CHAPTER 4

MATHEMATICAL MODELING AND SIMULATION OF RAPID
EXPANSION OF SUPERCRITICAL CARBON DIOXIDE

4.1 CFD modeling

N l[//

The physical aspe "b&,transport na in the macro-scale are

governed by Newton's law t'on and Qxhﬁm@lental principles of mass,
energy and species of * p?\ndmg\n{hg nature of the problem

- . "4.. o

obtaining a final numerical d scrlg‘tgg‘n 0 phenomenon in space and/or time

domain. Irrespective of the ﬁﬁﬁ.ﬁ:e otﬁ»roblem, numerical simulation
Wi, v s

involves the mampu%ftlon and' SOTUthn‘ bers, leaving behind an end

product, which is }'g?a Hection—of js in contrast to the

symbolic expression of closed form ai so'{i‘ion. The objective of
| )

investigations is to obtaig. gluantitative de&gription of the problem, in terms of

numbers. In tﬂ ﬁgﬂ %%ﬁ%ﬁjl%ﬂ%ﬁ provide readily

acceptable and ‘often the most desag:rlptlve form of solutions to a variety of
o RO HN YN AR s
involves the repetitive manipulation of thousands, or even millions, of
calculation which is feasible only with the aid of a computer.

The Numerical simulation, Computational Fluid Dynamics or CFD, is
the analysis of systems with fluid flow, heat transfer and associated phenomena
such as chemical reactions by means of computer-based simulation. The
technique is very powerful and covers a wide range of industrial and non-

industrial applications. For examples,
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e Aerodynamics of aircraft and vehicles : lift and drag

e Hydrodynamics of ships

e Power plant : combustion in IC engines and gas turbines
e Chemical process : mixing and separation

e Environmental engineering : distribution of pollutant and effluents

istudy ex1st1ng system more quickly,
ystem Furthermore, with a

to test extreme ranges of

Moreover, it is possible t

economically and thoroughly
suitable mathematical re
operating conditions, s ical or unsafe to test in a

real process.

The governing i al equati A or the rapid expansion of

?.( = ;,.,..,.J (4.1)
b) Momentunﬂquation' uler equations ’-ﬂ
y-component (
ﬁﬁﬁﬁﬂﬂnswawna .

Z-compﬂ mﬁaa@ﬂw UAIAINYIA Y

alpw) , 0 0
7+5(PVW) aZ(PW +P) 0 (4.3)
¢) Equation of Energy
| GRS e RN EL RN
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XZ
Where & = p(e+7) (4.5)
p
pr—H 4.
=4 (4.6)
orT
=—k— 4.7
g, --«k2T 4.8)
(4.9)
(4.10)
(4.11)
(4.12)
(4.13)
4.3 Numerical Approach
In this stud &"’E“"""-"E“"‘""-”"“ﬁ' ‘ ence technique and
implicit finite differe ec or Co ing the result of each

technique. An advance‘d explicit finite dlfference technique, namely the

MacComack’ﬁ%WW E]a%téjqw ﬁﬁaﬂdﬁ of both space and

time are used.®For implicit tec}zplque the current numer1cal method in

computﬂo?ﬂ Qgheﬂ?;wmrﬂﬂ dﬂﬁﬂfﬁ g algorithm

because itjallows a accuracy with large time step.

4.3.1 Explicit and Implicit Approaches: Definitions and Contrasts

To solve the problem of flow field of a fluid in a specific domain, the
technique that is used will fall into one or other of two different general

approaches namely, an explicit approach or implicit approach.
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Explicit
e Definition: each different equation contains only one unknown

and therefore can be solved explicitly for this unknown in a

straightforward manner.
e Advantage: relatively simple to set up and program.

e Disadvantage: the given Ax, At must be less than some limit

imposed by stability ce ints. In some cases At must be very
: ?wg an result in long computer

ver a given interval of t.

Lict)

et up.and program.

. vantage: Since massive a lanipulations are usually
. mp@r time per time step is
much larggr gan in the expl&g’t approach.

