Chapter 2

Feynman’s Path Integral Theory

In this chapter, g integral method [8]. The

path integral technique ) oblems such as polarons
[28], polymers, and ma; atte hys1cs etc. In the first
section, we will explai jor is. Next, we will give
some applications of Fe \ oach on simple systems such
as a free particle, a system with-g Lag angian, and a harmonic oscillator

[8]. Finally, we will give hysical s 3 aticalvoiicepts about functional

and functional derivat@s.
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ability that a particle moves from one point to another point by many possible
paths. We can consider the particle as a point in classical mechanics. The

principle of least action expresses the condition that determines a particular path



Z(t) of all the possible paths. For simplicity, we will restrict ourselves to the case
of the particle moving in one dimension. So, the position at any time ¢ can be
specified by a coordinate z which is a function of time. A particle at an initial

time ¢, starts from the point z, and then moves to the final point z;, at the final

M‘/‘/Jd z (tp) = xp for many possible

paths in the area of inte/ n find, @h, the action S from

time t;. We have the conditio

where L is the Lagrangiag syspemy, For 'a pa licle of mass m moving in a

potential V' (z(t)), which i .-“" \ d time ¢, the Lagrangian is
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In quantum mechaniest v path the particle goes

from z, to x. Consequexatly, the total amphtude of going from z, to z, must be
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contributién from a given path equals to S/h. The probability P(zy,z,) to go

from z, at the time t, to z; at the time t; can be calculated by

P(xb: xa) = IK(xb,SEa)l2, (23)



where K(z3,1,) is a probability amplitude for a particle going from one point
to another point during a finite time. This amplitude is the sum of contribution

#[z(t)] from all paths

K(zs2a) = - ()], (24)

where

(2.5)

The phase is 27 of the along the path to Planck’s

constant. Therefore, frox

K(zp, 24) = f_jf" b [;—;—S[:c(t)]] : (2.6)

over all pat

Next, we select a subset 16 do this, we divide the

Y

independent time into-ve 2 ijj. us a set of successive

[

time intervals ¢y, 15,13, ...¢between the initigl time ¢, and the end time ¢, where

tier =t + €. A@]aytﬂ gﬂﬂ Inl.i “ale-:! 'l id construct a path
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are shown in Figure 2.1. It is possible to define a sum of overall paths constructed

in this manner by taking a multiple integral over all values of z; from i to N — 1,



where
Ne = tb = ta W
e=ti1—
to=1t,
ty =ty ? : (2.7
Zo = Tq
N =Xp )
Figure 2.1 Diagram showing defined as a limit, in which

of specified times separa [he path sum is then an

integral over ﬁﬁ %wﬂﬁ%{w E’dﬂl@ﬂtﬁ correct measure,

the limit is tak&f as ¢ approaches zgro [8]. - w
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Using the relation in Eq.(2.7), we can write Eq. (2.6) as

ted by very small interval e.

K (wy, m,) / / / (const) exp [%S[.’L‘(t)]} dzqdzy...dzN_1. (2.8)



In the path integral, we do not consider integrate over zo or z) because they
are fixed end points. In order to achieve the correct measure, Eq. (2.8) must be
taken in the limit of € — 0. We must provide some normalizing factor A=~. We

find the right-hand side of Eq. (2.8) in the limit of ¢ — 0, so we obtain

, dxl dIL'Q d.’EN_l
Kimy, 3,) = 11_1')1(1) _ 2 (2.9)
Finally we have /
(2.10)

agator in the above equa-

tion will be used to cal o /densits of st or this work. More details

2.2 Path Indegral d
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free particle [8]. qf’he Lagrangian fop'a free particle

ARIANN I um'mma d

L= —mx (2.11)
According to Eq. (2.9) we can write

A= (mhe)% . (2.12)

m




From Egs. (2.9) to (2.12) we can find the propagator for a free particle as

s 2mihe\
K (24, %5) —hm// /exp[ z; x,_l)] dxi...da:N_1< = )

