Chapter 3
Ligand-Binding

This chapter will be reviewed and improved in Sa-yakanit and Borib-

arn (2001). This problem, ligand-binding, concentrate to the ligand binding in

i, be considered as the ma-

As pointed out by Frauegfelder 1938 ’ \«S A3
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d_to form a long linear chain. The
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bt blocks, the amino acids. The
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order of 100 amino acids arg ;

arrangement, of the amino acid ~the primary structure, determines

the final tertiary struc Ay protein. In a solvent,

the linear chain will ol i 3 ture, the working pro-
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tein. The final proteim<ooks like a miniature crystal,'nsisting of the order of

. '] ]
1,000 atoms an ﬂﬂm‘ﬂﬁﬁﬂﬂ ITTanometers.
Proteins ¢ eXible can behave 1 chine rather than like pieces

¢

of rock Qrﬁﬁnﬁwﬁr )fqﬂm nﬁ mﬁiﬂe .

tide chaing are strong (covalent) and cannot be broken uctuations.
The forces that hold the tertiary structure together are weak, mainly hydrogen

bonds and van der Waals forces. These weak bonds are continuously broken and
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reformed. This motion is essential for many functions. It looks like fluctuating
environment.

Austin, Beeson, Eisenstein, Frauenfelder and Gunsalus (1975), to study
the states and motions of a protein, have investigested a simple process, the

binding of a small molecule(ligand) such as dioxygen or caborn monoxide to

myoglobin (Mb). Myoglobin i n_of molecular weight 17.9 kD, with di-
mensions 2.5 X 4.4 x 4.4 n 7 tores dioxygen in muscles. The
protein matrix cross- i a pla ﬁolecule, heme, which contains

an iron atom at its c( ccurs through covalent binding
of the small molecule ; // / \

) ©
[ )

3.2 Ligand

A molecule bound by agprofeinsis call

jand the site on the protein to
which it binds is called th€ b, DImg site

ems are not rigid and may undergo
conformational changes wher - a process called induced fit. In a
multisubunit protein, ng of a ligand to & dsibunit may affect ligand

N
DeTegulated.

Oxygen-binds I

)
g proteins such as myoglobilf" and hemoglobin represent

useful’ modeJF Eﬂﬁ‘ ﬁfﬁfm ?hese proteins contain
a prosthetic grpup called heme, to which the oxygen binds Heme consists of a
TYRTAN T“I“Tfﬁ“ﬁ“‘iﬁ“‘l“ﬁ IR Y

9
3.3 Binding of Ligand to Myoglobin

Austin, Beeson, Eisenstein, Frauenfelder, Gunsalus and Marshall(1974) and also

Austin, Beeson, Eisenstein, Frauenfelder and Gunsalus(1975) observed the bind-
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V b between 40 and 160 K.
, the two paremeters %
acules that have not rebonded

The solvent is glycero, 1), At-er \
i A { \
ing of CO to Mb at the temipe :"' be abolit 200 K yielded a result that
was at first very surprising. Bela CO molecule remains in the heme
pocket after photodisso e Then Frauenfelder and

Wolynes (1985) stud v : ; o ‘ the Fe-CO bond. The

signal of process is ti : dependent It is not expone .*! ] in time however it can

sl wﬁi‘w YN INYINT
N(@tge=(1+ ;P (3.1)
where ]aqt ) is a frac 1on of I\Emecu eMat haventtr'!l:;]nﬁd ELO molecule

at the time t after photodissociation, t; and n are parameters depending on
temperature.

Considering processes between 60 and 160 K approximated n = 2.8 x
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107T/K describing by Eq. (3.1) have been called endless. Nonexponential
behavior like this is observed in many different systems. The covalent binding
at the heme iron involves a potential barrier must be overcome. The simplest
explanation becomes 2 cases. One if the barrier is the same in all Mb molecules,

binding will be exponential in time. The other, if different Mb molecules have

different barriers, it can be d the nonexponential time dependence
At low temperatures 1t n of barrier heights and show a
nonexponential bindi oh té pe@e than 300 K, the transitions
among Mb and CO y ‘

These are a t, )Ces °r @ Darmientreated as chemical kinetics.
One can look at the and w\\ w\ the ligand in 4 ways.