AULINYNINYING

4.3.2 Exﬂlicit Finite Differs.nce Method

o2 ATDASDIAMA NI, i

vector equations:

oU oE oF _,

—t—+—= (4.14)
ot oy oz

Where U, E, and F are column vectors given by
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d. At the Initial stage, atmospheric stability bed is stable.

e.  The fluid flow is assumed to be non-isothermal and compressible.

f.  The effects of inlet temperature, inlet-pressure and inlet-velocity on
rapid expansion of supercritical carbon dioxide, especially near the

nozzle area are simulated.
g.  The two-dimensional rectangular coordinate is used.

h. A calorically-perfect fluid is assumed.

4.3.2.3 Algori \Q\b&'%odel

The basic idea be

is simply to model the

given system by mea , and then to determine

its time-dependent behavi roach when combined
with the computationg er/of a higt =Spe ﬁ‘t’q- makes the simulation a

powerful tool.

In this section the termination of the velocity
profile, the temperature and pres: id expansion of supercritical
carbon dioxide, especially ne ; area, are presented and their
simplified flow chq@are lllustrated in Fl h 4.6. The simulation
is carried out accor ﬁ

g
1. The grid size, m?)umum time ste%;and basic properties of the flow as

i S AN 1A Y

2. Input all‘essential constant values for this algorlthm such as specific gas

3. (ﬂljﬂjﬂg sngmd w1tﬁ l’q]uytl.cl)l?-é!f tate éIOS) namely

Soave Redlich-Kwong. This is done inside a subroutine called EOS
where the initial pressure and temperature, which are, at the start,
identical at all locations inside the system, are used to calculate the

volume and, then, the gas density.
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. The initial temperature, y- and z-axis velocity, density and pressure
inside the system are input as the fluid data at time ‘t’.

. In the first iteration, parameters, i.e. temperature, y- and z-axis velocity,
density and pressure in each individual point of the system, are read. At
the boundary of the system, the velocities are set at zero. Regardless of
the position, temperature, pressure, and density are equal to the initial
TO, PO, and density are calculated through EOS, respectively.

. With the Sutherland’s law, p named the DYNVIS begins as
follows: /O

6.1 The number o&lde ‘;he
read. /
6.2 The refer \re read and applied as

2 | N
Sf@em the temperature is

used to eval S ityraccordi the Sutherland’s law.

oth in the y- and z-axis are

constant v

6.3 For each i

6.4 The tempera Viscosity attime “t’ are recorded for use in the

. In the THERMC subrouuma‘on Vil of the fluid is calculated using

_..# .---"r;--"""*“r P?fa' -

the Prandtl nuﬂber The's steps s are as fol

7.1 The numbgr o s inside tl .10 the y- and z-axis and

the requir@ iteratio
7.2 The C,/C, and Prandtl numbers are referred to as constants.

73 Thﬂmueﬂu'a m\&lmyﬁrwﬂaﬁ ‘§:h individual point

inside the system.

TR B 4 B A D60y o
7 the fuid is computed and recorded.

7.5 Then, the thermal conductivity of the fluid in every single location
at time ‘t’ is computed through the Prandtl number.

. The MacCormack’s technique is applied for calculation of the fluid

movement. The subroutine named “Mac” uses the balance of mass,
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momentum and energy to calculate various properties of the fluid such

as fluid velocity.

