CHAPTER I

INTRODUCTION

Pyrrolizidine Necine Bases

The pyrrolizidine alkaloids are a major group of alkaloids, isolated from a

range of plants. They have been isl ed in both the free and esterified forms. The
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Figure 1 General structure and pyrrolizidine examples

There have been many routes developed for the synthesis of
pyrrolizidines."I3 As the field has been thoroughly and regularly reviewed, only a

small sample is presented here.



Some pyrrolizidine alkaloids have shown effective anti-cancer activity
and one, indicine-N-oxide, has been in clinical trials. Unfortunately, all
pyrrolizidines, especially those with same unsaturation, are hepatotoxic. The
pyrrolizidine rings are oxidized to pyrroles in vivo. Ionization under physiological
conditions of hydroxy and carboxy functions that are o-to the pyrrole generates

potent electrophiles (Scheme B
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amphorogynines, C-1’ is at the carboxylic acid oxidation state (see Figure 7).
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There is an abundance of more highly hydroxylated pyrrolizidines. Casuarine (see
Figure 8) is a recently isolated example of one of these alkaloids. Subgroups with

a hydroxy methyl group at C-3 are the alexines and australines.



1. Monohydroxylated Pyrrolizidines

Unsaturated monohydroxylated pyrrolizidines
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Scheme 2 Synthesis of (-)-Supinidine



1.2 Saturated monohydroxylated pyrrolizidines
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Figure 4 (-)-Hastanecine (14)
Goti’s group has synthesized (-)-hastanecine (14) via cycloaddition of a
nitrone, which was conveniently synthesized from L-malic acid'”. The

cycloaddition of the nitrone (15) to dimethyl maleate (16) gave three
diastereoisomers (19), (18) and (17) in 4:1.5:1 ratio. Both (19) and (18) resulted



from addition of the dipolarophile to the less hindered face of the nitrone. The
major product (19) was derived from an exo-transition state and has the correct
trans-trans relative stereochemistry required for the synthesis of (-)-hastanecine.
The diastereomeric mixture was separated by chromatography, affording pure
(19). Cycloadduct (19) was easily converted to lactam (21) by isoxazolidine ring
opening with Mo(CO)s. Reductive cleavage of the isoxazolidine ring with

molybdenum hexacarbonyl gave intermediate 1,3-aminoalcohol (20) which

underwent lactamization to give lacta (21). The lactam (21) contained all

stereocenters and functionality neede -hastanecine, but it was over-
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Figure 5 Curassanecine (22)

A short total synthesis of (+/-)-curassanecine

was achieved by the
condensation of methyl oxalate with the enolate of N-acetylpyrrolidine (23) to

give o-ketoester (24). Photolysis yielded the diastereoisomeric hydroxy esters in a



1:1 ratio. After separation of the two diastereoisomers, the synthesis was

completed by reduction of the ester and the amide groups in one step (Scheme

5).
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The pyrrolidinyl cuprate from (29) afforded excellent yields of vinylation
products on reaction with (28a) or (28b). Utilization of alkylcyanocuprate reagent
(i.e. RCuCNLIi) efficiently conserves the a-(N-carbamoyl)alkyl ligand. N-Boc
deprotection and cyclization of (28a) or (28b) yielded the pyrrolizidine (32).
Effort the epoxidize (32) with either m-chloroperbenzoic acid, oxone or
peroxytrifluoroacetic acid were unsuccessful as were attempts to effect

dihydroxylation. Treatment of (32) with BF3;.OEt quantitatively afforded (33)
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4. 6-Hydroxylated Pyrrolizidines

The amphorogynines A-D? (Figure 7) are unique amongst pyrrolizidine
alkaloids, in having an additional hydroxyl only at C-6. They have been isolated
from the leaves of Amphorogyne spicata Stauffer & Hiirlimann (Santalaceae). To

our knowledge there have been no further reports of these alkaloids.

CO,Me

Figure 7

in the B-position and, theref e, 1 onized. It may be predicted that the

S, Polyhydroxylated Pyrrohz1dmes
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rﬁzﬁﬁﬁ ﬁﬁim mrglaﬁﬂ Erjtq a g“d anti-viral
agents Casuarine (43) is an effective inhibitor of glycosidase I (72% inhibition at

5 pg/ml) compared with castanosperinine (44) (84% inhibition at 5 pg/ml)
(Figure 8).
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The process established all but one of the stereocenters of casuarine. The
trans relative stereochemistry between the two benzoates is due to a favoured exo
transition state in the Diels-Alder reaction. This reaction also established the
absolute stereochemistry which was under the central of the chiral auxilary, G*.
Modelling studies indicated that one of the phenyl groups blocks one of the faces

of the enol ether in the s-trans conformation (Figure 9).
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Figure 10 1,3-Dipolar cycloaddition of the nitronate

The synthesis was completed by stereoselective reduction of the ketone
and conversion of the resulting alcohol into a mesylate. Hydrogenation at
pressures of 160 psi or more yielded the pyrrolizidine (51). The exact sequence of
events in the hydrogenation is unclear but it involves cleavage of the two N-O

bonds, expulsion of the chiral auxiliary to liberate an aldehyde, reductive-
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alkylation of the new amine by the new aldehyde and intramolecular nucleophilic
displacement of the mesylate by the amine. An alkaline workup also cleaved the
two benzoate groups. Finally, the remaining protecting group was removed and
the carbon-silicon bond was oxidized under carefully controlled conditions in a

single step to yield casuarine (43) (Scheme 10).
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