits (width) of the direction tolerance

at large lag distances.

In Fig. 3.2, point A is compared to point B. The bandwidth is indicated by a light

dashed line about the search direction (heavy dashed line) of 45 degrees. Point B lies

within one of the search bins designated by the lag tolerance.

3.1.2.2. Common Variogram Models

There are four common variogram models; Spherical model, Power model,

Exponential model and Gaussian model.
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(i) Power Model

The power model has no sill, so it is called non-transition; its equation is

defined as:
Y(h) =cCo+Wh? (3.2)
where,
h = lag distance,
Co = nugget variance > 0,
wW = slope at origin,
a = real number

The power model is called linear model when “a” equals to one. Fig. 3.3 shows

the example of power model.

1(h)

Co

Distance
Figure 3.3: Example of Power Model.

(i1) Spherical Model

Based on the behavior at the origin and the presence of sill in the
increasing of variogram values, the spherical model is called transitional model. Some
other models that are defined as transitional model are exponential model and Gaussian

model. This model is described by the following formula:
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C,+C, {1.5(2) —O.S(D)S} when h<a
a a

r(h)= (3.3)
C,+C, when h>a
where,
h = the lag distance,
Co = nugget variance > 0,
C, = structural variance > C,, and
a = range

Fig. 3.4 shows the example of Spherical model.

7(h)

Co

Distance

Figure 3.4: Example of Spherical Model.

(i) Exponential model

Exponential model is a transitional model where the transition of the
variogram value takes a longer distance comparing to other models. The equation and

definitions of the exponential model is as follows:
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C,+C, {1—exp(—n)} when h<a
a

y(h) = (3.4)
C,+C, when h>a
where,
C, = nugget value,
C, = sill value,
a =range,
h = distance

Fig. 3.5 shows the example of Exponential model.

Y(h)

Co

Distance

Figure 3.5: Example of Exponential Model.

(iv) Gaussian model

Gaussian model is a transitional model with the S-curve behavior at the

origin. The equation and definition of Gaussian model is:

h2
C, +C |1-exp(——— when h<a
=y { " az)}

(3.5)
C,+C, when h>a



15

where,
C,  =nugget value,
C, = sill value,
a = range,
h = distance

Fig. 3.6 shows the example of Gaussian model

(h)

Co

Distance

Figure 3.6: Example of Gaussian Model.

3.1.3 Krigging estimation

Kriging is a geostatistical technique for estimating attribute values at a point, over
an area, or within a volume. It is a linear-regression -technique, normally used to
interpolate rock properties between known points. There is no bias and its error variance
is minimized. In the oil field, known points are the properties obtained from wells such as
seismic and outcrop data. However, the smooth interpolation produced by kriging often
fails to incorporate small-scale heterogeneity and/or extreme values in the properties
being distributed, which are important factors in modeling. Fig. 3.7 shows the example of

krigging estimation.
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Figure 3.7: Example of krigging estimation.

From Fig. 3.7, given samples located at (Z,), where o = 1, 2, 3 and A, is the
weight of the sample 1, 2, 3. The estimates (Z;) have to be found using krigging

estimation.
Consider Zg as a linear combination of the data Z,
ZO = Z 7\«(x Za
Where: Y A, = 1'and E (Zo - Zo)? is minimum
Although, krigging estimation is very robust as it is a linear-regression technique
and it is an exact interpolator if the control point matches with a grid node, it tends to
produce smooth images of reality (like all interpolation techniques). In doing so, short

scale variability is poorly reproduced, while it underestimates extremes (high or low

values).
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3.1.4 Geostatistical Simulation

Stochastic modeling, also known as conditional simulation, is a variation of
conventional kriging or cokrigging. An important advantage of the geostatistical approach to
mapping is the ability to model the spatial covariance before interpolation. Unlike krigging
estimation, conditional simulation aims to simulate the real condition of the data. In
geostatistical simulation, the study starts with the finding of spatial variability structure of
variable. And, this structure is used as conditional information together with available
samples to construct the conditional probability distribution function (pdf) at every location.
Then, the simulated values are uniformly drawn from these estimated pdf. Finally, many
realization maps are then generated. Each realization map is different from the other and
conditioned to the available samples and the previously simulated data. Fig. 3.8 shows
examples of porosity realizations, made from pdf at different locations.

Figure 3.8: Geostatistical Simulation of Porosity realization.
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3.1.4.1 Gaussian Simulation

Consider the distribution over a field A of one or more attribute(s) z(u),ue A.

Geostatistical simulation makes the alternatives, which are equally probable and high-

resolution models of the spatial distribution of z(u). To implement Sequential Gaussian

Simulation, some related algorithms, which are normal score transform, checking for
bivariate normality, and Simple Kriging (Deutsch and Journel, 1992), need to be

explained.
(i) Normal Score Transform

The assumption of Gaussian Simulation states that the study variable has
to follow standard normal distribution with zero mean and unit variance. The process of
transforming original data to standard normal data is carried out using normal score

transform function.

Let Zand Y be the two data sets and their cdf (Cumulative Distribution

Function) are F,(z)andF, (y), respectively. The transform Y =¢(Z) identifies the

cumulative probabilities, which correspond to the Z and Y p-quantiles:
F (Y:)=F,(z,)=p,Vpe[0,]] (3.6)
Thus,
y=F"(F(2) (3.7)

with F,*(-) being the inverse cdf, or quantile function, of Y data set:

y, =F(p),vpe[0,1] (3.8)
In case that Y is standard normal with cdf F, (y) =G(y), the transform

G*(F, (")) is the normal score transform.
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(i1) Checking for Bivariate Normality

To perform the simulation, the bivariate cdf of any pair of va

luesY (u),Y (u+h), Vh, has to be normal. In fact, there are several ways to check
the bivariate normality of a normal score data set but the famous method is comparing the

experimental bivariate cdf of any set of data pairs {y(U,), y(U, +h),a =1,..., N(h)} with

covariance function C, (h) , which is shown as follows:

2

Prob{Y (u) <y Y(u+h)<y}—p2+iamsqu(h)exp(— Yo )do
- F 27 o 1+sing

(3.9)

Where 'y, =G™*(p) is the standard normal p-quantile and C,(h) is the covariance

function of the standard normal random function of Y (u).

However, the bivariate probability of the above equation is the non-

centered indicator covariance for the threshold y,, :
Prob{Y (u) <y, Y(u+h) <y, | =E{I@u;ip)-Iu+hip)}=p-7(hip)  (310)
Where

I(u;p) =L ifY(U)<y,,
= 0; otherwise.

y,(h; p) = the indicator variogram for the p-quantile threshold y, .
(iii) Simple Kriging

Simple Kriging uses the basic linear regression algorithm and

corresponding estimator:
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[Zi@)=m()]= X 2,@)[Z(,)-m(,)] (3.11)
where
Z(u) = the random variable model at locationu .
u, = the ndata locations.
m(u) =E {Z(u)} = the location-dependent expected value of random
variable Z(u) .
Zg (u) = the linear regression estimator, which is called Simple

Kriging.
The Simple Kriging weights 4 (u) are calculated from the following Simple

Kriging system:

> A, (WC(U,,u,)=C(u,u,),@ =1,...n (3.12)
p=1

In the Simple Kriging system, it is required that the means of m(u) and

m(u, ), =1,...,n must be known. In addition, the (n+1) by (n+1) covariance matrix
[C(ua,uﬂ),a,ﬂzo,l,...,n} with u, =u are required in conducting the Simple Kriging.

However, when the random function of Z(u) is stationary with constant meanm, and

covariance functionC(h) =C(u,u+h), Yu, Eqg. 3.11 can be reduced to:
2, )= £ 4,02+ 1- £ 26 fn (3.13)
a=1 a=1

with the Simple Kriging variance:

o2 (1)=C(0)- X 4, (u)C(u-u,) (3.14)

where o2 (u) is Simple Kriging variance.
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In a nutshell, the mean and variance of conditional probability distribution are
calculated using Simple Kriging system by which the kriged estimated values represent

the means and the Kriging variances represent the variances.