8.1

8.2

8.3

8.4

The number of cells inside the system both in the y- and z-axis and

the required iteration number are read.
Various constants, composed of the time step, y- and z-axis grid
size, Prandtl number, gas constant, initial velocity, reference

viscosity, C,/C,, inlet temperature and pressure, are read.
For each individual point inside the system at time °‘t’, the
characteristics of the flu @\ temperature, y- and z-axis

G

velocity, thermal e "--’- , der ressure and heat capacity,
are recalledas ——

The balax/ : \tu rgy is then calculated
through temperature, y- and z-

all locations inside the

AUEINENINYINT
RN TUUMINYAE



Enter size grid / dimension
flow properties as i
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Compute the
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Figures 4.3 Block diagram simulation of rapid expansion of supercritical

carbon dioxid by explicit finite difference technique
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Figures 4.4 Block diagram of’ ""f fputatic osity by using Sutherland’s law
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Figures 4.5 Block diagram of Equation of State
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Figures 4.6 Block diagram of MacCormack’s technique
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4.3.3 Implicit Finite Difference Method
4.3.3.1 The numerical Method

The implicit finite-difference method is widely used to solve fluid flow
problems because it allows a higher degree of accuracy with large time step.
Two momentum equations, one continuity equation, a two-dimensional energy

equation and equation of state are solved. The conventional staggered-grid

formalism is used, which means the ntum fluxes are defined at node

interfaces, whereas scalar va 1ables rature, density, and pressure

are defined at node center

N .
| P
_ﬁww Up : %E
W g [ ] -—g—— [ ]
A%
s
3 .

’*l

Figure 4.7 Control volume for scalar variables (left),

AUE INBRTHEINT

z-direction veloc1¥.(r1ght)

ARIANN I UA1INYA Y
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Continuity equation:

2 o), o) _,

a oy oz
s ol RS
U L L
) e [ N EB ° Eb ®  Pressure define
ij+1
~ . 5 Ij v define
U LJ LJ
w b P 5 E w define
) e ) e .
|-1J ij +
P P
U ] Control volume
S
Do D
= o lf =
— L
equation

le with provide

2PW) godydt =0 (4.23)

I+Ala t+At n e
J L[]

AyAz | ~y
-——(p,_, —p,ojﬂ 2 Ju V,»_I,jAZ

p,, ’,H) ‘a(p,,+p,,.)uw’ﬂo]ﬂ§
am’mhimumawmaa

2

-l/

(pi j pi, + )
—,—1—2;‘wi,jAy=Fn

. )
(pu 2;01,1—1) Wi Ap = Fz
(4.24)

_ A0
Then (p"A—tp")Asz+F,—Fw+F,,—Fz 0
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Momentum equation:

y-direction: apv) + —a—(,ov2 +p)+ 2(pvw) =0

a oy oz
L a(pw) o Bi_a
-direction; ——>+— +—= +p)=0
z-direction - ay(,ovw) az(pw p)
I 9T it 1T
LI LI L
N ij+1 i+1,j+1
o [it) o bﬂ> . s
N
=l 1t
L el
W P ij i+1,j
i-1,
-rﬁ} il
R >
U UJ
i1 +1,-1
T7E
o [1i1) o [i; e 8
v-difine w-define

Figure 4.9 Con ol volume for momentum equations

-
bl

the < rol volume with

Similarly, integrate the
provide
y-direction:

ﬂw'mmwat:mi

A 1y + jjj (ov +p)dydd+ j”%dydt 0

awﬁmﬂmﬁmn NYTAY s

z-directioh
j j j a—gtw—dtdzdy 4 f ”a%w_) dydzdt + f ]"j?lp—’f;;*—p)dzdydr =0
ws t sw t ws (4'26)
From equation (4.25)

17 222ty = (), ~ (o o
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i e

a(Lz)dydzdm ?), AzAt —pv? ), AzAt
oy

w

2
’ ]]%dydt = (pvw), AyAt — (ovw), AyAt

s

n

| ]%dydzdt =(p, - p, )AzAt = (p, — p, )AzAL

s w

1+AL
t

(sz)eAzAt = JeAt = .< A &
(ov?), Azt = 7, A

. :
" —(ps—py)Az (4.27)

Then : A s h S
N \\\
Multiply equation (4.24) By 'i&r ’\ , ati,j):
FrTRe \\
J Sy

B R R0 (429

Subtract equation (4.27) b fat .:-*“,.
0),0 —
(vp“vp)pp Yo » Y
———AyAz -
YR : (4.29)
~(J,=v,F)=~(p; -5 )z ’

