CHAPTERII

PREDICTION OF PROTEIN SECONDARY STRUCTURE

For four decades, the study o(@!lw cture prediction has been done by
using various techniques,@ rnadnne@-eory from rule-based theory,
— ———

neural network through re

11_1 this section, some detail of

each technique is briefl Q' un he.i tions of each one.

After Pauling and Corey posed 1 [ a-helices and S-sheets [1, 2],

researchers aimed to study the ‘@ﬁi of th ino acids and protein structures

-t I'ﬂ" l"" "‘ e

[17]. The earliest onfawas the correlation ¢ he formation of a-helices

[16]. The main featu te0 these fir erat was the use of single residue
oy i
statistics for prediction[18]. There were a few numbers of known structures on

database whicrﬁaﬂrﬂm% Wﬁﬂ @Fﬂtﬂated [5].

Chou and Fggman’s method [19] used statisggal analysis bz&sd on the known
srcturd o Yes A <od ol robatil of ok a el or a -
sheet. Toqpredict the secondary structure of a new sequence, contiguous regions of
residues with a high probability of forming secondary structure features are
considered. By example, if 4 out of 6 contiguous residues are likely to form an a-helix
or 3 out of 5 are likely to form a S-sheet, the assignment will be done to that structural

element. These regions are then extended using a similar rule.



2.2 Second Generation

To decrease the bias, the second generation of secondary structure prediction used
much more numbers of known structures and more detailed statistics than the single
residue. The consideration concentrated on the consecutive stretch fromn - iton + i

re of residue n, with i typically in the
\& e accurate, algorithms based on

sequence patterns, neural

residues as contributing to the seco

Q

interval {5, 10}. To make th

statistical information,

networks, graph theo ules and nearest neighbor

algorithms [18] were appl

Qian and Sejnows plicd ork for secondary structure
prediction, It was a fully cted- : r perceptron(MLP) with one hidden
layer model that Sejnowski d,@b 7 : oped for the problem of text-to-

assigned a binary vecgr (such as .y or (O, ﬂ 0 ..)). It was unique and

orthogonal forﬁqtjg ﬂxw g]v[ gj n}i‘ abet” of 20 different
acid is represente 1f1

amino acids reqlires that each ammo mcns1ona1 space. For
the ou@tw a ﬁo&hﬁ %}@J %%ﬁ}(}tw ﬁ ﬁr)ﬂ) E}' of the amino
acid belonged to either an a-helix or B-sheet or loop region

Firstly, the network was initialized with random weights. Secondly, it was trained
by using backpropagation [20, 21] with the data set chosen from the Brookhaven
Protein Data Bank (PDB). To avoid the performance oscillation because of

contiguous data set [22], the input was fed randomly during the training. After the
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training had been done, the system would predict the secondary structure of the amino
acid in the middle position of each feeding residue. Although the prediction result of
the network is better than other contemporary methods, the accuracy was around 64%
which was rather low. However, using neural networks to predict secondary structure

gy,

is still applicable [23, 24, 25].

2.3 Third Gener

Most of the previous me

below 70%, (b) for B-str ‘ on result. was only slightly better than

j,-'f'l ‘-.r’

these problems, it waﬂ/ery mfﬁ‘uﬁ to

If a short fragmendt was used to t as unable to capture all
I Q
features in long rangegnteractlon However if a longer fragment was used instead,
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parameters to represent its features. So there were msufﬁme ata to train the
—r AR N‘VI’]’J Nnen ﬂ t

Rost and Sander [9] proposed PHD system for secondary structure prediction
service via mail server. Actually, this architecture was similar to Qian and
Sejnowski's work by including ensemble average and a secondary network. However,

the main change on PHD was the predictions method that was based upon profiles, an
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aligned sequence of homologous protein, instead of the network with single
sequences.

When a mutation occurred in natural evolution, it destabilized a protein. Some
mutations were successful and some were not. Normally, the successful one change

only some residues, not change the main structure of protein. The evolution always

preserved the structure rather than se ue

Long range informat'syo
extracted by sequence M |
orthogonal encoding

sequence by extracti

method increased the a

Both sides of protein sequence;ﬁa,

= o
'"’J'Pi'— :."; e

prediction server SSPRB whi

2.4 The (Ffﬁ ff S’Ecﬂﬁmﬁwgtmﬁcﬁon

It was impossible to achieve 100 % faccuracy of the prediction. However, the actual
goal o%cﬂ;:liﬁrﬁiajsmdiblams:la m E&le:]cﬁeselonal structure
accuracy rather than two dimensional structure accuracy, because the three
dimensional structure implies the function of protein. Normally, the three
dimensional structure is rarely changed in evolution. Rost suggested the segment

overlap measure (SOV) [28] for three dimensional structure measurement. Although
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the two dimensional structure prediction was not reached 100 % percentage, the fold
recognition was able to do correctly.