(1) The singlé- f , \' \ his model assumes that the
protein forms an effectiye sgatic .' h \\,‘ the ligand moves. The general
behavior in such a potenfial is*dasy te r but a treatment is difficult and

has not been achieved. The 1 erform a complicated random walk in
the potential. “ [
(i ) Theéin _ 'f',,‘-' in the solvent around

1 M

I

Mb executes a Browhian motion in the solvent, mves into the protein matrix,

migrates thr Eg\ﬁ: w % Ej ﬁﬁly binds covalently to
the heme 1rcﬂqu Ti W IT

m ' 1c£|or breaking of
the c%(ﬁiﬁﬁtﬁ Ejﬁbm ng energy of a protein defined as

the difference in Gibbs energy between the folded and unfolded state is of the
order of 1eV and very small. A ligand moves through the protein matrix. It will

affect the protein strongly and the covalent binding also involving an energy of
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the order of 1 eV. It causes a major perturbation of the protein structure called
proteinquake. Thus, one can neglect the motion of the ligand and consider only
the protein motions.

(iv ) Unified model. This model considers the motion of the protein and
the ligand together. However, mechanism of the dynamics of the protein and the

interaction of the ligand with the protein does not enough to clear.

D
3.4 Complex ent
The transport process of g X [Systemsi's »\. ~o s, glasses and biomole-
cules over a barrier hdS h ’\t\\\ dies. For molecules in a

complex environment, f

e g¥erdll barrier-erossing \. on rate can be treated as

classical phenomenologica micaldnet ;11 ous treatments of a molecule

', e

reaction dynamic using the reaetion : equation approach have been re-
ported. However thissa gaciions in a highly viscous
environment. For e ) nple, F e .."f' 85) show that, in the

yoglobin $eds a higher-barrier relax

equation-of a highly non-&ﬁnentialpropdby.
Using Félutﬂal emlﬂmcﬁ mﬂllﬁl jr reaction dynam-

U
ics in fluctuating environments has®een i vgﬁiiit? eét agjnﬁdg}j Wang and
Wolynesﬂ&ﬁﬁﬁ.%ﬂyiem l}lcﬁid ridg fa lshmipl of the rate

process in Gaussian fluctuating environments. This approach assumes that the

case of carbon monoxidg recomb

fluctuations relax or a relaxation function exponentially according to the stretched

exponential law see more details in Lindsey and Patterson (1980), Dixon and
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Nagel (1988) and Nienhaus, Mourant and Frauenfelder (1992). These are given
by
(r(r) r(0)) =0 exp[~ (| 7= al)"] (32)

where 0 is the amplitude of equal time correlation, )\ is the frequency or relaxation

rate and I" denotes the stretched parameters.

The I' = 1 case correspor ponentially relaxing fluctuations, while

[' < 1 corresponds to th ng environment, with stretched
d . .

exponential relaxation gl@mmolecules. To obtain an

analytic result, Wang g Slyes (19¢ \": me-that the reaction terms are

linear and quadratic y « denoting the strength

of the reaction oscillagérs ofe Imoar and 'guadr atic reaction terms, together

with. stretched exponegfialf filictuat

effective rate as a constagf, % od
24

rate coefficient, Wang andWo s (199 generalized the calculation of the

apalytical survival path with an

1@ treat a more general effective

reaction in a complex enviro #{3"' e instanton method to calculate
the rate coefficienf 4. L

< .

i
In these chapte 1{'-“1 or handling the reaction

rate within a compleg‘environment. However instead 6 assuming that the fluctu-

. d s
o e ST A T ETYT TR Y s o
tﬂ rate const

we consider ant with the reaction coordinate coupled to the heat
e
AT T AT N B e -
scribing dissipative system became popular after Caldeira and Leggett (1983a,
1983b) and applied to the tunneling problem.This model was also discussed by
Poulter and Sa-yakanit (1992). In this approch, we also assumed that the rate

coefficient has a Gaussian dependence on its environment coordinates. We adopt
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the Caldeira and Leggett model, and after eliminating the oscillators, an effective
action was obtained. We consider only a single dominant oscillator.The justifica-
tion of this assumption will be discussed. Within this limit, the effective action

constraint of non-local action can be solved exactly.

