Chapter 4

The Approximate Density of
Vé{z
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es can be calculated by
following the same proce - (S .. 7, we apply the Feynman path
Ve'also calculate the preex-
ponential factor A(E) and theféxpenén ” - of states B(E). Furthermore,

we determine the logarithmic de erivative g ; which represents the character-

istic of tails. Finally, t
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problem ana applied by Samathiyakanit [25] and Sa-yakanit [26] to calculate the
density of states of a system with a screened Coulomb potential. Our trial action

So (w), Eq. (3.43), has the form appropriate for a nonlocal harmonic oscillator
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25,40, i.e.
t

So (w) /dr——[ (T)——w /da|a'c‘(1-)—:i:'(a)|2], (41)

where w is an unknown parameter to be determined. From Eq. (3.15), we can

Z
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@ + 250 () ] S @y
\ the average propagator

K (Z3,21;1) 1 (950 (@) /A1) sy (4.3)

write the average propagator as

Once the trial action S

[8,25] which, from Eq.(4

where the nonlocal harmonic oscif: gator Ko (Zs,%1;t,w) or the trial

propagator can be defined 2

\Z
Ky (fﬂl;t w)= | DIZT\T exp ‘“j w)) (4.4)
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The average propagator in Eq. (4.3) is an exact expression but cannot be evalu-

)

ated. The cumulant expansion,

(exp [a]) = exp { [(a ) —( (a)|= [<a3> —3(a®) (a)+2 (a)?] +...}, (4.6)
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to the first cumulant [21] allows us to obtain the approximate propagator,
- et —— (!
Kl (1132, Tt w) = Ko (xg, L1 T, u)) exp l:ﬁ (S - So (w)>S°(w)] y (47)

where the subscript 1 denotes the first order approximation. The translational

(4.9)

To obtain K; (0, 0;¢) wemx%ve to find the average (S — S0 (w)) gy (w) - Since the ki-

netic terms in ﬂmuﬂ@m&m@m&lmﬁu denote (S)g,
. “:fm SSPIYRVimieh (1T} i

tively. The%average (S) So(w) €@l be evaluated by applying a Fourier transform of
W (Z (1) — Z(0)). We thus write Eq. (3.25) as

W (#(r) - & (0)) = (f) W(@ewlid- E(D) -£()},  (410)
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where W (¢) denotes the Fourier transform of W (Z (1) — Z (0)). For the screened

Coulomb potential, W (¢) can be written as

2my*(L+72°/q°)
W () = s 4.11
@ @ (P?+r2+15%)r0 (4.1)
Thus we can write Eq. (3.16
t
i
Shsr =55/ [4 ~ s @12
0 E
The average of the right- expanded in terms of
cumulants. Since Sp 1s tic, “orle can“easily. keep only the second order
cumulant approximation |
(Vo) = 7 | |70 omglal@exp (s + ), (413)
where
. st =i (3 (1) — W>)>ﬁ’1 N (4.14)
and U
] N ANgna e
‘ 2
r2 § 50 {g(x (N =2(@))),,., ~ &)= ”j‘? >so(u§' Vla)

Then Eq.(4.13) can be rewritten as

t
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where
A= (Z(r) - Z(0))g,0y (4.17)

and

(5 ()sy@ e (@19)

We can calculate the ¢p o agh b} Shbstd ting Eqs. (4.16) and
(4.19) into Eq. (4.8). Wé'wi e s lat W the next section.

4.2 Calculation B ane T)—& (a))2>s( :

: , "

.‘rl . From Egs. (4.16)
f"

We are inte ';'L‘
and (4.19) we can expreg the quantlty (8= So (W), (w)

terms of the averages
(Z (7)) s5()> (ﬂ %B(’J %q Hm ?Wﬂq ﬂfiransﬂnon element

of the functlonalt[i] can be wr

R g

(ss@+ [ Fir) -y ar) | Dl (o)

(4.20)

o(w)

a

where f (7) is any arbitrary function of time. If the original action S is Gaussian,

—

the action S({ « Will be equal to Sy (w)+ [ f(7)-Z (7) d7. This means that the path

O%N
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integral on the right-hand side of Eq. (4.20) can be reduced to an exponential

function multiplied by the transition element. The result is

<exp [% / fir) - 2() dT] >so(w) = {exp [% (S({ = So,d)] } (4.21)

Functional derivative [8] of Eq. (4.2 “ ’q ct to f (1) gives
s, J'

