CHAPTER III

SOME DERIVATIVES ON THE SIERPINSKI GASKET

In this chapter, we will introduc : deriyagiyes of functions on the Sierpinski gasket.

They are the Neumann derivatiVe; the-t : e transverse derivative and the

3.1 The Neum

Definition 3.1. ([3]) The : 1 e N point p in Vp is the limit of
mud k 5 m
~ (§)" (Hnu)(p) a5 m — Go, dbnofl hisbiunit 8, (du)y = lim - (5) (Hom)(p)
where H,, is defined in definition 2.3.4 "h,
f -f o 'J 4
Lemma 3.2. Let u € DomA. ;’%l:«-':} g
Proof. It is enough to Srove the lemma | 4, we get that

= (Hmu) (o) :

<Hﬂw>mﬂwé’mﬁ'ﬂﬂ%m

S‘“”%"’é"ﬁ"‘féain INNANYAY

exists for all g € V, \ Vo. Then 5™(Hpu) is bounded and there exists ¢ € R such that for

every integer m > 1 and q € Vi, \ W,

5™ (Hmu)(q)| < c.
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Thus

(5 o~ (3 e

|

in R, and so it converges

as m — 00. O

s
Definition 3.3. ([2],[5]) Let p be‘any « C such that p = p;i(w), w € Wy and

i€ {0,1,2}. We define the

8 f (p) = hm 3 . ))] (3.4)

m—oo | ",
U

nction f, if limit exists, by
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amaﬁnﬁmumwmaﬂ

?k(l’ll )
P. (wi) ?k(wt)

Note 3.5. If N =

where j,k € {0, lﬂ and i,8jk are not all equal,

Figure (4). The boundary points of SG,, and passing to SGui-
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In addition, we define the transverse(tangential) derivative, if limit exists, by

m

orf(p) = n}i_r,zlws”m[( Wi D) = floelwi 3)} (3.6)

where j,k € {0,1,2} and 4, j, k are not all equal.

m m

~—
The exponent is N +m because the points pi(w), pj(wi---1) and py(wi---1) are the

boundary points of F,F/*(SG). M oreover, planation of the factor 5 comes from the

matrix

form the boundary @ ;"""'""""“""""‘i"“"“ ' larly, for Fy and Fy we

muﬁ?%ﬁ o] ﬁhis
apashadlumngn

Note 3.7 The elgenvalues of M;,1 = 0,1,2 are the same that are %lé and % The

get that

factors 2 and 5 in (3.4) and (3.6) are the reciprocals of the nontrivial eigenvalues
(the eigenvalue 1 corresponds to extending a constant function). The existence of two

derivatives for any harmonic function will be shown in the next section.
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3.3 The Derivatives of Strichartz

In this section, we will introduce the derivative of Strichartz that extend the normal and
transverse derivative. See[2] for more details.
Hypothesis

(1). Each point pj,j = 0,1,2 in W is the fixed point of Fj, we assume that for any

F; and Fj,j # [, the intersection F3(S5€ " ) consists of at most one point = with
(2). For each p; in Vo, ix that transforms the value

flvo to flF;v, for hamoni

We assume that for eac : set ofireal left eigenyectors Bjx with real nonzero

eigenvalues \jg,

We will assume that for each j the eigenve . are labeled in decreasing order of
absolute value,i.e., Ajo.: 21, A1 = 3 =fo y Mloreover, let M; denote the
matrix obtain from Mj by, d n.-Phen the largest eigenvalue

of M; is A\j1 of Mj. Obse ! e that the j* row of M; is éjk@nce Fjvj = vj. Other rows,

all the entries ofﬁ, ﬂ gﬁ ﬂ QE] ﬁ{wyﬁ ﬂ ?nvectors Bji for the

eigenvalue Ajx

IR Wi St T

5a + 2b+ 2¢c = 5a
2b+c=5b

b+ 2¢c = 5c.
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Thus @ € R, b= 3c and ¢ = 3b and hence Bpo = (a00),a € R*. Moreover, if So1Mo =

o115

5a + 2b+ 2¢c = 3a

2b+c=3b

then a = —2b,b = ¢ and ¢ &R ‘and hence filea2> b 5),b € R*. Finally, if fo2Mo =

202802,

then a = 0,¢c = —b and

(0a0), 1= (b-2bb), P12 =
B2z = (c —co0) for all a,b,c € R*.

-b),b € R*. Similarly, 810 =

1 ﬂ20=(00°')1 621=(bb—2b)a

Next, we will also define

with k£ > 0.

Definition 3.8. Let f -' a 1 a neighborhood of a boundary

point p; for some j € {, ,2} Then the derlvatlves dix f (1 _.,) for k = 1,2 are defined by

the following h'ﬂ u}’ﬂe‘?'ﬂ EI‘ VI i w El ’] ﬂ ‘i

ﬁg,mmn’%@ﬁj ey

Z(ﬂgk)zf(F}m(Pz))-

=0
Note 3.10. The derivative associated with 8j1 and Bj2 will just be a multiple of the normal

derivative and transverse derivative, respectively, at p;.

proof of note. Recall that $;; have —2b in the jt* place and the others are b,b € R*.
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Case k = 1. For any positive integer m, and b is fixed,

it D

f\ﬁ;"ﬁjlfllv,r'vo = (g) > (B, £ (FM ()

=0

= (g)m {“2bf(PJ)+bf(ps(J.7))+bf(pt(.7.7)):| )

+ Cf(Pt(j"'j))] 2

where s,t € {0,1,2} ands x4
1 o
¥

djaf(py) = Jm 355" Bia flrmve

ﬂumw?masmm]
AR UNINYAY

Thus dj2 f(p;) is a multiple of the transverse derivative at p;.

