CHAPTER II

EXAMPLES AND GENERAL PROPERTIES

The purpose of this chapter is to examine whether well-known
semigroups and groups admit the structure of an AC semiring with zero.

Also, some general properties of semigroups admitting such structure

are given.

Since a ring is an additively commutative semiring with zero,
it follows that every semigroup admitting a ring structure admits the
structure of an AC semiring with zero. It was shown in {6] that every
zero semigroup admits a ring structure, and a right [left] zero semi-
group S admits a ring structure if and only if ISI = 1, Then every
zero semigroup admits, the structure of an AC semiring with zero. The
first proposition showys that every right [left] zZero semigroup S admits

the structure of an AC semiring with zero.

2.1 Proposition, /Bvery vight'.[left]V zerc semigroup admits the struc-

ture of an AC semiring with zero,

Proof : Let § be a right zero semigroup. Then ab = b for all
a,b £ 8. If |s] = 1, then S admits the structure of an AC semiring
)

with zero. Assume ISI >1. Then S $ S . Let z be a fixed element in

S, and define an operation + on § by

a+hb =



11

Then (S,+) is a Kronecker semigroup having z as a zero. Extend + on S
to §° by défining x+0=0+x=x for all xe S°. Then (So,+} is a
commutative semigroup. To show the operation of s® is distributive
over +, let a,b and ¢ ¢ s°., Ifa=Oorb=0o0rc = 0, it is clearly
seen that a(b+c) = ab + ac and (b+c)a = ba + ca. If each of a,b and ¢
is not a =zerc (i.e.,a,b,ce8),then a(bic) = b + ¢ = ab + ac and (b+c)a
=a=a+a=Dba+ca. Hence (80+,:) 4= an AC semiring with zero,

where + is the operation of the semigroup & . #

Not every semigreup admits the structure of an AC semiring with

zero. It is shown by Prnépositien 2.2 - Proposition 2.5 .

2.2 Proposition. A Kronecker.semigroup S admits the structure of an

AC semiring with zerc if and only if |§| < 2

Proof : Let S be a kKronecker semigroup with zerc 0. Then for

0V =if a #b,
a,b ¢ S, ab = If |s| = 2, then' S is isomorphic to
a if a = b.

{l

the multiplicative semigroup’ Z, » s0,it admits a ring structure.
Therefore, if |§] < 2, then § admits the structure of an AC semiring
with zero.

Conversely,, assume that S admits the structure of an AC semi-
ring with zero. Suppose [S| > 2, Let a and b be two distinct nonzero
elements of S. Then a + b = ¢ for some ¢ € §. If.c = a, then b(a+h)
= bc =ba =0, so 0 =Dba + b2 = b, a contradiction. If c # a, then

2

0 =ac = alatb) = a° +ab = a + 0 = a, a contradiction. Hence

Is] < 2. #
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2,3 Proposition. The Klein®s four group does not admit the structure

of an AC semiring with zero.

Proof : Let K = {1, a, b, ¢} be the Klein’s four group with
identity 1. Then a2 = b2 = 02 =1, ab =ba =¢, bc =cb =a , ca = ac
= b . Suppose K admits the structure of an AC semiring with zero under

. o
an addition +, Then b + ¢ £ K .

Case b + ¢ # 0. Then a(b+e) = ab + ac = e+ b = b + ¢ which implies

that 1, a contradictisn.

o]
i

Case b + ¢ =0, Since a'= a 4 (btc) = (a+b) + ¢c and a # ¢, we have

that a + b # 0. Then c(@+h) = eca +eb = b +a = a + b which implies

that

0
|

= 1, a contradiction, #

2.4 Propbsition. For any posiftive integer n > 1, the dihedral group

Dn does not admit the structurée of an AC semiring with zero.

Proof : Let n-be-a positive-integer, n > 1 and Dn the dihedral
group with identity 1. Then there exist a.b in Dn such that a # b and

Dn = {1, a, a2, cees an—i, b, ab, a2b, oees a™ 15} where a® = b° = 1

and ba = an_lb. If n 7 2,,then D2 is the Klein’s four group which does
not admit the structure of an AC¢semiring with zero. Assume n > 2.

Suppose Dn admits the structure ofian AC semining with)izerc under an

addition +. Then a + b e D; .

Case a + b # 0, Then b(a+b) = ba + b2 =a ‘b+a = an—l(b+a)

n-1

= a" (a+b) which implies b = a =, a contradiction.

-1

' - -1 =1 ..
Case a + b = 0. Since a* 1. (a+b) + at = a + (b+a” 1) and a # a®

n-1

(since n-> 2), we have that b + a # 0. Then (b+an-1)b = b2+ a1y

= a" + ba = (a" t4b)a = (b+an"1)a which implies b = a, a contradiction..
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Remark that the dihedral group D1 is the cyeclic group of order
2 which admits a ring structure since Di is isomorphic to ( Z;,-) where
» is the multiplication in Zé, so D, admits the structure of an AC

semiring with zero.