3.1.4.2 Sequential Gaussian Simulation Procedure

Sequential Gaussian Simulation is an estimation model defined under
multigaussian assumption. The conditional probability distribution functions are fully
characterized by their means and variances given by Simple Kriging System. The
estimated means and variances honor both available data and simulated data. The

procedure to execute the simulation is presented as follows:
1. Transform the data set into a standard normal score data.

2. Check for Bivariate Normality of the normal score data. The data must meet

the condition, if not, other simulation should be considered.
3. Construct variogram analysis to fit with a proper model.
4. Select at random grid node.

5. Krigging estimate is performed at selected visited node to estimate the mean

and variance.

6. Represent a simulated data from that distribution, and add the simulated data
to the data set.

7. Select another grid node at random and repeat the procedure for Simple

Kriging until all grid nodes are simulated.

8. Back transform the simulated data to the original space, and the realization
map is created.

9. Provide different random number sequences for random visited nodes and

repeat the same procedure for additional realization maps.
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In summary, Sequential Gaussian Simulation is a high performance tool to
estimate fine-scale properties distribution. Fig. 3.9 shows the flowchart of Sequential

Gaussian Simulation procedure.

Read variable (¢)

A

Normal score transform

A

Check for Bivariate Normality

IS

Variogram of variable(#)

A
Simulation block arrangement
Blocki,i=1ton

&
d

A

Select block at random

A
Solve Simple Kriging system
N(#.0%)

1 , 1

Draw simulated data from
N(x.0°)

More blocks

No

Back transform to original data

Yes ore no. of simulated data

Figure 3.9: Sequential Gaussian Simulation process.
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Geostatistical method is an effective way to estimate reservoir parameters such as
permeability, net oil thickness, and porosity. In practice, the procedure of geostatistical
estimation or simulation involves these steps of work: (1) preparing the raw data; (2)
finding variogram model; (3) generating fine-scale property distribution based on kriging

estimation or stochastic simulation.

3.2 Upscaling

Generally, geologic models created using geostatistical techniques are very huge
models. There are typically millions of cells that make up the model comprising of many
detailed features of reservoir. Moreover, studying a fine-scale reservoir model requires a
great deal of time and file management. To simulate a reservoir at a very fine resolution
is unreasonable and financially unacceptable. Thus, to reduce simulation time and cost,
the reservoir engineer coarsens the fine grid of the original geological model and assigns

new reservoir properties for the coarse grid blocks. This process is called upscaling.

Upscaling methods are expected to reduce the size of the original geological model
with minimum lost of accuracy. The values are assigned for the properties of coarse grid
blocks in such a way that the coarse grid blocks would reproduce almost the same behavior
as the fine grid blocks. Upscaling techniques can be divided into two main techniques:

analytical and numerical.
3.2.1 Analytical Techniques
Analytical techniques are the simple and easy way for averaging compared with

numerical techniques. In this study, we will describe three types of averaging: simple

averaging, composite 1-D solutions, and renormalization technique.
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3.2.1.1 Simple Averaging

In a simple averaging method, the averaging formula is not justified by reference
to an approximate flow solution. The examples of simple averaging are arithmetic and
harmonic averaging. Fig. 3.10 shows an example of finding average permeability (kli) in

one direction using arithmetic and harmonic averaging.

dl;

_— > k||

Figure 3.10: An example of simple averaging.

kl; represents the absolute permeability of the microcell in the I-direction and dI;

represents estimate of the length of the microcell in the I-direction for microcell i.

(i) Arithmetic averaging

Arithmetic averaging is equivalent to assuming that all the microcells are in

series. The Arithmetic averaging equation is shown below:

V. V.kl.
KI X —i = Yt 3.15
dl ;? di ? (3.15)
where
Kl = Upscaled absolute permeability in the I-direction

Vi = Estimated volume of the cell i
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(if) Harmonic averaging

Harmonic averaging is equivalent to assuming that all the microcells are in

parallel. The Harmonic averaging equation is shown below:

1 dl 2 dl 2
L i 3.16
Kl 2 v 2vikli (3.16)

3.2.1.2 Composite 1-D Solutions

This averaging technique is a combination between arithmetic and harmonic
averaging. There are two types of combination which are harmonic-arithmetic and
arithmetic-harmonic averaging. Fig. 3.11 shows an example of the flow direction and

microcells.

Flow Direction

v

Figure 3.11: Flow direction and microcells.

(i) Harmonic-arithmetic averaging

In this method, microcells are averaged using Harmonic averaging first in the i-

direction and then arithmetic averaging is performed in the j-direction as shown in Fig.

3.12. The equation of harmonic-arithmetic is shown below.
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Figure 3.12: Harmonic-arithmetic averaging.

(i) Arithmetic-harmonic averaging

In this method, microcells are averaged using arithmetic averaging first in the j-

direction and then harmonic averaging is performed in the i-direction as shown in Fig.

3.13. The equation of arithmetic-harmonic is shown below.

1 (3.18)

kij

Kl
- ki | ko ks | ks -

Figure 3.13: Arithmetic-harmonic averaging.
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3.2.1.3 Renormalization

The renormalization® method considers adjacent blocks as an equivalent resistor
network assuming that pressure along the boundaries perpendicular to the flow direction
are constant. Then, the equivalent resistor between the midpoints of the edges is equal to
1/K for a block of permeability K. This is equivalent to two resistors in series of 1/ (2K)

as shown in Fig. 3.14.

12K

Figure 3.14: Permeability in resistor network.

Effective permeability is calculated in only one direction. Therefore, we can set
the end edges to uniform pressures. Fig. 3.15 shows the transformation from permeability

type to resistor type.

WEE,
K Ea LAk N,
- 12K,
Pl PE O~
- E- e

P, and P, are constant.

Figure 3.15: Permeability in resistor network.



The dead end branches are trimmed off and joined together. Fig 3.16 shows a

sketch of an equivalent resistor network.

W (11K, 1K)

1/ (2Ky) 1 (2K,)
e Y K 1K) "

Py < F = Fa
IR UK

U (2Ks) e 1/ (2K)
1% (1K1K

Figure 3.16: New equivalent resistor network.
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From Fig. 3.16, this network may be simplified by use of the star-triangle

transformation to give a circuit of resistors in series and parallel as depicted in Fig. 3.17.

Ne— &N

. — hﬁr;
¥

Figure 3.17: Star-triangle transformed equivalent resistor network.
where

a=U[AK+Ks)], b=1(AKY), c=%UK+1/K,), d=1/(4Ky)
e = U[AKAKD], ~  f =1/(4Ks), 9= %(UKs+1Ks),  h=1/(4Ks)

This circuit is equivalent to Fig 3.18.
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B

R

C
Figure 3.18: Transformed equivalent resistor network.

where
B=3/4[(K;1+K2)/K1K3], C=3/4[(K3+K4)/K5K,]

The effective permeability of the four permeabilities is then

f(K) = 4(K;+K3)(Ko+Ky) [KoKa (K +K3) + K1 Ka(Ko+Kg) X (3.19)
{[KoK4(Ky+Ka)+ K1 Ks(Ko+Ka) [[K1+ Ko+ Ka+ K]+
3(Ky+K2) (Ka+Ka) (Ki+Ks) (Ko +Ka)

3.2.2 Numerical techniques

A myriad of numerical methods has been introduced by various researchers. Most
of these methods are able to provide higher accuracy than the analytical procedures;
however, they require solving flow equations at the fine scale which is time consuming.
Numerical upscaling is usually used for complex modeling in situations where accuracy
is the most important factor. The principle is that the detailed, stochastic description is
divided into a number of sectors easy to accommodate in a flow simulator. In each of this
sector, the flow equation is solved under stationary conditions; average pressures and

inter-region flows are computed for regions.

