CHAPTER 2

LITERATURE REVIEW

2.1 Properties of Si₃N₄ ceramics

There are many kinds of engineering ceramics, such as silicon nitride, silicon carbide, alumina and zirconia. In particular, silicon nitride (Si_3N_4) has been the most attractive material for structural engineering applications. Si_3N_4 has been widely used because of its properties, including high strength over a wide range of the temperature, good thermal shock resistance, strong wear resistance, and corrosive resistance.²³⁾

Table 2.1 shows the physical and chemical properties of Si_3N_4 ceramic compared with other ceramics that are candidates for structural engineering applications. This Table suggests the properties of Si_3N_4 is superior to the other materials. Si_3N_4 has low density, high fracture toughness, and also high fracture strength. Moreover, Si_3N_4 has better thermal shock resistance than other materials because of the lowest thermal expansion (CTE), and high strength. Therefore, Si_3N_4 is the material that suitable for use in engineering applications such as engine components, wear-resistant parts, bearing balls, and cutting tools.

Table 2.2 and Fig. 2.1 show typical $\mathrm{Si_3N_4}$ components, for several application fields. Some heat or wear resistant components such as mechanical seals, cutting tools and glow plugs are shown.²⁴⁾

<u>Table 2.1</u> Physical and mechanical properties of ceramics that are candidates for structural engineering applications.²³⁾

Material	T _{melting}	Thermal expansion, CTE (10 ⁻⁶ °C ⁻¹) to ~ 1000 °C	Young's Modulus @ 21 °C (GPa)	Density (g/cm³)	Fracture toughness @ 21 °C (MPa m ^{1/2})	Flexural Strength @ 21 °C (MPa)	Flexural strength @ 1200 °C (MPa)
SiC ¹	2250#	2.8	342	3.02-3.16	2.6-3	-	
SiC ²	2400#	4.3	420	3.10	3.5	530	-
SiC ³	2400	4.8	390-480	3.08-3.20	2.5-5.6	400-870	276-690
Si ₃ N ₄ ¹	1900*	1.4	274	3.02-3.26	4.0-5.5	376	275
Si ₃ N ₄ ²	1900	2.3-3.0	100-200	2.1-2.6	3-4	150-295	160-300
Si ₃ N ₄ ³	1900	3.0-3.5	240-330	2.9-3.5	4-7	400-1000	350-1000
Si ₃ N ₄ ⁴	-	-	Managara A	_	6.5-7.5	700-950	550-830
Al ₂ O ₃	2045	9.0	360	3.61-3.97	2.5-4.0	300-450	150
Al ₂ O ₃ ⁵	-	-		<u>-</u>	7.5-9.5	650-800	-
ZrO ₂	2700	10.0	200	5.73-6.07	4.4	-	-
ZrO ₂ ⁶	-	-	-	-	2.3	100-300	-
ZrO ₂ ⁷	2715	8.7-11.4	150-260	5.6-6.1	15-18	700-1200	< 500
ZrO ₂ ⁸	-	<u> </u>	-	-	5-16	> 1000	-

^{*} Decomposition temperature in vacuum

^{*}Decomposition temperature in 10⁵ Pa of N₂ gas

¹ Hot pressed ceramics

² Reaction sintered ceramics

³ Sintered ceramics

 $^{^4}$ Composite $\mathrm{Si_3N_4}$ with 30 vol% SiC whiskers

⁵ Composite Al₂O₃ with 20 vol% SiC whiskers

⁶ Fully stabilized ZrO₂

⁷ Partially stabilized ZrO₂

⁸Tetragonal zirconia polycrystalline, TZP

 $\underline{\text{Table 2.2}} \ \text{Expected fields of application of Si}_{3} \text{N}_{4} \ \text{ceramics.}^{24)}$

Application fields	Components			
Engine components:				
Diesel	Plugs, turbocharger rotors			
	Bearings, mechanical seals, blast honing			
Wear and corrosion resistant components	nozzles, vane pump parts, chemical pump			
	parts, milling balls			
	Aluminum diecast parts (metal melt			
Malalianatanatana	guides, plungers, cylinders, and piston			
Metal treatment components	cylinders); wire-drawing roller pulleys and			
	dies; steel forming parts			
Tools	Cutting tools			
Heat resistant jigs:				
Heat protecting parts	Thermal insulation ceramic tiles, heat			
44.00	shielding plats, plasma insulators			
Aldical				
High temperature test jigs	Strength test jigs (bend and tensile)			

<u>Fig 2.1</u> Silicon nitride components, including other materials (Partially stabilized zirconia (white) and alumium substrates (thin plates)). 24)

