CHAPTER1V

RESULTS AND DISCUSSION

e

4.1 Experimenta ’

The experiment has been q4m orders Markov model to

examine the effect of hi he classifier. In Table 4.1,

bs
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25 .ﬁ
increasing the order of Markov, od?.;

of not having enough ﬁ » estimate 1
1

From the experiment, ghgé’d order Markg:', model seems to be the optimum model

for the limited pubed da AVAIAIE Thol b kiehs din those matrices are
4
consideﬁd.ﬁ; "téi 3?1- %::fﬁ ﬂ]nﬁoglrﬁnx the numbéts of zero elements
| ' :
are more qhan 50% of the number o elements 1in m z‘&ltr’ll Qeﬂs the 3™ order

transition matrix has numbers of zero elements less than 10%. Nevertheless, the
information in the 4™ order transition matrix is still useful because those zero
elements can be removed by interpolation technique.

Although constructing of high-order Markov transition matrix is not a complicated

task, the matrix consumes huge resources of memory. Due to its multi-dimensional
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array representation, the more increasing orders of the model, the more number of
array dimensions will be extended. With the limited physical memory space in the
system hardware, we performed the experiments only up to 4™ order Markov model.

The results from Table 4.3 shows that the performance of classifiers significantly

increases from 1° to 3™ order, but in the 4™ order model, it becomes unreliable. These
unreliable results may be affected by \

)imated data.

Table 4.1 Performance of binary-c! assifiers (% ic ected to step and order of

Markov model. o
Binary | o] 7777 GiarotVadkomode
Classifier P Ll 4 41 Z750rdef 0 0 Ibrder 4% order
H/~H = 79. ~84.85" 88.61 88.67
E/~E 2 . - 8268 87.90 88.15*
c/~C 7 . & 177, 1,82.95* 82.83
H/~H 9 4 ﬁ.m 85.30
E/~E F 25 86.94
C/~C bt 80.88 79.93
H/~H & 88.72 88.75*
E/~E 'E- 84.14 85.95
C/~C 7222 : 79.97 79.89
Results on RS126 set, I*-layer neMorEM vindow s * indicates the optimum model

7

e thg}sult shows that the Extend

a

For our experimentB‘n“fnu i-st
(E) and Caoil (C e the best peéiformance on single-step Markov model;
whereas, the ﬂ‘ﬂﬁg n ﬂ)m E\Weg“l ’]fﬂnﬁce on the triple-step
Markow’;rw t t]nw ﬂa be obtained
from the iumplzlii??a@ogﬁﬁe consider t:::] tnplcgt:ap model, the
jumping step jumps from the position i to i+4 associated with the bonding position of
H-bond between amino acid residues on the helix structure. In addition, the helix

structure (H) and extend structure (E) have the best performance on 4™ order whereas

the coil structure (C) has the best result on 3" order Markov Model.
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With those results from Table 4.3, the optimal Markov model’s structure for the
binary classifiers can be obtained (* indicates the optimal values of those models).
Based on the optimal structure, the optimal step and optimal order of Markov model,

the further experiment regarding the window size of input sequence must be

investigated.
Table 4.2 Performance of bi *_layer with respect to window
size.
Binary
classifier 15

R T 37 "’i‘;a 80.93  80.05
E/~E 65.69 15 g é A » 68.61
CI~C 79.80 200 - 3 07 45 7636

Results on RS126 set, multi-step, niulti-o er r &num step and order
* indicates the optimum windovgsized® |+ |~

Table 4.3 Performance of binary 15 -layer with respect to window
size. ; o
Binary
classifier : 17
H/~H 19583 97 =/ 80.67
E/~E \ 3. 9.09 69.31
C/~C me ; 72.10
Results on RS126 set, multl-if}p, multi-order Markov model using agimum step, order, and window

size on I*-layer, (*) Indicates the opttmum window szze

AULININTNEINT

Tables 4.2 angﬂ 4.3 show the accuracies of the binary classifiers,from 1* layer and
g laye%eﬁc’t;l'ﬁ ﬁﬂ(ﬁm 3‘1(1&;11’1] %aﬂr’lﬁnﬂm improving
efficiency of double layer network over the single one. By comparing the results for
each classifier respect to the window size, it is possible to find the optimal
configuration. The optimal size of window for each binary class classifiers is not the
same. The optimal size of input window for Helix, Extend and Coil structural classes

for 1% layer are 9, 13 and 7, respectively, and for 2™ layer are 15, 15 and 11,
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respectively ( the optimal value indicate by *). We use these optimal sizes of input
windows to prepare the specific input patterns for each classifier to train and test the

learning model.

Table 4.4 Ratio of number of SVs to all training samples.

