CHAPTER II
CONFINEMENT AND REINFORCEMENT BUCKLING MODELS

2.1 Confinement Model with Consideration of Concrete core-Transverse Steel
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2.1.1 The Concept
Figure 2.1 shows a RC column with hoops spaced vertically at spacing of s.

Under a uniform axial strain, the core would expand uniformly [as shown in dashed

lines in Figure 2.1(b)] if there were no hoops confining the core. The lateral expansion
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of the core stretches and bends the hoop, resulting in interactive line forces at the
hoop positions as depicted in Figures 2.2(a) and 2.2(b). The interactive forces produce
a non-linear confining pressure along the height as shown in Figure 2.3. Results from
three-dimensional finite element analyses of an elastic concrete core bound by elastic
hoops are used to obtain simple relations fdr the variation of confining stress over the
vertical hoop spacing and the confining force transferred by the perimeter ties. The

equilibrium condition is invoked o effective stress resultant in the concrete and

the axial forces in the ties. / a compatibility is employed to ensure

compatitility of the conc a global sense. The condition of
e
zero volumetric W % which the concrete attains the

Pantazopoulou (1996 influence of confinement is

then obtained using t4 et al. (1928)].
2.1.2 Relationships be 7_ 1d ses and Strains
d
As mentioned earlier, lﬁzﬂm a ial strain, the concrete core expands

strength of concrete under

triaxial stress state i l olves a three-dlmenslonal (3-D) problem, which is difficult to
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In ordelg{o transform the comiplicated 3-Deproblem to a 2-D/one, a 3-D finite

clemef el (e dgeiine e b vleaphins skl afthe hoop teve,

Ohe; thE average effective confining stress, oz, the interactive line forces acting on

the hoop as well as the area strains averaged over the cross-sectional area at the hoop
level, &4, and the average area strain over the column height, & .. First, the

effective confining stress at any level z is defined [Mau et al. (1998)]:

GW(Z)=%L% (2.1)



where oy and o are the stresses in the x and y directions, respectively, and 4 is the
area of the concrete core. In this study, compressive stresses and strains are assigned

negative values.

In the finite element modeling, the concrete core is modeled using 8-node
brick elements, while the perimeter tie is discretized as beam elements. In addition,

rigid truss elements are used to ‘ tive forces between the concrete

core and the perimeter ties. 3-D finite element analyses

shown in Figures 2.4(a) \ﬁms are obtained by simple
regression: 7 |

(2.2)
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in which s and B, are, respecti lear distance between

the two longitudinal ? “the : | i" Figure 2.2(b)], and v,

is the equivalent Poisson’

of expansion of concrete %h can be determmed from the following relation:
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t10, dix A _@rrespondmg to the level

where ¢ is the applied axial strain, A denotes the incremental quantity, and E, is the
residual elastic stiffness in the concrete core which can be expressed in terms of the

initial stiffness, E,; and the average area strain as follows [Imran and Pantazopoulou

(1996)]:
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2.1.3 Deformation of Concrete under Triaxial Stress State

Pantazopoulou and Mills (1995) illustrated that damage in concrete due to
microcracking was manifested oy th etric expansion of the material. The rate

\‘\\, / it of initial volume) represents the

t expansion, usually imposed

ofound influence on the internal stress state
'\

of volume change (i.e. volui
volumetric strain, &,.
through the bound
of the material.

. J. . \ . ’
Under a triaxi the*vo Tic strain, &, of the concrete core is

given by the followisi Imfan and' Pantazopo ou (1996)]:

(@) Prior to cracking in
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where &£™ and v are thie axial strain that induces crac in the lateral direction and
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in which & is the cracking strain of concrete in direct tension.

(b) After cracking, £, < &'™
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where ¢, is the strain at peak confined strength. Subtracting Eq. (2.6) or (2.8) by the

applied axial strain, &, results in the average area strain of the concrete core, & n.. As

suggested by Imran and Pantazo : 1996), ., is related to the peak confined
compressive strength, £, '} //
- .
;(‘hﬁﬁﬂ'{
= g @

(2.10)
where f,, and &, are nconfir compressive strength and the corresponding
strain, respectively. The latte can e ] ited from the following equation

# s F
[Razvi and Saatcioglu (1999)]:"
(2.11)

, ¢ o . O/ .
in which £ mﬂ gmtﬁmﬂoﬁmﬁe by Sheikh and
Uzumeri (19&@ and Saatcioglu (1999) that the strength of the concrete
PRCY #r et e Tioal s e
/., the qal cfm s to 0.85' is'stady.

