CHAPTER III

SVM AND MARKOV MODEL APPROACH FOR

PROTEIN SECONDWWCTURE PREDICTION

ing theory based on the
principle of structural risk rmmmlzatlon that guarantees the lowest error. Accordingly,

SVM can provﬁ au)@] g’ea %z&]o%e%)% c’iqsfn}‘ije fact that it does not

incorporate prog’llem-domain knowledge [21]. Fhe SVM approach is not only
theoretialﬂ;li@ﬁbm Empun’lgtm Ej;llﬁns,-l especially in
Bioinformatics [31]. There are many applications of SVM in Bioinformatics such as;
detection of remote protein homologies [32], recognition of translation initiation sites
[33] and prediction of protein secondary structure [34, 35].

The main idea of a support vector machine is to construct a hyperplane as a

decision surface in such a way that the margin of separation between positive and
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negative examples is maximized. In the process of training the SVM, a nonlinear @ -
function that maps the input vectors to a higher dimensional space is chosen. This
function may be informed by the designer's knowledge of the problem domain or be
chosen by using polynomials, Gaussians, or yet other basis functions. So, the

ed feature spaces, can be arbitrarily high.
%/)posmve definite kernel function,
—

% e feature spaces. The inner

dimensionality of the mapped space

The mapping function is repr:
k(x,x'), which is easier to

product is specified by t

3.1
We do not need to know pping is not performed explicitly. A
common kernel function perfor 1 _’ he mapping from input spaces into a
high dimensional f fure._ pace ...;.........._._,.,.L“i...,..ii. n-problems is the Gaussian

radial basis function (RF) sho

ﬂ‘IJEJ’J jfli,lpﬁ '}{ﬁ_E“Hﬂ‘ﬁ .
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Currently, the theory of kernalizing the input data for machine learning approach is
still in active research area. RBF kernel function in our learning models was used,
after almost all kernel functions currently developed had been tested and compared

the results.
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In basic formulation, SVM finds a linear decision function, f{x)=sign(w.x+b),
that minimizes the prediction error on the training set and promises the best
generalization performance. To construct the optimum margin hyperplane for the soft-

margin SVMs, we solve the following optimization problem:

i 6
S
i gl R
R
(34)
e Sa“dl”’ﬁ“t?ﬂ’ll NENINYINT
3.5)

amaﬂmﬁmmmmaa

and w=Yayx, (3.6)

i=1
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To find the multipliers ¢, , we substitute (3.5) and (3.6) in to (3.4), and solve the

following optimization problem:

maximize w(a)= Za ——Za a;y;yk ( ) (3.7
i=1 V l ,J=1
Z.
subject to , A= m, and > a,;y, =0 (3.8)
- i=1
where x; represents an in Vi ? \ \ pending on whether x; being

in positive or negative ¢ uf ~\ raining data, and C > 0 is the
regularization parameter whigh se ng- by i\ . This parameter is used to
balance the trade-off betwe! fication error represented by slack

variables £, .

4 -
I
( S ) and their Lagrz}pglan multipliers éc'z’ ), which are calculated during the

optlmlzatlonpfﬂuth 1’] ﬂﬂﬁw E’qﬂ‘j
ammni’nﬁﬂ’mmmaa

The hyperplane decision function can thus be written as:

The hyperplan the training examples

3.9

f )—szgn(Zy a, k(x,x, )+b) (3.10)
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3.2 Markov Model

Markov Model - named after the Russian mathematician Andrei A. Markov (1856—
1922) - is a stochastic model describing a sequence of possible events in which the

probability of each event depends only on the state attained in the previous event. It is

a process that generates a seque: obability of the occurrence of state

i depends only on the previ enge at tﬁ i-1. The definition of the model

can be written as follo\V \\

(3.11)
This model for the productio Seque i ge.is de ed by transition probabilities:

(3.12)

These parameters of thegmadel are typically estimated from large sets of trusted

e o B SL TSI T ot
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database 6f known protein structure, such as Protein Data Bank (PDB). This method
of estimating models is called maximum likelihood estimation [36].