AUYININTNYINT

For upwind schée: the control vol&xme and direction of veloci%are shown in

AR TUNRINEIAY

W w P e E W w P e E

Fig. 4.10 velocity for Upwind scheme
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When F, is flow rate through e-surface

For Fo >0, Ve =V
F, <o, Ve = Vit

Then J.=Fyv, =v;max [F,, 0] - v;;jmax [-F,, 0]
Fpvp, =v;jmax [F,, 0] - v;jmax [-F,, 0]

So Je - Fevp, = max [-F,, 0] (vij- vi+1;)

In the same way
Jo—=Fypvp =

Give a, = max

Then ayv,=ayv,+ T, +a p, —pE)Az (4.30)

Where a =a™

e ——

AP TAnE
oI .[Tdydzdf = (pvw), Azt - (pvw), AzAt

t sw
t+At e n

[ 1122 ey = (oo ), sy ) s

t ws

t+At e n

I] Iagpzdzdydt =(p, - p,)At = (py — pp )AVA!

t ws



Give

(ovw), AzAt = J At = F,v,At
(pVW)wAZAt = JWAI = vawAf

(pww),, AyAt =J, At = F,v, At
(pww), AyAt = J At = Fv At

_ (o), = (o))
At

MyAz+J,-J, +J,-J, ==(py, —p,)Ay (4.31)

Subtract equation (4.31) B iU 1 (4

(r,~w2)ot
At

_(Js—was)= v

(4.33)
a,, = max [F), 0]
ﬂﬁ‘iixi[ﬁ?ﬂ J9NIN mm

e q WTﬂ \f ﬂ‘?ﬂi mﬂﬂmﬂ g) 9

B = (Pz + P, )VZA}’AZ
2At

31
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Energy Equation :

%%—+—[(E +plvq, ]+ ;[(E, +pw+q.]=0

¢ r r

L L U

N

o e s g

Iv_lv ‘;l L ‘/ ® Pressure and
0 i:’j Eb . . '_ _4 temperature

1F sl v define
[::> ° “‘:‘H’"‘\ A deihne
——

\ \ cnergy equatlons

it :
Integrate the equation of energy in the olume

e ni+A1 8E, A‘. 'l-'"‘,i (/7 iy —""—I'F: o +q,
[f j'——a—t—dtdzdy+ ,t_ s rjj‘ gz)w ! ]dzdydt =0
4

FromequanouﬂyE]’JﬂElv jw E]’]ﬂ‘: (4.35)
" NN

| - thdzdy = pC.T+2 i pCT+ }Asz

ws t 2)

nj: “.a[E +p)"+‘1y]dydzdt=[(pCvTv+przv+£v2—3+pv+qyl_w]AzAt

1+

At e n p :
I ”6[(E, +gz)w+qz4]dzdydt =[(pCva+£vé1+pr+pw+q2) ]AyAt
t ws "
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Give

AyAz 1 Pij* Pin, CVi,'+CVI+IJ
ap=p,,C., —A,—“LE( i )( e K

. Y G Bl k,,, —k._
__l_[p“ Py )[ o > W jvi_l,jAZ+————————( Lo l'j)éz—

2 2 z Wy

+l_ pi.j +pi,j+l CV"J +Cw',j+l w‘,jAy—l- p,_j +pi,j—l Cvi.j +Cvi,j—| W, -_lAy
2 9 2 i 2 2 2 Y

N (ki,j+l —ki ) Ay
2 Az

- l(.——-—p i P )wf Ay + }-(Eﬁzﬁr—l)“’?;ﬂ Ay

2 2 ¢
= MVMAZ + MQP_’HL)VFUAZ

_ Mwi,jAy + '(ﬂj—"-z&’i)wi'j_lAy
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Give a, = max [-F,, 0]
a,, = max [F,, 0]
a, = max [-F,, 0]
a, = max [Fy, 0]
Then apT,, =a,+a, +a, +a, +ba +bb (4.36)

