Chapter 1

Introduction and Theory

Recently, there are widely inf rests studies on the kinetic surface rough-
ening growth [1, 2, 3, 4, cular beam epitaxy (MBE) [1]
thin film growth, i.e. MBE technique. This tech-

nique receives much i ts and theorists [1, 2] due

u
\v BE is also a very important

ality films. Because the

to the fact that it p
technique used in
rough surfaces have sable for electronic devices,
scientists try to undersfang 3 chiavie ‘the MBE growth and find a way to

describe the kinetic surfs

In this thesis, we usgfcomputer sim pns to study kinetic nonequilibrium
surface roughening growth sys " puter simulation is a convenient tool
= "

to use and it is edsy eters such as substrate

temperature or m&o_.,' g energy alof each study. There are
many discrete growtﬂnoe 3 sed to des@;e MBE growth processes
via computer mmulatuph Among thes egmany discrete growth models, we are

most 1nterestﬁ umeﬂhﬁj %ﬁ %ﬁm’}ﬂ@h followed the ideal

low temperatité MBE growth and sohd on-solid (SOS constralnts (not allowing

desorQoWﬂ] ?;u ? EJ ﬁwgn} films). This
model i§ known as the olf-Villain” (WV) model ich will be described in

more detail in the next chapter.

In real MBE growth, there is a step-edge potential barrier known as the
Ehrlich-Schwoebel (ES) barrier [6, 7, 8]. The ES barrier prevents an atom from
diffusing down to the lower terrace from the upper terrace (more details in section
2.2). We are interested in studying effects of the ES barrier in WV model. So
we add the ES barrier into the WV model by modifying the model diffusion rule.



Then we find the effect of ES barrier on the WV model and compare with the
original WV model.

To understand the kinetics properties we must have some background as the
tools to study and understand the model. In this chapter, we will introduce some

background on scaling hypothesis. This approach has become a standard tool to

In order to understand t| ti ". dee roughe i g behavior in MBE growth,
we study a quantity w _ ) des n\» e the grown film quantitatively.
That quantity is the sunfacejuwidth, h™'18 the root mean square height
fluctuation. It is a standard-deviation u interface height h(z,?) which is a

function of the subsh itisidéfined as [1]
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is the averagetieight of the surface defined as
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In the growth process, if the deposited particles arrive on the substrate at a

constant rate, the average height of the surface increases linearly with time as
h(t)  t. (1.3)

If we plot the time evolution of the surface width in log-log scale, see Fig. 1.1,

the surface width has two regimes separated by the time ¢, which is called the



crossover time. In the first region (where ¢ < #.) we see that the surface width

increases as a power law with time
W(L,t) o t?, (1.4)

where J is the growth ezponent. The growth exponent 3 characterizes the time-

dependent dynamics of the rougheninigprocess in ¢ < ¢, regime. As seen in Fig.

(1.5)
where « is called the rogghie ép : he _ iness exponent « characterizes
the roughness of the 'J'u \ -\ over, the crossover time of the
systems also increases 4 o subStrate s cases, see Fig. 1.2. The crossover

< T e
time actually depends on"the f -"-“4‘-‘. X as the power law of L as
- / s g
: ; (1.6)
(7 Y
where z is called e ér' bine the above relations,

| _—
Eq. (1.4) and Eq. ( ! into a single relation as [1]
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where this reﬂtlon is the scalinggrelation for /. The functiop ,f (t/L?) is called
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the smdll value of t/L* (t/L* < 1, implying t < L? or t < t,) the scaling function

increases as a power law as
F@/L%) o (t/L7)°. (1.8)

The second regime is when ¢ — oc (¢/L* > 1, imply ¢t > L* or ¢t > t.). This is

the saturation regime and we have

f(t/L?) «x constant, (1.9)
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are two reglmes in this figure. The first one denoted as Region I, the surface
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saturatfon regime that start after the crossover time t,.
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Figure 1.2: The surface width plot versus time ¢ of the systems with different
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for this limit.

