CHAPTER II

Preliminaries

In this chapter, we give some basic knowledges in probability which will be used in our work. The proof is omited but can be found in [4].

2.1 Probability space and Random variables

A probability space is a measure space (Ω, \mathcal{F}, P) for which $P(\Omega)=1$. The measure P is called a probability measure. The set Ω will be referred to as a sample space and its elements are ealled points or elementary events. The elements of \mathcal{F} are called events. For any event A, the value $P(A)$ is called the probability of A 。

Let (Ω, \mathcal{F}, P) be a probability space. A function X $: \Omega \rightarrow \mathbb{R}$ is called a random variable iffor every Borel set B in $\mathbb{R}, X^{-1}(B)$ belongs to \mathcal{F}. We shall use the notation $P(X \in \mathcal{B}$ implace of $P(G \omega \in \Omega X(\omega) \in B\})$. In the case where $B=(-\infty, a]$ or $[a, b], P(X \in B)$ is denoted by $P(X \leq a)$ or $P(a \leq X \leq b)$, respectively? Bet X be acradomovariable. Adunction $F \| \mathbb{R} \rightarrow[0,1]$ which is defined by

$$
F(x)=P(X \leq x)
$$

is called the distribution function of X.
Let X be a random variable with the distribution function F. X is said to be a discrete random variable if the image of X is countable and X is called a
continuous random variable if F can be written in the form

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

for some nonnegative integrable function f on \mathbb{R}. In this case, we say that f is the probability function of X.

Now we will give some examples of random variables.
We say that X is a normal random variable with parameter μ and σ^{2}, written as $X \sim N\left(\mu, \sigma^{2}\right)$, if its probability function is defined by

$$
(x)=\frac{1}{\sqrt{2 \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

Moreover, if $X \sim N(0,1)$ then X is said to be a standard normal random variable.

We say that X is a uniform random variable with parameter n if there exist $x_{1}, x_{2}, \ldots, x_{n}$ such that $P\left(X=x_{i}\right)=\frac{1}{n}$ for any $i=1,2, \ldots, n$ and denoted by $X \sim U(n)$.

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F} are sub σ-algebra of \mathcal{F} for all $\alpha \in \mathbb{A}$. We say that $\left\{\mathcal{F}_{\alpha} \mid \alpha \in \Lambda\right\}$ is independent if and only if for any subset
$J=\{1,2, \ldots, k\}$ of Λ,

$$
P\left(\bigcap_{m=1}^{k} A_{m}\right)=\prod_{m=1}^{k} P\left(A_{m}\right)
$$

where $A_{m} \in \mathcal{F}_{m}$ for $m=1, \ldots, k$.
Let $\mathcal{E}_{\alpha} \subseteq \mathcal{F}$ for all $\alpha \in \Lambda$. We say that $\left\{\mathcal{E}_{\alpha} \mid \alpha \in \Lambda\right\}$ is independent if and only if $\left\{\sigma\left(\mathcal{E}_{\alpha}\right) \mid \alpha \in \Lambda\right\}$ is independent where $\sigma\left(\mathcal{E}_{\alpha}\right)$ is the smallest σ-algebra with
$\mathcal{E}_{\alpha} \subseteq \sigma\left(\mathcal{E}_{\alpha}\right)$.
We say that the set of random variables $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ is independent if $\left\{\sigma\left(X_{\alpha}\right) \mid \alpha \in \Lambda\right\}$ is independent, where $\sigma(X)=\left\{X^{-1}(B) \mid B\right.$ is a Bore subset of $\mathbb{R}\}$.

Theorem 2.1 Random variables X_{1}, X_{2}, X_{n} are independent if for any Bore sets $B_{1}, B_{2}, \ldots, B_{n}$ we have

$$
\left.\left.B_{i}\right\}\right)=\prod^{n} P\left(X_{i} \in B_{i}\right)
$$

Proposition 2.2 If $X_{i j} ; i=1,2 \ldots, \ldots, j=1,2, \ldots, m_{i}$ are independent and $f_{i}: \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}$ are measurable, then $\left\{f_{i}\left(X_{i 1}, X_{i 2}, \ldots, X_{i m_{i}}\right) \quad i=1,2, \ldots, n\right\}$ is idependent.

2.3 Expectation, Variance and Conditional expectation

Let X be any random variable on a probability space (Ω, \mathcal{F}, P).
If $\int_{\Omega}|X| d P<\infty$, then we define its expected value to be

ศนย์วิทยทรัพยากร $E(X)=\int X d P_{2}$

Proposition 2.3

1. If X is a discrete random variable, then $E(X)=\sum_{x \in \operatorname{Im} \mathrm{X}} x P(X=x)$.
2. If X is a continuous random variable with probability function f, then

$$
E(X)=\int_{\mathbb{R}} x f(x) d x .
$$

Proposition 2.4 Let X and Y be random variables such that $E(|X|)<\infty$ and $E(|Y|)<\infty$ and $a, b \in R$. Then we have the followings:

1. $E(a X+b Y)=a E(X)+b E(Y)$.
2. If $X \leq Y$, then $E(X) \leq E(Y)$.
3. $|E(X)| \leq E(|X|)$.
4. If X and Y are independent, then $E(X)=E(X) E(Y)$.