2.1.4 Equilibrium Condition

The global equilibrium of the concrete-tie system can be readily determined
from simple statics of the free body shown in Figure 2.5 in which F}, and F. are the

tensile forces in each perimeter tie and crosstie, respectively, and F, is the tensile
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force in the concrete cover. The global equilibrium equation can be expressed as

follows:
N
2F, + ) F,+2F, =0 B, (2.12)
i=1
in which N and B, are the number sstie legs in each direction and the width of
the concrete core measured ' ter of perimeter tie, respectively. The
tensile force in the concrete :

(2.13)

\ \‘._\- e concrete cover. The tensile
] .\' ening relation as a function of

Figure 2.6. The critical crack

stress, oy, can be det

the crack width w

(2.14)

where f; is the tensile ﬁen h and G acture ene@ of concrete.
[ 1

meﬁ:ﬂ%%% o?‘*ﬂe’}ﬁ%ounded by perimeter

hoop with ad crosstie indicated that the tensxon in crosstie leg is about 1.7
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(2.12) to

1«;:(0-,, . B) (2.15)

(2.16)
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After concrete cover spalling, the tension in the concrete cover vanishes and the axial
force in the perimeter ties and crossties can be determined from the above equations

by setting F; equal to zero.

2.1.5 Modeling of Hoop

er bending, the interactive transverse

forces between the concrete core ar ary non-linearly along the tie leg,
T e anmssue intersections (if crossties

are provided). Prediction gfthc tf: ' ctive force distribution in the tie leg is
a very complicated probiém« Aliematively, the t of the interactive transverse
forces is assumed resultant forces acting at
distances kL from

| : .7. For ties with Young’s
. = ;
modulus, E;, second mgme i ,‘ 2 orted length, L,, the parameter k

D€ I ainedagainstrotation.'Ihe
assumption of fixed“eénd supports of the hoop is ed by 3-D finite element

solutions of tﬁ re- sﬁz w?ﬂ;ﬂﬁﬂﬁzmems developed at
the joints of cﬁi}l’h eled as rotationally
restrained supports However, for simplicity, thesfixed-end suppoft conditions are

oSS Tt micl B et

Figure 2.8 shows the free-body diagram of part of the perimeter tie.

Neglecting bond between the concrete and hoop after the covering spalls off, and
considering equilibrium and symmetry of the hoop under the action of the interactive
transverse forces and hoop tension, one may readily show that the resultant of the
interactive transverse forces must balance the axial force in the hoop leg in the

direction considered. Furthermore, the first two plastic hinges are formed at the fixed
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ends. The value of the plastic moment, M,, is influenced by the presence of the axial
force, which can be approximated by the following equation [Chen and Sohal ( 1995)]:

d: z F,
M, =?"fy,, co{;p—:] | (2.17)

where dj, £, and F), are the hoop diameter, the yield strength and the yielding force of

the perimeter hoop, respectiv. cly. he 1] ilure mechanism is attained when the
final plastic hinge forms at mid-sps : igure 2.8. Before reaching flexural

failure mechanism, the Bending d foati on of perimeter tie, u; can be determined

from simple struc \ _ failure mechanism is fully
| developed, the hoop and#éro \ further bent and stretched. Beyond
this stage, the bending defog / , can be determined from the
equilibrium conditiod” with gox d ration "\ cal non-linearity and can be

given by the following quation: ..ﬁ'..
ey
Nl

Poovetl L

—_—

gixaﬂ A, (2.18)

2.1.6 Compatibili =-tie Dystem ‘

I

The compatlblp ty of the concrete core and hoop 1s treated in a global sense.
Under ben m an increase in the
enclosed a:alﬂjgsﬂz try of de oxmatlon of perimeter
tie, showan'lg]-.ua as foliow: ququqa E]
N m

A, WA, 2.19)

where Ayand 4,,, are the increased areas due to bending deformation, u; and uniform
expansion of the perimeter tie, u,,, respectively; and 4, is the increase in area due to
elongation of the crosstie, u,,, in excess of that of the hoop in the same direction.