- ) - z
<a: (1) exp [ﬁ/f(T) . - S d)]}
(4.22)
Therefore, evaluating bothgic 1 D, (8]} We obtain
(4.23)
We can continue this process o/geb-the sec ative as
(Z (1) - Z(0)) L_______“'___T___m (4.24)

{
y__ R ‘ Xy 7
I

—

to f(r), v

e _ ﬂw’m&mmmm
QW’Tﬁﬂﬂ‘SW“ﬁ W o

[/daf( Y Y o /f(cr) Sl =a) smwT]

First, we find a variatiomof Sg 4 With respec have

mw sin wt

4
mw sin wt

¢
[/daf(a) sin %w (t — o)sin %UJT
0

1 1
X sin W (t —o)sin Ewa] . (4.25)
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Finally substituting Eq. (4.25) into Eq. (4.23), we get for f(r) =

1

(z (T))So(w) = S

1 1
[Z2(sinwT — 2sin §wt sin ST sin SwT (t—r7)

1 i 1
+Z1(sinw (t — 7) — 2sin §wt sin FWT sin W (t —7))].(4.26)

525/ -
Now, evaluating ———% to f(),
5f(r)8f(o

we have

% oH (v o)

0f(7)of(o)

in 59T
(4.27)

(Z (1) - :E(a))so(w) = _—% sinw (t —g)sinwoH (1 — o)

Dl i e
ARSI 31818 )

H(Z (M) sy) * (Z(9)) 5000 (4.28)

—5)

where H (t) is the Heaviside step function. Substituting the average of Z, Eq.
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(4.26) , into Eq. (4.17), we arrive

A = (f(T»So(w)_(f(a))so(w)
_ [sin%w(T—a)cos%w[t—(T+U)]] B

sin jwi

:;:‘ (). ) ] (4.30)

((l‘ (7' ¥ (o ) 1‘.&- (T ) E'c . ‘ (431)

Eq. (4.30) can be written as

- 5ok - O,

0(w)
| U
+2(Z (T))so(w) . ‘{ﬁa))%(w) —(z (@zo(w) } . (4.32)

AUYINBNINEINT

Another way to calculate B i is to consider the av: erage of (% (7' % in Eq.

(430)whammmtuum'mmaﬂ

(@n-zey),, - 2

So(w) mw

sin w(7 — o) sin dw[t — (7 — o))
sin 1wt

+(Z(r) - £(0)); ., - (4.33)
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The last term of the above equation is the square of Eq. (4.29). Putting Eq.

(4.33) into Eq. (4.30), we can rewrite B as follows

B ih [sin sw(T —0) 'sinl%w[t o a)]] - (4.34)
mw sin gwt
It is worth to note that B h
(4.35)

4.3 Evaluating Density of States

The average of (S # Sgi(w)iss/ b en comsidered in previous section

and we know that

(4.36)

540800 —— ] § L E— —— —— 1"

We can use Eq. (4.16) o }vrlte the average action which is the first term of the

right- hend side ﬂau Ha’}ﬂﬂs& nimb Bl a9), and (4.30)
mmnw AR 6

y [smzw(f —oeoiell = 02N (521
sin 1wt
g ik [sin w(r — o) sin gt — (7 — a)]] }

mw sin Jwt

(4.37)
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In the above equation, we can calculate the exponential term by setting (Z,—Z;) =

0 [25], so that

_— {zq {Sln 3w (T~ ;C;S;‘:[ = (T+U)]] (fz~fl)—q27:fu [sin w(T = o)Siinln%iutJ[t— (T—a)]] }

=exp{—€12ﬁ . | | . ' %w[t—('r—a)]] } (4.38)

If we define
" (4.39)

with the property similaf | we \ | write the exponential

term on the right-hand sidefof

ik [sintw(T —
exp {_qzmw [ 2

Now, Eq. (4.37) becox

(5ot = 3 / /ﬂ i glr,o) } (4.41)
Substituting Eqﬂ 1 mqnﬂ NI Eﬂ 1p)

%A ﬁﬁﬁﬁﬁﬂﬁ%ﬁﬁ%

X exp{ ¢ —g (r, a)} (4.42)

Using the relation

1 _ . . 1 (4.43)
¢ (P +r2+157)  (r2+re0) @ (2 4rgd) [ 4ret) + ]