Let X be a random variable winich $E\left(|X|^{k}\right)<\infty$. Then $E\left(|X|^{k}\right)$ is called the k-th moment of X about the origtn and call $E\left[(X-E(X))^{k}\right]$ the \mathbf{k}-th moment of X about the mean.

We call the second moment of X about the mean, the variance of X, denoted by $\operatorname{Var}(X)$. Then

$$
\operatorname{Var}(X)=E[X / \Delta E(X)]^{2} .
$$

We note that

1. $\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)$.
2. If $X \sim N\left(\mu, \sigma^{2}\right)$ then $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

Proposition $\left.2\right|^{5} \mathrm{aIf}_{1} X_{2},{ }_{2} X_{2}$ are independent and $E\left|X_{a}\right|<\infty$ for $i=1,2, \ldots, n$, then

2. $\operatorname{Var}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\cdots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$ for any real number a_{1}, \ldots, a_{n}.

The following inequalities are useful in our work.

1. Hölder's inequality :

$$
E(|X Y|) \leq E^{\frac{1}{p}}\left(|X|^{p}\right) E^{\frac{1}{q}}\left(|X|^{q}\right)
$$

where $0<p, q<1, \frac{1}{p}+\frac{1}{q}=1$ and $E\left(|X|^{p}\right)<\infty, E\left(|Y|^{q}\right)<\infty$.
2. Cauchy-Schwarz's inequality :

$$
E^{2}(|X Y|) \leq E\left(X^{2}\right) E\left(Y^{2}\right)
$$

where $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$.
3. Chebyshev's inequality:
where $E\left(X^{2}\right)<\infty$.
Let X be a finite expected value random variable on a probability space (Ω, \mathcal{F}, P) and \mathcal{D} be a sub σ-atgebrasof \mathcal{D}. Define a probability measure $P_{\mathcal{D}}$: $\mathcal{D} \rightarrow[0,1]$ by and sign-measure

Theorem 2.9 Let X be a random variable on probability space (Ω, \mathcal{F}, P) such that $E(|X|)<\infty$, then the followings hold for any sub σ-algebra \mathcal{D} of \mathcal{F}.

1. If X is random variable on $\left(\Omega, \mathcal{D}, P_{\mathcal{D}}\right)$, then $E^{\mathcal{D}}(X)=X$ a.s. $\left[P_{\mathcal{D}}\right]$.
2. $\quad E^{\mathcal{F}}(X)=X$ a.s. $[P]$.
3. If $\sigma(X)$ and \mathcal{D} are independent, then $E^{\mathcal{D}}(X)=E(X)$ a.s. $\left[P_{\mathcal{D}}\right]$.

Theorem 2.10 Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that $E(|X|)$ and $E(|Y|)$ are finite. Then for any sub σ-algebra \mathcal{D} of \mathcal{F} the followings hold.

1. If $X \leq Y$, then $E^{\mathcal{D}}(X) \leq E^{\mathcal{D}}(Y)$ a.s; $\left[P_{\mathcal{D}}\right]$
2. $E^{\mathcal{D}}(a X+b Y)=a E^{\mathcal{D}}(X)+b E^{\mathcal{D}}(X)$ a.s. $\left[P_{\mathcal{D}}\right]$ for any $a, b \in \mathbb{R}$.

Theorem 2.11 Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that $E(|X Y|)$ and $E(|Y|)$ are finite and $\mathcal{D}_{1}, \mathcal{D}_{2}$ be any sub σ algebra of \mathcal{F}. If X is a random variable with respect to \mathcal{P}_{1}, then

1. $E^{\mathcal{D}_{1}}(X Y)=X E^{\mathcal{D}_{1}}(Y)$ a.s. $\left[P_{\mathcal{D}_{1}}\right]$.
2. $E^{\mathcal{D}_{2}}(X Y)=E^{\mathcal{D}_{2}}\left(X E^{\mathcal{D}_{1}}(Y)\right)$ a.s. $\left[P_{\mathcal{D}_{2}}\right]$.

ศูนยวทยทรพยากร
Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{D} be a sub σ-algebpa/of \mathcal{F}. For any event A on \mathcal{F}, we defined the conditional probability of A given \mathcal{D} by

$$
P(A \mid \mathcal{D})=E^{\mathcal{D}}\left(I_{A}\right) .
$$

