Chapter 5

Discussions and Conclusions
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(26,27,28,29,30,31,32,33] developed a new theory based on the Feynman formula-

1l reglon and is a substantlal

tion of quantum mechanics. The Feynman formulation is useful since it expresses
the electron propagation as a sum of classical-like paths. This is especially useful

in disordered systems because the density of states can be calculated in much the
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same way as in the Kane theory. Once the Feynman method is mastered, this is
much simpler than the Schrédinger picture of quantum mechanics for disordered
systems. The Feynman path integral approach was first applied to disordered sys-

tems by Edwards [5,6] and has subsequently been explored by others. However,
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Sa-yakanit succeeded in evaluating the cgrals explicitly and obtained an

expression for DOS valid at*all*energies™E. l@nergy limit the DOS re-
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expression density of stat
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here (...) indicates an.ave over the ense fithe scatterer position. Next
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be the propagation of
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an electron from point z; .;o Z3. The 25 (E E;) can be expressed in terms of
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The average over K (Z5,Z1;t) can be performed exactly as in the Kane theory by

the equation

B (i, ) = / Dt s (%s) (5.3)
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Essentially the kinetic energy in S is included and typical fluctuation &g is re-

placed by W (z(7) — Z (o)), the autogorzelation of the potential energies. To

The full K (25, Z1;t) ca
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The average propagator is an exact expression but cannot be solved. The cumu-

lant expansion,

(eXP[a])=exp{ a)+ 1) ¢ (3> 3(a®) (a) +2(a)’] +.. } (5.9)
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to the first cumulant [21] allows us to obtain the approximate propagator,
o= = o ¢
Ky (3, By tw) = Ko (%, %1:t,w) exp[ﬁ (S = S0 (W) 5w (5.10)

We can follow the detailed calculation of the density of states in Eq. (4.58).

Finally, we find that the density of states %/ the tail with the first cumulant

approximation in three diménsions @alytlcally for a screened

where
a(v,2) = 0T \ (5.12)

and

(5.13)

Our density of states is ge endent on the imensionless parameters v and z

copecivly. b ELQ,YLEJ ME'MU abP) Qe e censiy of
e AT TN N TR e

relation beaween z and v in Eq. (4.87). Then by substituting Eq. (4.86) into Eq.
(5.12) and Eq. (5.13), the 2-dependent of a (v, z) and b (v, z) can be eliminated
but the obtained results are very complicated function. Nevertheless, our results

can be shown analytically. The numerical values of a(v) and b(v) calculated
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from egs. (5.12) and (5.13) are given in Table 4.4. We also plot a (v) and b(v)

as a function of v in Figure 5.1.
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Figure 5.1 Plot of the preexponentisl a(v) e exponent b(v) versus dimen-

sionless energy v. 0,,;, :J are the logarithmic
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0{p, 2) == T 2t0)’ (5.14)

and

T (v,2) = gz'z. (5.15)
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However, we can calculate the quantities n (v) and T (v) by substituting the
parameter z (a function of v) in Egs. (5.14) and (5.15). We also plot the
logarithmic derivative of the exponent n (v) versus the dimensionless energy v as
shown in Figure 5.2. The critical exponent n (v) has a value between 1 and 2.
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versus the dimensionless €nergy v. J_;
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similar to the Urbac ail. n of our system has values

between 1 a.nﬁ Wo S % Wﬁ@f ﬁ ighe Kane theory.
However, one kfiows that n must cgplend on the concentration of doping while in
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by using the Kane theory is too large compared to the experimental value. The
most important reason why the Kane theory cannot predict a correct DOS is that

it neglects the zero point energy.
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Figure 5.4 Density of statg

The Feynman path integ ;_..;_.......,J ssented in this thesis is used to

Ry
calculate the density,efistates in the o] v band tail within/the gap of heavily
W, AY )

doped strongly compen ed eefied Coulomb potential.
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Our work is similar to thé gheoretical studigssof heavily doped semiconductor
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technolog}’ for decades. The aim of the thesis is also to gain some experience and

familiarity with how to solve the problem in HDCS by the Feynman path integral

method. It may be the basis for further study.
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