(2.13)
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r [ dz exp (—az?®+ bz) is called a
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An integral of the form [ dz exp(-
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Gaussian integral. Since thevintegrs form is again a Gaussian, we

may carry out an inte 1other. The calculation is

carried out as follows,

~+o0
/ dx1< (1 — xo)z] }
(2.14)
After the integration’is e : o obtain

_ sf'd 2
K(xb,xaﬁf ‘ “XP\ 57y :fa)) } (2.15)
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We have studied a simple example in the previous section. So, we shall

now introduce some additional mathematical techniques which will help us to
compute the sum over paths in certain situations. The simplest example to be

studied is a quadratic Lagrangian [8] which corresponds to a case in which the



10

action S contains the path z(t) up to the second power. To illustrate how the

method works in such case, consider a particle whose Lagrangian has the form

L = a(t)a"(t) + b(t)a(t)(t) + c(t)a?(t) + d(D)i(t) + e(t)a(t) + (). (2.16)

espect to times between two fixed
&Es a little more general than

0s€ terms in which it is linear

The action is the integral of this
end points. Actually, the
necessary. The factor 1
through an integration 4 is fact is uni ~‘ portant for our present
purpose. We wish to aths which go from (z,,t,)

to (Sl:b, tb)

K(zy, %, .z p ,’ ‘ ,t)} Dlz(t)]. (2.17)

Certainly, it is possible to.c over all paths in the way that

first described by dividi slements, and so on. This

follows from the fact tﬂt the integrand is the exponerﬂal of a quadratic form in

the variable & ﬂiu@h’}t‘ﬁa&] i ‘ﬁnw te carkiéd ot. But we shall not
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characteristic of the kernel in the following manner. Let Z(t) be the classical path
between the specific end points. This is the path which has an extremum for the

action S. In this thesis, we will use

Sailas, To] = S[Z(t)]- (2.18)
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We can represent z in terms of the classical path Z(t) plus a new variable y:
z(t) = Z(t) + y(t). That is to say, instead of defining a point on the path by
the displacement z(¢) from an arbitrary coordinate axis, we measure instead the

deviation y(¢) from the classical path, as shown in Figure 2.2. Since any path

same end points. The condition

;.‘

which the derivations y(&)have-to-satisy is Gllap=iilts) = 0.

z(t) and the classical path Z(§) s
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Figure 2.2 The differ e between the elassical path 7 ,) and some possible al-
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Sla®)] = S[z(t) +y(@)]

g2 /tt [a()) {&°(®) + 289+ } +..£(8)] . (2.19)
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It is obvious that the integral of all terms involving exclusively Z(t) is exactly
the classical action and the integral of all terms, that are linear in y(t), precisely
vanishes from boundary condition. So, all the remaining terms in the integral are

the second-order terms in y(t) only. That is

/ )+c(t)y2(t)] dt.  (2.20)

Thus the propagator is t e "\\x\ (£) does not depend upon the

classical path and all the point y = 0, can be

written as

Kan 22) = Ny [ Dly(0) §70) + b0 + 1) )|

0

)
= exp {ala(0]} OV + )}
l -— — '_—{-F
z X (2.21)
|
where N is a normahze‘factor For the calﬁdratlc Lagrangian, the propagator

canbemenﬂutl’élVltlmwmﬂ‘i
Q W'W Mﬂiﬁd HW{]@ME}W ﬁ El (2.22)

where the prefactor is

Flthta) = N / Dol |1 [ dfal0if ) + 03000 + 70}

(2.23)
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For the quadratic Lagrangian, it can be seen that the path integral in Eq. (2.21),
which is a product of two functions, one of which does not depend upon the end

point positions. This propagator is similar to the semi-classical approximation.

Lagrangian is

(2.24)
We obtain the equation 6f 1 ‘,,: > Buler-Lagrange equation to
the Lagrangian |
(2.25)
Hence, we can write »..I;=::;.;-.-
E T+wit= O (2.26)
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where Ay and By are constants. From Eq. (2.27), we can use the boundary
conditions z(0) = z; and z(T") = z,. Then the constants Ay and B, are

Ty — x1 coswT’

Ay = (2.28)

sinwT
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Bg =1I. (229)

Eq. (2.27) thus becomes

1

[z2sinwT + z; sinw(T — ¢)]. (2.30)

x(t) - sinwT

SalZ(t)]

- W’z (t)]dt] .(2.31)

(2.32)

(2.33)

