CHAPTER I

PRELIMINARIES

Let S be a semigroup. An element z of S is called a <u>right</u>

[left] <u>zero</u> of S if xz = z [zx = z] for every x & S. An element of S is called a <u>zero</u> of S if it is both a left and a right zero of S. An element e of S is called a <u>right</u> [left] <u>identity</u> of S if xe = x [ex = x] for every x & S. An element of S is called an <u>identity</u> of S if it is both a left and a right identity of S. A semigroup can have at most one zero and at most one identity. The zero and the identity of a semigroup, if exist, are usually denote by 0 and 1, respectively.

A right [left] zero semigroup is a semigroup S in which xy = y [xy = x] for all x,y & S. Then a semigroup S is a right [left] zero semigroup if and only if every element of S is a right [left] zero of S.

A semigroup S with zero 0 is called a zero semigroup if xy = 0 for all $x,y \in S$; and it is called a Kronecker semigroup if

$$xy = \begin{cases} x & \text{if } x = y, \\ 0 & \text{if } x \neq y \end{cases}$$

for all $x,y \in S$.

Let S be a semigroup, and let 0 be a symbol not representing any element of S. Let the notation SU 0 denote the semigroup obtained by extending the binary operation on S to 0 by defining 00 = 0 and 0a = a0 = 0 for all a ϵ S, and then let the notation S⁰ denote the

following semigroup:

$$S^{\circ} = \begin{cases} S & \text{if S has a zero,} \\ SU0 & \text{if S has no zero.} \end{cases}$$

Similarly, let S be a semigroup and 1 a symbol not representing any element of S. Let the notation SU1 denote the semigroup obtained by extending the binary operation on S to 1 by defining 11 = 1 and 1a = a = a1 for all a ϵ S, and let the notation S¹ denote the following semigroup:

$$S^1 = \begin{cases} S & \text{if S has an identity,} \\ SU1 & \text{if S has no identity.} \end{cases}$$

Let S be a semigroup. For T⊆S, T is called a <u>subsemigroup</u> of S if T forms a semigroup under the same operation on S. For a non-empty subset A of S, let

$$\langle A \rangle = \{a_1 a_2 \dots a_n \mid a_i \in A, n \in \mathbb{N} \}$$

where N is the set of all positive integers. Then for $A \subseteq S$, $A \neq \emptyset$, <A> is a subsemigroup of S and it is called the <u>subsemigroup of S</u>
generated by A. For a ε S, let <a> denotes <{a}> and it is called the <u>cyclic subsemigroup of S generated by a.</u> Hence <a> = {aⁿ | n ε N }
for every a ε S. If S = <a> for some a ε S, S is said to be a <u>cyclic semigroup</u>. For a ε S, if <a> is finite then there exists a positive integer m such that <a> = {a, a², ..., a^m} where a, a², ..., a^m are all distinct.

Let S be a semigroup and A a nonempty subset of S. Then A is called a <u>right</u> [left] <u>ideal</u> of S if $AS \subseteq A$ [SA $\subseteq A$]. We call A an ideal of S if A is both a left and a right ideal of S.

A semigroup S is said to be <u>right simple</u> [left simple, simple] if S is the only right ideal [left ideal, ideal] of S.

A semigroup S is said to be <u>right</u> [left] <u>cancellative</u> if for a,b,x & S, ax = bx [xa = xb] implies a = b. A <u>cancellative</u> semigroup is a semigroup which is both left and right cancellative.

A semigroup S is called a <u>right group</u> if it is right simple and left cancellative. A <u>left group</u> is defined dually. A semigroup S is a right [left] group if and only if S is the product of G×E of a group G and a right [left] zero semigroup E [1, Theorem 1.27].

Let S and T be semigroups and ψ a map from S into T. The map ψ is said to be a homomorphism from S into T if

$$(ab)\psi = (a\psi)(b\psi)$$

for all a,b ε S. A homomorphism ψ from S into T is called an <u>isomorphism</u> if ψ is a 1-1 map. If there exists an isomorphism from S onto T, we say that the semigroups S and T are <u>isomorphic</u>, and we write $S \cong T$.

A <u>semiring</u> is a triple $(S,+,\cdot)$ such that (S,+) and (S,\cdot) are semigroups and $x\cdot(y+z)=x\cdot y+x\cdot z$, $(y+z)\cdot x=y\cdot x+z\cdot x$ for all $x,y,z\in S$. If $S=(S,+,\cdot)$ is a semiring, the operation + and \cdot are called the <u>addition</u> and the <u>multiplication</u> of the semiring S, respectively. An element 0 of a semiring $(S,+,\cdot)$ is said to be a <u>zero</u> of the semiring $(S,+,\cdot)$ if $x\cdot 0=0\cdot x=0$, x+0=0+x=x for all

 $x \in S$. A semiring $(S,+,\cdot)$ is <u>additively commutative</u> or <u>AC</u> if (S,+) is commutative.

Let S be a semiring. For $T \subseteq S$, T is a <u>subsemiring</u> of S if T forms a semiring under the same operations on S. Observe that for every $x \in S$, xS and Sx are subsemirings of S.

A semigroup S is said to <u>admit the structure of an additively</u> commutative <u>semiring with zero</u> if there exists a binary operation + on the semigroup S^0 such that $(S^0,+,\cdot)$ is an additively commutative semiring with zero, where \cdot is the operation on S^0 . Hence the following clearly hold:

- (1) A semigroup having only one element admits the structure of an AC semiring with zero.
- (2) Any semigroup admitting a ring structure admits the structure of an AC semiring with zero.
- (3) If a semigroup S admits the structure of an AC semiring with zero, then for any semigroup T with T $\stackrel{\circ}{=}$ S, T also admits the structure of an AC semiring with zero.