The pressure-solver method is the most accurate technique to calculate the

permeability of a large coarse block containing many fine grid blocks. The upscaled
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permeability is determined by solving flow equations with constant pressure and no-flow
boundary conditions. This approach solves the fine-grid pressure distribution first and
then calculates the permeability using the pressure drop and the calculated flux. The
pressure-solver technique is generally limited by the size and complexity of a geologic

model.

3.3 Coarse-scale Permeability Distribution

Upscaling approaches in this study are divided into two main categories, which
are upscaling of global fine-scale geostatistical estimates (conventional upscaling) and
upscaling of local fine-scale geostatistical estimates (upscaling only at certain location to

reduce the upscaling time).

3.3.1 Coarse-scale Permeability Distribution Based on Upscaling of Global Fine-

scale Geostatistical Estimates

This is a conventional approach used to upscale reservoir properties by first
applying Geostatistics to determine fine-scale geostatistical estimate for every block and
then upscaling reservoir properties for the entire area of interest.

The process of the global upscaling can be divided into three stages. The first step
is collecting data at well locations. Fig. 3.19 sketches well locations at which
permeability is sampled. Second, we use Geostatistics to expand the sampled data to fine-
scale field estimates. Fig. 3.20 displays scale of permeability distribution obtained from
Geostatistics. Third, global upscaling of the fine-scale estimates to coarser field estimates

is performed. Fig. 3.21 shows scale of distribution after global upscaling.
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Figure 3.19: Permeabilities sampled at well locations.
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Figure 3.20: Scale of permeability distribution obtained from Geostatistics.
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Figure 3.21: Scale of permeability distribution after global upscaling.

3.3.2 Coarse-scale Permeability Distribution Based on Upscaling of Local Fine-

scale Geostatistical Estimates

In this approach, Geostatistics is applied to obtain the fine-scale geostatistical
estimate for every block. Then, we upscale the local fine-scale geostatistical estimates,
i.e., upscaling is performed only in the blocks where the wells are located. After that,
Geostatistics is applied again to ‘determine the distribution of reservoir properties at

coarse scale.

There are four steps involved in this approach. The first step is to collect data at
well locations. Fig. 3.22 shows permeability sampled at well locations. Second,
Geostatistics is applied to expand the sampled data to fine-scale field estimates. Fig. 3.23
displays scale of permeability distribution obtained from Geostatistics. Third, local
upscaling of fine-scale estimates is performed, i.e., upscaling only the blocks at which the

wells are located. Fig. 3.24 shows local upscaling. Finally, Geostatistics is used to expand
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the local upscaled estimates to full field upscaled estimates. Fig. 3.25 displays scale of

permeability obtained from Geostatistics.

Figure 3.22: Permeabilities sampled at well locations.
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Figure 3.23: Scale of permeability distribution obtained from Geostatistics.
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Figure 3.24: Local upscaling.

Figure 3.25: Scale of permeability obtained from Geostatistics.
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CHAPTER IV

RESULTS AND DISCUSSION

This chapter composes of four sections, which are generating raw data, creating
realizations, upscaling, and discussion of results. Three synthetic reservoir models were
used in this study. The first and second reservoirs were constructed based on Krigging
estimation (Reservoir | and ). The third reservoir was constructed using stochastic
simulation (Reservoir 1l1). These three reservoirs were upscaled using two different
approaches, local and global upscaling. Then, the results of both local and global
upscaling were compared based on two methods which are values of permeability and

results of reservoir simulation.
4.1 Generating raw data

In order to compare the performance of local and global upscaling techniques,
artificial data sets were generated. There are two points to consider in generating the data,
which are well spacing and value of variable of interest, which is permeability. Well
spacing in this study is approximately about 1640 feet. The permeability value is between
30 and 220 md. There are 14 permeability values sampled from 14 vertical wells in
Reservoir | and 11, located in the study ‘area of 4,020 x 4,010 ft> which can be divided into
400 x 400 blocks with the size 10 x 10 ft?. For Reservoir 11, 28 permeability data were
taken from 16 vertical wells and 3 horizontal wells, located in reservoir with an area of
2,000 x 2,000 ft* which can be divided into 200 x 200 blocks with the size 10 x 10 ft2.



Table 4.1: Permeability values at sampled locations for Reservoir 1.

X-coordinate Y-coordinate Permeability
(feet) (feet) (md)
840 3590 70
1840 3590 30
3340 3590 130
640 2730 40
1840 2750 190
2840 3090 170
1340 1980 90
2840 1990 100
840 1380 140
1840 1070 120
3340 1340 220
840 590 80
2840 590 150
3340 1050 200

Table 4.2: Permeability values at sampled locations for Reservoir 11,

X-coordinate Y-coordinate Permeability
(feet) (feet) (md)
840 3590 40
1840 3590 100
3340 3590 180
640 2730 190
1840 2750 50
2840 3090 60
1340 1980 120
2840 1990 100
840 1380 190
1840 1070 30
3340 1340 160
840 590 110
2840 590 130
3340 1050 170
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Table 4.3: Permeability values at sampled locations for Reservoir Ill.

X-coordinate Y-coordinate Permeability
(feet) (feet) (md)
160 250 112
270 720 128
330 1260 115
340 1260 118
350 1260 121
360 1260 124
230 1780 83
480 320 118
490 330 120
500 340 122
510 350 124
540 1640 102
760 720 138
740 1280 142
860 180 96
990 1100 150
960 1650 108
1230 430 106
1300 900 132
1310 1520 126
1440 1290 136
1690 320 78
1620 900 106
1620 920 108
1620 940 110
1620 960 112
1780 1780 100
1940 1250 95

Tables 4.1, 4.2, and 4.3 show permeability values at sampled locations for
Reservoir I, II, and 111 respectively. Fig. 4.1 shows the location map of the permeability
data for Reservoir I and Il while Fig. 4.2 shows the location map of the permeability data
for Reservoir 111,
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Figure 4.2: Location map of permeability data for Reservoir Ill.
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As shown in Fig. 4.2, Reservoir Il has 16 vertical wells and three horizontal
wells scatter around the study area. Horizontal wells can be recognized from close data

locations.

Table 4.4 shows a statistical analysis of the permeability data for Reservoir I. The
mean of the data is 123.57, and variance and standard deviation are 3455.49 and 58.78,
respectively. The minimum and maximum values of the data are 30 and 220,
respectively. The first, second, and third quartiles are 75, 125, and 160, respectively.
Coefficient of variation, skewness, and kurtosis are 47.57, 0.03, and 1.97, respectively.
The statistics of Reservoir | show that values of the data spread from 30 to 220. The
coefficient of variation is very high indicates there are high variation in the sample. The
small skewness (0.03) close to zero and the small difference between the median (125)
and the mean (123.57) indicate that the histogram of the data is approximately

symmetric.

Table 4.5 shows a statistical analysis of the permeability data for Reservoir II.
The mean of the data is 116.43, and variance and standard deviation are 3178.57 and
56.38, respectively. The minimum and maximum values of the data are 30 and 190,
respectively. The first, second, and third quartiles are 55, 115, and 165, respectively.
Coefficient of variation, skewness, and kurtosis are 48.42, -0.13, and 1.69, respectively.
The statistics of Reservoir 1l show that values of the data spread from 30 to 190. The
coefficient of variation is very high indicates there are high variation in the sample. The
small skewness (-0.13) close to zero and the small difference between the median (115)
and the mean (116.43) indicate that the histogram of the data is approximately

symmetric.

Table 4.6 shows a statistical analysis of the permeability data for Reservoir llI.
The mean of the data is 115.35, and variance and standard deviation are 282.98 and
16.82, respectively. The minimum and maximum values of the data are 78 and 150,
respectively. The first, second, and third quartiles are 106, 116, and 124, respectively.

Coefficient of variation, skewness, and kurtosis are 14.58, -0.16, and 2.87, respectively.
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The statistics of Reservoir Il show that values of the data spread from 78 to 150. The
coefficient of variation is very high indicates there are high variation in the sample. The
small skewness (-0.16) close to zero and the small difference between the median (116.5)
and the mean (115.35) indicate that the histogram of the data is approximately

symmetric.