The prefactor assoc1atedﬂvﬂ the Ej)gva‘iaﬁ can be evaluated exactly. There by

wehavefoundﬂual’m INEINT
AN EEENNAY  ew

Finally, the time-independent propagator or the kernel of the harmonic oscillator

1S

mw 1w
K (x5, %a) = 4/ 43 -2 y (238
(2, 2a) omihsmaT ¥ {2h sinwT [cosz(xl ) xlx?]} (255)




15

2.5 Functional and Functional Derivative

We firstly consider a function F (y). If we start at a point y, and move

a distance dy, the function F' changes by an amount

dF = F (yosedy) = Efl)is, F' (v)l,, dy. (2.36)

and its partial derivatives [8],

OF OF OF
3?/1’ 33/2’ 3y3’

oI \\i\,&,\\\ moves to a new point

’\ will change by an amount
X4\
E @\}§. .

j-_.ﬂh

(2.37)

If we write the independent vari& Hles collectively asy, (n = 1,2,3,...),

Yn Will look like a um ti is thus a function of the

-
LY

function y. In physic :ﬁ 1 . 4'5'» a variable z that takes

on all real values in some dnterval [a,b]. This js related to what we have discussed

o o, e sl Mok YLEJ Mﬁlwbﬂﬂﬂ r FE—
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the function y (z) by its value on the N point, so that we consider the function

Yn = y(@n) = y(a+ ng), which would give more and more information about
the original y (z) as N — oo, ¢ — 0. We can define a function of all the {y,},

namely F'({y,}). In the limit N — oo, the function F becomes a function of
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the function y (z). We then call F a functional of y (z), written as F [y]. It is
a function of all the values of y(z) in the interval [a,b): an infinite number of
independent variables. A functional takes a function y (z) on a domain as input

not the value of the function at a specific point z, but all the values of y at all the

z’s on the domain. Its output.isa

the function F ({y,}) willehangea @ . Now this equation can

be written as

(2.38)
Consider the limit N —#o ll that'the definiti 1 of an integral is
(2.39)
Eq. (2.38) can be written as
m dF = 2.5 (2.40)

n= a&’j y°

INYNINYINT

Taking the hmltq — (gl with = + ng, and 1ntroduc1ng the notatmn dify =

0. 8§ mzwmzu UANINYIA Y

OF

AF = | dg ——
oy (z)

oy (z). (2.41)
¥0(x)

This 3° (z), a particular function y (), is the starting point for the arbitrary

infinitesimal change delta y of z. The 1/s has been absorbed into §F/dy (=] .
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This can be taken to be the definition of the functional derivative §F/dy (z).
The meaning of Eq. (2.41) is exactly the same as the meaning of Eq. (2.40).
The change in F' is a sum of terms proportional to the infinitesimal changes

0y (z), with constants of proportlonahty that are just the functional derivative

(i.e., the partial derivatives) & hmk of this derivative as giving

the response of the functi Wlth the change localized

at z. The preceding di : : '-;*'3 \\ functional derivative, but
\ \o each problem we would
n ang

T
\
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it does not give a use
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have to define carefully a ntS.
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.\ ction F of the discrete set

Y (zn) . Usually, we have a fin. uﬁi ot functions y of a continuum

variable z, and we need its fu 4-~’~, e. We can start with Eq. (2.39)
f‘.:f __ e - ;.

) (5 4

.

e

B /1 vz | (2.42)
To calculate thﬁ,lu %}ﬂﬂm‘ﬂﬂ W “ﬁ wlﬁt’}ﬁﬁgnge dF that is due

to an 1nﬁn1te51mal change dy (z) in the independent variables

Q‘méNﬂ SRRk EREEH

Fly+dy] = [ [y(z)+6y(a) da

as a definition of the

- [P+ u@y@+Hy@]d @)

Now we throw away (6y)”, since dy is infinitesimal and we have 6y — 0 limit.



Thus to the first order in dy,

Fiy+dl = [P @+w@) 0] d
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(2.44)
The infinitesimal change i :-
) dz. (2.45)
Finally, we consider th al step™of @mparing ¥ . 45) with Bq. (2.41).
‘ \
We thus identify
(2.46)

) ]
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1al. derivative (8].
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