CHAPTER V
DISCUSSION AND CONCLUSIONS

It is clear that too much iron is neurotoxic, although iron is essential for normal

brain functions as a cofactor of many enzymes involved in neuronal oxidative
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iron. This can also be reflected by an increase in expression of intracellular iron
storage protein ferritin (Grundkqubal et al., 1990; Kaneko ef al., 1989; McGeer et al.,
1987; Ohgami et al., 1991). These observations could suggest that the activity of

plaque-associated microglia might be tightly connected to their iron requirements.
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Therefore, modulation of intracellular iron levels may influence the involvement of

microglia in the progression of this disease.

To investigate whether iron-rich activated microglia contribute to the formation
of senile plaques as seen in AD brains, we have developed an in vitro model of iron
loading in activated microglia using a rat microglial cell line HAPI (Cheepsunthorn et

al., 2001a). We demonstrated that ition of iron (50 pg/ml) in the presence of
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the way one would assume as evidenced in AD patients and in the transgenic models
expressing mutant BAPP (Games e al., 1995). This could be because a coexisting of
MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 within the plaques (Peress
et al., 1995), in addition to the disruption of microglial scavenger function. Here, we

demonstrated for the first time that activated microglia when loaded with iron
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significantly decreased their phagocytic activity. In fact, iron could be an essential
component influencing the uptake of AB by activated microglia additional to a slow

AP-degrading nature of this cell type (Paresce et al., 1997).

Perhaps, an increase in inflammatory response in the brains of patients with
AD could be mediated by iron-rich environment and the activation of microglia as

demonstrated by our studies. For insta an increase in collagenase activity of MMP-
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CNS (Hery et al., 1995; McCarron et al., 1993). The presence of TIMP-1 in amyloid
plaques may prolong the activity of IL-1B by preventing the degradation of active IL-
13 mediated by MMP-9 and MMP-1 (Peress et al., 1995, Ito et al., 1996). In addition,
IL-1B was previously reported to play a role in regulating the synthesis of heparan

sulfate proteoglycan known to tightly associate with deposited APB. Therefore, elevated
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levels of IL-1B may be important for the aggregation of A peptides within the brains
of AD patients (Mrak et al., 1996; Sheng et al., 1996; Donahue et al., 1999). These
findings, taken together, further implicate iron-rich activated microglia as key players

in the formation of amyloid plaques and neurotoxicity induced by A peptides.

Secondly, we demonstrate that iron-rich environment diminishes the secretion

of MMP-2 in an in vitro model
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Recently, geneﬂpressmn of iron-rich actlvated microglia was analyzed using

DNA mlcroarrﬂ Wﬂm glwwﬁlqﬂﬁhose expression was

influenced by ¢ ron status were MMP-10 and MMP-1 (Cheepsunthorn et al.,
2001b) Gri a er!rﬁ quq%ﬁf‘o&lﬁle the results
obtaineﬂy microarray. As expected, we found that iron in an iron rich environment
induces cellular iron loading and further decreases the expression of MMP-10.
Interestingly, we didn’t observe such effect of iron on the expression of the MMP-1,
but it was clearly shown that iron enhances the secretion of MMP-1 from activated
microglia. This finding was in agreement with a report that levels of MMP-1 are

elevated in AD brains (Leake et al., 2000). However, very little was known about the
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role of MMP-10 in the pathogenesis of AD. Nguyen and colleagues (1993) have
reported that substrates of MMP-10 include collagen, gelatin, and proteoglycans. The
later are components of the senile plaques and have been reported to play a role in
persistence of plaques in the hippocampus of AD brain (Castillo ef al., 1997; Snow et
al., 1994}; Young et al., 1989). Therefore, a decrease in the expression of MMP-10

from iron-rich activated microglia associated with the plaques may contribute to Af
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CONCLUSIONS

. The addition of iron into the medium was sufficient to induce intracellular
accumulation of iron in activated microglia.

. Iron rich activated microglia increased the secretion of MMP-9.

. Intracellular iron loading downregulates gene expression of MMP-10 in

activated microglia.

. Intracellular iron loading h: 00 ¢ifeflon, gene expression of MMP-1, but it
induces the secretiomofMNMP-

Intracellular ironsie gteases phagocytic ity of activated microglia

¥

AUEINENINeINg
ARIANTAUNN TN



	Chapter V Discussion and Conclusion
	Conclusions