2.5 Proposition. The quaternion group does not admit the structure

of an AC semiring with zero.

Proof : Let G+be the guarternion group with identity 1 where
G={1, -1, 1, -1, 5, 9, 00 A0 5025 =K =t L 05 = 51 =k,
jk = -kj = 1 , ki = -ik =47 & /Suppose G admits the sitructure of an AC
semiring with zero'under an addition #+ o Then 1 + (-1) = a for some
ae @', Hence -a = (~D)a/=(-1)(1 +(-1)) =(-1) +1=a, soac=0,
which implies x + (-x) = 0 for all x in Go. Let 4 + 1 = b for some b

inG®. Them b # 1, b # i, b"# 0 and B & (1+i)2 = i+ i since x +(-x)

0 for all x ¢ G°, -Since” ib = i(14i) = 1 #u(-1).= -1 + i, bib

(141)(-1+1i) = (1) ¥ (-1). Therefore -ibib = %i((-1) + (-1)) =i + i

1

2
b~ which implies that -ibi = b. It then follows that b # j, b # -3,

b#Xkand b # -k, If b'=/=1, then j - (-3)X(-1) = (-9)b = (-3)(1+1)

-3+ k = k + ()% kot gk = (4+i)k & bk 2(-1)k = =k, a contradic-
tion. If b = =i, then -~k = (-3)(-i) = (=3)b*= (-3)(A+i)"= - + k

=k + (=j) = k + ik"= (1+i)k ="bk ="-ik ='j, a contradiction. #

Next we show that every cyclic group and every cyclic semigroup

admits the structure of an AC semiring with zero.

2.6 Proposition. Every cyclic group admits the structure of an AC

semiring with zero.
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Proof : Let C be a cyclic group with a generator a. Then
¢ = {a" | n e Z} where Z is the set of integers. If C is infinite,
then a # al for i,jin Z , i # j. If C is a finite ecyclic group of
m-1 i I . . . .
order m, then C = {1, a, ..., a }tand a #a’ if i # j in {0, 1, 2,

. . ., m1}. Let A be a set of integers defined by
4 if C' is infinite,
fo,1, ..., m-2} 4f C is finite and |C| = m.

Then C = {a* | i e A} an@a¥# a) if i # 3 inA. Define a binary

. o
operation + on C by

i i A amax{i,j}

for all i,j in A. Then the eperation + is commutative on C°. To show
+ is associative and the operation of ¢% is distributive over +, let
X,V,2 € c®. If at least-one of x;y,z 5051t 1S Clearly seen that

X + {y+z) = (x+y) + z and x(y+z) = Ry + Xz. Assume x,y,z € C. Then

there exist i,j,k in A such that x = a, vy = ad and z = ak. Thus

(xty) + z (a*+ ad) +an

£ | Jndet 1i55¥ Lk

Jmax {max {i,j}.k}
Jmax {i,5,.k}
i _max {j.k}

= a <

at + (a+ ak)

1]

x + (y+z)
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» »

k
a'(a'+ a )

I

x(y+z)

i j.k
o1 max {3,k}
o3+ max {j,k}
SJmax {i+3,1i+k}

WL
aa +.da.a

Xy t+ %2 .

o . i, 3 . . .
Hence (C ,+,+) is an addditively commutative semiring with zero where -

is the operation on C°. #

2,7 Proposition. Every cyclic semigroup admits the structure of an

AC semiring with zero.

Proof : Let C be a cyclic semigroup with a generator a.
Then C = {a" | n ¢ N} whepve N iz the set of positive integers. If
C is infinite, then a # a’l for i,JemN , 1 # 3. IfC is a finite

»

2 m i }
cyclic semigroup of ordérsm, then C =gfa, a , ..., a } and a~ # a’

if

i#3in {1, 2, ...stm}l. Let Albe a set of integersidefined by

N _ IfC is infinite,
{1,2,...,m} if C is finite and |C| = m.

Then C = {a" | i e A} and a® #al if i # j in A. Define a binary

operation + on €° by

010964

1 18010982
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. a e . . . o
for all i,j in A. Then the operation + is commutative on C . The
proof that + is associative and the operation of c® is distributive

over + can be given the same as that of Proposition 2.6. #

The last proposition of this chapter gives a neccessary condi-
~ tion for right [left) group to admit the structure of an AC semiring

with zero. The following lemma is required. : -

2.8 Lemma. Let S bewa semigroup with identity 1 and without zero
and T a semigroup with'a right [left] zero element e. If SxT admits

the structure of an AC semiring with zero, then S admits the structure

of an AC semiring with zepo.