Table 4.4: Statistics of permeability data for Reservoir I.

Parameters Values
Mean 123.57
Variance 3455.49
Std. Dev. 58.78
Minimum 30.00
25th% 75.00
Median 125.00
75th% 160.00
Maximum 220.00
Coefficient of variation 47.57
Skewness 0.03
Kurtosis 1.97

Table 4.5: Statistics of permeability data for Reservoir I1.

Parameters Values
Mean 116.43
Variance 3178.57
Std. Dev. 56.38
Minimum 30.00
25th% 55.00
Median 115.00
75th% 165.00
Maximum 190.00
Coefficient of variation 48.42
Skewness -0.13
Kurtosis 1.69
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Table 4.6: Statistics of permeability data for Reservoir 1l1.

Parameters Values
Mean 115.35
Variance 282.98
Std. Dev. 16.82
Minimum 78.00
25th% 106.00
Median 116.50
75th% 124.00
Maximum 150.00
Coefficient of variation 14.58
Skewness -0.16
Kurtosis 2.87

4.2 Creating the realizations

This part presents the procedure for generating geological model of the
permeability. In this section, there are two different methodologies based on estimation
process in Geostatistics which are Krigging estimation for Reservoir | and Il and

Sequential Gaussian Simulation estimation for Reservoir 1.

4.2.1 Krigging estimation for Reservoir | and 11

For Reservoir | and Il, geological models based on Krigging estimation were
constructed using a program called PETREL ™

Variogram calculations of these data and variogram modeling were also
constructed using PETREL program. Since there are a few points, directional variogram
is difficult if not impossible to determine. Therefore, this study used omnidirectional

variogram which can represent variogram in all directions.
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Figure 4.3: Omnidirectional variogram for Reservoir I.

Fig. 4.3 shows the variogram values and its model for Reservoir I. The parameters
used to calculate this variogram are 321.5 feet of lag distance, 160.75 feet of lag
tolerance, 8 lags, 0 degree of direction, 90 degree of angular tolerance, and no limits of
maximum bandwidth. The solid line shown in the figure is the variogram model. Table
4.7 shows the model parameters of variogram for Reservoir | which is spherical model
with nugget of 0.00, range of 1,400 feet, and sill of 3,240.

Table 4.7: VVariogram model parameters for Reservoir 1.

Parameters Values
Model Spherical
Nugget 0.00
Range 1,400 feet

Sill 3,240
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Figure 4.4: Omnidirectional variogram for Reservoir 1l.

Fig. 4.4 shows the variogram values and its model for Reservoir Il. The
parameters used to calculate this variogram are 383.9 feet of lag distance, 191.95 feet of
lag tolerance, 8 lags, 0 degree of direction, 90 degree of angular tolerance, and no limits
of maximum bandwidth. The solid line shown in the figure is the variogram model. Table
4.8 shows the model parameters of variogram for Reservoir 11, which is spherical model
with nugget of 0.00, range of 1,510 feet, and sill of 4,080.

Table 4.8: Variogram model parameters for Reservoir 1.

Parameters Values
Model Spherical
Nugget 0.00
Range 1,510 feet

Sill 4,080

After the variogram model parameters were found, these parameters were used to
create fine-scale geostatistical model based on Krigging estimation method. Figs. 4.5 and
4.6 show the picture of geological model for Reservoir | and Il, respectively. The red
color represents high values of permeability while the blue color represents low value of
permeability. Table 4.9 and 4.10 show statistics of permeability data based on Krigging

estimation for Reservoir | and |1, respectively.
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Figure 4.5: Geological model using Krigging estimation for Reservoir I.

Table 4.9: Statistics of permeability data based on Krigging estimation for Reservoir 1.

Parameters Values
Mean 117.14
Variance 944.48
Std. Dev. 30.73
Minimum 31.21
25th% 100.04
Median 117.40
75th% 132.71
Maximum 217.52
Coefficient of variation 26.24
Skewness 0.15
Kurtosis 3.30

The statistics of permeability data based on Krigging estimation show that the
data was smoothed by Krigging estimation. The variance reduces from 3455.49 down to
944.48 and Standard deviation from 58.78 to 30.73.
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Table 4.10: Statistics of permeability data based on Krigging estimation for Reservoir 11,

Parameters Values
Mean 111.54
Variance 1032.04
Std. Dev. 32.13
Minimum 32.09
25th% 86.87
Median 110.69
75th% 136.12
Maximum 188.71
Coefficient of variation 28.80
Skewness 0.04
Kurtosis 2.23

The statistics of permeability data based on Krigging estimation show that the
data was smoothed by Krigging estimation. The variance reduces from 3178.57 down to
1032.04 and Standard deviation from 56.38 to 32.13.
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4.2.2 Sequential Gaussian Simulation estimation for Reservoir 111

The simulation process can be divided into 2 steps, which are finding the spatial
variability structure of permeability variable (known as variogram model) and conducting
the simulation. The first step, constructing the variogram model, is executed by Variowin
computer program, which is a good graphic display computer program that can show
analysts how fit of a model in comparison with the calculated variogram values. The
second step which is performing the Sequential Gaussian Simulation is implemented by

GSLIB program.

4.2.2.1 Constructing the variogram model

To perform the Sequential Gaussian Simulation, the sample values have to be
transformed to normal score data before further analysis due to its assumption of
multigaussian distribution. In this study, the data were transformed using GSLIB

program. The normal score data are presented in Table 4.11.
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Table 4.11: Permeability values at sampled locations and normal score values.

X Y
coordinate | coordinate | Permeability Normal score

(Feet) (Feet) values values
160 250 112 -0.1347
270 720 128 0.8544
330 1260 115 -0.0448
340 1260 118 0.1347
350 1260 ple 2] 0.3186
360 1260 124 0.5142
230 1780 83 -1.6112
480 320 118 0.0448
490 330 120 0.2257
500 340 122 0.4144
510 350 124 0.6193
540 1640 102 -0.8544
760 720 138 1.3452
740 1280 142 1.6112
860 180 96 -1.1503
990 1100 150 2.1002
960 1650 108 -0.4144
1230 430 106 -0.6193
1300 900 132 0.9915
1310 1520 126 0.7318
1440 1290 136 1.1503
1690 320 78 -2.1002
1620 900 106 -0.7318
1620 920 108 -0.5142
1620 940 110 -0.3186
1620 960 112 -0.2257
1780 1780 100 -0.9915
1940 1250 95 -1.3452

Table 4.12 shows the statistics of the normal score data, which were transformed
from the original permeability data. The new data have a mean of zero and variance and
standard deviation of one, which are the characteristics of standard normal distribution.
The minimum and maximum values are -2.1 and 2.1, respectively. The first, second, and
third quartiles are -0.732, 0.000, and 0.619, respectively. Coefficient of variation,
skewness, and kurtosis are 0, 0, and 2.601, respectively.
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Table 4.12: Statistical analysis of the normal score data.

Parameters Values
Mean 0.00
Variance 1.00
Std. Dev. 1.00
Minimum -2.10
25th% -0.73
Median 0.00
75th% 0.62
Maximum 2.10
Coefficient of variation 0.00
Skewness 0.00
Kurtosis 2.60

After the normal score data were prepared, variogram calculations of these data
and a variogram modeling were performed using the Variowin program. Fig. 4.7
illustrates the plot of the experimental variogram values at difference distances and its

model.
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Figure 4.7: Omnidirectional variogram and its variogram model for normal score
data.
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The parameters used to calculate this variogram plot are 400 feet of lag spacing,
200 feet of lag tolerance, 6 lags, O degree of direction, 90 degree of angular tolerance, and
no limits of maximum bandwidth. The numbers shown near the black dots are the
number of pairs that were used in the calculation for each lag distance and the black solid
line is the variogram model. Table 4.13 shows the model parameters of variogram, which
are spherical model with nugget of 0.02, range of 548 feet, and sill of 0.98. Sequential
Gaussian Simulation technique was used to generate 60 realizations using variogram

model obtained previously.