Network’s Layer Binary Classi_ ago ?ft;ci;,s zall Sasm\;’ﬁ;e(;%)

H/~H , ( 37.75

1% layer 36.06

. 46.67

A B ' 10.65

2" layer e NN 10.07

’ il 17.34
Results on RS126 set, 3"-order | using eptinum window size

The results of SVM(freq) o ed and Su 1); '

The results of SVMmer obtainedifro sthod search.

The number of suppo sifier is a good indication of the

difficulty of a classification ol;] ems
1-._ ::_" - - z

then the problem is more difﬁcawe_l lass

er of support vectors are needed

a low number of support vectors

are needed, it is simpler-Fhe-ratio-of f SVs 1o ail traini o“samples is shown in Table

in 1% laver is in rank of 30-50%. It

means only 30ﬁ)ﬂ>EI g ,Q]reﬁnt the information of all
samples. Comparing to the ratio of ?jz Aﬂg\[\ rthogonal encoding scheme
Bl Wﬁ“ﬁ“@ﬂ’?ﬁtﬂ 90 Yl s e

Markov a'ansmon matrix encoding scheme makes the classification easier than the

4.6. We found that thcgatio Or €2

conventional one. In 2™ layer, the ratio for each classifier also reduces to rank of 10-

20%. This evidence confirms for the simplification of classifying in this layer.
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Ternary Classification Results
The result shown in Table 4.7 indicates that there is a significant improvement of the
reclassifying technique in the double layer network model. In this model, the

intermediate result obtained from the 1% layer classifiers is used as input patterns to

nd

the 2 layer’s classifiers. Then, the er’s classifiers reclassify and produce the

final result. With this process,

Therefore, the secondar@outﬁlt v\@ther and likely to be more
/ ) 4 \

accurate.

) of structure can be eliminated.

Table 4.5 Results fro f single and double layer

network mode
L

Network
Data Set Model Coy Cog Coc
Single g 060 054 0.6
Balac Double 8090 061 055 0.57
CBS13 Single | 79.88 _73; 068 055 058
Double | 80.52°" 7 063 056 0.60
: Single4 | 80.18 75.78 ., 061 054 056
PDB-Select | ;) biEsi-sroo—ts2t—8 84137 061 055 059

p-order and window size

Results on multi-step, muﬂd er Markov
| : r

The combiﬁg%é@wm%aﬂ tﬁT ﬂﬁning input vector of

single, double a%'!l triple-step Markgv model can_assist to add ap extra informative
festore b ik e e b e T mlabalmd with
the result shown in Table 4.8. The overall accuracy of the predicting model (Qs; and
SOV) can be increased for all data set when the combining input of multi-step

Markov model have been presented.
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Table 4.6 Results from ternary classification, comparing of optimum and combine

step of Markov Model.

Step of o) Qu Qe Qc
DaaSet | yod | oy m @ @ @ Com Coe Coc
RSI26 | Optimum | 7842 7310 8205 7012 8090 06l 055 057
Combine | 79.04 73.13 8275 7102 8194 062 055 0.8
CBsi3 | Optimum | 8052 7426 8364 7125 8534 063 056 0.0
Combine | 81.10 75.71 8420 7198 8516 0.64 057  0.60
PDB. Selot | OPmum | 8192 7821 8522 7173 8413 061 055 059
Combine | 8218 7852, 72 01 8541 064 056 0.60

Results on multi-step, multi-order Mar

ﬂal order and window size
Table 4.7 Results from t@lﬁcﬂmn of filtered and non-filtered
result. Ol @

Data Set Filter

COH COE COC

062 055 058
063 0.57 058
064 057 0.60
065 059 0.6l

RS126 non-filter

filter
non-filter

CB513 filter

non-filter 064 056 0.60
PDB-Select | ™ filter , : 0.64 058 0.62
Results on multi-step, multi-order Markov w i ning tep, optimal order and window size
e
The filter process Sased on th'& ‘v&iueb “reliability.index (Ri) is the final process to

make the improveme;

improving of the accurgy (both Q3 and SOV) The resulﬂfrom the filtered predicting

model are hi ghﬂlﬂtgju an WETW‘J’W EJMT\fllyﬁne performance of our

model can be i roved with the eﬂror correctlon of the filter éonthm based on

informatin b 5l SMUNIINY1AY
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Table 4.8 Comparison with the results of other approach for three class

classification.
Q; SOV Qu Qe Qc
Method Data Set %) (%) (%) (%) (%)