2.2 Basic knowledge about crystal structures of Si₃N₄

The puckered sheet of $\mathrm{Si_3N_4}$ crystal structure, which joins Si-N ring, is shown in Fig 2.2. $^{25)}$

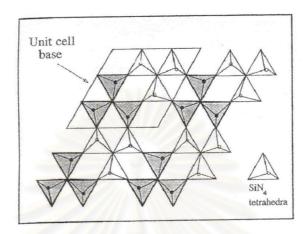


Fig 2.2 Outline of silicon nitride crystal structure

The tetrahedra structure (SiN_4) is the basis of crystalline Si_3N_4 . Silicon atom is coordinated by four nitrogen atoms as shown in Fig 2.3a. It is indicated that the SiN_4 tetrahedra introduces an open structure with large voids. Moreover, two crystalline forms of Si_3N_4 , which is α and β phases, are shown by X-ray diffraction (XRD) pattern. Although both phases are hexagonal structure, the sequence of Si-N layers is arranged differently in c-axis direction.

Fig 2.3-b shows the A-B-A-B stacking sequence of β -Si₃N₄. The next A-B layer is directly over the first. Therefore, a continuous interstitial channel parallel to the c-axis forms around the site surrounded by 12 Si-N bonds. α -Si₃N₄ has an A-B-C-D stacking sequence of Si-N layers. Fig 2.3-c shows the A-B-C-D stacking sequence of α -Si₃N₄. The C-D layer is filled on the A-B layer and creates isolated large interstices formed by the 12-member rings. Furthermore, the layers of α -Si₃N₄ stacking repeat after twice the number of A-B layer of β -Si₃N₄. Consequently, the microstructure of α -Si₃N₄ is equiaxed

grains and has approximately twice the c-axis of β -Si₃N₄. In the other words, the microstructure of β -Si₃N₄ is columnar grains and has a half c-axis of α -Si₃N₄.

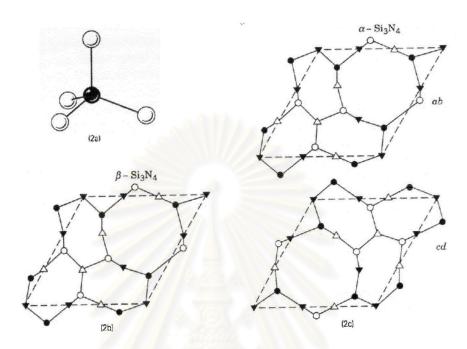


Fig 2.3 (a) The basis of crystalline Si_3N_4 tetrahedra. (b) A-B layer, which is repeated in the A-B-A-B stacking sequence of β -Si₃N₄. (c) A-B and C-D layer, which are alternated in the stacking sequence of α -Si₃N₄. (c)

2.3 Sintering mechanism of Si₃N₄ ceramics

 ${\rm Si_3N_4}$ has been currently used since it has superior properties such as mechanical strength, high fracture toughness and chemical stability at room and high temperatures. However, pure ${\rm Si_3N_4}$ is difficult to densify because of the high covalent nature (Approximately 75%) of the Si-N bonds. In general, oxide additives promote densification by liquid phase sintering mechanism. Metal oxide additives such as ${\rm CeO_2}$, ${\rm La_2O_3}$, ${\rm Sm_2O_3}$, ${\rm Y_2O_3}$, ${\rm Al_2O_3}$ and MgO are used as sintering additives. The ${\rm Y_2O_3}$ and ${\rm Al_2O_3}$ system is the most popular oxide additives for ${\rm Si_3N_4}$ ceramics. $^{5, 10)}$

In common, dense β -Si₃N₄ bodies are sintered from α -rich starting powder containing 3-7 vol. % β -Si₃N₄. ^{10, 14)} Besides, these sintering additives react with surface

 ${\rm SiO_2}$ of the ${\rm Si_3N_4}$ powder and form a grain boundary glassy phase. These phenomena assist rearrangement of particle to achieve the densification. ²⁷⁾

The solution precipitation mechanisms during liquid phase sintering are shown in Fig 2.4: α -Si₃N₄ solute to glass phase, and $\alpha \rightarrow \beta$ -Si₃N₄ phase transformation followed by the rod like β -Si₃N₄ grain growth occur. ²⁸⁻²⁹⁾

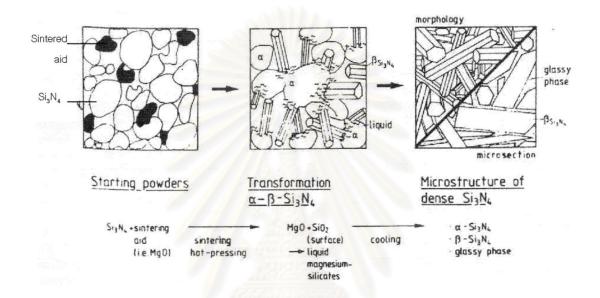


Fig 2.4 Schematic representation of the solution precipitation mechanism during liquid phase assisted densification of Si_3N_4 .