Table 4.13: Variogram model parameters of normal score data.

Parameters Values
Model Spherical
Nugget 0.02
Range 548 feet

Sill 0.98

The variogram model for Reservoir Il exhibits a small nugget effect, with the
nugget value of 0.02 which is approximately 2 percent of the sill value. The normal score
permeability data yields a correlation distance of 548 feet, defined within the range
distance and representing all directions. The sill value (0.98) almost equals to the normal
score permeability data variance (1.00). In overall, this variogram model represents the
spatial variability structure of the transformed permeability data, and it will be used as

conditioning information in the simulation process.

Variogram calculation is an important step because the accuracy of the estimated
values or realizations mostly depends on the variogram model. Hence, many variogram

models were tried when fitting the variogram plot to find the best fit model. After a
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variogram model is found, there is a condition that the data set has to meet the bivariate
normal distribution before conducting Sequential Gaussian Simulation.

4.2.2.2 Checking for Bivariate Normality

The check for bivariate normality can be carried out by comparing the theoretical
variogram of Bivariate Gaussian model with experimental indicator variogram at several
cut-off values, such as second quartile, median, and third quartile. In this study, the
median was chosen to be the cut-off value to examine the Bivariate Normality around the
average of data set. In the checking process, the experimental indicator variogram
corresponding to a specific cut-off, median cut-off in this case was compared to the
theoretical variogram calculated from Eq. 3.9. The procedure for this check can be
elaborated as follows:
1. Calculating an experimental indicator variogram at median cut-off, which is
116.5 for this study.

2. Calculating the theoretical indicator variogram of Bivariate Gaussian model at
median cut-off using Eq. 3.9.

3. Comparison of the two indicator variograms that are obtained from step 1 and

step 2.

In the comparison of these two variograms, some parameters for variogram
calculation were specified as'shown.in Table 4.14. These parameters were set to be the
same for both experimental and Gaussian model indicator variograms. The cut-off

porosity value is equal to median, which is 116.5.

Table 4.14: Variogram parameters used to check for Bivariate Normality.

Parameters Values
Number of lag 40

Lag spacing 100
Median cut-off 116.5
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Fig. 4.8 shows the experimental and Gaussian model indicator variograms
corresponding to the second quartile, which is the median. As seen in the figure, there is a
good correspondence between experimental indicator variogram at median cut-off and
theoretical indicator variogram of Bivariate Gaussian model. This means that Sequential

Gaussian Simulation can be used for this data set.
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Figure 4.8: Experimental Indicator variogram and Gaussian model-derived indicator

variogram at median cut-off.

4.2.2.3 Sequential Gaussian Simulation

Sequential Gaussian Simulation can generate many realizations at equal
probability from the same data set. The probability distribution (ccdf) of the randomly
visited node is constructed by Simple Kriging process, conditioned to the original data
and previously simulated data. Then, the realization at the visited node is generated using
the random number generator and the constructed ccdf. In practice, several realizations
are generated to examine the spatial variability structure of a data set. The number of
realizations generated in this study is sixty. In this study, these realization maps were
generated by Sequential Gaussian Simulation available in GSLIB program. Fig. 4.9 to
4.16 shows the 60 realization maps of permeability data for Reservoir IlI.
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Figure 4.9: Permeability distribution for realizations 1-8.
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Figure 4.11: Permeability distribution for realizations 17-24.
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Figure 4.12: Permeability distribution for realizations 25-32.
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Figure 4.13: Permeability distribution for realizations 33-40.
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Figure 4.14: Permeability distribution for realizations 41-48.
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Figure 4.15: Permeability distribution for realizations 49-56.
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Figure 4.16: Permeability distribution for realizations 57-60.

4.3 Creating Coarse-Scale Permeability Distribution

Based on the previous study of Tang® which shows that Harmonic-Arithmetic
averaging is better than Arithmetic-Harmonic averaging, all realizations in this study
were upscaled using Harmonic-Arithmetic average. Moreover, upscaling was performed
only in the horizontal direction called aerial upscaling. There are two different upscaling
approaches in this work: global and local upscaling. Global upscaling is a conventional
method to upscale fine-scale property while local upscaling is introduced in this study to
speed up the computation time. To check the effectiveness of the new procedure, three

reservoir models (Reservoir I, 11, and I11) were used.
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4.3.1 Coarse-Scale Permeability Distribution Based on Global Upscaling

This upscaling approach is conventionally used to upscale fine-scale geological
model because it is simple and straight forward. However, it is time consuming because
all the data in fine-scale geological model have to be upscaled. In this approach,
upscaling is performed for all fine-scale grid blocks of which permeabilities are generated
by geostatistical methods. In this study, permeability distribution was generated using

Krigging and Sequential Gaussian Simulation.

4.3.1.1 Based on Global upscaling and Krigging

Global upscaling was conducted for fine-scale permeability distributions of
Reservoir | and Il, which were generated by Krigging. Figs. 4.17 and 4.18 show the
distribution of coarse-scale permeabilities that were globally upscaled for Reservoir | and
Il, respectively. The upscaling was performed at the ratio of 4:1, meaning that the
upscaling was performed from the original dimension of 400 x 400 to 100 x 100.

Comparing the coarse-scale permeability shown in Fig. 4.17 and Fig. 4.18 with
the fine-scale permeability distribution shown in Fig 4.5 and Fig. 4.6 for Reservoir | and
Il, respectively, we can see that there are the similarities of permeability distribution

before and after global upscaling.
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Figure 4.17: Permeability distribution for Reservoir | based on global upscaling.
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Figure 4.18: Permeability distribution for Reservoir Il based on global upscaling.



62

4.3.1.2 Based on Global upscaling and Sequential Gaussian Simulation

Global upscaling was also applied to fine-scale permeability distribution of
Reservoir Il which was generated by Sequential Gaussian Simulation. Figs. 4.19 to 4.26
show the 60 globally upscaled realization maps of permeability data for Reservoir IlI.
The upscaling was performed at the ratio of 2:1, meaning that the upscaling was
performed from the original dimension of 200 x 200 to 100 x 100.

Realization 001(global) Realization 002(global)

Figure 4.19: Permeability distribution for realizations 1-6 based on global upscaling.
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Figure 4.20: Permeability distribution for realizations 7-14 based on global upscaling.
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Figure 4.21: Permeability distribution for realizations 15-22 based on global upscaling.
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Realization 023(global) Realization 024(global)

Figure 4.22: Permeability distribution for realizations 23-30 based on global upscaling.
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Realization 031(global) Realization 032(global)

Figure 4.23: Permeability distribution for realizations 31-38 based on global upscaling.
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Figure 4.24: Permeability distribution for realizations 39-46 based on global upscaling.
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Realization 047(global) Realization 048(global)

Figure 4.25: Permeability distribution for realizations 47-54 based on global upscaling.
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Realization 055(global) Realization 056(global)

e

Figure 4.26: Permeability distribution for realizations 55-60 based on global upscaling.

There are many differences among these 60 globally upscaled realizations
because Sequential Gaussian Simulation generates the probability distribution at
randomly visited node. However, all realizations are equally probable in representing the

actual permeability distribution.



4.3.2 Coarse Scale Permeability Distribution Based on Local Upscaling

The procedure of determining coarse scale permeability distribution based on
local upscaling is introduced in order to reduce computational time. The first step is the
same as global upscaling, that is, to determine the spatial distribution of permeability
using Krigging. The next step is to determine the permeabilities for the coarse blocks at

data locations.

4.3.2.1 Based on Local Upscaling and Krigging

Local upscaling was performed for Reservoir | and IlI, of which fine-scale
permeability distributions were generated by Krigging method. Upscaling was performed

to upscale 4 fine-scale blocks to 1 coarse block. Tables 4.15 and 4.16 show the upscaled

estimates of local upscaling for Reservoir | and I1, respectively.