3.5 Wang and Wolynes Model: Botttleneck Prob-
lem |

Wang and Wolynes (1993, -#884) had de &themaﬁcal formulae for re-

actions in fluctuating e

probability associated b is described by a gener-

alized Langevin or Fo d as a functional integral

over paths. Each exp integral of an appropri-

ated Légrangia.n along by starting with the path

probabilities in the abse

Plre mif) = L(r,7,7) d‘r] (3.3)

Note that in this disser - sed imapytime and set i equals to

N Z = Y ]

1. Moreover, it is nete .ere’1s correlation between

'l
fluctuations of the coo 1nates r’s at different times. "'I emory effects need to

o A S e
cRRARSEATIRE AR o

which is t?xe probability of observing a particular path r (7) with the boundary

values 7 (0) = r; and r () = ry, where A (7,£) is defined as

/ dt A(r,6) A1 (6,0) = §(r,0) (3.5)
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AN (r,0)=(r(7) r (o)) (3.6)
That A~ is defined as correlation function between environmental coordinates
at different times (or memory effect) labeled by 7 and o which the brackets refer
to an average over noise. From fluctuation-dissipation theorem it can be used the

response of a system to an external di§téizbance (or relaxation function such as Eq.
" |

(3.2) a stretched exponengia equals td ey elation function that describes the
spontaneous thermal+f ions of an . ntal variable 7 (7).

The physical meafits 5 that s _ bability equals the contribution
from all the possible j counecti : " and weighted by the decay

l \ \\\ “thus the approximation has to
S C : i

paths that gives the dominant

rate along each path
be used. In their apprghclie

contribution. They see - .\‘ roba.bility is a local maximum

(or extremum) and maxig ze' Po of thie path probability with respect to

by using the basic rule for erentiation. The boundary conditions,

serve as constraifitg a gfof the Lagrange multiplier.

X

In general/t. many forms of time de-

pendence. In comﬂx systems such as proteins, glasses or complex structured
fluids, non-e ﬁ hich can be fitted to
a stretched @Oﬂ“ ﬁ:ﬂﬁ%ﬁﬁi ered taking the path
probabili )ﬂ ﬁlw The reaction,
by rec m a{nﬁ Mﬁty decays agrrT any given trajectory by

the first-order kinetic equation, can also be taken into account. For simplicity,

the back-reaction can be ignored:

— =—K(r) P (3.7)
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where, K (r) is a decay rate (or the rate coefficient, also affinity constant) which
depends on a control parameter (or the radius of the bottleneck) r . The rate
can be used and estimated by the instantaneous transition state theory following
Zwanzig (1992). The equilibrium flux through the bottleneck and is proportional
to the geometrical area of the bottleneck r? with o constant (K (r) ~ a r2). Using
Egs. (3.3) and (3.4), they obtained a path integral expression for the calculation

of the survival probability ave 2 \ Ve §ian noise as

]

- {if -
D[ ( Iesm=]. & (r)‘ég JPr(r) A(r,0) r(0) dr do

S B et || Tf?“"-::@ A(r,o) (o) dr dcr]

(3.8)
When the surviving pepulagion sée because the path prob-
ability is such a local of the exponential of the
path pfobability with regpedt tg ( Sl onlinear integral equation

is obtained

(3.9)

It can be written in

—
o Jfido (3.10)

i 0 —— J

where, 7 and o ithi ‘E r W is,the vaziation equation for
the general Ga@ﬁguilﬁﬂm t :E]sfllrnliobability can eas-
ily be calcul bstituti ¢ i : ﬁ o xponential
of the pat ;ﬁg’iﬁiﬁlj mgeﬁe:jci ;ﬂ’ m ependent on the

environment variable, the dominant survival path following the ordinary relax-

o

ation to equilibrium as in the Onsager and Machulp (1953) regression hypothesis.

