CHAPTER II

MATHEMATICAN FORMULATION

2.1 Derivation of Governing Equation

transport, aécordin-v!' uata 2] (1970).'islgiven by
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and taking Cori is eff: eré%n, Eq.(2.1) could be
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where v = second order steady Lagrangian velocity in'the y -
direction
X ; 1 =  angular velocity of earth rotation

¢ =rilatitude



Let define the complex variable

W = u + iv 2.4

Sine "u" and "v" are velocity in x- and y-directions respectively,

the complex variabe'Ww shall therefore repesent the total velocity.

2.9

" Since the wind the velocity gradient

in the y-directi Hence,

2.6
Differentiate
or
A 2.7
Substltutlng Eqf(2s2) and' Eq.(23) into Eq.(2.7) we get.
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Mﬂtﬁylnﬁ ﬂiml m iw = iu - V. Subsﬂltutlng this
into Eg.(2.8) leads to the governing equation of our problem
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2.2 Boundary Conditions

It will be assumed, as Madsen did, that the velocity

gradient at the surface is the sum of the velocity gradient due to



the nonzero shear stress by the wind and the wave-induced velocity
gradient as predicted by Longuet-Higgins' model (see Eq.(1.3) in

Chapter I), e.qg.
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where Tt = surface wind &k

The y-compo

_be equal to zero,
at z'= =h 2.12

Substltutlng Eq (2 13 ) -ﬁﬁﬁn__lﬁh Th to Eq.(2.4) yields the 5ottom
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