Table 4.15: Value of locally upscaled permeability for Reservoir I.

Well number Permeability Locally upscaled permeability
(md) (md)
1 70 69.966
2 30 32.358
3 130 130.020
4 40 41.282
5 190 188.710
6 170 169.040
7 90 91.022
8 100 101.040
9 140 139.090
10 120 119.960
11 220 218.510
12 80 80.646
13 150 149.660
14 200 199.240
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Table 4.16: Value of locally upscaled permeability for Reservoir Il.

Well number | Permeability Locally upscaled permeability
(md) (md)
1 40 41.798
2 100 99.666
3 180 178.38
4 190 188.48
5 50 50.76
6 60 61.29
7 120 119.52
8 100 100.64
9 190 188.34
10 30 31.349
11 160 159.95
12 110 109.85
13 130 130.1
14 170 169.16

Fig. 4.27 shows the variogram values and its model of the locally upscaled
permeabilities for Reservoir |. The parameter used to calculate this variogram are 332.2
feet of lag distance, 166.1 feet of lag tolerance, 8 lags, O degree of direction, 90 degree of
angular tolerance, and no limits of maximum bandwidth. Table 4.17 shows the model
parameters of variogram for Reservoir | which is spherical model with nugget of 0.00,
range of 1,600 feet, and sill of 2,820.
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Figure 4.27: Omnidirectional variogram of locally upscaled permeabilities

for Reservoir .
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Table 4.17: VVariogram model parameters of Reservoir | based on local upscaling.

Parameters Values
Model Spherical
Nugget 0.00
Range 1,600 feet

Sill 2,820

Fig. 4.28 shows the variogram values and its model of locally upscaled
permeabilities for Reservoir II. The parameter used to calculate this variogram are 340.9
feet of lag distance, 170.45 feet of lag tolerance, 8 lags, O degree of direction, 90 degree
of angular tolerance, and no limits of maximum bandwidth. Table 4.18 shows the model
parameters of variogram for Reservoir Il which is spherical model with nugget of 0.00,
range of 1,530 feet, and sill of 4,230.
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Figure 4.28: Omnidirectional variogram of locally upscaled permeabilities

for Reservoir Il.

Table 4.18: Variogram model parameters of Reservoir Il based on local upscaling.

Parameters Values
Model Spherical
Nugget 0.00
Range 1,530 feet

Sill 4,230
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After the variogram model of the upscaled permeabilities was created, Krigging
estimation was performed to determine coarse-scale permeability distribution. Figs 4.29
and 4.30 show distribution of coarse-scale permeabilities constructed from locally

upscaled permeabilities for Reservoir | and 11, respectively.
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Figure 4.29: Coarse-scale permeability distribution for Reservoir | based on local

upscaling and Krigging estimation.
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Figure 4.30: Coarse-scale permeability distribution for Reservoir 1l based on local

upscaling and Krigging estimation.
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4.3.2.2 Based on Local Upscaling and Sequential Gaussian Simulation

Local Upscaling was performed for Reservoir I1ll, of which fine-scale
permeability distribution was determined by Krigging. Krigging estimation had to be
performed to find the estimated data around data locations to do local upscaling. The 60
fine-scale geological realizations cannot be used as a reference because each one is
random. Thus, we used Krigging estimates as a reference. Fig. 4.31 represents the
variogram of permeability raw data. The parameters, used to calculate this variogram plot
are 420 feet of lag distance, 210 feet of lag tolerance, 4 lags, 0 degree of direction, 90

degree of angular tolerance, and no limits of maximum bandwidth.
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Figure 4.31: Omnidirectional variogram for Reservoir Il1.

In Fig. 4.31, the line is the variogram model. The result of fitting the variogram
model is shown in the Table 4.19.



Table 4.19: Variogram model parameters for Reservoir IlI.

Parameters Values
Model Spherical
Nugget 2.9
Range 554 feet

Sill 280
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After the variogram model parameters were found, these parameters were used to

create and estimate fine-scale geostatistic model based using Krigging estimation

method. Then, the Harmonic-Arithmetic averaging method was used to determine

permeabilities of coarse blocks at original data locations. Table 4.20 shows the upscaled

estimates of local upscaling for Reservoir I11.
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Table 4.20: Value of locally upscaled permeability for Reservoir I11.

X Y
coordinate | coordinate Permeability

(Feet) (Feet) values Locally Upscaled
160 250 112 100
270 720 128 128
330 1260 115 118
340 1260 118 118
350 1260 121 120
360 1260 124 120
230 1780 83 84
480 320 118 119
490 330 120 119
500 340 122 122
510 350 124 122
540 1640 102 101
760 720 138 138
740 1280 142 140
860 180 96 97
990 1100 150 149
960 1650 108 98
1230 430 106 119
1300 900 132 133
1310 1520 126 126
1440 1290 136 124
1690 320 78 79
1620 900 106 108
1620 920 108 110
1620 940 110 111
1620 960 112 113
1780 1780 100 101
1940 1250 95 100

These locally upscaled permeabilities would be used as the new raw data to
generate 60 realizations based on Sequential Gaussian Simulation at the scale of 100 x
100 blocks with an area of 20 x 20 ft per block.

Table 4.21 gives a statistical analysis of the locally upscaled permeability values

for Reservoir I11. The mean of the data is 116.39, and variance and standard deviation are
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276.84 and 16.64, respectively. The minimum and maximum values of the data set are 79
and 149, respectively. The first, second, and third quartiles are 101, 119, and 124,
respectively. Coefficient of variation, skewness, and kurtosis are 14.29, -0.25, and 2.86,

respectively.

Table 4.21: Statistics of locally upscaled permeability data for Reservoir I11.

Parameters Values
Mean 116.39
Variance 276.84
Std. Dev. 16.64
Minimum 79.00
25th% 101.00
Median 119.00
75th% 124.00
Maximum 149.00
Coefficient of variation 14.29
Skewness -0.25
Kurtosis 2.86

4.3.2.2.1 Constructing the variogram model

To perform the Sequential Gaussian Simulation, the sample values have to be
transformed to normal score data before further analysis due to its assumption of
multigaussian distribution. In this study, the data were transformed using GSLIB

program. The normal score data are shown in Table 4.22.
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Table 4.22: Value of normal score transforms of permeability values for Reservoir Ill.

X Y
coordinate | coordinate | Permeability Normal score
(Feet) (Feet) values values
160 250 100 -2.1002
270 720 128 -1.6112
330 1260 118 -1.3452
340 1260 118 -1.1503
350 1260 120 -0.9915
360 1260 120 -0.8544
230 1780 84 -0.7318
480 320 119 -0.6193
490 330 119 -0.5142
500 340 122 -0.4144
510 350 122 -0.3186
540 1640 101 -0.2257
760 720 138 -0.1347
740 1280 140 -0.0448
860 180 97 0.0448
990 1100 149 0.1347
960 1650 98 0.2257
1230 430 119 0.3186
1300 900 133 0.4144
1310 1520 126 0.5142
1440 1290 124 0.6193
1690 320 79 0.7318
1620 900 108 0.8544
1620 920 110 0.9915
1620 940 111 1.1503
1620 960 113 1.3452
1780 1780 101 1.6112
1940 1250 142 2.1002

Table 4.23 shows the statistics of the normal score data, which were transformed

from the original permeability data. The new data have a mean of zero and variance and

standard deviation of one, which are the characteristics of standard normal distribution.

The minimum and maximum values are -2.1 and 2.1, respectively. The first, second, and

third quartiles are -0.732, 0.000, and 0.619, respectively. Coefficient of variation,

skewness, and kurtosis are 0, 0, and 2.601, respectively.
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Table 4.23: Statistical analysis of the normal score data.