When the rate coefficient strongly depends on the environmental variable, the
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dominant survival path exhibits behavior very distinct from ordinary relaxation,
including reflection off rapid variations in the rate constant, as well as refraction,

giving paths very different from equilibrium relaxation.

3.6 Caldeira and Leggett Model

In this model the reaction coordinate i goupled to the environment as a set of

an infinite number of oscillate 15¢e0 aldeira and Leggett (1983b) and

Poulter and Sa-yakanit 53)w=There sesbagrangian model is

L (v, 9,2 851) = % 2l _ " =) | 2 %’1 (r(t) — zi (t))?
(3.11)

where r is the reactj in . ass ‘m moving in a potential K (r)

and z;, M; , k; are inafos t100 ass and coupling constant of

the environment oscilla Speeti (3.11) change t time to —ir

imaginary time for using - eliminating the environmental

s= [ ar [g Sl o) | (1))
i (3.12)
Here g.(7 — o) is the quunctlon as Qs
RS .
ond, @WWM ﬁ‘ﬁ%ﬂ@ﬁﬂﬂ NYRY
Z Ki wi 0 (w — w;) (3.14)
with
wi = % (3.15)

121429979%
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This spectral function represents the heat bath of the system. In general,
this spectral function is very complicated. Physically, this spectral function must
be terminated by a certain cut-off frequency such as the Debye cut-off in the
lattice dynamic problem and the electron-plasmon interaction employed in the
electron gas problem. In the dissipation system, Leggett, Chakravarty, Dorsey,

Fisher, Garg, and Zwerger (1987), there is a well known empirical expression

(3.16)

X , and w, is the oscillator

s \ s expression can lead to

where, 7 is the friction €
cut-off frequency. Furthe
ohmic friction which eQ on. The case 0 < s < 1
and s > 1 are knowsa JFohimic and s ; er-obmic) respectively. It is also
assumed that there exigh - > odtiliat af dominates the spectral function
and is identified as w an€ i ctitious mass. The above

. . LA : :
reaction coordinate cannot be ‘8slved exas and therefore we need to simplify

the problem.

3.7 Path In .;_‘*_

A
1 |

: -1 sc1llator Model

:{ ::::S::dje Ejnfurthef a%the ﬁ i«ﬂij ﬁ %usmg the simplied
AR NTL‘ZQ&MJ’H fm 1N Y 67

The physical meaning of this approximation is equivalent to a particle

coupled to a fictitiuos mass as discussed in Sa-yakanit (1974) and was extended
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to more general form by of Castrigiano and Kokiantonis (1983) as
B
Tl w) = / ar [ 520 + K@) (3.18)
0

w [P [P coshjw(| T )
8 /0 /0 dr do h[sfrllh[wﬂ/lz] A12) | (1) =7 (0)]

Now consider Eq.(3.11),(3.13) and (3.17) when the rate K of the system is con-

So( K,w) = /Oﬁd_ — (3.19)

o]~ 5/2) :
S )=o)

where x and w aresf® s+ This\action i$%imilar to the polaron trial
action by Sa.—yakanf ; L .. % ds the form
S0 mw) .’ AN (3.20)
T BN (1) r o)
Since the action isyquadfatic; it cantbe exgetly. This model has been

used by many aut 101 1093 ,1994) for calculation in
myoglobin or the [':! 1Spor gl a"bottleneck. W hen consider with rate in

bottleneck problem & &

ﬂﬂﬂ?ﬂﬁﬂiﬂﬂﬂﬂﬁ .
S“"“%TW a&n“;sm MNINYINY

S, dw f0) = [ar {Z[F0-{a-Z} @] +£0) r0]) 22

Bk r do SOSBw (| T — 0] - B/2)] ey
/0 /o ird sinh (wf/2] |7 (7) (o)f*

and will consider in next section.
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3.8 Methods of Caculation

In order to calculate the survival path and correlation function, a generating
function by introducing the driving force f (7) must be constructed. Then the

general action adapting from Castrigiano and Kokiantonis (1983) is:

S(a &, w; £(r)) = /Oﬁdr { S “} 2(7)]+f(¢) (M} (3:23)

2L ) - o)
or in the form
S(a, &, w; f(1)) 2 K kn.% + f(r) () } (3.24)
| Pl ol BP0
The résult in classical a€ti L 9%
Scr (a, Kk, w; f(7) f,;,if{; e 872?)0) (rg+m;)
+ /0 " | ~)}
o A ')
o /0 oA (| — UI)J (3.25)
and
L fuingmdnenns
RMDAAUURDINGY o
where

_w (P —w?) cosh[Q (1-8/2)] w (V2 —w?\ cosh[¥ (T —5/2)]
Aln)=3 (92 — xpﬁ) Q smh[Q8/2] 2 (\112 —92) U sinh [¥/2)
(3.27)
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with

0% = % (w? - a) \/(uﬂ — o) — 4u? (— — a) (3.28)

and,

U2 = % (W —a) - —;-\/(uﬂ —a)? - 4u? (% - a) : (3.29)

From the classical action Eq.(3.25), we can find the end point relation by differ-

entiating Scy, with respected i

We put it into the classi€al gt A0 ré 1'*"‘\"* cO te to one point. Furthermore,

the prefactor is givendh | \ \
= - (3.31)

(3.32)

(3.33)

ﬂumwﬂﬂ? H‘“i“ﬂ‘ﬁ

It willjgive us the same phys1c meanlng as the rate coefﬁc1ent for ap-
. 0 O LU AL 1
with rafe exponential depending on time. Since P ~ exp[—K.;; 3] , we can trace

the propagator for eliminating space coordinates. So the effective rate can be

obtained as

Kegs = =5 [ T { P(ry,r Y (3.3)
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From Eq. (3.25), the classical action, let f () = 0, then we consider the second
term. It presents the non-translation invariant and will be respondsible to the
decay of the equilibrium survival i)ath. However, we know that the generating
function allow us to carry out the calcﬁlations for physical quantities including the
correlation function. From the generating function Eq. (3.25), we differentiate

twice with respecting f (7). We obtain, the correlation function that

_o]) - 52(0#)“)) (3.35)

houghts and ideas in this
mathematical techni ases by changing range of

parameters as followi

This section discusses thé sufvivallpath fising thefresults k/m > « and showing

by further constraint the para: _ 5T hs iting cases are considered.

3.9.1 K (r) --—: ------ etrviim nonlocal time

Vo A
From Eq. (3.23), we | be ad and f fj = 0. We obtain

- @{ﬁ? 11N (LA
-1l r/“scuuw‘ﬁ%maa

So( kKyw) = /ﬂdT — { (1) — i r? (7—)} (3.37)

cosh[w (| 7—0o|-p/2)]
//d do Sinh [w5/2] (1) r (o)
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These case corresponds

Q= fw?- = (3.38)
m
and
U=0 (3.39)
when A (7) becomes to infinity. The classical action is obtained
m | w? . 9
SCL = E —2‘5] (Tf . ’I',‘) (340)

So from Eq. (3.30),

= (rp+mi) (3.41)

(3.42)
Then the survival proba
Py o) (g ) s 4y
Trace it, so |
(3.44)

ate, for larg hermal time f — oo, the

effective rate ﬁaﬁlﬁq Qn ﬂﬂ s w EJ’] ﬂ ‘j

Ky = = (3.45)

’ilﬁ'laﬂﬂ‘iﬁlﬁm Liih ot

The correlatlon function differenced from Castrigiano and Kokiantonis (1983) in

Using Eq. (3.34) to 5 d the effective

the case 7 > o is obtained

(r(r) r(o))—(r(r) ) (r(o0)) = — SiI’:h 5/2] sinh [Q 0/2] sinh [Q (27 — 0 — 8) /2]
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1 W (10 o2 o
+2—Em <—ﬁ_ T 5) (3.46)
For large thermal time 3 — oo, the correlation function for case 7 > o is
2
w
() 1@ = (r(1) (7)) = = =0 (347
This correlation function approaches to a constant.
3.9.2 K (r) is a constant uilibrium path and broken
symmetry in ocal :
From Eq. (3.23), this ca
8 ﬁ ) r(n)} (3.48)
0, K, w;0 =/ A~ (7)) 7 (7 :
( ) = | QS
: ([ - 5/2)] 2
- a ’ '-,‘_!pﬂ‘_ ] | 7(r) = r (o)
or ,7 ‘ | H\‘
. RIL ‘:, : 1 \ cosh [w (| 7 — o] — §/2)]
$(0, &, w; 0) = /0 ar o, 4 SR () (@)
' (3.49)