For representative models of the secondary structure of proteins, we derive three
Markov models for the three classes of secondary structure, H(Helix), E(Strand) and

C(Coil). The transition probabilities for each model are calculated using the equation:
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! =—= (3.13)

I
where ¢!, is frequency of amino acid T followed S for sequences in class i€ {H,E,C}.

The model we have mentioned so far is technically called "a first-order discrete

time Markov model", because the pr: at state i depends only on the state i-1.

A general from of Markov model, can be explained by the

following equation:

P( (3.14)
Thus, the transition probabi v chains are
a (3.15)

where ¢ is amino acid r and s, r and g ﬂ amino acid residues at the

due at positio

A Fj’? 1l W’%JWEI“’IT‘I“’SS“" e

with any order ofithe models.

WOG})M ﬁ %rm)rw %s’;c‘er’%l WH % ﬁresentatlon of
connected amino acid. For example, the third-order Markov chain is represented for
the pattern of connected four residues so-called 4-mers, and so the forth order is
represented for 5-mers, respectively.

The Markov models can be applied to capture the information embedded in

biological sequences in forms of transition a matrix, so-called Makov transition
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matrix. The Markov transition matrix has been extensively used for sequence analysis
and given satisfactory results in many applications such as the method for identifying
splice sites and translational start sites [33, 37] and the method for detection of
eukaryotic promoters [38]. Furthermore, it is the core algorithm of the popular

GenMark program [39].

nstructed by define the columns

to be positions on ﬁxew . Each entry of the matrices

contains a transitional our experiment, we apply

the Markov transition produce the input vectors

for the learning model

helix structure class. '. 1iS Pl
|

an extended Markov Chalp so-called multi- ste Markov Chams

The multl-ﬂpua&(}) ’}Imlwgrw %qu ﬂ ‘jmnpmg chains whose
the probabilit of the occurrence of sfate i de ndﬁbnl on the m ﬁwous occurrence
Y DTV i N I

P(x, | %o X gmoreen %y )= P( 2, | %, (3.16)

Therefore, a general from of multi-step Markov model, multi-step n™-order

Markov model, can be explained by the following equation:



28

( 1o _2m,...,x,._nm,...,x1)=P( % |x,._m,x,._2m,...,x,._,,m) (3.17)

Thus, the transition probability of a multi-step third-order Markov chains

becomes: E M ,//
— L q) (3.18)
\!\:' f‘-.\
where m is the number of j : D, am; id residue at position i and s, r
and g are amino ac 1 at 'the\ previou sition, i-m, i-2m and i-3m,
respectively. PR
+“ : pte

The transition matrix offmulti=step v 1 can be constructed in the same
way as the single-step model.-iué;ﬁgl,fgf window connected residues, the
windows of jumping Step-o st-residues 1s 3 the data representation.
After the Markov Tranﬁon ' createdmw processes of input vector

construction caﬁ ﬁ ?jﬁw W%IW?T ;1 ﬁl%-step Markov Model.
34 @Wﬁ Mﬂﬁ%&lﬂ%@lm’m@

The orthogonal binary vector , a conventional encoding scheme of protein sequences,
have been used since the first Neural Network models of protein secondary structure
prediction was introduced by Qian and Sejnowski [8]. Five years later, the extension
of this encoding scheme, that incorporates the profile information from multiple

sequence alignment, was introduced [9]. Recently, the most efficient alignment
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profile comes from a position specific scoring matrix (PSSM) generated from PSI-
BLAST program. The encoding scheme based on PSSM was introduced by David T.
Jones [10]. Even though the input vectors generated from those encoding schemes can
be used to represent the feature of protein sequences, they contain the enormously
high dimensional vector spaces. For i‘ e, if we use a window size of only 15

residues, the size of input vecto t k )0 = 300 dimensions per pattern.
Consequently, the peﬁ@ lezfninws deteriorated by that bad