A comparison of the homologous protein on the same fold shows that the 12
percentage average was different on two dimensional structure. On the other hand,

although the two dimensional structur

7 the same fold are significantly different,

i.e. 12 percent, the three dim s were still similar. So, it was

impossible to predict the Wme curatel 88 percent. The SOV method
relied on this approach/ SOV, Nced in the next section. This

method aims to the ac

the accuracy of residues.

It is not an easy task to €-a suitabl ',:,& for the training process. Both

knowledge of learning machiaés iid specif ¢ domains are required. The idea is to

choose a representa f---—:-’—;--:-;--—.- 1s with known sob ions that can be used to train

the network and to testr,ils perfo:

(a) selected daﬁeﬂ %‘ﬂ ty distribution of real
cte

world examplesiis likely to occur, ) sele ata points hat contam contradictory

oG A B

The %rst two of these will lead to problems in training a classifier. Over

wever, three ﬁoblems can be encountered:

presenting particular patterns during training will lead to the machine being biased
towards certain classifications and presenting contradictory patterns can lead to
problems converging towards a classification scheme. A dataset with artificial

correlations, however, will lead to over estimations of prediction ability. If a test set
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contains highly correlated patterns to the training set, this will be testing the ability of
classifiers to remember training patterns whereas we want to test its ability to

generalize and to predict new patterns. In the context of secondary structure

identity over 25%.

prediction, this means that no two proteins in the dataset can have pairwise sequence
A further issue is that i

!/&s are to be compared, then the

comparison must emplo@ainigg and st sets. Otherwise, the comparison is

‘\‘
'()\_OUQ_has, in general, standardized

sen to avoid the problems

meaningless. The second

e
S

Sander [9], referred to as RS126. %d et widely used for training and testing

.
i
r

other is the larger data

set contained 513 nonﬂo’ ided the first one except 11

protein chains that have an g) score of at le&s}t 5. This data set is constructed by Cuff

and Barton [4ﬂeu&|tas%ﬂmgeweﬂhgem@ata sets because they
were classifi :E an appropriate repfesentative subset of all protein‘in the Data Bank
K WK R bR

Another larger data set used to measure the model is data set obtained from PDB
select — the selection of a representative set of PDB chains [43]. This data set is useful
for the development of prediction methods whereas it is intended to save time and

effort by offering a representative selection that is currently about a factor of fifteen

smaller than the entire database. The most recent data set recent released on July 2005
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composes of 2810 chains with 430927 residues with percentage of homology identity
less than 25%. With the larger data set, the predicting model can be trained and

improved for overall accuracy.

2.6 Protein Secondary Structure Definition

i
S m& @)gn'db tts in the field.
econdary structure elemen rigi ized by experts in the fie

—— "
~ matically predict secondary structure, it

However, if we are to trai

quality data of the known

o
' \a\gial problem.

éntally, the result is a list of

becomes necessary t
secondary structure of pro

When the structure of
co-ordinates of the positi

perfect because of the errom oggurred by the expetimented process. Therefore, the

-

positions of the molecules eii@fbe}} determined by any algorithmic
(A

determination of secondary Struicture: Despite his; methods have been developed for

secondary structure assignment. ﬂ

The earliesFT,ﬁag]‘ ﬁsqﬂw‘w aEng«Tﬂt,s. the DSSP algorithm

developed by Kébsch and Sander [501. The program is freely available for academic

o o) SN AT SAIGHE oe sinin

assigns secondary structure on the basis of the hydrogen bonding pattern between the

backbone NH and carboxyl group.
In addition to DSSP, there are STRIDE [44] and DEFINE [45]. Cuff and Barton
[42] undertook a comparison of the three methods. There is an agreement at only 71%

of residues between all three methods. DEFINE seems to be the major cause of the
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disagreement; DSSP and STRIDE agree at 95% of residues. In addition to this, there
is a difference in the length distributions of the predicted structures. However, DSSP
assignments will be considered for our comparisons.