For any set A, let |A| denote the cardinality of A.

Let X be a set. A <u>partial transformation</u> of X is a map from a subset of X into (a subset of) X. The partial transformation of X with empty domain is called the <u>empty transformation</u> and it is denoted by 0. For a partial transformation α of X, the domain and the range of α are denoted by $\Delta\alpha$ and $\nabla\alpha$, respectively. Let P_X be the set of all partial transformations of X including the empty transformation 0. For $\alpha, \beta \in P_X$, define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \phi$, let $\alpha\beta = 0$. If $\nabla\alpha \cap \Delta\beta \neq \phi$, let

$$\alpha\beta = (\alpha \mid (\nabla \alpha \cap \Delta \beta)\alpha^{-1})(\beta \mid (\nabla \alpha \cap \Delta \beta$$

(the composite map) where $\alpha |_{(\nabla \alpha \cap \Delta \beta)\alpha^{-1}}$ and $\beta |_{\nabla \alpha \cap \Delta \beta}$ denote the restrictions of α and β to $(\nabla \alpha \cap \Delta \beta)\alpha^{-1}$ and $\nabla \alpha \cap \Delta \beta$, respectively. Then P_X is a semigroup with zero 0 and identity 1_X where 1_X is the identity map on X and it is called the <u>partial transformation semigroup</u> on the set X. Observe that for $\alpha, \beta \in P_X$, $\Delta \alpha \beta = (\nabla \alpha \cap \Delta \beta)\alpha^{-1} \subseteq \Delta \alpha$ and $\nabla \alpha \beta = (\nabla \alpha \cap \Delta \beta)\beta \subseteq \nabla \beta$. A partial transformation α of X is called a 1-1 partial transformation of X if α is 1-1. Let I_X denote the set of all 1-1 partial transformations of X, that is,

$$I_X = \{\alpha \in P_X \mid \alpha \text{ is } 1-1\}$$
.

Then I_X is a subsemigroup of P_X with identity 1_X and zero 0, and it is called the 1-1 partial transformation semigroup or the symmetric inverse semigroup on the set X. By a transformation of a set X we mean a map of X into itself. Then an element $\alpha \in P_X$ is a transformation of X if and only if $\Delta \alpha = X$. Let T_X denote the set of all transformations of X, that is,

$$T_X = \{\alpha \in P_X \mid \Delta\alpha = X\}$$
.

Then T_X is a subsemigroup of P_X with identity 1_X and it is called the full transformation semigroup on the set X. The permutation group on X is denoted by G_X . Then

$$G_X = \{\alpha \in P_X \mid \Delta\alpha = \forall \alpha = X \text{ and } \alpha \text{ is 1-1}\}.$$

Observe that $G_X \subseteq I_X \subseteq P_X$ and $G_X \subseteq T_X \subseteq P_X$.

The semigroup of all 1-1 transformations of X and the semigroup of all onto transformations of X are denoted by $\mathbf{M}_{\mathbf{X}}$ and $\mathbf{E}_{\mathbf{X}}$, respectively. Hence

$$M_{X} = \{\alpha : X \rightarrow X \mid \alpha \text{ is } 1-1\}$$
$$= \{\alpha \in I_{X} \mid \Delta\alpha = X\}$$

and

$$E_X = \{\alpha : X \rightarrow X \mid \alpha \text{ is onto}\}\$$

= $\{\alpha \in T_X \mid \nabla \alpha = X\}$

It is known that for any set X, $M_X = G_X$ if and only if $|X| < \infty$, and $E_X = G_X$ if and only if $|X| < \infty$.

We denote the semigroup of all constant partial transformations of X and the semigroup of all constant transformations of X by C_X and F_X , respectively. Hence

$$C_{X} = \{\alpha \in P_{X} \mid |\nabla \alpha| = 1\} \cup \{0\},$$

$$F_{X} = \{\alpha \in T_{X} \mid |\nabla \alpha| = 1\} \text{ if } X \neq \emptyset,$$

$$F_{X} = \{0\} \text{ if } X = \emptyset.$$

The <u>shift</u> of a partial transformation α of X, S(α), is defined to be the set $\{x \in \Delta\alpha \mid x\alpha \neq x\}$. A partial transformation α of X is said to be <u>almost identical</u> if the shift of α is finite, that is, $|S(\alpha)| < \infty$. Let

$$U_{X} = \{\alpha \in P_{X} \mid |S(\alpha)| < \infty\},$$

$$V_{X} = \{\alpha \in T_{X} \mid |S(\alpha)| < \infty\},$$

and

$$W_X = \{\alpha \in I_X \mid |S(\alpha)| < \infty\}$$
.

If $\alpha, \beta \in P_X$, then $S(\alpha\beta) \subseteq S(\alpha) \cup S(\beta)$. Hence U_X , V_X and W_X are subsemigroups of P_X , T_X and I_X , respectively, and U_X , V_X and W_X are referred respectively as the <u>semigroup of all almost identical partial transformations of X</u>, the <u>semigroup of all almost identical transformations</u>

mations of X, and the semigroup of all almost identical 1-1 partial transformations of X. Observe that if X is finite, then $U_X = P_X$, $V_X = T_X$ and $W_X = I_X$.

By a <u>transformation semigroup</u> on a set X, we mean a subsemigroup of the partial transformation semigroup of X.

By a $\underline{\text{multiplicative interval semigroup}}$ in $\mathbb R$, we mean an interval in $\mathbb R$ which is closed under usual multiplication.