The crossover time . is at the boundary between these two regimes, so it
satisfies both Eq. (1.4) and Eq. (1.5). From this, if we approach the crossover
time ¢, from the left hand side we find

“ (1.10)

f we approach t. from the right

— wi (1.11)
corresponding to Eq/ ohe & lions we can write
(1.12)
Substitute ¢, from Eq.
(1.13)
which yields
(1.14)

Eq. (1.14) links 1;* hree §whieans there are only two

independent exponents. or g ',, th processes which follow

the scaling relation Eq‘. g7) All of the%?’_critical exponents (a, 3, z) define the

universality ﬂﬁfﬂﬁ% ﬂﬂ ﬁ Wﬁqm details in the next
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1.2 YUniversality Class

¢

The universality class of a growth system is defined by the set of critical exponents
(roughness exponent «, growth exponent 3, and dynamical exponent z). It is used
to characterize the asymptotic (at long time, ¢ — oo, and long distance, z — oc)
properties of the kinetic roughening in epitaxial growth. In general, we need only

two exponents, i.e. a and f3, to define the universality class of a system because



the other exponent (z) can be represented in the form of @ and 8 as z = a/f,
Eq. (1.14). There are only a few known universality classes describing asymptotic
growth properties in many nonequilibrium surface growth models. There are four
types [10] of universality classes for kinetic surface roughening in epitaxial growth.
1. Kardar-Parisi-Zhang (KPZ) universality

The growth process will belong to they Kardar-Parisi-Zhang (KPZ) universality

class [11] if the process allows desory hang, and bulk vacancies in the

growing films. The critical éxpon 1 12] in 141 dimensions (one

dimensional substrate) to be.a /2 B % = 3/2. In 241 dimensions

(two dimensional subs ical :v?- nents. are known approximately by

numerical simulations R~ 1.61.

The Edwards-Wilki ribes a growth system with

A
no overhang, no vacan€y afd fo -L-u ""n \ ocess. This type of growth is

a conserve growth whichfis f r* he ‘- S, conditions. Atoms try to diffuse down

\
‘ -al exponents are exactly known in
both 1+1 and 2+1 dimensions[1 0 ihiee==l /2(0), 3 =1/4(0), and z = 2(2) in

14+1(2+1) dimension!

to lower terraces during EW gtewth. The

ndS o = B = 0 predicts very

e

smooth surfaces. The B
in both 141 and 2+md1men31 “because
(o) and the growth exponent (3) are the gmallest values possible.
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The Mullms—H&‘rlng (MH) unlvers?hty (14, 15 also describes a Wtem under SOS
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= 3/8(1/4), and z = 4(4). The exponents o and  in MH universality are the

largest values among these four universality classes. They imply that the growth

smoothest morphology

e value

f the roughness exponent

morphology has the most kinetic surface roughness. The dynamical exponent z =
4 is a very large value. So it takes a long time for the surface width to saturate.
4. Molecular Beam Epitaxy (MBE) universality

The critical exponents for the MBE universality class are known by calculation

(16], a = 1(2/3), B = 1/3(1/5), and z = 3(10/3) in d = 1+1(2+1) dimensions.



1.3 Continuum Growth Equations

To understand the kinetic surface roughening phenomena, we want to make a con-
nection between results obtained from the discrete growth model simulations and

the continuum growth equation of motion which is used to describe the growing in-

he continuum growth equation approach,
’ ivative of the surface height h(z,1?)

i

terfaces on the coarse-grained scale. I

we want to find the equation

which can be written in t

(1.15)

position (z), and time (1) isthe fluchus é due to the random depo-

sition process. To deTiv: chadtic growth egnation of motion, all terms must

The growth equation must'be/jintaria nt. the translation £ — ¢ + ¢ because
it must not depend on where _ sdofing igin of time. So terms that depend
explicitly on ¢ canndh be e 5 il
h, Oh/0t, and its ﬁ’_ ¢

in time. m
2. Invariance along the growth direeti

e ot U IS INEI RS 5 1 o b

it must be mdﬂ)endent of where e define the level h={, So erms that depend
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of Vh, ¥ h terms.

i are the time derivative of

pvariant under translation

3. Invariance along the direction perpendicular to the growth direction.
The growth equation must be invariant under the translation z — = + §z because
it should be independent of the actual value of the position z on the substrate
(where we assume that the substrate is homogeneous). So there cannot be any

terms that depend explicitly on z.