43

and
ro? - 1 1 1
¢ (P2 +r2+15%) (724 Arzgt (re2 41?2 | (r2+15%) g
1
- - 5 4.44
2) ra q2] } ( )
Let @ = (r;2+15?), ing length. Therefore the
average action is 7 ‘
1
S S
{ )So(w) hro 2 Q2(Q2+ qz)}
X exp
imy? . 5 th
+ —¢—g(r,0) ¢ (445)
h’l"o
Here we assume Eq. (4.45) g is easy to show that
/ f | |7 —"0 e — )if\(z) , (4.46)

where 2 = 7 - ﬂ%m RTINS
amﬁ«uﬂwwﬁwmaﬂ (247

Considering the double integral of the equation (4.42), we obtain

//drdoexp{—q—-g(TU}—2t2/dx 1——w)exp{~—q (')}

(4.48)
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In the same way, by putting Eq. (4.48) into Eq. (4.45), we have

(S)soy = %Z::tz (1_ 2Q2>/ e ””)/ le Q2(Qi+q2)]

xeXP{ q—g( )}

2t2

9%
L iy
hTO

(4.50)

(4.51)
and the identity

(42 & e e (4.52)

(4.53)

and inserting thﬁuﬂaﬂw)ﬁlwﬂqw) and performing

the ¢ 1ntegrat10n ‘!'e obtain

<S>S°‘“’)q Wqu Qﬁ(ﬂ 7‘2% }W]r]’% ﬁg'l ) a—’igl(x |

—3/2

/dyexp( -Q%) [y+——9(w)

TN s
hror2Q2 /da: (1- / y + —y (z )] (4.54)
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When the Debye screening length is sufficiently large such as in HDCS, Eq. (4.54)

can be rewritten as

(oo = 4\/_717'0@2 / dr' (1 -2') {7dy [y + —9 (wl)] A

it = =0l

G Sl (456)

Here (Z (1) - % (a))i 9) squared. To overcome

this, Eq. (4.56) can be.ca: '-J

(S5 (@) sy =, o lwtc
ﬁuﬂ Swteghswt ‘Z‘{wtcsca h;z;tml' , (4.57)
ARIAINTUUR

we neglect the second term of the average trial action because ( :1:2 = xl = [25].

l\D»—A

Thus

3. /(1 1
(So (W) gy() = Ezh (awt cot iwt - 1) ; (4.58)
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Collecting terms from Eqs. (4.55) and (4.58), we can write

(5= S (@ g = (1~

vt /
L . |
4@ ) ‘

ﬂ‘lJEI’JVIEWIﬁWEI'm‘ﬁ

Eq. (4.61) is rewrltten as

quﬁﬂﬂ‘imﬂﬁﬁ’mmﬁﬂ

ya Et -
27rh (2mht) 2sin lwt —wt { h 8/ h2r0Q2

p(E)
Y ih =
x/dy [1—exp (—Q%)] [y +——g (x’)]
0
3
2

1 1
- —wt — (4.62
+ (thcot 2wt 1) } (4.62)
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The obtained density of states is still too complicated and cannot be calculated
exactly. We consider it in the asymptotic approximation that we suppose w is

very large

(4.63)

(4.64)

(4.65)

Next, we approximate the 4.63) , (4.64) and (4.65).

Considering the ground s sity of states, and letting

t — oo, we can write

x/dyél — exp( —Q% )] -l— e — §u.ut}

suc e L8 ANENT WEnT
[ ABABD ARG, o

p is constant, and D, (z) denotes the parabolic cylinder function. Thus Eq. (4.66)

(4.66)

becomes

1 (2V2\Y? o omae e
®=5 (7)) e () o (53) e
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where
3thw—E
= G ), (4.69)
I
(4.70)
(4.71)
From Eq. (4.71), we calculaf
(4.72)
where (=
je (4.73)
and the typical fluctuation which he a5 the on of energy squared can be
written as ;,
i :
. = | (4.74)

SRR ﬁnf,}llhtlvf} mﬂm: WL L) i s sty
ot @%@Wﬂ%ﬂmﬂ PYerTR B

p(E) = [A(E)/&}] exp[-B (E) /2¢q] - (4.75)

The density of states is expressed in the analytic form with the dimensionless

functions of the preexponential a(v, z) and the exponent b(v, z) [26], respectively.
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Moreover, numerical results a(v, z) and b(v, z) are very important to finding the

density of states of HDCS. For a screened Coulomb potential [12], we get

A(E) = (EQQ)3 a (Ua z) ) (476)
and
(4.77)
where
(4.78)

We thus show the density ¢ ‘with a screened Coulomb

potential [12,26] to be

i.
p(E) = 27)/26),  (479)

1913 SNYINT
RN I 1NYINY

Comparing'Eq. (4.68) with Eq. (4.79), we can calculate a (v, z) and b (v, 2)

|._
)
W, 4
=0
|
.I.