Parameters Values
Mean 0.000
Variance 1.000
Std. Dev. 1.000
Minimum -2.100
25th% -0.732
Median 0.000
75th% 0.619
Maximum 2.100
Coefficient of variation 0.000
Skewness 0.000
Kurtosis 2.601

After the normal score data were prepared, variogram calculations of these data
and variogram modeling were performed using the Variowin program. Fig. 4.32
illustrates the plot of the experimental variogram values at difference distances and its

model.
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Figure 4.32: Omnidirectional variogram plot and its variogram model for normal

score data.

The parameters used to calculate this variogram plot are 420 feet of lag spacing,
210 feet of lag tolerance, 6 lags, 0 degree of direction, 90 degree of angular tolerance, and

no limits of maximum bandwidth. In Fig. 4.32, the numbers shown near the black dots
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are the number of pairs that were used in the calculation for each lag distance, and the
black solid line is the variogram model. The result of fitting the variogram model is
shown in Table 4.24.

Table 4.24: VVariogram model parameters of normal score data.

Parameters Values
Maodel Spherical
Nugget 0.01
Range 538 feet

Sill 0.99

The variogram model exhibits a small nugget effect, with the nugget value of 0.01
which is approximately 1 percent of the sill value. The normal score permeability data
yields a correlation distance of 538 feet defined within the range distance and
representing all directions. The sill value (0.99) almost equals to the normal score
permeability data variance (1.00). In overall, this variogram model represents the spatial
variability structure of the transformed permeability data, and it would be used as the

conditioning information in the simulation process.
4.3.2.2.2 Checking for Bivariate Normality

In the comparison of the theoretical variogram of Bivariate Gaussian model with
experimental indicator variogram, some parameters for variogram calculation are

specified as shown in Table 4.25.

Table 4.25: Variogram parameters used to check for Bivariate Normality.

Parameters Values
Number of lag 40
Lag spacing 100
Cut-off 119
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The parameters used in variogram calculation were set to be the same for both
experimental and Gaussian model indicator variograms. The cut-off permeability value is

equal to median, which is 119.

Fig. 4.33 shows the experimental and Gaussian model indicator variograms
corresponding to the second quartile which is the median. As seen in the figure, there is a
good correspondence between experimental indicator variogram at median cut-off and
theoretical indicator variogram of Bivariate Gaussian model. That means Sequential

Gaussian Simulation can be used for this data set.
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Figure 4.33: Experimental Indicator variogram and Gaussian model-derived indicator

variogram at median cut-off.

4.2.2.2.3 Sequential Gaussian Simulation

After constructing the variogram, the next step is to generate permeability
distributions using Sequential Gaussian Simulation. The results of 60 realization maps of
permeability data at the scale of 100 x 100 grid blocks are shown in Figs. 4.34 through
4.41.
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Permeability distribution for realizations 1-8 based on local upscaling.
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Realization 009

Figure 4.35: Permeability distribution for realizations 9-16 based on local upscaling.
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Realization 017 Realization 018

Realization 023 Realization 024

Figure 4.36: Permeability distribution for realizations 17-24 based on local upscaling.
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Figure 4.37: Permeability distribution for realizations 25-32 based on local upscaling.
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Realization 033 Realization 034

Figure 4.38: Permeability distribution for realizations 33-40 based on local upscaling.
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Figure 4.39: Permeability distribution for realizations 41-48 based on local upscaling.
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Realization 049

Realization 051 Realization 052

Figure 4.40: Permeability distribution for realizations 49-56 based on local upscaling.



89

Realization 057 Realization 058
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Figure 4.41: Permeability distribution for realizations 57-60 based on local upscaling.

4.4 Comparing the results

There are two different approaches to determine the coarse-scale permeability
distribution which are based on global and local upscaling. The results obtained from the
two methods for these three reservoirs were compared based on their values and results of

reservoir simulation.

4.4.1 Comparison based on values of permeability

Fig. 4.42 shows coarse-scale permeability distributions based on global and local
upscaling for Reservoir I. Fig. 4.43 shows coarse-scale permeability distributions based
on global and local upscaling for Reservoir Il. Figs 4.44 and 4.45 show the relationship

between coarse scale estimates of permeability based on global and local upscaling for
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Reservoir | and Il, respectively. For Reservoir Ill, there are 60 realizations for coarse
scale permeability based on both global and local upscaling. In order to make a
comparison, all 60 realizations have to be averaged. Fig. 4.46 shows averaged
permeability values at the scale of 100 x 100 grid blocks based on global and local
upscaling. Fig. 4.47 shows the relationship between coarse-scale permeabilities based on

global and local upscaling for Reservoir Il1.
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Figure 4.42: Permeability distributions based on global and local upscaling

for Reservoir .
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Figure 4.44: The correlation between upscaled permeability values from global and local

upscaling for Reservoir I.
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Figure 4.45: The correlation between upscaled permeability values from global and local
upscaling for Reservoir I1.
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Figure 4.46: Picture of average upscaled permeability values from global and local

upscaling for Reservoir I11.
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Figure 4.47: The correlation between upscaled permeability values from global and local

upscaling for Reservoir I1I.
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As seen in Figs. 4.44, 4.45, and 4.47, a strong linear correlation between upscaled
permeability values from global and local upscaling and the correlation values are 0.996,
0.999, and 0.998 for Reservoir I, Il and Ill, respectively. They indicate a good match
between the two approaches. Moreover, the similarity between upscaled permeability
values from global and local upscaling for Reservoir I, 1l and Il can be seen on Figs.
4.42, 4.43 and 4.46, respectively.

4.4.2 Comparison based on results of reservoir simulation

Only Reservoir | and Il, for which permeability distributions were obtained via
Krigging estimation, were compared using reservoir simulation. The simulation was not
performed for Reservoir lll because there are too many realizations generated by
Sequential Gaussian Simulation. This study used a simulation program called Spider.
All properties except permeabilities, minimum bottom hole pressure, and skin factor were
assumed to be the same for both reservoir models. The simulation assumed that the
thickness of the model is 1 ft and porosity is 0.25 throughout the reservoir. The properties

that need to be entered into the reservoir simulation are:

4.4.2.1 PVT data

Table 4.26: PVT data.

Oil Gas
P By Rs viscosity Bg viscosity
(psia) (rb/stb) | (mcf/stb) (cp) (rb/mcf) (cp)

500 1.1152 0.1201 | 0.8962298 | 6.23746 0.01649
1000 1.19498 | 0.2827 | 0.6452354 | 3.02018 0.01772
1500 1.29073 | 0.4665 | 0.5124182 | 1.95571 0.01899
2000 1.39964 | 0.6655 | 0.4300265 | 1.43099 0.02031
2359 1.485 0.816 0.3876277 | 1.19611 0.02127
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4.4.2.2 Relative Permeability

Table 4.27 shows relative permeability used in simulation program for these two

reservoirs.
Table 4.27: Relative permeability.
End Corey
Saturation Point Exponent
Sorw 0.12 Krow(swc) 0.6 Now 3
Sorg 0.06 Krg(Swe) 0.93 Nog 3
Sqc 0.037 K (Sorw) 0.35 Ny 2.8
Swe 0.27 Ny 3




4.2.2.3 Well data and locations
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Six production wells were used in this study. Tables 4.28 and 4.29 show well data

and locations for Reservoir | and I, respectively. Fig. 4.48 shows the location of these

production wells.

Table 4.28: Well data and locations for Reservoir |.