4. Invariance under rotation and inversion symmetry about the growth
direction.

The growth equation must be invariant under the transformation z — -z. This
symmetry eliminates the odd order derivative Vh, V(Vh)?, ... terms from the

growth equation. The survived terms are (Vh)?2, V2h and their combination terms.

me \ i is [ 12]:
Bh+ (N h)&‘(v%)(vm?’#n(x t), (1.16)

where n, k, j are positiyenfilef / \\
i ' t €73 ‘A w\o ! erties of the interfaces, the

& w . - with the lower orders terms.

i : | gene \ \\ or conserved epitaxial growth

]
.
-

including all terms up to

@_VQV h—l/4 h -
[I

ot V(Vh)? +n(z, t). (1.17)

Note that h represents the he 4.-.n 3 /‘y around the average surface height, h

= h - h, rather t a o_.'. we do not include a
¥ llbrom the renormalization
point of view, the mfg relevance g (1.17) is@% if o # 0 [18]. This term
is known as the Edward¢Wilkinson (EW) germ [13] and lead to the EW asymptotic

sty S BRI Toe o onts

equation that Fhcludes only the E?/ term is
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and it 1s generally called the EW equation [13]. If v, = 0, the growth Eq. (1.17)

term representing 3'

can still leads to the EW universality class because it was found [17, 18, 19] that
the A\13V(Vh)? term is the higher order form of the EW term whenever Az # 0.

The extension of the EW equation to include the nonlinear second order
term is proposed by Kardar, Parisi and Zhang [11]

oh

= = 1, V2h + M (Vh)? + n(z, 1), (1.19)
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where we called Kardar-Parisi-Zhang (KPZ) equation [11] and this equation lead
to the KPZ universality class that describes nonconserved growth process. In
general, this equation is used to describe the asymptotic behavior of nonconserved

MBE growth that allows desorption, overhanging, and bulk vacancies in a growing
film.

In the case when v, =

and the growth Eq. (1.17

A13 t relevance term is the V2(Vh)? term

*'ﬂ'la + 7(z, t). (1.20)

This is the nonline \\\-ﬁ‘ which is used to describe
the MBE growth | :
leads to the MBE uni

» equation. This equation
lass. rmof Eq. (1.20) is called the
Mullins-Herring surfacgfdi qhat ,10..14,.15, 19] which is in the form

(1.21)

The results ofjt retically ca asymptotic exponents [19] from

o
Eq. (1.18) throug _ 1 ‘ e four asymptotic uni-

ed in d C 4. Iﬂ

versality classes are

‘a .Y
i S | 1
4}
Exponent a | & @ 2 B3

| WTaNT 2 ey IIZRIC RS
\ (Vh)2  [1/2(3/2|1/3| ~04 | ~1.67 |~ 0.24

Vih 321 4 [3/8] 1 4 1/4
VA(Vh)? | 1| 3 [1/3] 2/3 | 10/3 | 1/5

Table 1.1: The theoretical asymptotic exponents in d = 1+1 and d = 2+1 dimen-

sions for various continuum growth equations.
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1.4 Particle Diffusion Current

For our nonequilibrium growth model, we consider the model as a conserved

growth model. It implies that in our growth process there are mass and vol-

be described by the continuity, coan amed equation as [2]

"- \

ume conservation. Consequently, the surface fluctuation of the growing films can
\;\ A st), (1.22)

v
;‘
where J is a conserved @ uwi'*"i 1519n current which is parallel to the horizontal
average surface height dij // parin, q (1.22) to Eq. (1.17), the
particle diffusion currenfing /

form

o1 irth order, is written in the

\\\

J,I

F voN h \' \ ‘ — 22(Vh) ] (123)
The particle diffusionfCur, / a function of the derivatives
of h and a leading ter ' Which \, ¢'local inclination. The current

can be measured directly By ¢hie-study th'on tilted substrates [20].
To measure the particle-cureent, w he current in Eq. (1.23) and

keep only the most relevais e
y.

