Chapter 3

Heavily Doped Strongly
Compensated | conductors

. doped strongly compensated
by modelling HDCS as an
ities in a disordered system by using
Edwards’ model [5,6,25]. tion, the autocorrelation function
which is important 1 ..:...;:;;;;.'a:;;;,..,;.:.;.;.‘.:;;-:;-.;:;.:;. ..... Next we will present

our density of states (@)S) he last section the trial propagator is given.
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confined within a volume V and having a density N = N/V. Such a system is

described by the Hamiltonian H[v] [6,25],

H = —f—-v2 + Zv ( R’,) (3.1)
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where v ( (1) — ) represents the potential of a single scatterer at position R;.
The time-dependent Schrédinger like equation for an electron of the effective mass

m in a disordered system which is

K(fZ)fl;t’ [’U]) = .

(- [8)])

(3.3)

where D[Z(7)] denotes the carried out with the boundary
conditions: Z(0) = Z; and Z(t)=2; _' Z(1) — [R]) as the sum of the

scattering potential 5 =

(f (3.4)

The probablhtﬂ Hﬂm one scatterln g pot g’l@ a?sumed to be
RN @Hd‘@%ﬂ MR ERE) N 69

N,V—o0

In 1964, Edwards and Gulyaev [6] pointed out that the average over all configu-

rations in Eq. (3.3) can be performed exactly and the result is

B e / PIRIA(R)K (#2151, V). (3.6)
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Substituting Eq. (3.5) into Eq. (3.6), we have

K st = / g S S s a2 A (3.7)

N,V=00 VN

where V' is a volume of the semiconductor. By using Eq. (3.3), we get

@) e

K(i%:fl’t) =

By using the relatio ;r,.

i
uﬂqngmﬁ'ﬂiﬂ'mi 10

the term inside the sqlgre H w ’S;?anvb]egvlngeﬂa asEl
' t

—o drv .'i:’ /dT'v Z(r)— R) ] L. (3.11)
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So that, Eq. (3.9) becomes

E(ondl) = / Bl e {%]m%fz (1) + / i [(1 = %]dm (2() - B)

§

. aﬁcatterer, v — 0 with N2

\\\\;\\mv drdoW (% (7)

In the limits of high density, V. -

—

remains finite, Eq.(3.12) ¢

1
a

Lpli;
e

)
K(eadio - [ DG y -2@)|.
. (3.13)
where the mean potential e ,r-r -be akenl as zero and W denotes the
autocorrelation function [25] d ef
W (z *Vf,, v - o) — R’), (3.14)

The autocorrelﬁuﬁd}% m‘]ﬁ wmmlt tells us the effect

of a potential at one point on a potential at anether point. The parameter 7,
denotm&.ﬂlx@ qni m Hut’e-]nta Y] Elhlc-l]t @Wﬂten here to

indicate the dimensions involved. The average propagator in Eq. (3.13) can be

formally expressed in terms of an action S as

K(%, #1:t) = / Bl (%S) (3.15)
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where S is defined by

& = /d’r—x (1) + Nn //d’rdaW z (1) —Z(0)). (3.16)

Thus we have given in this section a,brief discussion of Edwards’ model and have

' / : defined by Eq. (3.14) clearly
-ﬂ

depends on the scatteri mployed. F¢ eened Coulomb scattering

set Nn? = 1 [25]. The autoceszélat

potential of the form

, (3.17)

where « is a constant. It fol d (3.17) that the autocorre-

lation [25] is

B -7, (318)
u-|

W@m—f@;¢
J)

which is expressed as thé Fourier transforf“of the
AW

potential.

sr]
3.2 % 1uto<gl"§mtlowﬂx Y]

In this thesis, we consider the autocorrelation function [40] given by

eened Coulomb scattering

1)
&

S

g

W (Z () = Z(0)) = W1 (Z (1) — Z(0)) + W2 (Z(r) - £(0)), (3.19)
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where
2my? [ dq expliq- (Z(1) — % (0)) ]
Wi (Z (1) —Z(0)) = : 3.20
1( ( ) ( )) (27’()3 q2 (q2+re_2+ro—2) ( )
and :
( ' 7 (1) —Z (o
Ws (& (7) — & (0)) 4 &(i G2
‘ gl € D )
where
. “ (3.22)
is the root-mean-squar ’\ al fluctuation of size o,
v (3.23)
is the distance whic g:
1/2
GoK kTo ( 3.9 4)

ﬂumwéﬁs‘ 21NT

is the Debye screenﬁ h Whlchfa,kes into aﬁ: Elp esefiee of the intrin-

sic electrons and oles with concentratlon p at the ,emperatureﬂ It should
be noted that e is the electron charge, Ny = Np + Ny is the total impurity
concentration, Np is donor impurity density, N, is acceptor impurity density,

€o is the dielectric constant of a pure semiconductor, K is the static dielectric
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constant and k is the Boltzmann constant. Substituting Egs. (3.20) and (3.21)

into Eq. (3.19) we obtain

- 27r7 d*q expliq- (Z(1) — Z(0))]
W (& (r) — Z( / )3 e (q o2 _H,O-z)
| 7. " expliq - (Z(7) — £ (9))]

; (325
q2 + r—2 + ,,..62) ( )
which is expressed as the
3.3 The Dens
The most used | is

, (3.26)
where d (z) is the Dizde‘delta function, E; is the ener sy, of the i'* eigenstates of
a Hamiltonian, V is a ﬁlt aine 1 d diffiensions, and the angular

bracket (...) indi tes anﬁﬁ ogejrﬁ %SW ﬁ%]ﬂﬁ %tterer positions. In
fL

our work, we us he formula (3.26) because the Dirac delta. function can

e e b R MGV FRHHUBATIARE v

formula of the propagator [8,24],

(3.27)

o6 ke R g 1Bt
K(Z,Ty;t) = Z%‘ (Z2) ¢} (Z1) exp [" ] )

where @; (Z) is the wavefunction, we have the trace of the propagator of the form:
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E,
TrK(Z,, 3h;t) = Z exp [—Z t] ; (3.28)

+o0
- E;). (3.29)
Note that the identities
(3.30)
and
(3.31)

are used in the derivation of he required relation between the

density of states and the ator isoh ] nparing Eq. (3.26) with Eq.