The DSSP program assigns residues into eight different classes, H(a -helix),

G(310-helix), I( 7 -helix), E( S -strand), lated S -bridge), T(turn), S(bend) and —

(rest or coil). To predict the § ) our experiment, two prediction
. : f —J .
schemes are considered. TSt-Scherie ismrem classes” and the second

s“‘!\"* lerent classes of structure, only

\\\\.\\\ e classes of structures are

\\\

3) Hand Gto H; E """" | other statestoC.
V

scheme is three differen
H(helix), E(strand)

formed by grouping

1) H,GandItoH;Eto

2) HanthoH EandBtoE -W ¥

However, the different agsignment and reduction methods influence the prediction

T qmma Elmh‘ﬂ 1M | 4 TS,
o ST NN Y



Table 2.1 Three and Eight Classes of Secondary Structure.

SSP Class Abbreviation Simple Class
a -helix H H
310-helix H
7 -heli: = H
P -str E
Isolated /5 -bridge E
C
bend c
et § ;; f‘[ B

AULINENINYINg

IR TUNM NN Y
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2.7 Performance measures

The standard performance measures for the prediction accuracy are the three-state
overall per-residue accuracy measure (Qindex) and the segment overlap quantity

measure (SOV).

Overall Accuracy, Qinex

of Qccmacy for measuring the

their correct class. The index is defined as

This is the most o

percentage of residues p

follows.

2.1
where g;; is the num ctly to class i. This is an
obvious and 1ntu1t1v : "\’ r. But this measure can

easily be misleading wi _the class membership is not e@nly distributed.

=3 L7
One of moﬂbﬂ%%% %%W%ercemage of residues

predicted in theny:orrect class and shown in the following equation, ,

ARAINTU RN Y

, number of residues correctly predicted in class i
Q, = SeiEC) «100 2.2)
i zie{H . C}number of residuesin class i

Even through Q3 can give us the performance of the predicting model, it does not

reflect the specific goals of secondary structure prediction [28]. Therefore, the more
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suitable measurement method for secondary structure, the segment overlap measure

(SOV), had been introduced.

Segment Overlap Measure, SOV

prediction methods by measuring the secmucture segments rather than

individual residues. The seg Sverlap measure ( SOV) is defined as:

SOV = ] 1)} x100 2.3)
N ielH,E,C}
where sl and s2 are the obsg arid pred cted secondary structure respectively, s(i)
is the set of overlapping pairs 9_; gments 1 2 in state i, len(s1) is the number of
residues in segment g, i 1,52) is the length of two'sEements s1, s2 in state i (the

overlap segment), max(s - 1 Spa nﬁ by two segments sl and s2,

and N is the total numbenbﬁpsi@ues. The dds an integer value given by
AUEINENINEINT

0 (s1,82) = min{(maxév(s1,s2) - mingv(s1,s2)), s 2.9

AWTAN LR Al 3l 5 5)

By comparing Q index and SOV score in Table 2.2, one can see how SOV does

reflect the quality of the prediction.
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Table 2.2 Three different predictions that all have the same per residue accuracy.

Experiment Secondary Structure Ou Sov
Observed -HHHHHHHHHH- - -
Prediction 1 -H-H-H-H-H-- 50.0 125
Prediction 2 50.0 379
Prediction 3 50.0 63.2

The predictions are qM e different. Prediction 1 indicates 5 different

isolated helices, cle have minimum length 3.

Prediction 2 is better, liction 3 is the best since it
predicts one contiguou ts the difference in quality

of the prediction.

V— T atiﬁl of results is Matthew's

Another measurementmse

Correlation Coefficient [46].This measurement is given by

AUEINENINEINT

TP, % IN, — TP, x EW, Y,

AW TR TR o 25)

where TP, FP, FN, TN are a number of true positives, false positives, false negatives,

and true negatives for class i e {H,E,C}, respectively. The result is a value between

-1 and 1, such that 1 shows complete agreement, -1 shows complete disagreement,

and 0 shows the prediction is uncorrelated with the results. This statistic, therefore,
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allows comparison with a random baseline. A random scheme predicting according to
class frequencies would have Co; close to 0. It also has the advantage that, for two
class prediction problems, it encodes the quality of the prediction in a single statistic.
We shall generate the correlation coefficient and use it for optimization of binary

classifiers.

2.8 Cross Valida

All results reported ar 1dat10n Even though a full

Jjack-knifes test is morc a a u putational power, the 7-fold
cross validation is perfo : \ divided randomly into seven
subsets with having simi nt of each class of secondary
structure. Then, the predicti ....,: el 1] on six subsets, and tested on the

remaining subset. Th1s process mes, once for each subset.
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