The behaviors of nucleation and phase transformation are affected by the mass transport through the glassy phase during the liquid phase sintering. With increasing temperature, the liquid phase composition changes to an oxynitride by preferred dissolution of $\alpha\text{-Si}_3\text{N}_4$ particle and leads to re-precipitation of $\beta\text{-Si}_3\text{N}_4$. The high viscosity of oxynitride melt reduces the $\beta\text{-nucleation}$ rate, provided the high aspect ratio, which improves the mechanical properties. $^{28)}$

2.4 Instability of Si₃N₄ and Si₃N₄ ceramics

 ${\rm Si_3N_4}$ is thermodynamically unstable with respect to oxidation. Moreover, ${\rm Si_3N_4}$ decomposes at high temperature and ${\rm Si_3N_4}$ ceramics show mass loss reaction during sintering.

2.4.1 Oxidation of Si₃N₄

The oxidation occurs by two mechanisms, passive oxidation and active oxidation as shown in reaction (1) and (2).

$$Si_3N_4(s) + 3O_2(g) \rightarrow 3SiO_2(l) + 2N_2(g)$$
 ----(1)

$$2Si_3N_4(s) + 3O_2(g) \rightarrow 6SiO(g) + 4N_2(g)$$
 ----(2

Under low oxygen pressure (~ 10^{-2} bar (10^{3} Pa) at 1000 °C), active oxidation occurs with formation of volatile SiO. A SiO₂ protective layer is formed on a surface of specimen by passive oxidation in the P_{O2} region of $\geq 10^{2}$ Pa.

2.4.2 Decomposition of Si₃N₄

Silicon nitride does not have a melting point but decomposes under 0.1 MPa $\rm N_2$ at 2173 K. From the thermodynamic viewpoint, $\rm Si_3N_4$ (s) decomposes to Si (g) and $\rm N_2$ (g) at the sintering temperature in vacuum according to following reaction:³¹⁾

$$Si_3N_4(S) \rightarrow 3Si(I) + 2N_2(g)$$
 ----(3)

From the stability diagram for $\mathrm{Si_3N_4}$, nitrogen gas pressure as high as $\mathrm{P_{N2}} > 10^6$ Pa is essential to obtain dense $\mathrm{Si_3N_4}$ ceramics at high sintering temperature. In the other words, high $\mathrm{N_2}$ gas pressure in the furnace effectively suppresses the mass loss during sintering.

2.4.3 Mass loss of Si₃N₄ ceramics during sintering

Yokoyama et al., studied the stability of Y_2O_3 -Al $_2O_3$ -SiO $_2$ glass composition at 2023 K under 0.1 MPa of N_2 to examine its thermodynamic stability at sintering temperature. The results indicated that Y_2O_3 and Al_2O_3 are more stable than SiO_2 in Si-Y-Al oxynitride glass. Thus, the mass loss of the glass during heat treatment comes from the vaporization of SiO as shown in reaction (4). The N_2 gas pressure in the atmosphere does not affect the reaction.

$$Si_3N_4(s) + 3SiO_2(l) \rightarrow 6SiO(g) + 2N_2(g)$$
 ----(4)

When reaction (4) occurs, oxygen contents in the specimen decreases. Furthermore, the amount of vaporized SiO (g) and N_2 (g) is same with mass loss. Thus, it is important to minimize mass loss because it leaded to composition change and mechanical property degradation.

2.4.4 Sintering of Si₃N₄ ceramic in air furnace

Non-pressurized sintering of Si_3N_4 ceramic in N_2 gas furnace is thought to be a low cost fabrication. But N_2 gas furnace is still special comparing to air furnace. According to Wada et al. in 2001, Si_3N_4 ceramic could be sintered without serious oxidation in air atmosphere furnace. To isolate Si_3N_4 specimen from air. Si_3N_4 specimen is set in two Al_2O_3 crucibles that are filled with Si_3N_4 powder in the inner crucible and Al_2O_3 powder in the outer crucible. Using packing powder, most of oxygen in crucible reacts with the Si_3N_4 powder, because it has large surface area, before reacts with specimen. In other words, Si_3N_4 powder generates gasses through equation (4) and is active oxidation. By oxidizing the Si_3N_4 packing powder intentionally, much gas generates. The generated gases disturb air diffusion into the crucible. Thus, Si_3N_4 specimens do not react with oxygen. Therefore, Si_3N_4 ceramics could be sintered without serious oxidation and mass loss in air atmosphere furnace.