\7 A
(3.29), and performin : ding to the standard formula
' | ¥

ﬂ quﬂn ERAL ;nmt? (3.32)
AT TR ANENAY......

the propagator in Eq. (3.32) must be the average propagator instead. That is,

[25]

the densfty of states of our problem has the following form:

zEt]

p(E) = 27Tﬁ/dtTrK (&, Z1; )exp[ : (3.33)



27

where K is obtained by averaging over all configurations of scatterers, and it must

have the property [25]

K(Z3,2;t) = K(Z — ;1) (3.34)

p(E (3.35)
which involves only the states per unit volume
can be derived from the propagator [40], so that

CHEO, . (3.36)
e '

y 2

In this section, we' digcuss a methodsbased on the variational principle

e or B DA T JRELI) e
oY S AT R0 TG < v

z is a random variable in an one dimensional, always exceeds or equals to the

exponential of the average value of z, as long as z is real and the weights used in

the averaging process are positive. That is

e, (3.37)
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where () is the weighted average of z. This follows from the fact that the curve
of e® is concave upward, as shown in Figure 3.1. If a number of masses (weights)
lie along this curve, the center of gravity of these masses lies above the curve.

The vertical height of this center of g é,vity is the average vertical position (e®)

of the points. It exceeds e, the o rve e® at the abscissa position

of the center of gravity, whichis'the av M

a, ¢ o
‘4,'“53”5@“5 nr X

RN TUAMINAY

Figure 3.1 The exponential of the weighted average of z, e®, must lie below the
weighted average of the exponentials (¢%) . The value of ef* must lie in the curve,

but (e®) , the center of gravity of the several points, must lie above the curve [8].
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3.5 The Trial Propagator

In order to calculate the propagator of the trial system which is repre-

sented by the trial action, we shall follow the standard method. Firstly consider-

(3.38)
We will try to write i Chapter 2
5120 = Salza gt 41 e LY ROr PR
Starting from the trial acti |
So (@) FOF  (340)
and using the formula lf [0) = S[&(t) “U)] = :c ) + 7 (2)], we get
el HHANERINNT, o,
ama@?fu VN (HURE
9 drdo|Zy (1) — Za (0
= / / drdofEa (r) = Za (0)] - [7 () ~ 7 (0)]
—";i]] drdo [§(r) — 7 (o). (3.41)
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Using the approximation in Eq.(3.41) and ignoring the second order term of

variable y, we obtain

So [Z(2)] = So [Za (8)]+ / dTmIEd(T 1')—- / / drdo|[Z (7)—Za (0)]-[7 (1) — ¥ (0)],

(3.42)

So [Za (t)] = / ' \ ) — 2.1 (0)]% (3.43)
\

WEe can see the classical aétio Bq. (3.43) islexa the same as the trial action

in Eq. (3.40). Comparing e obtain

(3.44)

The trial propagator &n 8 o sepil 1€ integrals into two parts:
'v-' ) |:r‘

one is the classical con t 1bu thetfluctuation or quantum
< i

contribution (8], called thé pzefactor or multiplicative factor. In certain systems,

PO V) T 1 (e ] M
QAN T NN INYINY

Ko (%2, Z1;t,w) = F (t,w) exp [ﬁSo,d [d':'g,:f:’l;t,w]] , (3.45)

where F'(t,w) is the prefactor which must be determined so that for w — 0,

W

Pl= (2mht) ' 246}
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We can obtain the prefactor by considering the trial action Sp (w) obtained from

a simple harmonic oscillator propagator [25]

ot
(4

£ @it ) = [ DEmles [¢l3# ) -FiE@) - ), (347

consider the next integral of ghe &G fing ng the partition function. From

Feynman and Hibbs’ book (8], £g.(3 ;: ewritten as

4%, £ (25, Z1;t, ) 6 (F2 — T1)

1‘ -3
= U|2isin-wt| . (3.49)

The first equaliﬂpHEifj w E] Qn é;wﬂg] ﬂ ‘j

e above expression is obtained by using the first equality of

o B 6N G A B e

the second equality of Eq. (3.49) is the partition function of a simple harmonic os-

/ d7, / AT K (T, Tadyw)0 (

cillator. Similarly the “partition function” [8,25] corresponding to Ko(Zs, Z1;t,w)
is

/ iz, / a5, Ky, Bt 10)8 (B — B1) = UF (). (3.50)
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Since Ky(Z2,Z1;t,w) and K(Zs, Z1;t,w) differ only by a constant, their corre-
sponding partition functions must differ by constant too. Therefore, we can

equate Eq. (3.50) to Eq. (3.49) with a constant C

, t) = (3.51)

Using the boundary conditi ' ne prefactor #(t)diseussed earlier in Eqs. (3.46)
“u ‘-“-

and (3.51), we have

(3.52)

We can put Eq. (3.52) bac he propagator of the clas-

sical action Eq. (3.43). The ¢ of states will be presented

in the next chapter.
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