For the system of equations for two-dimensional problems, the Thomas
algorithm or the tri-diagonal matrix : i (TDMA) is a technique that is
used. The TDMA is actual ’ ne-dimensional situations,

0o
ine (’ﬁ solve multi-dimensional

but it can be applied, i

problems and is widely

The tri-diagonal ma

Consider a system of e

¢ > =5 Ci
-Podi + Da¢ - o3 I S = C,
-Ps¢2 * Ds¢s - h;.'.’ AZ = Cs

> 4 DB el Ll b)) = C,

m o B LDn¢n = anﬁu ! = Cs
ﬂﬂﬁl?ﬂﬂﬂ'ﬁﬂﬁl"fﬂ'ﬁz o

¢

In the ghore e ﬁﬁ;ﬂ @ wﬁ%mﬁﬂvalues. The

general form of any single equation is

-Bid1 + Digy- 1= C (4.37)

The set of equations can be rewritten as

%y By G
b= b+ prh ) (4.382)
PR WA P | (4.38b)

D, D, " D,
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(4.38¢)

a, B C,
=@ +@+
¢n Dn ¢n+l D,, n-1 Dn

These equations can be solved by the forward elimination and back-

substitution. The forward eliminati ocess starts by moving ¢, from

equation (4.38b) substitution .38a) to give

¢, = (4.39a)
Give 4,-2 4 ro s (4.39b)
Equation (4.39a) can be wrif]
a, == - bt
=| ——— % - 4.39
¢3 (D3 = ﬂ Ay _ el / 1 ( C)
If Ay =8

i -
O ill be able to re-cast ti 4.39¢
ne will be able to re ca“;g]ua ion ( 2/&5

AN INDING ™9

Formula (4.40) ¢n now be used to eliminate ?3 gfhrom (4.38¢) a&(} procedure can

v o BRI TS o

elimination process.

For back-substitution, from the general form (4.40)
¢, =40, +C; (4.41a)
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Where A4 =[—’—-] and (= 'B’—"'—-
Dj _ﬂjA/-l j ﬂjAj—]

(4.41b,4.41¢)
The formulae can be made to apply at the boundary points J =1landj =n+l1 by

setting the following values for 4 and C’

A; =0 and C|= ¢
atloi/% 1d

equation (4.37) and aj?{ A

subsequently calculated s

Since the value of ¢;

An+l = 0 .
In order to solve a syste be arranged in form of

e values of 4; and C| are

to j = n using (4.41c).
r 1) the values for ¢ can

be obtained in rever eans of the recurrence

formula (4.41a).
For solving a s; of | egu S o-dimension problems, a
general two-dimensional d ion of the form
(4.42)
To solve the\sysem TDMA is applied along c hasén, for example north-
south (n-s), lines. The discretised e anged in the form
—a¢s+a¢ -a,p, a¢ +a¢+b (4.43)

o i i 9 BRI BT b Eqio

(4.43) is in the férm of equation (4. }7)

TN Mﬂﬁﬂfﬁ“‘lﬂﬂ NYIRY

,=a,p,+ad, +b
Along n-s direction of the chosen line can be solved for the values j=2,
3,4,.., n. The calculation is moved to the next north-south line. The sequence in
which lines are chosen is known as the sweep direction. Sweeping from west to
cast, the values of @, to the west point P are known from the calculations on

the previous line. Values of ¢, to its east, however, are unknown so the solution
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process must be iterative. At each iteration cycle ¢, is taken to have its value at
the end of the previous iteration or a given initial value at the first iteration. The

line-by-line calculation procedure is repeated several times until a converged

solution is obtained.