It is noted that the translatiou’symietsy stem is broken by (k/m) r2.

This case correspone ;_ 1
(3.50)

I |
(! i¥

and F;]I Y EI ,ﬂj " %}%W{WEJ'] N9 (3.51)
T AN IBIIINGNY o

wl _ 1Y cosh [ (T — 3/2)] 1Y cosh [V (1 — 3/2)]
Aln) =33 [(1 5) Qsmh[QB/2 (1 " 5) T sinh [03/2] (] |
3.53
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and we can find A (7) and A () by differentiating with time. The equilibrium

classical path and classical action can be obtained

Scr (0, &, w;0) = %"; A) (r;—r)®+ -8—%‘(%) (ry + 1) (3.54)
and .
rr) = 2D + 2 (3) (g +74) (3.55)

The end point relation Lt (3. 30) The survival probability
becomes

K, w;0)] (3.56)

Considering the s without coordinates only

B by tracing
(3.57)
and put in Eq. (3.34) he : For large thermal time 8 — oo,
the effective rate is obtained
), J (3.58)

)

e
B correlatﬁ ﬁWW TR e = 009

393 Casé

e QAN RN INE A, e

(w® — a)2 —4w? (k/m—a) =0 (3.59)
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implying that kx/m > a . From Eq. (3.23), also set f(7) = 0 and then Q is

simpliflied to

0 = /5 @-a)
= Vwyvk/m-—a (3.60)
so that
(3.61)
The classical action and
m : | ~ 2
SC’L (Ol, K,) = —4— i o 4 . | /2] (T'f + 7',') ] (362)
and
r(7) (8 =) (3.63)
The end point relation ¢
(3.64)
it can be written th O T«Trv‘iﬁT-“-_:—;‘
] v {r) =715 (3.65)

cosh [Qﬁ]

Then the survnﬂpu%Jh’a %Elsﬂ 5 w EJ ’] ﬂ 'j

vy RN AT

and traces

P(8) = 1 sinh [wf/2]

25mh? [04/2] (3.67)
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To find the effective rate using Eq. (3.34) and then, for large thermal time

B — oo, the effective rate is obtained

Koy o~ Q—-“zi (3.68)

The correlation function is

(r(r) r(a)) =(r(r) ) (

(3.69)
For large thermal time [ —
(r(r) r(o - AR (1 —0)] (3.70)
3.10 Surviv
In this section, the survi 18 vival classical path, see in
Fig. (3.2) can be considered} obitaisied fro : 26) by setting f (1) = 0 and

substitute the end point relatiofi 10 Fg 4 0 reduce in one coordinate and

set the one coordin Soll o remly ¥ o ohtan —

A {¥(jk+ng(0) MO S *(31)71})
to plot graph . q ugj Q ﬂﬂ n j ﬂ(ﬂ I]Il] j path and for @ <
k/m, all Kk/m, it
o A RTANES O Dy

The survival probability can be obtain from Eq. (3.33), by setting o =

0.5, and the result is present in Fig. (3.3).
The rate coefficient can be also obtained from Eq. (3.34) see in Fig. (3.4).
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a=090

The Equilibrivm path

duline) which set o = 0 and
Wi, withm =k = w = 1.

Figure 3.2: This shov
the decay path(all soli

'%- :H ‘a L7
o IAUEINENINEINT N\

T ~ Timet

Figure 3.3: Log-log plot of the survival probability setting m = w = k = 1 and
a=0.5
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6

Figure 3.4: The effeckive rate coefficient setting m =% =k = 1 and a = 0.5
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