Lemma 3.11. If f is harmonic in a neighborhood of p; then all the derivatives dji f(p;)

ezist and may be evaluated without taking the limit in (3.9). In fact, djrf(p;) = Bjkflve-

2
Proof. Let f be a harmonic function on SG and set A, = z\;ka(ﬂjk)lf (F}n(pt))-
1=0
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WLOG, let 5 =0 and b€ R* If k=1, then
A= Aot g (Bor), f (F5" (1))
= 2 1240) + F@1(0) + f(R0))
- D [_agipy 4 L X200 2700 , S+ 2 + 2/

5
= b[~2f(po) + f(p1) + £ (p2)IY

= Ao.

If £ =2, then

=b[f(p)

= Ap.

i

Then the m = 0 and - 1 terms on the ri -- -------------- pE-€

By applying the same ;1""0 e

¥ 2 J
Amig 225771 D (Bowyd (Fo*+ (m1)

AUEATETINN

RAINIFABANA Y

It implies that all term on the right side of (3.9) are equal. If f is a harmonic in a
neighborhood of py, we can choose the sufficiently large m to begin the argument with

f o F§* such that FJ*K is contained in that neighborhood. O
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Lemma 3.12. Fiz p;
(a). A harmonic function f is uniquely determined by the value of f (pj) and djxf(pj),
k =1,2 and any values may be assigned.

(b). Let f be a harmonic function satisfying

Bikflrpve = 0 ((Ajk)™) as m — oo

Proof. (a) Recall that a ha ion '@etermined by the value f|y,.
Then it suffices to find f(pg) ands such tha "l"_\ not all equal in {0, 1,2}. By

the previous Lemma,

it implies that

dif(p
dj2 f(P;) Fci(pr) 1

where j, k, | are not allequa ,2}4 and’ ce @ lf(Pj),def(Pj) and f(p;)

-
kel

eteimine by the constants.

are known, then we can fia

b | T
(b) Note that il ||

i

Bik f1Fmv,

11117} k113

Then | 7 L ¢ a 'y
NIRRT TNEIRE
By (a) and f(p;) =0, we get that f is identically zero. O

Definition 3.13. Suppose n is the first value for which p € V,,. We say that p is a junction

point if there are exactly w and w' in W, such that

p=Fu,(pj)=F,(p)  for j#ke{0,1,2}.
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Let p be a junction point in Vi and J(p) denote the set of indices j such that there
exists j in {0,1,2} with p = Fj(pj/). Moreover, if p is a junction point jn V,, then
p = F,z for  a junction point in V; and w € W,_1 and we set J(p) = J(:c'). Then

p = F,F;p; for j € J(p).

Definition 3.14. Let f be a continuous function defined in a neighborhood of a junction

point p € Vy (but p ¢ Vy_1). Then dy, f(p r j€ J(p) and k = 1,2 are definde by the

following limit, if they exist, N /é

£ FT: (3.15)

SN

Furthermore, the normal d ; )7are said to satis y'the compatibility condi-
tion if \
The gradient of f at p,df(p), is the collec iq all derivatives defined here.

. L = ) -.
Lemma 3.16. If f vvr_— rhood of a ex-p, then all the derivatives
dikf(p) or dy f(p) exis ~4nd aking the limit in (3.15). Further-

more, if p s a Junctwn poznt then the compatzbzlzty condition for the normal derivative

o ﬂﬁﬂ?ﬂﬁlﬂiﬂﬂ*’]ﬂ‘i

Proof. Since f on is a harmonic functign, the ex1sten8follows by Le 3.11 and applied

o 1 Y BRI BV e e

derivative holds

By Proposition 1.10, it easy to see that neighborhoods of p is Un(p) = Fj"K where

p = p; is a boundary point or Up/(p U F, F]FmK where p is a junction point. The
jed(p)
boundary of Up,(p) is taken to be {FwF}"pk} ,k € {0,1,2} in the first case (including p),

and FijFj'}"pk, k € {0,1,2} with p deleted in the second case.
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Lemma 3.17. Fiz a point p in SG.

(a). A harmonic function f on Un(p) is uniquely determined by the value of f (p) and the
gradient df (p), and any values satisfying the compatibility condition (p a junction point)
may be freely assigned.

(b). Let f be a harmonic function on some Unmq(p) satisfying h(p) =0 and

for all j € J(p) and k = dentically zero on Up,(pP) -

Proof. (a) If p is a boun . Assume that p is a junction

point, say p = pj:(wj), j vith the harmonic functions
foF,oF; and look p as n is uniquely determined by the
value of fo F,oFj (pj:) and d; ,2, and any values may be assigned.
Hence, we have the unique harn

(b) Similar wi : g"""‘“—f

_H
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