Proof : Assume SXT admits the structure of an AC semiring
with zero under an addition + +» If %,y € 8, then either (x,e) + (y,e)
= 0 or (x,e) + (y,e) = (a,t) for some @ e 8, t € T. If X,y € S such

that (x,e) + (y,e) = (a,t) , a8, te T, then

(a,e) (a,t)(1,e)

= ((x,e) + (y,e))(1,e)

=" (x,ed(1,e) + (y,e)(1,e)
= ¢ (x,e) + (y,e)

= da.t) ,

which implies t = e. Hence for X,y € S, we have either (x,e) + (y,e)

0 or (%,e) + (y,e) = (a,e) for some a € S, For x,y € S, define

1

X+ y by

. a if (x,e) + (y,e) = (a,e) , ace 8,

0 (the zero of 8°) if (x,e)+(y,e) = O (the zero of (SXT)O),
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and for x ¢ S.,define x + 0 =04+ =x = x. Since S has no zero, SXT
T 1
has no zero, so + is well-defined. To show + is associative, let
r t
X,¥,Z E s°, Ifx=0or y = 0 or z = 0, it is clear that (x+ y)+ 2z

¥ 1
=x+ (y+ z)., Assume xX,y,z € S. Then

() ((x,e) + (y,e)) + (z,e) = (x,e) + ((y,e) + (z,e))

t
Case (x,e) + (y,e) = 0 and (y.e) + (z,¢)/=.0, Then x+ y =0 and

1
v + z = 0. It follows from (#) that 0% (z,e) = (x,e) + 0 which

] 1 t
implies (z,e) = (x,e), and.so x = 2. [Henee (x+ y)Y+ z=0+ 2
1 1 T ¥
=0+ x=x+ 0=x+(y+ 2

Case (x,e) + (y,e) = 0and'(y.e) + (z,e) # 0. Then x + y = 0O,

T
From (%), we have that! 0 # (z,e) = (x,e) + (y + z,e), so O # (z,e)

] T 1 T
= (x,e) + (y + z,e). Hence x + Ay +z) 0+ z=(x+ y) +' oz,

Z

Case (x,e) + (y,e) # 0 and (y,e)i+ (z,e) = O. The proof of

' 3 ! ' t I - -
x+ (y+2)=(x+ y)+ =z dn this case is similar to that in the

second case.

Case (x,e) + (y,e) # 0 and (y,e) + (z,e) # 0. Then we obtain from (%)

(x,e) + (y +fz,e). If(x +'y,e) + (z,e) = 0,

1
that (x + y.e) + (z,e)

1 1 1 1
0y hénte dr £ gl b | y=0=x + (y + =z).

1
then (x,e) + (y/+ 2,é)

T 1
If (x + y,e) + (Z4ie) # 0, then (x,e) + (y + z,e) # 0, hence

((x + y) +'z,e) - Tw, G (y ¥ z) Je) f1 8o (X + y) +2E B (y + 2).

1
Since + is commutative on (SxT)o, it follows that + 1is commu-

tative on S°. To show that the operation of s® is distributive over

'
+ , let x,y and 2 ¢ s®., Ifx=O0Oory=0or z=0, it is clear that

t ] 1 1
x(y + 2) = xy + xz and (y + 2z)x = yx + 2X. Assume X,y and z € S.

Then

(%) (x,e)((y,e) + (z,e)) = (x,e)y,e) + (x,e)(z,e) = (ny,e) + (xz,e).
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]
Case (y,e) + (z,e) = 0. Then y + z = 0, From (**), we have (x,e)0

1 1
0 = (xy,e) + (x2,e), so xy + xz =0, Thus x(y + z) = x0 = 0

i
Xy + xz.

Case (y.,e) + (z,e) # 0, It follows from (*%) that (x,e)(y +‘z,e)

= (xy,e) + (xz,e). Since SxT has no zero, (x,e)(y +'z,e) £ 0. Then
] T
(xy,e) + (xz,e} # 0, so (x(y + z).,e) = (%,e)(y + z,e) = (2y,e) + (xz,e)
. )

1 1
= (xy + =xz,e). Hence x{y + 2) = xy + =z,

The proof of (y . Z)lx"= yx +' zx isvobtained similarly. #

Recall that a semigroup § is called a right [left] group if it
is a right [left] simple and left [right] cancellative. A semigroup S
is a right [left] group/if /and only if S is the product of GXE of a

group G and a right [left] zero semigfoup E [1, Theorem 1.27].

2.9 Proposition. Let S = GxE be a pvight group where G is a group
and E is a right zero- semigroup. If S admits the structure of an AC

semiring with zero , then G admits the structure of an AC semiring with

zZero.

Proof : Assume that '‘Stadmits the structure'of an AC semiring
with zero,. If |G| = 1..~then G admits,the structure.of an AC semiring
with zevo. - If |G} > 1, tﬁen G 1s a semigroup with identity and without
zero, so by Lemma 2,8; G admits the structure of an AC semiring with

zero because every element of E is a right zero of E. #
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