- f UH 3

(4.80)

by using the variables in Egs. (4.69), (4.70), (4.72), (4.73), (4.74), (4.78) and

(4.80),
(3272 + v)s’/2

4+/21228 exp (22) [1 — D_3 (2')]*’

a.{t, 2] = (4.81)



50

and

(e
2exp (32%) [L = D_3 ()]’

b(v,2) = (4.82)

where 2 = z/v/2, v is the dimensionless energy. We can express analytically

a(v,z) and b(v,z) in terms of pa raboli¢ eylinder functions. We can get the

density of states by substit @) into Eq. (4.79). The crit-
L ——

ical exponent interested ic de oy of the exponent b (v, 2)

(12,26], we have

(4.83)
or,
(4.84)
By using Eq. (4.82) i 4 can se _“ o
n(v,z) = -

ﬂ‘IJEI’J'VIEWlﬁWEI'lﬂ‘ﬁ

For this reason, thg kinetic energy of 1ocahzat10n T (v, 2) [12] can also be written

s ammnimumawmaﬂ

T(v,2) = 2z'2, (4.86)

where z is a function of v.
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4.4 Results

We begin with the minimization of the parameter b (v, z) by considering

its derivative with respect to z [12,22]. We can see that

X exp (-3-2‘2).(-2-2_2 + 1-D_3(2")) =0,
(4.87)
by using the formula
L0, ) £ 5 Gy, N (3= o. (4:88)

Before considering the numerical eval v, z) and b (v, z) in Egs. (4.81)

and (4.82), we can :; ' .‘:n? y by introducing an

Q — osdor 2 — o), Eq. (4.87)

can be evaluate%ﬂq il ﬂﬂﬁw ¢

2u/3)71/2, (4.89)

QRN IUURIINY AL

by using the asymptotic properties of the parabolic cylinder function

'I
approximation. For a st ng screening v << 1 (

D, (2), ., = exp (——%zz) 2. (4.90)

The numerical values of z and v in Eq. (4.89) are shown in Table 4.1.
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L v ] z
1g— 3.87
1072 12.25
1073 38.73
i 122.47
Table 4.1: Numerical results of v a 1d)2 for a strong screening [v << 1 and z

— 00).

Putting Eq. (4.89) into

(4.91)

and in the same way,

(4.92)

Of course, when we substi 4.85) and (4.86), we have

n(v) = 1 and T (v) fuk
I

Eq. (4.87) can also be e uated easily and get

ﬂumnwwmm
AR AN TN INYAY

by using the formula

r‘ (@—0o0rz—0),

iF |

(4.93)

Dypy1(2) — 2Dy, (2) + pDp—1 (2) = 0. (4.94)

The numerical values of z and v in Eq. (4.93) are shown in Table 4.2.
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L v | 2 |
10! 0.68
10 0.32
10° 0.15
10* 0.07
Table 4.2: Numerical results of v andzforjaweak screening [v >> 1 and z — 0).

Substituting Eq. (4.93) into Egs:~(4.81) d& can write

(4.95)
and

(4.96)
Similarly, the resulting Egs. (4.8 =,{-_-'~T re n(v) =~ 2 and T (v) /v = 0.
The asymptotic valuegiof a (v} b () (v} and T (o} a#d-given in Table 4.3 and

other values are tabulat_g.in able
, ‘o o/

WA

u < v 1 o

AR o e AR AR G )

Q‘I : (Ub (v) zvvem an (1;) (gf!uf

n(v) =1 n(v) =

T(v) /=1l T(v)/v=0

Table 4.3: The limiting values of a (v), b(v), n(v) and T (v) /v calculated from
the present method for the case of a screened Coulomb potential.
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Lv ] 2z ] a@w [ b)) [n() T (v)
10 | 0.07 | 6.56 x 107 | 1.25 x 105 | 1.94 | 2.85 x 102
10° | 0.17 | 1.09x 10® | 1.15 x 10° | 1.90 | 5.48 x 10!
10> | 038 | 1.33x 107 | 9.61x 10° | 1.81 | 1.02 x 10
10 | 0.85 1.41 6.80 x 10' | 1.66 2.08
10° | 1.81 | 351x1075 [221 x 10~ 1 | 1.37 | 4.60 x 10 ¢
1071 | 4.28 [2.62x 1075 [ 1.78 x 10° | 1.10 | 8.20 x 10-2
102 | 12.41 0 - 1.01 | 9.75 x 1073
1073 | 38.78 1.00 [ 9.97 x 1074
104 | 122.49 ' 1.00 x 1074

Y
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