S

! .BNWX:N, the more it increases a
limit ining patterns, the learning

property. In other word
number of degrees of
models is prone to be i

As the limitation

-

transition matrices aregen 3 0 uﬂxs to be positions on fixed

windows of protein sequences. (see Figure 3,2) The size of windows can be varied

i B WERA TV SNV e s

T T

estimatedifrom the database of known protein structure. To estimate these parameters,
a set of known protein structures from the DSSP, the database of secondary structure
assignments for all protein entries in the Protein Data Bank [5] was used. This
database consists of 18,947 currently known protein structures. For preventing a bias
of the data set that used to validate our model, we removed those sequences in the

validation set from the DSSP database. Then, with this database, the Markov
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transition matrices are kconstructed separately for each secondary structure class, H
(helix), E (sheet) and C (coil) (see Figure 3.3, 3.4, 3.5 and algorithms follows), and
are used to create the input vectors for each classifier of those classes. The following
algorithms are the step by step to construct the Markov transition matrices and Input

Vectors.

I,

Algorithm 3.1: Constru koy Trmatrix and Input Vectors

free parameters of
window.

2) Assigning the secondaryStrilcture.cl , A heponds on the stractural
class of the middle resid on. e N

3) For each class of sequence pattems, Sition matrices are created by

observing the v:'-'-‘{ff'--% ---------------- , e;-e--a-m-i-ai dues at each position in the

i
4) The transition probabilities for each matrix’s element are computed using

o (1 WO NEVIIWEIINT

PINNTAURINGINY oo

where ¢!, is the frequency of amino acid T followed S for class i€ {H,E,C}

sequences. m

5) The sequence patterns of data sets (training and validating sets) are prepared in the

same way using a sliding window.
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6) To construct the input vectors, log-odds ratio of the transition probabilities

obtained from the Markov transition matrices are calculated by:

, iefd,E,C} (3.20)

b, =log

into account the dependen ot ,g?fl e
*.i‘ﬂ'r’f + i

model respectively. E

The propeﬂ ﬂz{rﬁ ﬂjﬂlﬂ%{w W‘j 5 dimensions. Each

dimension représénts the amino aci ‘gl position on sliding wmdow Value of each
s 4 9 B K s o
residues (5—mers) For example, in array of helix’s structure, the number of patterns
that have helix structure in the middle residue are counted and accumulated into the
array. The patterns of other structures that repeatedly occur in data set will be counted

by the same procedure.
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PDB
(18,947)
Data Sets
Remove Test (RS126, CB513,
Set PDB_Select)
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Figure 3.1 Data flow of input patterns preparation process.
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Figure 3.2 Markov transqton Matrix

a) Patterns of p w At each position
on the wmdow.ﬁ1e uﬂpj W i u is observed.

b) The 1* order Markov transition matnx is constructed using the trans1t10n

RTINS AT ay
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Amino acid sequence

ng window; the pattern is
e of each window.
\

Figure 3.3 An amino acigd
represented for the struct

Sliding
window
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probablhty
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Figure 3 4 The input vector created from 4™ order Markov Chain; the size of input
dimension, s, is determined by the window’s size, w (dot box), thatis s = w —n;
where n is the order of Markov Chain.
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Figure 3.5 The constructing process of Input Vectors;
using the 4™ order Markov Transition Matrices constructing with normalization and
interpolation methods.
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a) 1* order

b) 2° order

¢) 3" order

Ihput Vector

Figure 3.6 The input vector that created from high-order Markov chain;
the 1% 2" 3™ and 4™ orders Markov Chain, ), b), ¢), and d), respectively.
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a) double-step 1% order

middle
residue

Input Vector

Figure 3.7 The input vector constructed from multi-step Markov Chain;

the double-step 1% order, triple-step 1* order, and triple-step 2" order Markov Chain,
a), b), and c), respectively.
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3.5 Normalization and Interpolation of Transition Matrix