PHD' 70.8 73.5 72.0 66.0 72.0
SVM(freq) RS126 71.2 74.6 73.0 58.0 73.0
SVM(psi) 76.1 79.6 71.2 63.9 81.5
SVMmer 80.2 76.2 85.2 70.1 82.6
SVM(freq) 3.5 76.2 75.0 60.0 79.0
SVM(psi) CB513 752 1 80.4 71.5 72.8
SVMmer 8250 85.8 72.1 85.5
gillzﬁED Private data e N / i ) i
SVMmer PDB-select - 0.0 73.1 88.4

The results of PHD obtained fr ander, 1 ost et al., 1994);

The results of SVM(freq) obtained and Sun,

The results of SVM(psi) obtai '

The results of PSIPRED, and B Sfrom (. nd (Baldi et all., 1999) respectively,

reported on different data s
The results of SVMmer obtainedifro
proposed in this research. Combi

wM-ﬂ&lﬁl ith multi-order Markov encoding scheme

re shown.

Table 4.10, comparin cting models, show that our
present method (SVMmer) result that out-performs other
advanced methods at prcsent .S%\e 3 of 80.2%, SOV of 76.2% on
RS126 and achieves" —_-'-'—'?'-‘1"—"-_—-‘-':‘-'11-“-'-‘-'-'-:':2'-! 13. Our method produces a

A

very good accuracy orﬂlf&%ht 2 OV. @he lower accuracy of SOV

may result fro zje %E}J’ a ﬁ entation of predicting
structures. Becagse only local in ormatlon o conn esxdues is used, the

et W@Mﬂ"i‘ﬁé S P e B Tos

be the cal?se of shot fragments on prediction results.

For the accuracy of binary classification, the helix structure (H) achieves the
highest result whereas the strand structure (E) gets the lowest result. This evident
shows the difficulty for the predicting of each structure. In fact, the strand structure

(E) is more affected from distant amino acid residue than any others structure.
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Therefore, only the input patterns of connected residues may not provide enough
information to increase the accuracy of the strand structure. Even the result of E class
is lowest when compared to other classes, the result is satisfactory when compare to
other predicting methods in all data set. The very high accuracy of H class may obtain

from the local information extracted fo e jumping step of Markov model relating

to the relationship of H-bond betw

AU INENTNEINS
ARIANTAUNNIING 1A Y
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Figure 4.1 Comparison of three-state overall per-residue accuracy (Q3).
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Figu,e 4.2 Comparison of segment overlap accuracy (SOV).
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4.2 Conclusion

A novel approach to the prediction of protein secondary structure from sequence data
is proposed. The approach employs a new encoding method based on the Markov
transition matrix to produce the input vectors that are efficiently used to train a SVM-
based neural network. Designed netw W e as well as optimized parameters of
the prediction model is prese: Ko a eves the highest accuracy on the
p P pp\& A gh y

- —

widely used benchmark §VM together with Markov transition matrix

encoding scheme pr erfotmance . ~three-state overall per-residue

g,

accuracy measure Q3 ap accuracy measure SOV =

{ C l-.v C\\h\
77.18% through a sevensfoldeg éro}s‘ lidatios ‘on the data set of 513 non-

J‘Il BT

homologous protein chain ' arger data set, 2810 non-homologous

the Qa,accuracy up to 83.10% and the SOV

e improved accuracy of the new

I rn
A system to prediJ protein secondary structure that utilizes this approach has

been implemeﬁdulﬂ %évllﬁ Wﬂ?fwﬁq imp Genome Project

(http: //pmonodo%‘lblotec or.th) to predict the structure of protein &Jquence translated

fom bbbl e e Y0 VI Brher s s

avallable online at http.//pmonodon.blotec.or.th/svmmer/ 4

4.3 Discussion
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The major improvement of our approach obtains from the efficiency of our new
encoding scheme based on Markov transition matrix. The transition matrix built
specifically for each classifier on the secondary structure class plays the significant
role to capture the essential local information for mapping patterns of amino acid

sequences to protein structures. On another hand, the probability of sequence pattern

in n-mers that appears in the st@ rotein is an essential feature used

smaple mﬂ method uses statistical data

tremely attractive feature of the

for training the claSS1f1ers

for the preprocessing of i m
Markov transition matzi
available protein struct i [0GE$S-0 1L lihood estimation. Clearly,

further advantage to this

jl\ uld be increased by two
A ' r
main factors. Firstly, the concept of ensemble networkof classifiers as well as the

a4 8 T WSy s

the performance of the predicting model. Seconﬂy the natural &obablhty of each
ey i Vit k4 okt i o g ot sampies o
amino acid sequence. If the value of each entry in the matrix is close to its ideal value
then, the prediction accuracy can obviously be realized. In addition, the optimal
length of the amino sequence pattern in the transition matrix is still unknown and

further investigation is required.
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