Dividing Eq. (2.19) by the undeformed core area yields the area strain of the steel
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hoop which has to be equal to that of the concrete core (at the hoop level) as the

condition of compatibility.
2.1.7 Procedure for Determining Stress-strain Relation

For a given axial strain, we first assume a trial value of the average effective
confining pressure, o, Then, the area strain of the concrete core at the level of the
08. (2.2)-(2.11). With the resultant force of the

re on the tie leg determined from

— ey
“ter tie and crosstie (if any) are
e deformation of the ties. If the

perimeter tie, &4, is determin
interactive transverse lin
equilibrium, the resulti
next computed, and

area strain of the st¢€l hoep 1s/ciffore m the aréa strain of the concrete core, then
1teration is carried chieved. These calculation
procedures are repea; : ~of zero volumetric strain is reached at which

the confined concrete aftaifis fhé peal €onfint ength. The associated confining

In reinforcéd” concrete memb : bars might undergo high

compressive strain ang subJect to buckling. Because of'the geometrical and material

nonlinearities, thc average‘éompressiv ﬁ(mnﬁﬁomemem decreases
in the post-b u g’g Mﬂ r tension, no lateral
deformation is yduced, and hence, the average stress-strain relatianship over a finite

e VTR IR W WK IR AR e

relationship

It has been realized that the onset of buckling of longitudinal reinforcement
inside reinforced concrete members is different from buckling of bare reinforcing bars
because of the existence of the transverse steels [Papia and Russo (1989), Suda et al.
(1996), and Suda and Masukawa (2000)]. Earlier studies by Papia, Russo and Zingone
(1988) and Dhakal and Maekawa (2002) show that the transverse steels have major
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influence on the initiation of buckling of longitudinal reinforcement inside a
reinforced concrete column. In order to model the buckling of longitudinal
reinforcement, the average stress-strain relationship proposed by Dhakal (2000) will
be used in this study. A typical stress-strain relationship is shown in Figure 2.10.
Based on the results from finite element analyses, the average stress-strain
relationship for a reinforcement subjected to compressive loading can be determined
from the following equations [Dhakal (2000)]:

a=a‘/ AN or  &£>sg (2:21)
\ \ o e current strain, £, and the

\ \ ' are the yielding stress and

Which defines the point after which a

where o, and o ar
strain at intermediate
of the reinforcement. The
coordinates of the interm

constant softening stiffne 0.02F,, are given by

57 (2.22)
&

Y — =0/ 1.1-0.016,/-=— o’ >0%§ (2.23)
QW’W&W P13’ u‘%ﬁ MUY
in whlch L and D are the unsupported length and diameter of the reinforcement,

respectively. The coefficient a ranges from 0.75 (for an elasto-plastic material) to 1

(for a material with substantial strain hardening).

The unsupported length, L, can be determined by considering the influence of

transverse steel arrangement. For a given transverse steel arrangement, the equivalent
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stiffness of the transverse steel system against buckling can be calculated from the

following equation :

k,, = . 2.24
" EE) o

where

(2.25)

(2.26)

In Eq. (2.25), E,, A4, afd Iff 2 0ss-sectional area and length of
transverse steel, respectiyel ile7; 18
‘% v

direction and #; is the number of dongitudinal reinforcements prone to simultaneous

°t of tie legs along the buckling

buckling. 7 denotes the mome o -f; nertia of the reinforcement.

.“'. ‘ he buckling mode, n. By

using the value of w_:;.a eC "’T” able 2.1, the unsupported
length, L, can be calculated from the following equation®”

qugIngminens ..,
AR IUNMINGA Y

Table 2.1_ 107
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Figure 2 2 Interactive confining forces at hoop level: (a) acting on concrete
(b) acting on perimeter tie
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Figure 2.4 Results from finite element analyses
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Figure 2.6 Tensile strength-crack width relationship
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Figure 2.10 Typical stress-strain relation for reinforcement under compression
[Dhakal (2000)]
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Table 2.1 Required equivalent stiffness for different buckling modes [Dhakal (2000)]

Mode, n

1

2

3

4

5

6

7

8

ke

0.75

0.1649

0.0976

0.0448

0.0084

0.0063

0.0037

0.0031
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