Due to the limitation of estimated data, uncompleted transition matrix may occur.
That is the zero value in the matrix. The zero value means that there is no amino acid
pattern match in the estimated set. Therefore, to remove the zero value, the

normalization and interpolation @"#y/
siﬁﬂ of structure is not only focused

The normalization is the Jon

on the middle residue o( winde 0 considered for structure of all

residues in the window. ' i W, ee that there are some level

j t completed non-zeros.
I
Therefore, the interpola 10n of score is apphed to the transition data. By the fact that

shorter pattemﬂ %doﬂ Qy%ﬁ]og.n% % % ’} ﬂ% longer patterns, if we

reduce the length of patterns at the zero-point and.those reduced patterns are found in
the dat%t,q}tq;le@ ﬁlmc‘; mIMMﬂQM1H;l@ E.l focus on the
patterns that zero points occurred and reduce the five dimension array down to four
dimension array. Then, the non-zero values of four dimensional arrays are used
instead. In case of some zero values still appears in matrices. The same reduction
method is also applied by reducing the array dimension until the zero values are all

eliminated. With the normalization and interpolation techniques, the completed
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transition matrices with no zero values can be obtained and used as an informative

data source to construct the input vector of the learning model.

3.6 Incorporation of the Evolutionary Information

From the observation on evolutio\, i W/u ikely to exchange the amino acids at
ure, a
4

positions that will change th of structure usually results in a

loss of function. Thus, t chang

tracted from a protein family
are highly indicative for that family. The protein
family sequence can be o search [40]. PSI-BLAST has
recently been shown to > search results into the twilight

zone of sequence similarit ST searches, using outputs of

the first search as inputs fof the nex is al
‘i"’ i " = -
. A ad i 3 Y
found. In this research, we use-the homologues seg

| ,u_ '

search to be an addit '-‘;'::—‘-'c':::;'::‘v::;:: """"""""""" th- : e normal estimated set.

more distant homologues to be

ences obtained form PSI-BLAST

an be inc&)orated into the predicting

= AuEINaNINeIng

Using only the estimated sequences form known structure sequences from PDB

sl b t@wﬂgﬁr@é{ewwf@ﬁ%ﬁ@ﬁ@ I

q - . :
of 4™-order matrix, it seems to run into a problem of not enough data to estimate and

Those sequences the Q)lution info

complete those matrices. To include the homologues and distant homologues
sequences from PSI-BLAST into the estimated set, not only the more informative

estimated data can be obtained, but they also help to overcome this limitation.
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3.7 Network Structure of Learning Model

For our prediction model, a three-layer SVM network is simply constructed. These
layers are the first-layer, Sequence to Structure, the second-layer, structure to

structure, and final layer, multi-class ternary classification. (see Figure 3.9)

U%f three binary classifiers for each
class of secondary stru?put-to t er 1S the vectors of log-odds ratio
derived form the M o8] h M \wted from the algorithms

previously defined. T

First-Layer: Sequence to Structur

The first-layer, Sequence to &

of consecutive residues;

input sequence is 2n+1 residués yvﬁéi same. size to input dimensions.
) .I _} v ‘ J -

In this layer, the SVM c_]ﬁsgiﬁﬁr -take the. input and predict membership of

iy

secondary structure ¢lass. Whereas SVMs are only fommulated as binary classifiers,

the ternary predictionfj_aﬁn be pe ; mediately. We train three binary

oEhal el A QG
ST NN

The secord- -layer, Structure to Structure, is also composed of three binary classifiers.

classifiers that specific t6 the structural classes — Helix, Extend and Coil. Those
classifiers dem@

In this layer, each classifier takes same inputs from the decision values of the first-
layer. The input vectors are presented in from of window of contiguous residues
having three elements from each classifier per-residue. The idea of "Structure to

Structure" network was introduced and used in PHD system - the Neural Networks
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based method for protein secondary structure prediction [9]. We apply this powerful
technique into our SVM based method.