Well Well X direction Y direction | Pressure | Maximum | Radius | Skin
name | completion (ft) (ft) constraint Rate (ft) Factor
(minBHP) (bbl/d)
(psia)
Pwl Vertical 1,000 1,000 500 10,000 0.3 1
Pw2 Vertical 2,000 1,520 500 10,000 0.3 1
Pw3 Vertical 3,000 1,000 500 10,000 0.3 1
Pw4 Vertical 1,000 3,000 500 10,000 0.3 1
Pw5 Vertical 2,000 2,520 500 10,000 0.3 1
Pw6 Vertical 3,000 3,000 500 10,000 0.3 1
Table 4.29: Well data and locations for Reservoir II.
Well Well X direction Y direction | Pressure | Maximum | Radius | Skin
name | completion (10 ft) (20 ft) constraint Rate (ft) Factor
(minBHP) (bbl/d)
(psia)

Pwl Vertical 1,000 1,000 700 10,000 0.3 0
Pw2 Vertical 2,000 1,520 700 10,000 0.3 0
Pw3 Vertical 3,000 1,000 700 10,000 0.3 0
Pw4 Vertical 1,000 3,000 700 10,000 0.3 0
Pw5 Vertical 2,000 2,520 700 10,000 0.3 0
Pw6 Vertical 3,000 3,000 700 10,000 0.3 0
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Figure 4.48: Locations of six production wells.

4.2.2.4 Simulation results

Reservoir simulation results on these two models can be divided into three
scenarios: fine-scale simulation, simulation based on coarse-scale permeability
distribution obtained from global upscaling, and simulation based on coarse-scale
permeability distribution obtained from local upscaling. Figs. 4.49 and 4.50 show a
comparison of oil rate for Reservoir | and 11, respectively. Figs. 4.51 and 4.52 present a
comparison of gas rate for Reservoir | and I, respectively. Figs. 4.53 and 4.54 display a
comparison of bottom hole pressure for Reservoir | and Il, respectively. These figures
show that coarse-scale permeability obtained from local upscaling provide similar results
with the coarse-scale permeability. distribution obtained from global upscaling and the

fine-scale permeability distribution.
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Figure 4.49: Oil rate obtained from simulation for Reservoir 1.
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Figure 4.50: QOil rate obtained from simulation for Reservoir II.
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Figure 4.51: Gas rate obtained from simulation for Reservoir I.
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Figure 4.52: Gas rate obtained from simulation for Reservoir II.
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Figure 4.53: Bottom hole pressure obtained from simulation for Reservoir 1.
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Figure 4.54: Bottom hole pressure obtained from simulation for Reservoir II.
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In addition, the pressure distributions after one year of production of fine-scale
permeability distribution, coarse-scale permeability distribution based on global
upscaling, and coarse-scale permeability distribution based on local upscaling for
Reservoir | are shown in Figs. 4.55, 4.56, and 4.57, respectively. These figures show that
coarse-scale permeability distribution based on local upscaling provide similar results
with coarse-scale permeability distribution based on global upscaling and the fine-scale

permeability distribution.

Press(psi) - 2: Geolfogic 2 [1]
Time: 365 Days

Figure 4.55: Pressure distribution after one year of production for fine-scale simulation

for Reservoir I.
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Figure 4.56: Pressure distribution after one year of production for simulation based on

global upscaling for Reservoir I.
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Press{psi) - 2: Geologie 2 [1]
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Figure 4.57: Pressure distribution after one year of production for simulation based on

local upscaling for Reservoir 1.

Figs. 4.58, 4.59, and 4.60 show the pressure distributions of fine-scale, globally
upscaling and locally upscaling scenarios, respectively, for Reservoir Il. These figures
show that coarse-scale permeability distribution based on local upscaling provide similar
results with coarse-scale permeability distribution based on global upscaling and the fine-

scale permeability distribution.
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Figure 4.58: Pressure distribution after one year of production for fine-scale simulation

for Reservoir 1.
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Figure 4.59: Pressure distribution after one year of production for simulation based on

global upscaling for Reservoir I1.

Press(psl) - 2: Gi
Tirme: 36!

Figure 4.60: Pressure distribution after one year of production for simulation based on

local upscaling for Reservoir II.
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Oil rate, gas rate, and bottom hole pressure obtained from simulating the two
reservoirs using globally upscaled and locally upscaled permeability values are similar to
results obtained from fine-scale simulation. In addition, the pressure distributions after
one year of production obtained from coarse-scale simulation based on global and local
upscaling are similar to the results from fine-scale simulation. This indicates that the
coarse scale permeability distribution determined from local upscaling approach is as
good as the one obtained from global upscaling approach. The benefit of determining
permeability distribution based on local upscaling is mainly a reduction in computational

time.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Tremendous number of cells is needed to describe fine scale heterogeneities of
the reservoir. Such scale cannot be accommodated by a dynamic reservoir simulator
really well. Thus, the number of grid blocks must be reduced by averaging the
reservoir properties to fit with the capability of the reservoir simulator. Coarse-scale
reservoir properties have to be determined. In addition, these coarse-scale reservoir
properties have to provide similar result to the one from fine-scale simulation. The
process of determining properties of larger grid blocks is called upscaling.
Conventional methods used to generate coarse-scale reservoir properties are
performed for the entire reservoir. Thus, the approach is global upscaling in this
study. The disadvantage of this approach is long computational time spent on
upscaling properties for the entire field. To speed up the process, this study introduces
a new method to generate coarse-scale reservoir properties based on local upscaling.
Local upscaling is applied only at data locations. Distribution of upscaled properties
are then determined using Geostatistics.

In this study, three synthetic reservoirs were used to test the effectiveness of
the proposed algorithm. In the first and second reservoir, 14 permeability values
sampled from 14 vertical wells in-4,020 x 4,010 ft* of domain area were made up.
Then, the variogram models which are spherical model with nugget of 0.00, range of
1,400 ft, and sill of 3,240 for Reservoir | and nugget of 0.00, range of 1,510 ft, and sill
of 4,080 for Reservoir 11, were determined. Krigging estimation was used to generate
fine-scale permeability distributions for both reservoirs. Then, two coarse-scale
permeability distributions were generated based on global and local upscaling for both
reservoirs. For local upscaling approach, the new variogram models which are
spherical model with nugget of 0.00, range of 1,600 ft, and sill of 2,820 for Reservoir
I and nugget of 0.00, range of 1,530 ft, and sill of 4,230 for Reservoir Il was
determined. Krigging estimation was used to generate coarse-scale permeability

distribution. In the third reservoir, 28 permeability values sampled from 16 vertical



wells and 3 horizontal wells in 2,000 x 2,000 ft? domain area were made up. Then, the
variogram model which is spherical model with nugget of 0.02, range of 548 ft, and
sill of 0.98 of normal score data were determined. Sequential Gaussian Simulation
technique was used to generate 60 realizations of fine-scale permeability distribution.
Then, 60 realizations of coarse-scale permeability distributions were computed based
on global upscaling. For local upscaling, Krigging estimation was used to generate
fine-scale permeability distribution. The new variogram model which is spherical
model with nugget of 0.01, range of 538 ft, and sill of 0.99 of normal score data for
the coarse properties was determined. Gaussian Simulation technique was then used
to generate 60 realizations of coarse-scale permeability distribution.

The coarse-scale permeability values based on global and local upscaling for
all reservoirs were compared using scatter plots. The scatter plots between coarse-
scale permeability values based on global and local upscaling for all reservoirs show
the strong correlations which are 0.996, 0.999, and 0.998 for Reservoir I, 1l and IlI,
respectively. In addition, the results of reservoir simulation from coarse-scale
permeability values based on global and local upscaling for Reservoir | and Il were
compared with the results from fine-scale simulations. However, Reservoir simulation
was not performed for Reservoir I since there are too many realizations. The results
of reservoir simulation in oil rate, gas rate, bottom hole pressure, and pressure
distribution after one year of production from coarse-scale permeability values based
on global and local upscaling for Reservoir | and Il show similar results to those
obtained from fine-scale permeability values. Local upscaling approach gives similar
results compared with results obtained from global upscaling approach. Both of them
still provide accurate results as compared with the results from fine-scale simulation.

In conclusion; coarse-scale permeability distribution based on local upscaling
is an alternative approach of upscaling. The new approach can be used as effectively
as the conventional global upscaling but consumes less computational time since
upscaling is performed only at data locations.

It is worth pointing out that the range of permeability used in this study is
between 30 and 220 md which is quite small. If there are more variations in
permeability values, the results may be different. Further investigation is thus needed.
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