Y]

ﬁ (1.24)
where 15 is t ﬁﬁﬁ\wg ﬁl Tlﬁm a tilted substrate.
y “tilted su ans't ﬁ m"l zérod'inclination tan 6 and

the substrate helaht at any ﬁ)smcﬁ 2 and initi@hktime ¢t = 0 is%ét

sym i HL ) RGN

for growth on one dimensional substrate (where the standard initial condition is

(1.25)

h(z) = 0) as shown in Fig. 1.3. We count the numbers of diffusing atoms during
growth process simulations. If an atom hops in the uphill({downhill) direction
(represented by black arrow in Fig. 1.3), it contributes to a positive(negative)
current which is shown by the red(green) arrow in Fig. 1.3(b). For atoms that

do not move (stick at the deposited site) after the deposition, the current from
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these atoms are zero. After the growth process is completed, we calculate the net

current from the following equation:

Javg = [l = 1Ja| ; |J“[, (1.26)

where Jyug, |Ju| and |J4| are the net current, the total uphill current and the

downhill current in the system respe . n is the total number of the deposited

atoms. Then we consider the n ] # as follows. If the net current is
positive the system is sai Shave 2 rent but if the net current is
. : —

al. [20] suggested that this

negative the system

is a powerful methog ieferfuine the true asymptotic behavior of model by

determining if the E\#fters i) shoul :\\-\ in the continuum equation

describing the model. Si 4 Coetfidient v \ 1.17) can also be determined

by this method. For a gVsj &ith an\ uphi t, Jj > 0 (implying v, < 0),

we have an unstable § i oun : \. or instabilities where as in a

system with a downhil > 0), the surface is stable

and belongs to the EW a ass. But there is a limit to this

method because there are growtlt model is method does not work. One

example is the Dag:Sarma-Tamborenia (DT) 9] that has an average zero

particle diffusion V in-{He model. For the case of
L

vy = 0, we cannot fiad the true asymptotic universa

class of these models by
using this method. In % 4o el wi rg eurrent, we C ly conclude that the
o e ] WEbo e} T1od T ] e
v ¢ o o/
~ ‘
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In the study of thin film growth, sometimes it is difficult to distinguish a mounded

surface morphology from a dynamically rough one. A useful tool that can help us
distinguish between mound formation and dynamically rough is the calculation of

the height-height correlation function [2, 21, 22]

G(r) = (h(x)h(x + 1)), (1.27)
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where h is the deviation of the surface height from the average height and r = |r|
is the distance between two sites on the substrate.

If we calculate the height-height correlation function G(r) and find an oscil-
lation of G(r) as a function of 7, see Fig. 1.4, it implies [2, 21, 22] regular mound

formation on the surface. If there is no oscillation, it implies no mound formation

(1.28)

Conventionally, the s G(r) = 0, i.e. the distance

of the first zero cross erage mound radius. The

average mound radiu 2, 23]

(1.29)

where n ~ 271 ( = @' sCoarseniing exponent which describes how the

individual mound size increa

1.6 Over ’P‘

In this chapter, we intyoduced the theorgtical background needed for the study

of far from eﬂluﬂapﬂ%}l%ﬁ W ¥oF MBEfglogith. The Wolt-Villain

(WV) model [ﬂls a simple model tbat we are mterested in this s&xyiy It is a model
" QAN GTRH W I B o o
step-edge potential barrier, known as the Ehrlich-Schwoebel (ES) barrier [6, 7] in
the WV model. The details description of the model is presented in Chapter 2.

The results of our simulations in 1+1 dimensions of both WV model and
WYV model with ES barrier are presented in Chapter 3. The results of the particle
current and correlation functions are also shown here. The conclusions of our work
are presented in Chapter 4. In this last chapter, the true asymptotic universality

class of the WV model is also discussed.
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(a)

ooy i

(®) 22

Figure 1.3: (a) The tlJ;ted substrate w1t‘1,the slope tan#. (b) The method to

contributes tﬂpﬂ ﬁd@;% H%‘Fg w 8&1 ﬁﬁ and downhill (green

arrow) d1rect1 is.

’Q RIAINTU NN INY1AE



15

p—1 W) |
T Y ll“ =

100

Figure 1.4: m s the oscillations as
a function o uﬂltm& ﬂm(ﬁl he blue line, the red
dash and _t otted lin ‘ai k short dash
line) é ﬁe’j afﬂﬁ ‘f ﬁmﬁﬁﬁﬂﬁ Kﬂrphologies of

the systems that use to calculate G(r).
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