Third Layer: Multi-class Ternary Classification

On the final layer, we make full multi-class ternary classification by combining the

outputs of three binary classifiers with ,voting strategy. This simple and useful

technique is also known as the “on e Versus 4 v ] strategy
In our experiment, ; A cm The first one uses only the
first-layer, then, immediatel¥" passes th e temary classifier on the final

layer. We call this model"as #Single layer " vOTK m Another model uses fully
\ \ s are combined with final

layer. The later is call "d ye ork model". results of those models are

ﬂ'lJEJ’J“/IEJVlﬁWEJ’]ﬂ‘i
Q‘W'm\‘iﬂ‘ifu AN Y



o the ternary classifier to make the decision by vgting strategy

TR I ummmaa
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Figure 3.9 The double layer network model; the combining output of three classifiers
from first layer is passed to the second layer (middle layer) for reclassifying process,
then the combining output of second layer is passed to the ternary classifier at final
layer to make the final decision of the tree structural classes.



3.8 Reliability Index and Filtering of the Predictions

Reliability indexes (Ri) have been used successfully throughout many models of
secondary structure prediction. It particularly helps when the prediction is to be used

by an expert, as they allow the user to concentrate their attention on areas that are

It measures the distange ucces c o the optimal separating

(3.21)
The value of index is tun: vdlue of Ri > 9 then Ri is set
to 9, where d is th decision function of the

classifiers with largest (l)'ptput The value of d is computed from the following

equation ﬂ‘iJEJ’W]EJﬂﬁWEﬂﬂ‘ﬁ
AMAADIABIAINESY oo

This reliability index can also be applied to improve the predicting result by
using a filtering algorithm. The prediction accuracy of residues with higher Ri values
is much better than those with lower Ri values. The filtering algorithm tries to

automatically adjust and finish the output received from the ternary classifier by
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modifying the result of residue Ri lower than a threshold (#) to be the result of closest
edge with Ri higher than the threshold. By this algorithm, the longer connected
secondary structure segments can be produced and they significantly improve the over

all performance of the predicting model.

1) Calculate the Ri M esult on proteif ' sequences.

2) Find the Ri thatlo ‘ \

3) Mask those point

4) Find left and righ

5) Atboth sides of e e structure of uncertainty points with
- L
structure of connected edge Soint, an >t the points to certainty point.

6) Repeat steps 4),and:5) unfil all ur s arg-reset.

Observe amino acidﬂJeH el |

Prediction result

A4

Filtered result

Figure 3.10 A filtered result of the prediction model. The uncertainty results (dot
boxes) which Ri is lower the threshold are replaced by the results of the closest edge
on either the left or the right hand side.
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3.9 Parameters optimization on SVM

In our experiment, a Gaussian Radial Basis (RBF) kernel with 7= 0.05 and the
regularization parameter R = 1 is used for all classifiers after many trial processes for

optimization have been attempted. The problem of imbalance in class memberships of

training sets is dealt with the weighti ) of the regularization parameter [41].
This requires that the two re e specified.

P%[ pe
7

Ri=

(3.23)

(3.24)

(3.25)

where Ry, R; and Ny, N; eters and a number of patterns in

class 0 and class 1, r_especti elye ifier of cass Helix (H/~H), class 0

means patterns of »*f

2
i
as

- structures (~H' ﬁ?; eans patterns of Helix

structure (H). With thi@om of weighted regula zation@\e penalties associated with

misclassifying tﬁtﬁ ﬁ?lag %e ¢ an ﬁtjdjusting the optimum

separating hyperplane is more sensitive to the SVs for the smaller class in the training

o AN TN TN
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