4.3.3.2 Assumptions used in the implicit model

For simplicity, the present model is b n the following assumptions:

Investigated system cang‘ls 1 ally non-reactive substances.
b.  The high VelOCIQ‘MﬂUI:l# is {ﬁ,

part of the bed s, |
Investigated.b/ d'i C)(}mdnzﬂw
-.. -2 4 ¢

oric stability bed is stable.

from nozzle at the central

ﬂ

_—

o o
=
=3
(¢]
—
=
=
o

- o
- -
oo =
o o
& B
5 E
QQ-
n =
Oo

¢ implicit moddl_]for determination of the
velocity profile e and ré’bs'ure ofile of rapid expansion of
supercritical soﬂ E\J;E'f ﬁﬁv ’11ﬂxﬁ are presented and
their si éhﬁed ﬂow charts are 1llu§rated in Figutes 4.12 and Figures 4.13. The

W earillont icbontinphodte Mitohidgeps! | £ £

1. The grid size, maximum time step and basic properties of the flow as

=
The simulationéaigorithfri of

simulati

well as the required iteration and interval number are specified.

2. Input all essential constant values for this algorithm, such as specific

gas constant for CO, and C,/C,.
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Calculate the density of fluid with the Equation of State (EOS),
namely Soave Redlich-Kwong. This is done inside a subroutine called
EOS where the initial pressure and temperature, which are, at the
start, identical at all locations inside the system, are used to calculate
the volume and, then, the gas density.

The initial temperature, y- and z-axis velocity, density and pressure

inside the system are input as the fluid data at time ‘t’.

Solve the set of equatlo in the temperature, y- and z-axis
velocity, thermal c pressure and heat capacity for
each individual point in s1d¢ the:ﬂ,at time ‘t+At’ by the loop

individual point of the

oflﬁle system, the velocities

S, respectively.

p 1 ¢ nductivity are calculated in the

l?i named the HEAT follows:
The W system both in the y-
j and z-axis are read. j_rj

AU ¥ TR T = o e
T AEZ L aD v ety

e The thermal conductivity of the fluid in every single

location at time ‘t’ is computed through the Prandtl
number and viscosity at time ‘t’.
5.3 Regardless of the position, temperature, pressure, heat

capacity and density are saved for the first iteration in the loop
named MEM.
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5.4  Calculate the values of Coefficient on boundary.

5.5  Solve the momentum equations to obtain the momentum
distribution by the loop named MOMENTUM.

5.6 Solve the continuity equation to obtain the density distribution
by the loop named CON_DEN.

5.7 For new iteration, the heat capacity and thermal conductivity

are calculated in the loop named the HEAT again.

5.8  Solve the ener ion to obtain the temperature
distribution %NERGY
For ne@ t@ p

5.9 ©ssure is saved in the loop named
ith the new values that

5.10 uation of state, namely
obtain the pressure
5.11 and the pressure that

for sdure is repeated several
tlmesﬂml a converged solution is olﬂmed

A ..
SR ST TR

7a e final results are write at the end of program in the loop named
SAVEDATA.




40

G}EGIN MAIN )

qax i Enter size grid, maximum !
CmaX — feeeeeeeee 4 time step / dimension flow |
“f" | _ properties as (cmax,qmax) |

delz dely delt
PrR vo visef |
Gram 5\_ N/ /77 S '

1
initial value / !
i . a . . 1
mension flow properties as

i

1

AN gmax) constant

"N

nter boundary value / 5
- dimension flow properties as |
¥ '
1 (cmax,qmax) :

1

aut put data, i.e. vy, vz,
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ARR W INYIaY

Figures 4.12 Block diagram simulation of rapid expansion of supercritical

carbon dioxide by implicit finite difference technique
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(BEGIN FLUID)

nd density are saved for the first
ation

E Enter values / dimension flow é
temp.. vy | properties as (cmax,qmax) constant at !
density vz /777777 i the boundary i
pressure B 3 8 S S B

4 i Regardless of the position, calculate :
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_________________________________

PRESSURE --==3r7--1  Calculate the pressure distribution %

___?__w a:}fyf!}ezsult with the previous I
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FUURTINENEY '
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Figures 4.13 Block diagram of Fluid loop in implicit finite difference

o),

NO

technique
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